JP2016220300A - Battery monitoring device - Google Patents

Battery monitoring device Download PDF

Info

Publication number
JP2016220300A
JP2016220300A JP2015099638A JP2015099638A JP2016220300A JP 2016220300 A JP2016220300 A JP 2016220300A JP 2015099638 A JP2015099638 A JP 2015099638A JP 2015099638 A JP2015099638 A JP 2015099638A JP 2016220300 A JP2016220300 A JP 2016220300A
Authority
JP
Japan
Prior art keywords
voltage
detection
monitoring
battery
connector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015099638A
Other languages
Japanese (ja)
Other versions
JP6372419B2 (en
Inventor
宏昌 田中
Hiromasa Tanaka
宏昌 田中
貴裕 岡田
Takahiro Okada
貴裕 岡田
康隆 花岡
Yasutaka Hanaoka
康隆 花岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2015099638A priority Critical patent/JP6372419B2/en
Publication of JP2016220300A publication Critical patent/JP2016220300A/en
Application granted granted Critical
Publication of JP6372419B2 publication Critical patent/JP6372419B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To enable high-precision voltage detection for each battery cell in a voltage monitoring device supplied with operating power from a battery block including battery cells connected in series.SOLUTION: In a battery monitoring device 500 including a monitoring IC 100 which is supplied with operating power from a battery block 10 including battery cells 21 to 24 connected in series to monitor the voltages of the battery cells 21 to 24, and positive and negative power supply connectors 32, 42 which are respectively provided to positive electrode and negative electrode cableways 31, 41 which are connected to a positive electrode terminal 11 and a negative electrode terminal 13 of the battery block 10 to supply operation power to the monitoring IC 100, the monitoring IC 100 includes a voltage drop detector 200 for detecting the voltage drop of the positive electrode or negative electrode power supply connector 32, 42 when operating current flows through the positive electrode and negative electrode cableways 31, 41, and a controller 300 for determining increase of the resistance of the positive electrode or negative electrode power supply connector 32, 42 on the basis of the voltage value detected by the voltage drop detector 200.SELECTED DRAWING: Figure 1

Description

本発明は、複数の電池セルが直列に接続された電池ブロックの各電池セルの電圧を監視する電池監視装置の構造に関する。   The present invention relates to a structure of a battery monitoring device that monitors the voltage of each battery cell of a battery block in which a plurality of battery cells are connected in series.

近年、モータジェネレータにより車両を駆動する電動車両が多く用いられるようになってきている。このような電動車両にはモータジェネレータに電力を供給し、或いは、モータジェネレータで発電した電力を充電する電池が搭載されている。電池は、ニッケル水素電池やリチウム電池のような二次電池の電池セルを多数直列に接続して高電圧を出力するものが多く用いられている。近年の高電圧電池では、50〜100個程度の電池セルを直列に接続することによって構成されているものが多い。   In recent years, electric vehicles that use a motor generator to drive a vehicle have been increasingly used. Such an electric vehicle is equipped with a battery that supplies electric power to the motor generator or charges electric power generated by the motor generator. As the battery, a battery that outputs a high voltage by connecting a large number of battery cells of a secondary battery such as a nickel metal hydride battery or a lithium battery in series is often used. Many high voltage batteries in recent years are configured by connecting about 50 to 100 battery cells in series.

このような構成の高電圧電池では充放電を繰り返すうちに各電池セルの両端電圧、即ち充電状態(SOC)にバラツキが生じる。電池の充放電にあたっては、各電池セルの耐久性や安全確保の観点からSOC(又は両端電圧)の最も高い電池セルが設定上限SOC(又は上限両端電圧値)に到達した時点で充電を禁止し、SOC(又は両端電圧)の最も低い電池セルが設定下限SOC(又は下限両端電圧値)に到達した時点で放電を禁止する必要がある。従って、各電池セルにSOCのバラツキが生じると、実質上、電池の使用可能容量が減少することになる。このため、各電池セルのSOCを均等化するために、各電池セルの両端電圧を検出することが必要となる。   In the high-voltage battery having such a configuration, the voltage at both ends of each battery cell, that is, the state of charge (SOC) varies as charging and discharging are repeated. When charging or discharging a battery, from the viewpoint of ensuring the durability and safety of each battery cell, charging is prohibited when the battery cell with the highest SOC (or both-ends voltage) reaches the set upper limit SOC (or upper-end both-ends voltage value). It is necessary to inhibit discharge when the battery cell having the lowest SOC (or both-end voltage) reaches the set lower limit SOC (or lower-limit both-end voltage value). Therefore, when SOC variation occurs in each battery cell, the usable capacity of the battery is substantially reduced. For this reason, in order to equalize the SOC of each battery cell, it is necessary to detect the voltage across each battery cell.

各電池セルの電圧の検出は、10個程度の電池セルの電圧の検出が行える電圧検出ICを複数個用いて電池セルを10個程度直列接続したブロック毎に行われるが、電圧検出ICとブロックの各電池セルとの間を接続する検出電路が断線し、電圧検出が不安定になる場合がある。このため、ブロックの電池セルと電圧検出ICとの間に断線検出回路を備える方法が用いられている。断線検出回路には、いろいろな種類があるが、例えば、ブロックの各電池セルと並列にコンデンサとオン・オフスイッチを接続し、スイッチをオンとしてコンデンサを放電させた後、スイッチをオフとして電池セルでコンデンサを充電し、充電速度の大きさ、或いは、所定期間中のコンデンサの両端の電圧上昇により検出電路の断線を検知する方法がある(例えば、特許文献1参照)。   The detection of the voltage of each battery cell is performed for each block in which about 10 battery cells are connected in series using a plurality of voltage detection ICs capable of detecting the voltage of about 10 battery cells. In some cases, the detection electric circuit connecting the battery cells is disconnected, and voltage detection becomes unstable. For this reason, the method of providing a disconnection detection circuit between the battery cell of a block and voltage detection IC is used. There are various types of disconnection detection circuits. For example, a capacitor and an on / off switch are connected in parallel with each battery cell in the block, the switch is turned on and the capacitor is discharged, and then the switch is turned off and the battery cell is turned off. There is a method in which the capacitor is charged by detecting the disconnection of the detection circuit by the magnitude of the charging speed or the voltage rise across the capacitor during a predetermined period (see, for example, Patent Document 1).

特開2010−256155号公報JP 2010-256155 A

ところで、特許文献1に記載されたような電池セルの電圧を検出する電圧検出ICは、12V或いは、24Vの補機用電池から作動電力が供給されている。しかし、仮に、電池が100個の電池セルを直列接続した構成で、10個の電池セルで構成される電池ブロックについて1つの電圧検出ICが用いられるとすると、10か所に電圧検出ICが配置されることになる。通常、電圧検出ICは電圧検出を行う電池ブロックに隣接して設けられるので、この場合には、補機用電池から10か所の電圧検出ICそれぞれに給電電路を敷設する必要があり、電動車両の構造が複雑になってしまうという問題があった。このため、電圧監視ICに隣接する電池ブロックから電圧検出ICに作動電力を供給する方法が検討されている。この場合、電池ブロックの正極及び負極は正極及び負極電路によって電圧検出ICに接続され、電池ブロックから電圧検出ICに作動電力が供給される。また、電圧検出ICは正極及び負極電路の電圧を電池ブロックの正極の電位及び電圧ブロックの負極の電位として検出し、電池ブロックの正極電位と負極電位を参照電位として各電池セルの電圧検出を行う。正極及び負極電路には、各電路の切り離し、接続を可能にする電源コネクタが取り付けられているが、この電源コネクタの接触抵抗が上昇すると、電圧検出ICが参照する電池ブロックの正極の電位、負極の電位が変動し、電池セルの検出電位が変動してしまい、電圧検出の精度が低下してしまう場合がある。   By the way, the voltage detection IC which detects the voltage of the battery cell as described in Patent Document 1 is supplied with operating power from a 12V or 24V auxiliary battery. However, if a battery has a configuration in which 100 battery cells are connected in series, and one voltage detection IC is used for a battery block composed of 10 battery cells, the voltage detection ICs are arranged at 10 locations. Will be. Usually, the voltage detection IC is provided adjacent to the battery block that performs voltage detection. In this case, it is necessary to lay a power supply circuit in each of the ten voltage detection ICs from the auxiliary battery. There was a problem that the structure of became complicated. For this reason, a method of supplying operating power from the battery block adjacent to the voltage monitoring IC to the voltage detection IC has been studied. In this case, the positive electrode and the negative electrode of the battery block are connected to the voltage detection IC by the positive electrode and the negative electrode circuit, and operating power is supplied from the battery block to the voltage detection IC. In addition, the voltage detection IC detects the voltage of the positive electrode and the negative electrode circuit as the positive electrode potential of the battery block and the negative electrode potential of the voltage block, and detects the voltage of each battery cell using the positive electrode potential and the negative electrode potential of the battery block as reference potentials. . The positive electrode and the negative electrode circuit are provided with a power connector that enables disconnection and connection of each circuit. When the contact resistance of the power connector increases, the potential of the positive electrode of the battery block that is referred to by the voltage detection IC, the negative electrode The potential of the battery cell fluctuates, the detection potential of the battery cell fluctuates, and the accuracy of voltage detection may decrease.

そこで、本発明は、電圧監視を行う電池セルが直列に接続された電池ブロックから作動電力が供給される電圧監視装置において精度よく各電池セルの電圧検出を行うことを目的とする。   Therefore, an object of the present invention is to accurately detect the voltage of each battery cell in a voltage monitoring apparatus to which operating power is supplied from a battery block in which battery cells that perform voltage monitoring are connected in series.

本発明の電池監視装置は、電圧監視を行う複数の電池セルが直列に接続された電池ブロックから作動電力が供給され、前記各電池セルの電圧を監視する監視ICと、前記電池ブロックの正極端及び負極端にそれぞれ接続されて前記監視ICに作動電力を供給する正極及び負極電路にそれぞれ設けられる正極及び負極電源コネクタと、を備える電池監視装置であって、前記監視ICは、前記正極及び負極電路に作動電流が流れた際の前記正極又は負極電源コネクタの電圧降下を検出する電圧降下検出部と、前記電圧降下検出部で検出した電圧値に基づいて前記正極又は負極電源コネクタの抵抗上昇を判定する制御部と、を備えることを特徴とする。   The battery monitoring device of the present invention includes a monitoring IC that receives operating power from a battery block in which a plurality of battery cells that perform voltage monitoring are connected in series and monitors the voltage of each battery cell, and a positive terminal of the battery block. And a positive electrode and a negative power supply connector respectively connected to a negative electrode terminal and a positive electrode and a negative electrode electric circuit that are respectively connected to the negative electrode terminal and supply operating power to the monitoring IC, wherein the monitoring IC includes the positive electrode and the negative electrode A voltage drop detection unit that detects a voltage drop of the positive or negative power connector when an operating current flows through an electric circuit, and a resistance increase of the positive or negative power connector based on a voltage value detected by the voltage drop detection unit And a control unit for determining.

本発明の電池監視装置は、正極及び負極コネクタの電圧降下検出部を設けて各コネクタの電圧降下を検出することにより正極及び負極の抵抗上昇を判定するので、電池ブロックから作動電力が供給されても精度よく各電池セルの電圧検出を行うことができる。   The battery monitoring device of the present invention is provided with a voltage drop detection unit for the positive electrode and the negative electrode connector to detect the voltage drop of each connector, thereby determining the increase in resistance of the positive electrode and the negative electrode. Can accurately detect the voltage of each battery cell.

