JP2016217542A - Refrigerant distributor and manufacturing method thereof - Google Patents

Refrigerant distributor and manufacturing method thereof Download PDF

Info

Publication number
JP2016217542A
JP2016217542A JP2015098950A JP2015098950A JP2016217542A JP 2016217542 A JP2016217542 A JP 2016217542A JP 2015098950 A JP2015098950 A JP 2015098950A JP 2015098950 A JP2015098950 A JP 2015098950A JP 2016217542 A JP2016217542 A JP 2016217542A
Authority
JP
Japan
Prior art keywords
refrigerant
notch
refrigerant distributor
convex
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015098950A
Other languages
Japanese (ja)
Inventor
渡辺 将人
Masahito Watanabe
将人 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Johnson Controls Hitachi Air Conditioning Technology Hong Kong Ltd
Original Assignee
Johnson Controls Hitachi Air Conditioning Technology Hong Kong Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Johnson Controls Hitachi Air Conditioning Technology Hong Kong Ltd filed Critical Johnson Controls Hitachi Air Conditioning Technology Hong Kong Ltd
Priority to JP2015098950A priority Critical patent/JP2016217542A/en
Publication of JP2016217542A publication Critical patent/JP2016217542A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a refrigerant distributor capable of making a predetermined distribution ratio or a distribution ratio within a predetermined range, even in a case where a refrigerant flow rate greatly changes, and provide a manufacturing method thereof.SOLUTION: A refrigerant distributor 1 includes an introduction part 2 into which refrigerant is introduced, a first derivation part 4 and a second derivation part 5 to which refrigerant is derived, and a branch part 3 at which refrigerant fed from the introduction part 2 is branched into the first derivation part 4 and the second derivation part 5. The branch part 3 has a projection part n provided on an inner wall surface 3h1 so as to project toward the introduction part 2. The projection part n has a such a shape that the height of end parts n2, n2 is lower than that of a central part n1.SELECTED DRAWING: Figure 1

Description

本発明は、冷媒分配器およびその製造方法に関する。   The present invention relates to a refrigerant distributor and a manufacturing method thereof.

近年の世界的な省エネルギに対する要求は、冷凍空調技術の向上、特に熱交換効率の性能向上の要求として認識されている。
冷凍空調技術においては、各々の部品要素、例えば、圧縮機、冷凍サイクル、熱交換器および送風機の各要素それぞれで技術革新と性能向上が要求されている。
The recent global demand for energy saving has been recognized as a demand for improvement in refrigeration and air conditioning technology, in particular, heat exchange efficiency.
In the refrigerating and air-conditioning technology, technological innovation and performance improvement are required for each component, for example, each component of the compressor, the refrigeration cycle, the heat exchanger, and the blower.

冷凍サイクルにおいては冷媒の熱交換器への適正な配分を実現することで、熱交換器の熱交換効率を改善させ、省エネルギ化に貢献できることはよく知られている。
例えば、先行技術文献として、特許文献1に記載される冷媒分配器は冷凍空調の業界では頻繁に用いられている。
It is well known that, in the refrigeration cycle, it is possible to improve the heat exchange efficiency of the heat exchanger and contribute to energy saving by realizing proper distribution of the refrigerant to the heat exchanger.
For example, as a prior art document, the refrigerant distributor described in Patent Document 1 is frequently used in the refrigeration and air conditioning industry.

特許3390565号公報Japanese Patent No. 3390565

ところで、冷凍空調技術において、熱交換器内での冷媒の分配性能向上は重要である。とりわけ、その冷媒分配の安定化は熱交換性能に影響するため、重要な課題である。
一般的に、一つの冷媒導入部に対して二つの冷媒導出部を持つ冷媒分配器が利用され、形態としてはおおまかに2つの種類があり、その外形状からU字型とY字型に区分される。
Incidentally, in the refrigeration and air conditioning technology, it is important to improve the distribution performance of the refrigerant in the heat exchanger. In particular, stabilization of the refrigerant distribution is an important issue because it affects the heat exchange performance.
Generally, a refrigerant distributor having two refrigerant outlets for one refrigerant introduction part is used, and there are roughly two types of forms, and the outer shape is divided into a U-shape and a Y-shape. Is done.