本発明の電池監視装置において、前記各電池セルの各両端と前記監視ICの複数の入力端子とをそれぞれ接続する複数の検出電路と、前記正極電路の前記正極電源コネクタの前記監視IC側と前記監視ICのブロック電圧入力端子とを接続するブロック電圧検出電路と、前記負極電路の前記負極電源コネクタの前記監視IC側と前記監視ICのグランド入力端子とを接続するグランド電路と、を備え、前記電圧降下検出部は、前記ブロック電圧検出電路と、前記電池ブロックの最正極段の第1電池セルの正極と前記監視ICとを接続する第1検出電路との間の電圧を検出する第1電圧センサと、前記グランド電路と、前記電池ブロックの最負極段の第2電池セルの負極と前記監視ICとを接続する第2検出電路との間の電圧を検出する第2電圧センサと、を含み、前記制御部は、前記第1電圧センサ、または、前記第2電圧センサで検出した電圧値が所定の閾値以上の場合に前記正極又は負極電源コネクタの抵抗が増加していると判定すること、としても好適である。   In the battery monitoring device of the present invention, a plurality of detection electric circuits that respectively connect both ends of each battery cell and a plurality of input terminals of the monitoring IC, the monitoring IC side of the positive electrode power connector of the positive electrode electric circuit, and the A block voltage detection circuit for connecting a block voltage input terminal of the monitoring IC, and a ground circuit for connecting the monitoring IC side of the negative power connector of the negative circuit and the ground input terminal of the monitoring IC, The voltage drop detection unit detects a voltage between the block voltage detection circuit and a first detection circuit that connects the positive electrode of the first battery cell in the most positive electrode stage of the battery block and the monitoring IC. A second power for detecting a voltage between the sensor, the ground circuit, a second detection circuit that connects the negative electrode of the second battery cell in the most negative stage of the battery block and the monitoring IC. And the control unit increases the resistance of the positive or negative power connector when a voltage value detected by the first voltage sensor or the second voltage sensor is equal to or greater than a predetermined threshold value. It is also preferable to make a determination.

本発明の電池監視装置は、正極及び負極コネクタの電圧降下検出部を設けて検出した電圧値が所定の閾値以上の場合に正極及び負極の抵抗が上昇したと判定するので、電池ブロックから作動電力が供給されても精度よく各電池セルの電圧検出を行うことができる。   The battery monitoring device according to the present invention determines that the resistance of the positive electrode and the negative electrode has increased when the voltage value detected by providing the voltage drop detection unit of the positive electrode and the negative electrode connector is greater than or equal to a predetermined threshold. Even if is supplied, voltage detection of each battery cell can be performed with high accuracy.

本発明の電池監視装置において、前記各電池セルの各両端と前記監視ICの複数の入力端子とをそれぞれ接続する複数の検出電路と、前記正極電路の前記正極電源コネクタの前記監視IC側と前記監視ICのブロック電圧入力端子とを接続するブロック電圧検出電路と、前記負極電路の前記負極電源コネクタの前記監視IC側と前記監視ICのグランド入力端子とを接続するグランド電路と、を備え、前記電圧降下検出部は、前記ブロック電圧検出電路と、前記電池ブロックの最正極段の第1電池セルの負極と前記監視ICとを接続する第3検出電路との間の電圧を検出する第3電圧センサと、前記グランド電路と、前記電池ブロックの最負極段の第2電池セルの正極と前記監視ICとを接続する第4検出電路との間の電圧を検出する第4電圧センサと、を含み、前記制御部は、前記第3電圧センサで検出した電圧と前記第1電池セルの電圧との電圧差、または、前記第4電圧センサで検出した電圧と前記第2電池セルの電圧との電圧差に基づいて前記正極又は負極電源コネクタの抵抗上昇を判定すること、としても好適である。   In the battery monitoring device of the present invention, a plurality of detection electric circuits that respectively connect both ends of each battery cell and a plurality of input terminals of the monitoring IC, the monitoring IC side of the positive electrode power connector of the positive electrode electric circuit, and the A block voltage detection circuit for connecting a block voltage input terminal of the monitoring IC, and a ground circuit for connecting the monitoring IC side of the negative power connector of the negative circuit and the ground input terminal of the monitoring IC, The voltage drop detection unit detects a voltage between the block voltage detection circuit and a third detection circuit that connects the negative electrode of the first battery cell in the most positive stage of the battery block and the monitoring IC. A fourth electric current for detecting a voltage between the sensor, the ground electric circuit, and a fourth detection electric circuit connecting the positive electrode of the second battery cell in the most negative electrode stage of the battery block and the monitoring IC; A voltage difference between the voltage detected by the third voltage sensor and the voltage of the first battery cell, or the voltage detected by the fourth voltage sensor and the second battery cell. It is also preferable to determine an increase in resistance of the positive or negative power supply connector based on a voltage difference from the voltage.

本発明の電池監視装置は、検出電圧と電池セルの電圧との電圧差により正極及び負極コネクタの抵抗上昇を判定するので、精度よく各電池セルの電圧検出を行うことができる。   Since the battery monitoring device of the present invention determines the resistance increase of the positive electrode and the negative electrode connector based on the voltage difference between the detection voltage and the voltage of the battery cell, the voltage of each battery cell can be detected with high accuracy.

本発明の電池監視装置において、前記第1電池セルの正極と前記監視ICとを接続する第1検出電路に配置された第1検出コネクタと、前記第2電池セルの負極と前記監視ICとを接続する第2検出電路に配置された第2検出コネクタと、を含み、前記制御部は、前記第3電圧センサで検出した電圧と前記第1電池セルの電圧との電圧差の絶対値が所定の電圧未満の場合には、前記正極電源コネクタ及び前記第1検出コネクタは正常であると判定し、前記第3電圧センサで検出した電圧が前記第1電池セルの電圧よりも所定の電圧以上大きい場合には、前記第1検出コネクタの抵抗が増加していると判定し、前記第3電圧センサで検出した電圧が前記第1電池セルの電圧よりも所定の電圧以上小さい場合には、前記正極電源コネクタの抵抗が増加していると判定し、前記第4電圧センサで検出した電圧と前記第2電池セルの電圧との電圧差の絶対値が所定の電圧未満の場合には、前記負極電源コネクタ及び前記第2検出コネクタは正常であると判定し、前記第4電圧センサで検出した電圧が前記第2電池セルの電圧よりも所定の電圧以上大きい場合には、前記第2検出コネクタの抵抗が増加していると判定し、前記第4電圧センサで検出した電圧が前記第2電池セルの電圧よりも所定の電圧以上小さい場合には、前記負極電源コネクタの抵抗が増加していると判定すること、としても好適である。   In the battery monitoring device of the present invention, the first detection connector disposed in the first detection electric circuit connecting the positive electrode of the first battery cell and the monitoring IC, the negative electrode of the second battery cell, and the monitoring IC A second detection connector disposed in a second detection electric circuit to be connected, wherein the control unit has a predetermined absolute value of a voltage difference between the voltage detected by the third voltage sensor and the voltage of the first battery cell. If the voltage is lower than the voltage of the first battery cell, it is determined that the positive power supply connector and the first detection connector are normal, and the voltage detected by the third voltage sensor is greater than the voltage of the first battery cell by a predetermined voltage or more. In this case, it is determined that the resistance of the first detection connector has increased, and the voltage detected by the third voltage sensor is smaller than the voltage of the first battery cell by a predetermined voltage or more, the positive electrode The resistance of the power connector If the absolute value of the voltage difference between the voltage detected by the fourth voltage sensor and the voltage of the second battery cell is less than a predetermined voltage, the negative power connector and the second When the detection connector is determined to be normal and the voltage detected by the fourth voltage sensor is greater than the voltage of the second battery cell by a predetermined voltage or more, the resistance of the second detection connector is increased. If the voltage detected by the fourth voltage sensor is smaller than the voltage of the second battery cell by a predetermined voltage or more, it is determined that the resistance of the negative power connector is increased. Is preferred.

本発明の電池監視装置は、検出電圧と電池セルの電圧との電圧差により正極及び負極コネクタの抵抗上昇及び検出コネクタの抵抗上昇を判定するので、より精度よく各電池セルの電圧検出を行うことができる。   Since the battery monitoring device of the present invention determines the resistance increase of the positive electrode and the negative electrode connector and the resistance increase of the detection connector based on the voltage difference between the detection voltage and the voltage of the battery cell, the voltage detection of each battery cell can be performed with higher accuracy. Can do.

本発明は、電圧監視を行う電池セルが直列に接続された電池ブロックから作動電力が供給される電圧監視装置において、精度よく各電池セルの電圧検出を行うことができるという効果を奏する。   INDUSTRIAL APPLICABILITY The present invention provides an effect that voltage detection of each battery cell can be performed with high accuracy in a voltage monitoring device in which operating power is supplied from a battery block in which battery cells that perform voltage monitoring are connected in series.

本発明の実施形態における電池監視装置の構成を示す系統図である。It is a systematic diagram which shows the structure of the battery monitoring apparatus in embodiment of this invention. 本発明の実施形態における電池監視装置の検出コネクタの抵抗及び検出電路の断線検出の際のコンデンサの充電を示す回路図である。It is a circuit diagram which shows the charge of the capacitor | condenser in the case of detecting the resistance of the detection connector of the battery monitoring apparatus in embodiment of this invention, and the disconnection of a detection electric circuit. 本発明の実施形態における電池監視装置の検出コネクタの抵抗及び検出電路の断線検出の際のコンデンサの放電を示す回路図である。It is a circuit diagram which shows the discharge of the capacitor | condenser in the case of detecting the resistance of the detection connector of the battery monitoring apparatus in embodiment of this invention, and the disconnection of a detection electric circuit. 図2Bでコンデンサを放電させた際のコンデンサ電圧の時間変化を示すグラフである。It is a graph which shows the time change of the capacitor voltage at the time of discharging a capacitor in Drawing 2B. 本発明の実施形態における電池監視装置の正極電源コネクタの抵抗検出動作を示すフローチャートである。It is a flowchart which shows resistance detection operation | movement of the positive electrode power connector of the battery monitoring apparatus in embodiment of this invention. 本発明の実施形態における電池監視装置の負極電源コネクタの抵抗検出動作を示すフローチャートである。It is a flowchart which shows resistance detection operation | movement of the negative electrode power connector of the battery monitoring apparatus in embodiment of this invention. 本発明の実施形態における正極及び負極電源コネクタの抵抗検出の際の電流の流れを示す回路図である。It is a circuit diagram which shows the flow of the electric current in the case of resistance detection of the positive electrode and negative electrode power supply connector in embodiment of this invention. 本発明の他の実施形態における電池監視装置の構成を示す系統図である。It is a systematic diagram which shows the structure of the battery monitoring apparatus in other embodiment of this invention. 本発明の他の実施形態における電池監視装置の正極電源コネクタ、第1検出コネクタの抵抗検出動作を示すフローチャートである。It is a flowchart which shows the resistance detection operation | movement of the positive electrode power supply connector of the battery monitoring apparatus in other embodiment of this invention, and a 1st detection connector. 本発明の他の実施形態における電池監視装置の負極電源コネクタ、第2検出コネクタの抵抗検出動作を示すフローチャートである。It is a flowchart which shows resistance detection operation | movement of the negative electrode power supply connector of the battery monitoring apparatus in other embodiment of this invention, and a 2nd detection connector. 本発明の他の実施形態における正極及び負極電源コネクタ、第1、第2検出コネクタの抵抗検出の際の電流の流れを示す回路図である。It is a circuit diagram which shows the flow of the electric current in the case of resistance detection of the positive electrode and negative electrode power supply connector in the other embodiment of this invention, and a 1st, 2nd detection connector.

<電圧監視装置の構成>
以下、図面を参照しながら本発明の実施形態について説明する。図1に示すように、本実施形態の電池監視装置500は、8〜16個程度の電池セル21〜24が直列に接続された電池ブロック10から作動電圧が供給され、各電池セル21〜24の各電圧を検出する監視IC100と、各電池セル21〜24と監視IC100との間を接続する各検出電路51,61,71,81,91,96と、電池ブロック10の正極端11及び負極端13に接続されて監視IC100に作動電力を供給する正極電路31及び負極電路41とを備えている。なお、図1では、電池ブロック10の中間の電池セル、検出電路、入力端子及び後で説明する電圧センサ、スイッチについては図示を省略している。各検出電路51,61,71,81,91,96の電池ブロック10の側には、各電池セル21〜24と監視IC側の中間で各検出電路51,61,71,81,91,96の切り離し、接続を可能とする各検出コネクタ52,62,72,82,92,97が設けられている。また、正極及び負極電路31,41の電池ブロック10側には、電池ブロック10の正極端11及び負極端13と監視ICとの間で正極及び負極電路31,41の切り離し、接続を可能とする正極及び負極電源コネクタ32,42が設けられている。また、各検出電路51,61,71,81,91,96の各検出コネクタ52,62,72,82,92,97の監視IC100側にはフューズ53,63,73,83,93,98が配置され、各電源コネクタ32,42の監視IC100側にはフューズ33,43が配置されている。
<Configuration of voltage monitoring device>
Hereinafter, embodiments of the present invention will be described with reference to the drawings. As shown in FIG. 1, the battery monitoring device 500 of the present embodiment is supplied with an operating voltage from the battery block 10 in which about 8 to 16 battery cells 21 to 24 are connected in series, and each battery cell 21 to 24. The monitoring IC 100 for detecting each voltage of the battery, the detection electric circuits 51, 61, 71, 81, 91, 96 connecting the battery cells 21 to 24 and the monitoring IC 100, the positive terminal 11 of the battery block 10 and the negative A positive electrode circuit 31 and a negative electrode circuit 41 connected to the extreme 13 and supplying operating power to the monitoring IC 100 are provided. In FIG. 1, the intermediate battery cells of the battery block 10, the detection electric circuit, the input terminal, a voltage sensor described later, and a switch are not shown. On the battery block 10 side of each detection electric circuit 51, 61, 71, 81, 91, 96, each detection electric circuit 51, 61, 71, 81, 91, 96 is intermediate between each battery cell 21-24 and the monitoring IC side. The detection connectors 52, 62, 72, 82, 92, and 97 that can be disconnected and connected are provided. In addition, the positive and negative electrode circuits 31 and 41 can be disconnected and connected to the battery block 10 side of the positive and negative electrode circuits 31 and 41 between the positive electrode end 11 and the negative electrode end 13 of the battery block 10 and the monitoring IC. Positive and negative power supply connectors 32, 42 are provided. Further, fuses 53, 63, 73, 83, 93, 98 are provided on the monitoring IC 100 side of the respective detection connectors 52, 62, 72, 82, 92, 97 of the respective detection electric circuits 51, 61, 71, 81, 91, 96. The fuses 33 and 43 are arranged on the monitoring IC 100 side of the power connectors 32 and 42.

正極電路31は、監視ICの高電圧入力端子101に接続される。また、正極電路31の正極電源コネクタ32の監視IC100側の接続点39と監視IC100のブロック電圧入力端子102とはブロック電圧検出電路37によって接続されている。ブロック電圧検出電路37には抵抗35が直列に接続され、ブロック電圧検出電路37の抵抗35とブロック電圧入力端子102との間はコンデンサ36を介してグランドに接続されている。負極電路41は、負極電源コネクタ42の監視IC100側の接続点49で監視IC100のグランド入力端子103に接続されるグランド電路47に接続されている。   The positive electrode circuit 31 is connected to the high voltage input terminal 101 of the monitoring IC. The connection point 39 on the monitoring IC 100 side of the positive power supply connector 32 of the positive electrode circuit 31 and the block voltage input terminal 102 of the monitoring IC 100 are connected by a block voltage detection circuit 37. A resistor 35 is connected in series to the block voltage detection circuit 37, and the resistor 35 and the block voltage input terminal 102 of the block voltage detection circuit 37 are connected to the ground via a capacitor 36. The negative electrode circuit 41 is connected to a ground circuit 47 connected to the ground input terminal 103 of the monitoring IC 100 at a connection point 49 on the monitoring IC 100 side of the negative power connector 42.

監視IC100は、各電池セル21〜24にそれぞれ接続され、各入力端子111〜116から内部に延びる各検出電路51,61,71,81,91,96と、各検出電路51,61,71,81,91,96の間に各電池セル21〜24と並列に接続され、各電池セル21〜24の電圧を検出する電圧センサ131〜134と、各検出電路51,61,71,81,91,96の間に電圧センサ131〜134と並列に接続され、各検出電路51,61,71,81,91,96間の接続をオン・オフするスイッチ141〜144を備えている。また、監視IC100の各入力端子111〜116と各検出コネクタ52,62,72,82,92,97との間の各検出電路51,61,71,81,91,96には、各電池セル21〜24と並列にコンデンサ55,65,75,95および各ツェナーダイオードが接続されており、各コンデンサ55,65,75,95と各ツェナーダイオードの間の各検出電路51,61,71,81,91,96には、それぞれ抵抗54,64,74,84,94,99が接続されている。   The monitoring IC 100 is connected to each of the battery cells 21 to 24 and extends from the input terminals 111 to 116 to the detection electric circuits 51, 61, 71, 81, 91, 96, and the detection electric circuits 51, 61, 71, 96, respectively. 81, 91, 96 are connected in parallel with the battery cells 21-24, voltage sensors 131-134 for detecting the voltages of the battery cells 21-24, and the detection electric circuits 51, 61, 71, 81, 91. , 96 are connected in parallel with the voltage sensors 131 to 134, and switches 141 to 144 for turning on / off the connection between the detection electric circuits 51, 61, 71, 81, 91, 96 are provided. Further, each battery cell is provided in each detection electric circuit 51, 61, 71, 81, 91, 96 between each input terminal 111-116 of the monitoring IC 100 and each detection connector 52, 62, 72, 82, 92, 97. Capacitors 55, 65, 75, 95 and Zener diodes are connected in parallel with 21 to 24, and the detection electric circuits 51, 61, 71, 81 between the capacitors 55, 65, 75, 95 and the Zener diodes are connected. , 91, 96 are connected to resistors 54, 64, 74, 84, 94, 99, respectively.

ブロック電圧検出電路37の一端である接続点39と、監視IC100の入力端子121との間および、入力端子121と監視IC100の内部の検出電路51との間は、電圧検出電路38によって接続され、監視IC100の内部の電圧検出電路38には電圧センサ201が配置されている。また、グランド電路47の一端である接続点49と監視IC100の入力端子122との間、及び、入力端子122と監視IC100の内部の検出電路61との間は電圧検出電路48によって接続され、監視IC内部の電圧検出電路48には、電圧センサ202が配置されている。電圧センサ201と電圧センサ202は一体として電圧降下検出部200を構成する。   The connection point 39, which is one end of the block voltage detection circuit 37, and the input terminal 121 of the monitoring IC 100 and between the input terminal 121 and the detection circuit 51 inside the monitoring IC 100 are connected by a voltage detection circuit 38, A voltage sensor 201 is disposed in the voltage detection circuit 38 inside the monitoring IC 100. In addition, the connection point 49 which is one end of the ground electric circuit 47 and the input terminal 122 of the monitoring IC 100 and the input terminal 122 and the detection electric circuit 61 inside the monitoring IC 100 are connected by the voltage detection electric circuit 48 and are monitored. A voltage sensor 202 is disposed in the voltage detection circuit 48 inside the IC. The voltage sensor 201 and the voltage sensor 202 constitute a voltage drop detection unit 200 as a unit.

監視IC100には、情報処理及び演算を行う制御部300が内蔵されている。監視IC100の内部の各電圧センサ131〜134、201,202は、それぞれ制御部300に接続されて、検出した電圧情報が制御部300に入力される。また、監視IC100の内部の各スイッチ141〜144は、制御部300の指令によってオン・オフ動作するように構成されている。制御部300は、データバス301で上位制御装置である電池ECUに接続されており、検出した各電池セル21〜24の電圧等のデータを電池ECUに送信すると共に、電池ECUからの指令を受信する。なお、図1において、一点鎖線は、信号線を示す。   The monitoring IC 100 includes a control unit 300 that performs information processing and calculation. The voltage sensors 131 to 134, 201, and 202 inside the monitoring IC 100 are connected to the control unit 300, and the detected voltage information is input to the control unit 300. In addition, each of the switches 141 to 144 in the monitoring IC 100 is configured to be turned on / off according to a command from the control unit 300. The control unit 300 is connected to the battery ECU, which is a higher-level control device, via the data bus 301, and transmits data such as the detected voltage of each battery cell 21 to 24 to the battery ECU and receives a command from the battery ECU. To do. In FIG. 1, a one-dot chain line indicates a signal line.

図1に示す様に、高電圧入力端子101は、電池ブロック10の正極端11に接続され、電池監視装置500のグランド入力端子103は、電池ブロック10の負極端13と接続されているので、監視IC100を作動するための作動電力を電池ブロック10から供給する場合には、[正極端11→高電圧入力端子101→監視IC100→グランド入力端子103→負極端13]と電流の流れる回路R1によって作動電流が流れる。   As shown in FIG. 1, the high voltage input terminal 101 is connected to the positive terminal 11 of the battery block 10, and the ground input terminal 103 of the battery monitoring device 500 is connected to the negative terminal 13 of the battery block 10. When operating power for operating the monitoring IC 100 is supplied from the battery block 10, the circuit R1 through which current flows is [positive terminal 11 → high voltage input terminal 101 → monitoring IC 100 → ground input terminal 103 → negative terminal 13]. Operating current flows.

<電圧監視装置における検出コネクタの抵抗上昇判定動作>
以上説明した電圧監視装置500の各電源コネクタ32,42の抵抗上昇判定動作について説明する前に、各検出コネクタ52,62,72,82,92,97の抵抗上昇判定動作について図2A、図2B、図3を参照しながら、簡単に説明する。
<Operation of determining resistance of detection connector in voltage monitoring device>
Before describing the resistance increase determination operation of each power connector 32, 42 of the voltage monitoring device 500 described above, the resistance increase determination operation of each detection connector 52, 62, 72, 82, 92, 97 will be described with reference to FIGS. 2A and 2B. This will be briefly described with reference to FIG.

図2Aに示すように、制御部300は、スイッチ141,143,144をオフにしている状態から、スイッチ143のみをオンにする。すると、コンデンサ75に蓄積されていた電荷は、スイッチ143を通って放電される。そのため、図2Aに示すように、[電池セル23→電池セル21→検出電路51→検出コネクタ52→コンデンサ55→検出電路71→スイッチ143→検出電路91→検出コネクタ92→電池セル23]と電流が流れる回路R10(破線で示す)と、[電池セル24→電池セル23→検出電路71→検出コネクタ72→スイッチ143→検出電路91→コンデンサ95→検出電路96→検出コネクタ97→電池セル24]と電流が流れる回路R11(実線で示す)とが形成され、コンデンサ55とコンデンサ95には電池セル21,23,24から電荷がチャージされ、各コンデンサ55、95の両端の電圧は、電池セル2個の電圧であるVC2まで上昇する。制御部300は、所定の時間だけコンデンサ55、95を充電したら、スイッチ143をオフとする。すると、図2Aに示した回路R10,R11は遮断される。各コンデンサ55,95の両端の電圧は各電池セル21,23又は23,24の合計電圧VC2で、各電池セル21,23,24単一の電圧VC1よりも高いので、スイッチ143がオフとなると、図2Bに示す様に、[コンデンサ55→検出電路51→検出コネクタ52→電池セル21→検出コネクタ72→検出電路71→コンデンサ55]と電流の流れる回路R12(破線で示す)と、[コンデンサ95→検出電路91→検出コネクタ92→電池セル24→検出コネクタ97→検出電路96→コンデンサ95]と電流の流れる回路R13(実線で示す)とが形成され、各コンデンサ55,95の電圧は、各電池セル21,24の電圧、即ち、電池セル1個分の電圧である電圧VC1まで低下する。   As shown in FIG. 2A, the control unit 300 turns on only the switch 143 from the state where the switches 141, 143, and 144 are turned off. Then, the electric charge accumulated in the capacitor 75 is discharged through the switch 143. Therefore, as shown in FIG. 2A, [battery cell 23 → battery cell 21 → detection electric circuit 51 → detection connector 52 → capacitor 55 → detection electric circuit 71 → switch 143 → detection electric circuit 91 → detection connector 92 → battery cell 23] and current [Battery cell 24 → battery cell 23 → detection electric circuit 71 → detection connector 72 → switch 143 → detection electric circuit 91 → capacitor 95 → detection electric circuit 96 → detection connector 97 → battery cell 24] And a circuit R11 (shown by a solid line) through which a current flows are formed, and the capacitor 55 and the capacitor 95 are charged with electric charges from the battery cells 21, 23, 24. The voltage across each capacitor 55, 95 is the battery cell 2 The voltage rises to VC2, which is an individual voltage. The controller 300 turns off the switch 143 after charging the capacitors 55 and 95 for a predetermined time. Then, the circuits R10 and R11 shown in FIG. 2A are cut off. The voltage across each capacitor 55, 95 is the total voltage VC2 of each battery cell 21, 23 or 23, 24, and is higher than the single voltage VC1 of each battery cell 21, 23, 24. Therefore, when the switch 143 is turned off. 2B, [capacitor 55 → detection circuit 51 → detection connector 52 → battery cell 21 → detection connector 72 → detection circuit 71 → capacitor 55] and a circuit R12 (indicated by a broken line) through which a current flows, 95 → detection circuit 91 → detection connector 92 → battery cell 24 → detection connector 97 → detection circuit 96 → capacitor 95] and a circuit R13 (shown by a solid line) through which current flows are formed. The voltage drops to the voltage VC1 of each battery cell 21, 24, that is, the voltage of one battery cell.

スイッチ143をオフとした後の時間に対するコンデンサ55,95の両端の電圧の低下を図3に示す。図3に示す実線aは、各検出コネクタ52,92が正常で抵抗が増加していない場合の電圧変化を示し、破線bは、各検出コネクタ52,92の抵抗が増加している場合の電圧変化を示し、一点鎖線cは、各検出電路51,91が断線している場合の電圧変化を示す。   FIG. 3 shows the voltage drop across the capacitors 55 and 95 with respect to the time after the switch 143 is turned off. The solid line a shown in FIG. 3 shows the voltage change when the detection connectors 52 and 92 are normal and the resistance is not increased, and the broken line b is the voltage when the resistances of the detection connectors 52 and 92 are increased. The alternate long and short dash line c indicates a change in voltage when the detection electric circuits 51 and 91 are disconnected.

図3の実線aに示すように、各検出コネクタ52,92が正常で抵抗の増加がない場合には、コンデンサ55,95の両端の電圧は急速にVC2(電池セル2個分の電圧)からVC1(電池セル1個分の電圧)に低下する。このため、図3に示す時刻t2に電圧センサ131、134によって検出する各コンデンサ55,95の両端の電圧は、VC1となっている。一方、各検出コネクタ52,92の抵抗が増加している場合には、図3の破線bに示すように、各コンデンサ55,95の放電に時間が掛るので、図3に示す時刻t2に電圧センサ131,134によって検出する各コンデンサ55,95の両端の電圧は、VC1よりも大きなVC3となる。また、各検出電路51,91が断線している場合には、各コンデンサ55,95の電圧は電池セル2個分の電圧VC2から低下しないので、図3に示す時刻t2に電圧センサ131,134によって検出する各コンデンサ55,95の両端の電圧は、VC2となっている。   As shown by the solid line a in FIG. 3, when the detection connectors 52 and 92 are normal and there is no increase in resistance, the voltage at both ends of the capacitors 55 and 95 rapidly starts from VC2 (voltage for two battery cells). The voltage drops to VC1 (voltage for one battery cell). Therefore, the voltage across the capacitors 55 and 95 detected by the voltage sensors 131 and 134 at time t2 shown in FIG. 3 is VC1. On the other hand, when the resistances of the detection connectors 52 and 92 are increased, as shown by the broken line b in FIG. 3, it takes time to discharge the capacitors 55 and 95. Therefore, the voltage at time t2 shown in FIG. The voltage across the capacitors 55 and 95 detected by the sensors 131 and 134 is VC3 that is greater than VC1. In addition, when the detection electric circuits 51 and 91 are disconnected, the voltages of the capacitors 55 and 95 do not decrease from the voltage VC2 for two battery cells, so the voltage sensors 131 and 134 at time t2 shown in FIG. The voltage across the capacitors 55 and 95 detected by the above is VC2.

制御部300は、図3の時刻t2に電圧センサ131,134によって検出した電圧がそれぞれVC1であれば、検出コネクタ52,92は正常であると判定し、検出した電圧がVC3であれば、検出コネクタ52,92の抵抗が上昇していると判定し、検出した電圧がVC2であれば、検出電路51,91に断線が発生していると判定する。制御部300は、検出コネクタ52,92の抵抗が上昇していると判定した場合、或いは、検出電路51,91に断線が発生していると判定した場合には、電圧セル21〜24の電圧検出精度が低下する可能性があるので、データバス301を介してフェール信号を電池ECUに出力する。   The control unit 300 determines that the detection connectors 52 and 92 are normal if the voltages detected by the voltage sensors 131 and 134 at time t2 in FIG. 3 are VC1, respectively, and detects if the detected voltage is VC3. If it is determined that the resistances of the connectors 52 and 92 are increased and the detected voltage is VC2, it is determined that a disconnection has occurred in the detection electric circuits 51 and 91. When the control unit 300 determines that the resistances of the detection connectors 52 and 92 are increased, or when it is determined that the detection electric circuits 51 and 91 are disconnected, the voltage of the voltage cells 21 to 24 is determined. Since the detection accuracy may decrease, a fail signal is output to the battery ECU via the data bus 301.

以上、検出コネクタ52,92の抵抗上昇検出について説明したが、制御部300は、スイッチ143の次にスイッチ144をオン・オフして検出コネクタ72,97の抵抗上昇検出の検出を行う。以下、制御部300は、電池ブロック10の正極側から負極側に向かって順次一つずつスイッチをオン・オフさせることにより、各検出コネクタ52,62,72,82,92,97の抵抗上昇、或いは検出電路の断線判定を行う。   Although the detection of the resistance increase of the detection connectors 52 and 92 has been described above, the control unit 300 detects the resistance increase detection of the detection connectors 72 and 97 by turning on and off the switch 144 next to the switch 143. Hereinafter, the control unit 300 turns on and off the switches one by one from the positive electrode side to the negative electrode side of the battery block 10, thereby increasing the resistance of each detection connector 52, 62, 72, 82, 92, 97. Alternatively, disconnection determination of the detection electric circuit is performed.

<電圧監視装置500における正極及び負極電源コネクタの抵抗上昇判定動作>
次に、図4A,4B、図5を参照しながら、正極及び負極電源コネクタ32,42の抵抗上昇判定について説明する。以下の説明は、各検出コネクタ52,62,72,82,92,97は全て正常であるという判定がなされているとして説明する。
<Operation of Determining Resistance Increase of Positive and Negative Power Supply Connectors in Voltage Monitoring Device 500>
Next, with reference to FIGS. 4A, 4B, and 5, the resistance increase determination of the positive and negative power connectors 32 and 42 will be described. In the following description, it is assumed that each detection connector 52, 62, 72, 82, 92, 97 is determined to be normal.

図4AのステップS101に示すように、制御部300は図5に示す電圧センサ201
(第1電圧センサ)によって電圧Vs1を検出する。電圧センサ201は、ブロック電圧検出電路37と電池セル21(第1電池セル)の正極に接続されている検出電路51との間の電圧を検出するものである。ブロック電圧検出電路37は、正極電源コネクタ32を介して電池ブロック10の最正極段の電池セル21(第1電池セル)の正極に接続されている。また、検出電路51(第1検出電路)は、検出コネクタ52を介して電池セル21の正極に接続されている。従って、電圧センサ201の両端は、ともに電池セル21の正極に接続されているので、正極電源コネクタ32、検出コネクタ52の抵抗が非常に小さい場合には、検出電圧はゼロとなる。また、先に説明したように、図5に示す回路R1を通って監視IC100に作動電力が供給された際の正極電源コネクタ32での電圧降下は非常に小さく、監視IC100のブロック電圧入力端子102には、図5の破線R2に示すように、電池ブロック10の正極電圧と同等の電圧が入力されるので、監視IC100は、電池ブロック10の正極電圧を正確に検出することができる。
As shown in step S101 of FIG. 4A, the control unit 300 uses the voltage sensor 201 shown in FIG.
The voltage Vs1 is detected by the (first voltage sensor). The voltage sensor 201 detects a voltage between the block voltage detection circuit 37 and the detection circuit 51 connected to the positive electrode of the battery cell 21 (first battery cell). The block voltage detection circuit 37 is connected to the positive electrode of the battery cell 21 (first battery cell) in the most positive electrode stage of the battery block 10 via the positive power supply connector 32. The detection electric circuit 51 (first detection electric circuit) is connected to the positive electrode of the battery cell 21 via the detection connector 52. Therefore, since both ends of the voltage sensor 201 are both connected to the positive electrode of the battery cell 21, when the resistances of the positive power supply connector 32 and the detection connector 52 are very small, the detection voltage is zero. Further, as described above, the voltage drop at the positive power supply connector 32 when the operating power is supplied to the monitoring IC 100 through the circuit R1 shown in FIG. 5 is very small, and the block voltage input terminal 102 of the monitoring IC 100 5, a voltage equivalent to the positive voltage of the battery block 10 is input, so that the monitoring IC 100 can accurately detect the positive voltage of the battery block 10.

一方、正極電源コネクタ32の抵抗が上昇してくると、正極電源コネクタ32の監視IC100側の電圧は、電池ブロック10から監視IC100に回路R1を通って流れる電流により電圧降下ΔVpが発生する。この場合、先に述べたように、検出コネクタ52は正常で抵抗はほとんどゼロであることから、電圧センサ201は電圧降下ΔVpの電圧を検出する(一点鎖線で示す回路R3参照)。また、監視IC100のブロック電圧入力端子102には電池ブロック10の正極電圧よりもΔVpだけ低い電圧が入力されるので(破線R2参照)、電池セル21〜24の電圧を検出する場合の参照電位にずれが発生し、電池セル21〜24、特に、電池セル21の電圧の検出が不正確になってしまう。   On the other hand, when the resistance of the positive power supply connector 32 increases, the voltage on the monitoring IC 100 side of the positive power supply connector 32 causes a voltage drop ΔVp due to the current flowing from the battery block 10 to the monitoring IC 100 through the circuit R1. In this case, as described above, since the detection connector 52 is normal and the resistance is almost zero, the voltage sensor 201 detects the voltage of the voltage drop ΔVp (see the circuit R3 indicated by the one-dot chain line). Further, since a voltage lower than the positive voltage of the battery block 10 by ΔVp is input to the block voltage input terminal 102 of the monitoring IC 100 (see the broken line R2), the reference potential for detecting the voltage of the battery cells 21 to 24 is used. Deviation occurs, and the detection of the voltage of the battery cells 21 to 24, particularly the battery cell 21, becomes inaccurate.

そこで、制御部300は、図4AのステップS102に示すように、電圧センサ201で検出した電圧Vs1が所定の閾値以上の場合には、図4AのステップS104に示すように正極電源コネクタ32の抵抗が上昇していると判定し、電圧センサ201で検出した電圧Vs1が所定の閾値未満である場合には、図4のステップS103に示すように、正極電源コネクタ32は正常であると判定する。ここで、所定の電圧は、自在に決定することができるが、電池セル21〜24の電圧検出精度が低下しない程度の電圧とすればよい。   Therefore, when the voltage Vs1 detected by the voltage sensor 201 is equal to or higher than a predetermined threshold as shown in step S102 of FIG. 4A, the control unit 300 determines the resistance of the positive power supply connector 32 as shown in step S104 of FIG. 4A. When the voltage Vs1 detected by the voltage sensor 201 is less than the predetermined threshold value, it is determined that the positive power supply connector 32 is normal as shown in step S103 of FIG. Here, the predetermined voltage can be freely determined, but may be a voltage that does not reduce the voltage detection accuracy of the battery cells 21 to 24.

同様に、制御部300は、図4BのステップS105に示すように、電圧センサ202(第2電圧センサ)によって電圧Vs2を検出する。電圧センサ202は、グランド電路47と電池セル22(第2電池セル)の負極に接続されている検出電路61との間の電圧を検出するものである。グランド電路47は、負極電源コネクタ42を介して電池ブロック10の最負極段の電池セル22(第2電池セル)の負極に接続されている。また、検出電路61(第2検出電路)は、検出コネクタ62を介して電池セル22の負極に接続されている。従って、電圧センサ202の両端は、ともに電池セル22の負極に接続されているので、負極電源コネクタ42、検出コネクタ62の抵抗が非常に小さい場合には、検出電圧はゼロとなる。また、先に説明したように、図5に示す回路R1を通って監視IC100に作動電力が供給された際の負極電源コネクタ42での電圧降下は非常に小さく、監視IC100のグランド入力端子103の電圧は電池ブロック10の負極電圧と同等の電圧となり、監視IC100は、電池ブロック10の正極電圧を正確に検出することができる。   Similarly, the control unit 300 detects the voltage Vs2 by the voltage sensor 202 (second voltage sensor) as shown in Step S105 of FIG. 4B. The voltage sensor 202 detects a voltage between the ground electric circuit 47 and the detection electric circuit 61 connected to the negative electrode of the battery cell 22 (second battery cell). The ground electric circuit 47 is connected to the negative electrode of the battery cell 22 (second battery cell) at the most negative electrode stage of the battery block 10 via the negative electrode power connector 42. The detection electric circuit 61 (second detection electric circuit) is connected to the negative electrode of the battery cell 22 via the detection connector 62. Accordingly, since both ends of the voltage sensor 202 are both connected to the negative electrode of the battery cell 22, when the resistances of the negative power supply connector 42 and the detection connector 62 are very small, the detection voltage is zero. Further, as described above, when the operating power is supplied to the monitoring IC 100 through the circuit R1 shown in FIG. 5, the voltage drop at the negative power connector 42 is very small, and the ground input terminal 103 of the monitoring IC 100 The voltage is equal to the negative voltage of the battery block 10, and the monitoring IC 100 can accurately detect the positive voltage of the battery block 10.

一方、負極電源コネクタ42の抵抗が上昇してくると、監視IC100のグランド入力端子103の電圧は、回路R1に流れる電流による電圧降下ΔVnだけ低い電圧或いは電位となる。この場合、先に述べたように、検出コネクタ62は正常で抵抗はほとんどゼロであることから、電圧センサ202は電圧降下ΔVnの電圧を検出する(一点鎖線で示す回路R4参照)。また、監視IC100のグランド入力端子103には電池ブロック10の負極電圧よりもΔVnだけ低い電圧或いは電位が入力されるので、電池セル21〜24の電圧を検出する場合の参照電圧にずれが発生し、電池セル21〜24の電圧の検出が不正確になってしまう。   On the other hand, when the resistance of the negative power supply connector 42 increases, the voltage of the ground input terminal 103 of the monitoring IC 100 becomes a voltage or potential that is lower by the voltage drop ΔVn due to the current flowing through the circuit R1. In this case, as described above, since the detection connector 62 is normal and the resistance is almost zero, the voltage sensor 202 detects the voltage of the voltage drop ΔVn (see the circuit R4 indicated by the one-dot chain line). Further, since a voltage or potential lower by ΔVn than the negative voltage of the battery block 10 is input to the ground input terminal 103 of the monitoring IC 100, a deviation occurs in the reference voltage when detecting the voltages of the battery cells 21 to 24. The detection of the voltage of the battery cells 21 to 24 becomes inaccurate.

そこで、制御部300は、図4BのステップS106に示すように、電圧センサ202で検出した電圧Vs2が所定の閾値以上の場合には、図4のステップS108に示すように負極電源コネクタ42の抵抗が上昇していると判定し、電圧センサ202で検出した電圧Vs2が所定の閾値未満である場合には、図4BのステップS107に示すように、負極電源コネクタ42は正常であると判定する。ここで、所定の電圧は、自在に決定することができるが、正極電源コネクタ32の場合と同様、電池セル21〜24の電圧検出精度が低下しない程度の電圧とすればよい。以上説明したように、制御部300は、電圧センサ201、202の電圧が所定の閾値以上になっているかどうかによって正極及び負極電源コネクタ32,42の抵抗上昇を判定することができる。   Therefore, when the voltage Vs2 detected by the voltage sensor 202 is equal to or higher than a predetermined threshold as shown in step S106 of FIG. 4B, the controller 300 determines the resistance of the negative power connector 42 as shown in step S108 of FIG. If the voltage Vs2 detected by the voltage sensor 202 is less than the predetermined threshold, it is determined that the negative power connector 42 is normal as shown in step S107 of FIG. 4B. Here, the predetermined voltage can be freely determined, but as with the positive power supply connector 32, the predetermined voltage may be set to a voltage that does not decrease the voltage detection accuracy of the battery cells 21 to 24. As described above, the control unit 300 can determine an increase in resistance of the positive and negative power supply connectors 32 and 42 depending on whether or not the voltages of the voltage sensors 201 and 202 are equal to or higher than a predetermined threshold.

制御部300は、図4AのステップS104又は、図4AのステップS108で正極又は負極電源コネクタ32,42の抵抗が上昇していると判定した場合には、電圧セル21〜24の電圧検出精度が低下する可能性があると判定して、データバス301を介してフェール信号を電池ECUに出力する。   When the control unit 300 determines that the resistance of the positive or negative power supply connectors 32 and 42 is increased in step S104 of FIG. 4A or step S108 of FIG. 4A, the voltage detection accuracy of the voltage cells 21 to 24 is increased. It is determined that there is a possibility of a decrease, and a fail signal is output to the battery ECU via the data bus 301.

以上説明したように、本実施形態の電池監視装置500は、電圧監視を行う電池セル21〜24が直列に接続された電池ブロック10から作動電力が供給される場合に、正極及び負極電源コネクタ32,42の抵抗上昇を容易に判定することができるので、各電源コネクタ32,42の抵抗上昇により各電池セル21〜24の電圧検出精度が低下した状態で各電池セル21〜24の電圧検出を行わず、各電源コネクタ32,42が正常で各電池セル21〜24の電圧検出精度が確保できる状態で各電池セル21〜24の電圧検出を行うので、各電池セル21〜24の電圧を精度よく検出できるという効果を奏する。   As described above, the battery monitoring device 500 of the present embodiment has the positive and negative power connector 32 when operating power is supplied from the battery block 10 in which the battery cells 21 to 24 that perform voltage monitoring are connected in series. , 42 can be easily determined, so that the voltage detection of each of the battery cells 21-24 can be performed in a state where the voltage detection accuracy of each of the battery cells 21-24 is lowered due to the increase in the resistance of each of the power connectors 32, 42. Since the voltage detection of each battery cell 21-24 is performed in a state in which each power supply connector 32, 42 is normal and the voltage detection accuracy of each battery cell 21-24 can be ensured, the voltage of each battery cell 21-24 is accurate. The effect of being able to detect well is produced.

次に、図6〜図8を参照しながら本発明の他の実施形態について説明する。先に図1〜図5を参照して説明したと同様の部分には同様の符号を付して説明は省略する。   Next, another embodiment of the present invention will be described with reference to FIGS. Components similar to those described above with reference to FIGS. 1 to 5 are denoted by the same reference numerals, and description thereof is omitted.

図6に示す様に、本実施形態の電池監視装置600は、先に図1〜図5を参照して説明した電池監視装置500の電圧センサ201,202に代えてブロック電圧検出電路37と検出電路71との間の電圧を検出する電圧センサ203と、グランド電路47と検出電路81との間の電圧を検出する電圧センサ204を備えるものであり、電圧センサ203が配置される電圧検出電路38は、監視IC100の入力端子123を介してブロック電圧検出電路37の一端の接続点39と監視IC100の内部の検出電路71とを接続し、電圧センサ204が配置される電圧検出電路48は、監視IC100の入力端子124を介してグランド電路47の一端の接続点49と監視IC100内部の検出電路81とを接続するよう構成されている。なお、図6に示す電圧センサ203,204,131,132は一体として電圧降下検出部210を構成する。   As shown in FIG. 6, the battery monitoring apparatus 600 of the present embodiment detects and detects a block voltage detection circuit 37 instead of the voltage sensors 201 and 202 of the battery monitoring apparatus 500 described above with reference to FIGS. 1 to 5. A voltage sensor 203 for detecting a voltage between the electric circuit 71 and a voltage sensor 204 for detecting a voltage between the ground electric circuit 47 and the detection electric circuit 81 are provided, and a voltage detection electric circuit 38 in which the voltage sensor 203 is arranged. Connects the connection point 39 at one end of the block voltage detection circuit 37 and the detection circuit 71 inside the monitoring IC 100 via the input terminal 123 of the monitoring IC 100, and the voltage detection circuit 48 in which the voltage sensor 204 is arranged is monitored. The connection point 49 at one end of the ground circuit 47 and the detection circuit 81 inside the monitoring IC 100 are connected via the input terminal 124 of the IC 100. Note that the voltage sensors 203, 204, 131, and 132 shown in FIG.

図6に示す実施形態の電池監視装置600における各検出コネクタ52,62,72,82,92,97の抵抗上昇判定、各検出電路51,61,71,81,91,96の断線判定は、先に図2A〜図3を参照して説明したと同様である。   In the battery monitoring apparatus 600 of the embodiment shown in FIG. 6, the resistance increase determination of each detection connector 52, 62, 72, 82, 92, 97 and the disconnection determination of each detection electric circuit 51, 61, 71, 81, 91, 96 are This is the same as described above with reference to FIGS.

<電圧監視装置600における正極及び負極電源コネクタの抵抗上昇判定動作>
次に、図7A,7B、図8を参照しながら、正極及び負極電源コネクタ32,42の抵抗上昇判定について説明する。以下の説明は、検出コネクタ52、62以外の各検出コネクタ72、92、97、82は全て正常であるという判定がなされているとして説明する。
<Resistance increase determination operation of positive and negative power connector in voltage monitoring device 600>
Next, with reference to FIG. 7A, 7B, and FIG. In the following description, it is assumed that it is determined that all the detection connectors 72, 92, 97, 82 other than the detection connectors 52, 62 are normal.

まず、正極電源コネクタ32、検出コネクタ52の抵抗上昇判定について説明する。図7AのステップS201に示すように、制御部300は図6に示す電圧センサ131によって電池セル21(第1電池セル)の電圧Vb1を検出する。次に、制御部300は、図7AのステップS202に示すように電圧センサ203によって電圧Vs3を検出する。電圧センサ203は、ブロック電圧検出電路37と電池セル21(第1電池セル)の負極に接続されている検出電路71との間の電圧を検出するものである。ブロック電圧検出電路37は、正極電源コネクタ32を介して電池ブロック10の最正極段の電池セル21(第1電池セル)の正極に接続されている。また、検出電路71は、検出コネクタ72を介して電池セル21の負極に接続されている。今、検出コネクタ72の抵抗は非常に小さいので、正極電源コネクタ32の抵抗が非常に小さい場合には、電圧センサ203は図8に一点鎖線で示すように、正極電源コネクタ32を通る回路R6によって電池セル21の電圧を検出することになる。一方、電圧センサ131は、図8に破線で示す回路R5によって電池セル21の電圧を検出する。今、検出コネクタ72の抵抗は非常に小さいので、検出コネクタ52の抵抗が非常に小さい場合には電圧センサ131の検出する電圧Vb1は、電池セル21の電圧となる。従って、正極電源コネクタ32、検出コネクタ52の抵抗が非常に小さい場合には、電圧センサ203の検出する電圧Vs3と電圧センサ131の検出する電圧Vb1は同一の電圧となる。   First, the resistance increase determination of the positive power supply connector 32 and the detection connector 52 will be described. As shown in step S201 of FIG. 7A, the control unit 300 detects the voltage Vb1 of the battery cell 21 (first battery cell) by the voltage sensor 131 shown in FIG. Next, the controller 300 detects the voltage Vs3 by the voltage sensor 203 as shown in step S202 of FIG. 7A. The voltage sensor 203 detects a voltage between the block voltage detection circuit 37 and the detection circuit 71 connected to the negative electrode of the battery cell 21 (first battery cell). The block voltage detection circuit 37 is connected to the positive electrode of the battery cell 21 (first battery cell) in the most positive electrode stage of the battery block 10 via the positive power supply connector 32. The detection electric circuit 71 is connected to the negative electrode of the battery cell 21 via the detection connector 72. Now, since the resistance of the detection connector 72 is very small, when the resistance of the positive power supply connector 32 is very small, the voltage sensor 203 is detected by a circuit R6 passing through the positive power supply connector 32 as shown by a one-dot chain line in FIG. The voltage of the battery cell 21 is detected. On the other hand, the voltage sensor 131 detects the voltage of the battery cell 21 by a circuit R5 indicated by a broken line in FIG. Now, since the resistance of the detection connector 72 is very small, when the resistance of the detection connector 52 is very small, the voltage Vb1 detected by the voltage sensor 131 is the voltage of the battery cell 21. Accordingly, when the resistances of the positive power supply connector 32 and the detection connector 52 are very small, the voltage Vs3 detected by the voltage sensor 203 and the voltage Vb1 detected by the voltage sensor 131 are the same voltage.

ここで、正極電源コネクタ32の抵抗が上昇してくると、正極電源コネクタ32の監視IC100側の電圧は、電池ブロック10から監視IC100に回路R1を通って流れる電流により発生する電圧降下ΔVpにより電池ブロック10の正極端11の電圧、つまり、電池セル21の正極側の電圧よりも低くなる。このため、電圧センサ203が検出する電圧Vs3は電池セル21の電圧より電圧降下ΔVpだけ低い電圧となる(一点鎖線で示す回路R6参照)。一方、検出コネクタ52,72が正常で抵抗がほとんどゼロである場合には、電圧センサ131は正極電源コネクタ32の抵抗上昇には関係なく電池セル21の電圧を検出する。このため、正極電源コネクタ32の抵抗が上昇してくると、電圧センサ203の検出する電圧Vs3は、電圧センサ131が検出する電圧Vb1よりも小さくなる。   Here, when the resistance of the positive power supply connector 32 increases, the voltage on the monitoring IC 100 side of the positive power supply connector 32 is reduced by the voltage drop ΔVp generated by the current flowing from the battery block 10 to the monitoring IC 100 through the circuit R1. The voltage is lower than the voltage at the positive electrode end 11 of the block 10, that is, the voltage at the positive electrode side of the battery cell 21. For this reason, the voltage Vs3 detected by the voltage sensor 203 is lower than the voltage of the battery cell 21 by the voltage drop ΔVp (see the circuit R6 indicated by the alternate long and short dash line). On the other hand, when the detection connectors 52 and 72 are normal and the resistance is almost zero, the voltage sensor 131 detects the voltage of the battery cell 21 regardless of the increase in resistance of the positive power supply connector 32. For this reason, when the resistance of the positive power supply connector 32 increases, the voltage Vs3 detected by the voltage sensor 203 becomes smaller than the voltage Vb1 detected by the voltage sensor 131.

また、検出コネクタ52(第1検出コネクタ)の抵抗が上昇してくると、検出コネクタ52の両端に電圧降下ΔVp1が発生する。検出コネクタ72が正常で抵抗がほとんどゼロである場合には、電圧センサ131は電池セル21の電圧より電圧降下ΔVp1だけ低い電圧を検出する(破線で示す回路R5参照)。一方、正極電源コネクタ32、検出コネクタ72の抵抗がほとんどゼロである場合には、電圧センサ203は検出コネクタ52の抵抗上昇とは関係なく電池セル21の電圧を検出する。このため、検出コネクタ52(第1検出コネクタ)の抵抗が上昇してくると、電圧センサ203の検出する電圧Vs3は、電圧センサ131が検出する電圧Vb1よりも大きくなる。   Further, when the resistance of the detection connector 52 (first detection connector) increases, a voltage drop ΔVp1 occurs at both ends of the detection connector 52. When the detection connector 72 is normal and the resistance is almost zero, the voltage sensor 131 detects a voltage that is lower than the voltage of the battery cell 21 by a voltage drop ΔVp1 (see the circuit R5 indicated by a broken line). On the other hand, when the resistances of the positive power supply connector 32 and the detection connector 72 are almost zero, the voltage sensor 203 detects the voltage of the battery cell 21 regardless of the increase in the resistance of the detection connector 52. For this reason, when the resistance of the detection connector 52 (first detection connector) increases, the voltage Vs3 detected by the voltage sensor 203 becomes larger than the voltage Vb1 detected by the voltage sensor 131.

そこで、制御部300は、図7AのステップS203に示すように、電圧センサ203で検出した電圧Vs3と電圧センサ131で検出した電圧Vb1との電圧差の絶対値ΔVd3を計算し、図7AのステップS204に示すように電圧差の絶対値ΔVd3が所定の電圧未満となるかどうかを判定する。そして、電圧差の絶対他ΔVd3が所定の電圧未満の場合(図7AのステップS204でYESと判定した場合)には、図7AのステップS205に進み、正極電源コネクタ32、検出コネクタ52ともに正常であると判定する。   Therefore, as shown in step S203 of FIG. 7A, the controller 300 calculates the absolute value ΔVd3 of the voltage difference between the voltage Vs3 detected by the voltage sensor 203 and the voltage Vb1 detected by the voltage sensor 131, and the step of FIG. As shown in S204, it is determined whether or not the absolute value ΔVd3 of the voltage difference is less than a predetermined voltage. If the absolute difference ΔVd3 of the voltage difference is less than the predetermined voltage (when YES is determined in step S204 in FIG. 7A), the process proceeds to step S205 in FIG. 7A and both the positive power supply connector 32 and the detection connector 52 are normal. Determine that there is.

また、制御部300は、図7AのステップS204でNOと判定した場合には、図7AのステップS206に進み、電圧センサ203で検出した電圧Vs3が電圧センサ131で検出した電圧Vb1よりも所定の電圧以上大きいかどうかを判定する。制御部300は、図7AのステップS206でYESと判定した場合には、図7AのステップS207に進み、検出コネクタ52(第1検出コネクタ)の抵抗が上昇していると判定する。   In addition, when it is determined NO in step S204 of FIG. 7A, the control unit 300 proceeds to step S206 of FIG. 7A, and the voltage Vs3 detected by the voltage sensor 203 is higher than the voltage Vb1 detected by the voltage sensor 131. Determine if it is greater than the voltage. When it is determined YES in step S206 of FIG. 7A, the control unit 300 proceeds to step S207 of FIG. 7A and determines that the resistance of the detection connector 52 (first detection connector) is increased.

また、制御部300は、図7AのステップS206でNOと判定した場合、つまり、電圧センサ203で検出した電圧Vs3が電圧センサ131で検出した電圧Vb1よりも所定の電圧以上小さい場合には、図7AのステップS208に進み、正極電源コネクタ32の抵抗が上昇していると判定する。以上説明したように、制御部300は、電圧センサ203と電圧センサ131の検出する電圧の電圧差に基づいて、正極電源コネクタ32、検出コネクタ52の抵抗上昇を判定することができる。   Further, if the control unit 300 determines NO in step S206 of FIG. 7A, that is, if the voltage Vs3 detected by the voltage sensor 203 is smaller than the voltage Vb1 detected by the voltage sensor 131, the control unit 300 Proceeding to step S208 of 7A, it is determined that the resistance of the positive power supply connector 32 has increased. As described above, the control unit 300 can determine the resistance increase of the positive power supply connector 32 and the detection connector 52 based on the voltage difference between the voltages detected by the voltage sensor 203 and the voltage sensor 131.

制御部300は、図7AのステップS207又はステップS208で検出コネクタ52または正極電源コネクタ32の抵抗が上昇していると判定した場合には、電圧セル21〜24の電圧検出精度が低下する可能性があると判定し、データバス301を介してフェール信号を電池ECUに出力する。   When the control unit 300 determines in step S207 or step S208 in FIG. 7A that the resistance of the detection connector 52 or the positive power supply connector 32 is increased, the voltage detection accuracy of the voltage cells 21 to 24 may be decreased. And determines that there is a fail signal to the battery ECU via the data bus 301.

次に、負極電源コネクタ42、検出コネクタ62の抵抗上昇判定について説明する。図7BのステップS301に示すように、制御部300は図6に示す電圧センサ132によって電池セル22(第2電池セル)の電圧Vb2を検出する。次に、制御部300は、図7BのステップS302に示すように電圧センサ204によって電圧Vs4を検出する。電圧センサ204は、グランド電路47と電池セル22(第2電池セル)の正極に接続されている検出電路81との間の電圧を検出するものである。グランド電路47は、負極電源コネクタ42を介して電池ブロック10の最負極段の電池セル22(第2電池セル)の負極に接続されている。また、検出電路81は、検出コネクタ82を介して電池セル22の正極に接続されている。今、検出コネクタ82の抵抗は非常に小さいので、負極電源コネクタ42の抵抗が非常に小さい場合には、電圧センサ204は図8に一点鎖線で示す負極電源コネクタ42を通る回路R8によって電池セル22の電圧を検出することになる。一方、電圧センサ132は、図8に破線で示す回路R7によって電池セル22の電圧を検出する。今、検出コネクタ82の抵抗は非常に小さいので、検出コネクタ62の抵抗が非常に小さい場合には電圧センサ132の検出する電圧Vb2は、電池セル22の電圧となる。従って、負極電源コネクタ42、検出コネクタ62の抵抗が非常に小さい場合には、電圧センサ204の検出する電圧Vs4と電圧センサ132の検出する電圧Vb2は同一の電圧となる。   Next, the resistance increase determination of the negative power supply connector 42 and the detection connector 62 will be described. As shown in step S301 of FIG. 7B, the controller 300 detects the voltage Vb2 of the battery cell 22 (second battery cell) by the voltage sensor 132 shown in FIG. Next, the controller 300 detects the voltage Vs4 by the voltage sensor 204 as shown in step S302 of FIG. 7B. The voltage sensor 204 detects a voltage between the ground electric circuit 47 and the detection electric circuit 81 connected to the positive electrode of the battery cell 22 (second battery cell). The ground electric circuit 47 is connected to the negative electrode of the battery cell 22 (second battery cell) at the most negative electrode stage of the battery block 10 via the negative electrode power connector 42. The detection electric circuit 81 is connected to the positive electrode of the battery cell 22 through the detection connector 82. Now, since the resistance of the detection connector 82 is very small, when the resistance of the negative power supply connector 42 is very small, the voltage sensor 204 is connected to the battery cell 22 by the circuit R8 that passes through the negative power supply connector 42 shown by a one-dot chain line in FIG. Will be detected. On the other hand, the voltage sensor 132 detects the voltage of the battery cell 22 by a circuit R7 indicated by a broken line in FIG. Now, since the resistance of the detection connector 82 is very small, the voltage Vb2 detected by the voltage sensor 132 becomes the voltage of the battery cell 22 when the resistance of the detection connector 62 is very small. Accordingly, when the resistances of the negative power supply connector 42 and the detection connector 62 are very small, the voltage Vs4 detected by the voltage sensor 204 and the voltage Vb2 detected by the voltage sensor 132 are the same voltage.

ここで、負極電源コネクタ42の抵抗が上昇してくると、負極電源コネクタ42の監視IC100側の電圧は、電池ブロック10の負極端13の電圧、つまり、電池セル22の負極側の電圧より電圧降下ΔVnだけ高くなる。このため、電圧センサ204が検出する電圧Vs4は電池セル22の電圧より電圧降下ΔVnだけ小さい電圧となる(一点鎖線で示す回路R8参照)。一方、検出コネクタ62、82が正常で抵抗がほとんどゼロである場合には、電圧センサ132は負極電源コネクタ42の抵抗上昇には関係なく電池セル22の電圧を検出する。このため、負極電源コネクタ42の抵抗が上昇してくると、電圧センサ204の検出する電圧Vs4は、電圧センサ132が検出する電圧Vb2よりも小さくなる。   Here, when the resistance of the negative power connector 42 increases, the voltage on the monitoring IC 100 side of the negative power connector 42 is higher than the voltage on the negative terminal 13 of the battery block 10, that is, the negative voltage of the battery cell 22. It becomes higher by the drop ΔVn. For this reason, the voltage Vs4 detected by the voltage sensor 204 is a voltage that is smaller than the voltage of the battery cell 22 by the voltage drop ΔVn (see the circuit R8 indicated by the one-dot chain line). On the other hand, when the detection connectors 62 and 82 are normal and the resistance is almost zero, the voltage sensor 132 detects the voltage of the battery cell 22 regardless of the resistance increase of the negative power supply connector 42. For this reason, when the resistance of the negative power supply connector 42 increases, the voltage Vs4 detected by the voltage sensor 204 becomes smaller than the voltage Vb2 detected by the voltage sensor 132.

また、検出コネクタ62(第2検出コネクタ)の抵抗が上昇してくると、検出コネクタ62の両端に電圧降下ΔVn1が発生する。検出コネクタ82が正常で抵抗がほとんどゼロである場合には、電圧センサ132は電池セル22の電圧より電圧降下ΔVn1だけ小さい電圧を検出する(破線で示す回路R7参照)。一方、負極電源コネクタ42、検出コネクタ82の抵抗がほとんどゼロである場合には、電圧センサ204は検出コネクタ62の抵抗上昇とは関係なく電池セル22の電圧を検出する。このため、検出コネクタ62(第2検出コネクタ)の抵抗が上昇してくると、電圧センサ204の検出する電圧Vs4は、電圧センサ132が検出する電圧Vb2よりも大きくなる。   Further, when the resistance of the detection connector 62 (second detection connector) increases, a voltage drop ΔVn1 occurs at both ends of the detection connector 62. When the detection connector 82 is normal and the resistance is almost zero, the voltage sensor 132 detects a voltage that is smaller than the voltage of the battery cell 22 by a voltage drop ΔVn1 (see the circuit R7 indicated by a broken line). On the other hand, when the resistances of the negative power supply connector 42 and the detection connector 82 are almost zero, the voltage sensor 204 detects the voltage of the battery cell 22 regardless of the increase in the resistance of the detection connector 62. For this reason, when the resistance of the detection connector 62 (second detection connector) increases, the voltage Vs4 detected by the voltage sensor 204 becomes larger than the voltage Vb2 detected by the voltage sensor 132.

そこで、制御部300は、図7BのステップS303に示すように、電圧センサ204で検出した電圧Vs4と電圧センサ132で検出した電圧Vb2との電圧差の絶対値ΔVd4を計算し、図7BのステップS304に示すように電圧差の絶対値ΔVd4が所定の電圧未満となるかどうかを判定する。そして、電圧差の絶対他ΔVd4が所定の電圧未満の場合(図7BのステップS304でYESと判定した場合)には、図7BのステップS305に進み、負極電源コネクタ42、検出コネクタ62ともに正常であると判定する。   Therefore, the control unit 300 calculates the absolute value ΔVd4 of the voltage difference between the voltage Vs4 detected by the voltage sensor 204 and the voltage Vb2 detected by the voltage sensor 132, as shown in Step S303 of FIG. As shown in S304, it is determined whether or not the absolute value ΔVd4 of the voltage difference is less than a predetermined voltage. When the absolute difference ΔVd4 of the voltage difference is less than the predetermined voltage (when YES is determined in step S304 in FIG. 7B), the process proceeds to step S305 in FIG. 7B, and both the negative power supply connector 42 and the detection connector 62 are normal. Judge that there is.

また、制御部300は、図7BのステップS304でNOと判定した場合には、図7BのステップS306に進み、電圧センサ204で検出した電圧Vs4が電圧センサ132で検出した電圧Vb2よりも所定の電圧以上大きいかどうかを判定する。制御部300は、図7BのステップS306でYESと判定した場合には、図7BのステップS307に進み、検出コネクタ62(第2検出コネクタ)の抵抗が上昇していると判定する。   In addition, when it is determined NO in step S304 in FIG. 7B, the control unit 300 proceeds to step S306 in FIG. 7B, and the voltage Vs4 detected by the voltage sensor 204 is higher than the voltage Vb2 detected by the voltage sensor 132. Determine if it is greater than the voltage. When it is determined YES in step S306 in FIG. 7B, the control unit 300 proceeds to step S307 in FIG. 7B and determines that the resistance of the detection connector 62 (second detection connector) is increased.

また、制御部300は、図7BのステップS306でNOと判定した場合、つまり、電圧センサ204で検出した電圧Vs4が電圧センサ132で検出した電圧Vb2よりも所定の電圧以上小さい場合には、図7BのステップS308に進み、負極電源コネクタ42の抵抗が上昇していると判定する。以上説明したように、制御部300は、電圧センサ204と電圧センサ132の検出する電圧の電圧差に基づいて、負極電源コネクタ42、検出コネクタ62の抵抗上昇を判定することができる。   Further, when the control unit 300 determines NO in step S306 of FIG. 7B, that is, when the voltage Vs4 detected by the voltage sensor 204 is smaller than the voltage Vb2 detected by the voltage sensor 132 by a predetermined voltage or more, FIG. Proceeding to step S308 of 7B, it is determined that the resistance of the negative power supply connector 42 has increased. As described above, the control unit 300 can determine the resistance increase of the negative power supply connector 42 and the detection connector 62 based on the voltage difference between the voltages detected by the voltage sensor 204 and the voltage sensor 132.

制御部300は、図7BのステップS307又はステップS308で検出コネクタ62または負極電源コネクタ42の抵抗が上昇していると判定した場合には、電圧セル21〜24の電圧検出精度が低下する可能性があると判定し、データバス301を介してフェール信号を電池ECUに出力する。   If the control unit 300 determines in step S307 or step S308 in FIG. 7B that the resistance of the detection connector 62 or the negative power supply connector 42 is increased, the voltage detection accuracy of the voltage cells 21 to 24 may be reduced. And determines that there is a fail signal to the battery ECU via the data bus 301.

本実施形態の電池監視装置600は、先に説明した電池監視装置500と同様の効果に加え、検出コネクタ52,62(第1、第2検出コネクタ)の抵抗上昇を検出することができるという効果を奏する。   The battery monitoring apparatus 600 according to the present embodiment has an effect that it can detect an increase in resistance of the detection connectors 52 and 62 (first and second detection connectors) in addition to the same effects as the battery monitoring apparatus 500 described above. Play.

10 電池ブロック、11 正極端、13 負極端、21〜24 電池セル、31 正極電路、32 正極電源コネクタ、33,43,53,63,73,83,93,98 フューズ、35,54,64,74,84,94,99 抵抗、36,55,65,75,95 コンデンサ、37 ブロック電圧検出電路、38,48 電圧検出電路、39,49 接続点、41 負極電路、42 負極電源コネクタ、47 グランド電路、51,61,71,81,91,96 検出電路、52,62,72,82,92,97 検出コネクタ、100 監視IC、101 高電圧入力端子、102 ブロック電圧入力端子、103 グランド入力端子、111〜116,121〜124 入力端子、131〜134、201〜204 電圧センサ、141〜144 スイッチ、200,210 電圧降下検出部、300 制御部、301 データバス、500,600 電池監視装置。   DESCRIPTION OF SYMBOLS 10 Battery block, 11 Positive electrode end, 13 Negative electrode end, 21-24 Battery cell, 31 Positive electrode circuit, 32 Positive electrode power supply connector, 33, 43, 53, 63, 73, 83, 93, 98 Fuse, 35, 54, 64, 74, 84, 94, 99 Resistance, 36, 55, 65, 75, 95 Capacitor, 37 Block voltage detection circuit, 38, 48 Voltage detection circuit, 39, 49 Connection point, 41 Negative circuit, 42 Negative power connector, 47 Ground Electrical circuit, 51, 61, 71, 81, 91, 96 Detection circuit, 52, 62, 72, 82, 92, 97 Detection connector, 100 Monitoring IC, 101 High voltage input terminal, 102 Block voltage input terminal, 103 Ground input terminal , 111-116, 121-124 input terminals, 131-134, 201-204 voltage sensors, 141-1 44 switch, 200, 210 voltage drop detection unit, 300 control unit, 301 data bus, 500, 600 battery monitoring device.

Claims (4)

電圧監視を行う複数の電池セルが直列に接続された電池ブロックから作動電力が供給され、前記各電池セルの電圧を監視する監視ICと、
前記電池ブロックの正極端及び負極端にそれぞれ接続されて前記監視ICに作動電力を供給する正極及び負極電路にそれぞれ設けられる正極及び負極電源コネクタと、
を備える電池監視装置であって、
前記監視ICは、
前記正極及び負極電路に作動電流が流れた際の前記正極又は負極電源コネクタの電圧降下を検出する電圧降下検出部と、
前記電圧降下検出部で検出した電圧値に基づいて前記正極又は負極電源コネクタの抵抗上昇を判定する制御部と、
を備える電池監視装置。
A monitoring IC that receives operating power from a battery block in which a plurality of battery cells that perform voltage monitoring are connected in series, and monitors the voltage of each battery cell;
A positive electrode and a negative power supply connector respectively connected to a positive electrode end and a negative electrode end of the battery block and provided to a positive electrode and a negative electrode electric circuit that supply operating power to the monitoring IC;
A battery monitoring device comprising:
The monitoring IC is
A voltage drop detection unit that detects a voltage drop of the positive or negative power connector when an operating current flows through the positive and negative electrodes;
A control unit for determining a resistance increase of the positive or negative power connector based on a voltage value detected by the voltage drop detection unit;
A battery monitoring device comprising:
請求項1に記載の電池監視装置であって、
前記各電池セルの各両端と前記監視ICの複数の入力端子とをそれぞれ接続する複数の検出電路と、
前記正極電路の前記正極電源コネクタの前記監視IC側と前記監視ICのブロック電圧入力端子とを接続するブロック電圧検出電路と、
前記負極電路の前記負極電源コネクタの前記監視IC側と前記監視ICのグランド入力端子とを接続するグランド電路と、を備え、
前記電圧降下検出部は、
前記ブロック電圧検出電路と、前記電池ブロックの最正極段の第1電池セルの正極と前記監視ICとを接続する第1検出電路との間の電圧を検出する第1電圧センサと、
前記グランド電路と、前記電池ブロックの最負極段の第2電池セルの負極と前記監視ICとを接続する第2検出電路との間の電圧を検出する第2電圧センサと、を含み、
前記制御部は、
前記第1電圧センサ、または、前記第2電圧センサで検出した電圧値が所定の閾値以上の場合に前記正極又は負極電源コネクタの抵抗が増加していると判定すること、
を特徴とする電池監視装置。
The battery monitoring device according to claim 1,
A plurality of detection electric circuits respectively connecting the both ends of each battery cell and the plurality of input terminals of the monitoring IC;
A block voltage detection circuit that connects the monitoring IC side of the positive power supply connector of the positive circuit and a block voltage input terminal of the monitoring IC;
A ground circuit that connects the monitoring IC side of the negative power supply connector of the negative circuit and the ground input terminal of the monitoring IC;
The voltage drop detector is
A first voltage sensor that detects a voltage between the block voltage detection circuit and a first detection circuit that connects the positive electrode of the first battery cell in the most positive stage of the battery block and the monitoring IC;
A second voltage sensor for detecting a voltage between the ground electric circuit and a second detection electric circuit connecting the negative electrode of the second battery cell in the most negative electrode stage of the battery block and the monitoring IC;
The controller is
Determining that the resistance of the positive or negative power connector is increased when a voltage value detected by the first voltage sensor or the second voltage sensor is equal to or greater than a predetermined threshold;
A battery monitoring device.
請求項1に記載の電池監視装置であって、
前記各電池セルの各両端と前記監視ICの複数の入力端子とをそれぞれ接続する複数の検出電路と、
前記正極電路の前記正極電源コネクタの前記監視IC側と前記監視ICのブロック電圧入力端子とを接続するブロック電圧検出電路と、
前記負極電路の前記負極電源コネクタの前記監視IC側と前記監視ICのグランド入力端子とを接続するグランド電路と、を備え、
前記電圧降下検出部は、
前記ブロック電圧検出電路と、前記電池ブロックの最正極段の第1電池セルの負極と前記監視ICとを接続する第3検出電路との間の電圧を検出する第3電圧センサと、
前記グランド電路と、前記電池ブロックの最負極段の第2電池セルの正極と前記監視ICとを接続する第4検出電路との間の電圧を検出する第4電圧センサと、を含み、
前記制御部は、
前記第3電圧センサで検出した電圧と前記第1電池セルの電圧との電圧差、または、前記第4電圧センサで検出した電圧と前記第2電池セルの電圧との電圧差に基づいて前記正極又は負極電源コネクタの抵抗上昇を判定すること、
を特徴とする電池監視装置。
The battery monitoring device according to claim 1,
A plurality of detection electric circuits respectively connecting the both ends of each battery cell and the plurality of input terminals of the monitoring IC;
A block voltage detection circuit that connects the monitoring IC side of the positive power supply connector of the positive circuit and a block voltage input terminal of the monitoring IC;
A ground circuit that connects the monitoring IC side of the negative power supply connector of the negative circuit and the ground input terminal of the monitoring IC;
The voltage drop detector is
A third voltage sensor that detects a voltage between the block voltage detection circuit and a third detection circuit that connects the negative electrode of the first battery cell in the most positive stage of the battery block and the monitoring IC;
A fourth voltage sensor that detects a voltage between the ground circuit and a fourth detection circuit that connects the positive electrode of the second battery cell at the most negative electrode stage of the battery block and the monitoring IC;
The controller is
The positive electrode based on the voltage difference between the voltage detected by the third voltage sensor and the voltage of the first battery cell, or the voltage difference between the voltage detected by the fourth voltage sensor and the voltage of the second battery cell. Or determining an increase in resistance of the negative power connector,
A battery monitoring device.
請求項3に記載の電池監視装置であって、
前記第1電池セルの正極と前記監視ICとを接続する第1検出電路に配置された第1検出コネクタと、
前記第2電池セルの負極と前記監視ICとを接続する第2検出電路に配置された第2検出コネクタと、を含み、
前記制御部は、
前記第3電圧センサで検出した電圧と前記第1電池セルの電圧との電圧差の絶対値が所定の電圧未満の場合には、前記正極電源コネクタ及び前記第1検出コネクタは正常であると判定し、
前記第3電圧センサで検出した電圧が前記第1電池セルの電圧よりも所定の電圧以上大きい場合には、前記第1検出コネクタの抵抗が増加していると判定し、
前記第3電圧センサで検出した電圧が前記第1電池セルの電圧よりも所定の電圧以上小さい場合には、前記正極電源コネクタの抵抗が増加していると判定し、
前記第4電圧センサで検出した電圧と前記第2電池セルの電圧との電圧差の絶対値が所定の電圧未満の場合には、前記負極電源コネクタ及び前記第2検出コネクタは正常であると判定し、
前記第4電圧センサで検出した電圧が前記第2電池セルの電圧よりも所定の電圧以上大きい場合には、前記第2検出コネクタの抵抗が増加していると判定し、
前記第4電圧センサで検出した電圧が前記第2電池セルの電圧よりも所定の電圧以上小さい場合には、前記負極電源コネクタの抵抗が増加していると判定すること、
を特徴とする電池監視装置。
The battery monitoring device according to claim 3,
A first detection connector disposed in a first detection electric circuit connecting the positive electrode of the first battery cell and the monitoring IC;
A second detection connector disposed in a second detection circuit that connects the negative electrode of the second battery cell and the monitoring IC;
The controller is
When the absolute value of the voltage difference between the voltage detected by the third voltage sensor and the voltage of the first battery cell is less than a predetermined voltage, it is determined that the positive power supply connector and the first detection connector are normal. And
When the voltage detected by the third voltage sensor is greater than the voltage of the first battery cell by a predetermined voltage or more, it is determined that the resistance of the first detection connector has increased,
When the voltage detected by the third voltage sensor is smaller than the voltage of the first battery cell by a predetermined voltage or more, it is determined that the resistance of the positive power supply connector is increased,
When the absolute value of the voltage difference between the voltage detected by the fourth voltage sensor and the voltage of the second battery cell is less than a predetermined voltage, it is determined that the negative power supply connector and the second detection connector are normal. And
If the voltage detected by the fourth voltage sensor is greater than the voltage of the second battery cell by a predetermined voltage or more, it is determined that the resistance of the second detection connector has increased,
When the voltage detected by the fourth voltage sensor is smaller than the voltage of the second battery cell by a predetermined voltage or more, it is determined that the resistance of the negative power connector is increased.
A battery monitoring device.
JP2015099638A 2015-05-15 2015-05-15 Battery monitoring device Active JP6372419B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015099638A JP6372419B2 (en) 2015-05-15 2015-05-15 Battery monitoring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015099638A JP6372419B2 (en) 2015-05-15 2015-05-15 Battery monitoring device

Publications (2)

Publication Number Publication Date
JP2016220300A true JP2016220300A (en) 2016-12-22
JP6372419B2 JP6372419B2 (en) 2018-08-15

Family

ID=57581809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015099638A Active JP6372419B2 (en) 2015-05-15 2015-05-15 Battery monitoring device

Country Status (1)

Country Link
JP (1) JP6372419B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012050316A (en) * 2010-07-30 2012-03-08 Sanyo Electric Co Ltd Power supply device
JP2012098238A (en) * 2010-11-05 2012-05-24 Mitsumi Electric Co Ltd Battery voltage monitoring circuit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012050316A (en) * 2010-07-30 2012-03-08 Sanyo Electric Co Ltd Power supply device
JP2012098238A (en) * 2010-11-05 2012-05-24 Mitsumi Electric Co Ltd Battery voltage monitoring circuit

Also Published As

Publication number Publication date
JP6372419B2 (en) 2018-08-15

Similar Documents

Publication Publication Date Title
JP5974849B2 (en) Battery monitoring device
JP5274110B2 (en) Power supply for vehicle
US10222423B2 (en) Electrical storage system
US20150077124A1 (en) Assembled battery module and disconnection detecting method
JP6137007B2 (en) Anomaly detection device
JP6382453B2 (en) Battery monitoring device
KR20070089653A (en) Integrated circuit for controlling charging, charging device using the integrated circuit, and method for detecting connection of secondary battery
US10353013B2 (en) Voltage detection device, voltage detection method, abnormality determination device, abnormality determination method, and battery pack system
JP2019158539A (en) Battery monitoring device
WO2006064786A1 (en) Power supply device
JPWO2018101005A1 (en) Battery control unit
JP6386816B2 (en) Battery state monitoring circuit and battery device
JP2012208066A (en) Battery voltage detection device
JP6787705B2 (en) Anomaly detector and battery system
CN107407707B (en) Abnormality detection device
JP2010164510A (en) Abnormality detection device of battery pack
JP5312491B2 (en) Voltage display method, voltage display device, and battery pack
JP2015097461A (en) Battery pack voltage detector
JP2006185685A (en) Disconnection detecting device and disconnection detecting method
JP5561049B2 (en) Battery voltage measuring device
JP6372419B2 (en) Battery monitoring device
JP2017158269A (en) Voltage detection apparatus
JP2016122542A (en) Failure determination method for power storage device
EP2136219A2 (en) Voltage detecting device of assembled battery and assembled battery system comprising same
JP6507989B2 (en) Battery monitoring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180313

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180619

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180702

R151 Written notification of patent or utility model registration

Ref document number: 6372419

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151