U字型は冷媒の入口となる冷媒導入部の方向に対して冷媒導出部の方向が概垂直になっている。そこで、冷媒導入部と冷媒導出部との間の冷媒が分けられる冷媒分岐部に2つの導出部の中心から外れた偏った位置にノッチ形状を付与することで、2つの導出部の冷媒の分配比率に差を設けることが可能となる。
Y字型は冷媒導入部と冷媒導出の方向を同じ方向に冷媒を分岐させるものである。
In the U shape, the direction of the refrigerant outlet portion is substantially perpendicular to the direction of the refrigerant inlet portion serving as the refrigerant inlet. Therefore, the distribution of the refrigerant in the two lead-out parts is provided by giving a notch shape to the refrigerant branch part where the refrigerant between the refrigerant introduction part and the refrigerant lead-out part is separated from the center of the two lead-out parts. It becomes possible to provide a difference in the ratio.
The Y shape branches the refrigerant in the same direction as the refrigerant introduction portion and the refrigerant outlet direction.

上記の派生型としては、冷媒導入部が導出部へ等距離に配置されない偏芯型もしばしば用いられる。
上述の冷媒分配器の製作工程としては2通りある。
直管に対してハイドロフォーミング加工、いわゆる液圧バルジ加工を施し、冷媒導入部となる凸部を成形してから、曲げ加工を行い、凸部のカット・成形を行い分配器とする方法と、直管に曲げ加工を施した後にハイドロフォーミング加工を行い、凸部を処理するものである。
As the derivation type, an eccentric type in which the refrigerant introduction part is not arranged at an equal distance from the derivation part is often used.
There are two manufacturing processes for the above-described refrigerant distributor.
Applying hydroforming to a straight pipe, so-called hydraulic bulge processing, forming a convex part to be a refrigerant introduction part, then bending, cutting and molding the convex part, and a distributor, After the straight pipe is bent, hydroforming is performed to process the convex portion.

第1の工程の先にハイドロフォーミング加工を行う場合には直管の工程が長いことから自動化がし易いことと、理想条件に近い状態でハイドロフォーミング加工を行えることがメリットである。
デメリットとしては、前記した偏芯型の分配器の製作には設備の調整を要する場合が多いことが挙げられる。
When the hydroforming process is performed before the first process, the straight pipe process is long, so that it is easy to automate and the hydroforming process can be performed in a state close to ideal conditions.
As a demerit, it is often necessary to adjust the equipment to manufacture the eccentric type distributor.

一方、第2の工程のパイプを曲げた後にハイドロフォーミング加工を行う、いわゆる曲げ管ハイドロフォーミング加工の場合は、上述のU字やY字といった通常の分配器の製作と偏芯型の分配器の製作を同じ設備で比較的少ない段取り替えで行えるというメリットがある。   On the other hand, in the case of so-called bent pipe hydroforming, in which hydroforming is performed after the pipe of the second step is bent, the manufacture of the normal distributor such as the U-shape and the Y-shape described above and the eccentric distributor There is an advantage that production can be performed with the same equipment with relatively few setup changes.

デメリットとしては、本来ハイドロフォーミング加工では材料の端面を対向方向から荷重を印加することが理想であり、直管の状態で加工することがこの理想状態に該当する。先にパイプを曲げた後にハイドロフォーミング加工を行うことで、理想状態での加工とならず、若干の検討が必要となることが挙げられる。   As a demerit, in the hydroforming process, it is ideal to apply a load to the end face of the material from the opposite direction, and to process in a straight pipe state corresponds to this ideal state. By performing hydroforming after first bending the pipe, it is not possible to process in an ideal state, but some consideration is required.

これらの加工方法には一長一短があるが、管をハイドロフォーミング加工により凸形状を付加して利用する本質は差異がない。
このハイドロフォーミング加工にて付加した凸形状端面を後工程にて切断し、指定の管径に加工することで冷媒導入部とすることで二分岐冷媒分配器を形成することが可能である。
These processing methods have advantages and disadvantages, but there is no difference in the essence of using a tube with a convex shape added by hydroforming.
It is possible to form a bifurcated refrigerant distributor by cutting the convex end face added by the hydroforming process in a subsequent process and processing it into a specified pipe diameter to form a refrigerant introduction part.

ここまで、ハイドロフォーミング加工による冷媒分流器の製法について述べたが、分配性能向上の方法のひとつとして下記のものがある。つまり、後記の図5に示すように、冷媒分配器100の冷媒導入部102から分岐部103に導入される冷媒の衝突面の管内壁面103h1に凸形状のノッチn100を付加して、凸形状のノッチn100の位置を冷媒の分配比率に従った位置にすることで、冷媒の分配比率を調整し、熱交換効率の向上に寄与することができる。   Up to this point, the method of manufacturing the refrigerant flow distributor by hydroforming has been described. One of the methods for improving the distribution performance is as follows. That is, as shown in FIG. 5 described later, a convex notch n100 is added to the pipe inner wall surface 103h1 of the collision surface of the refrigerant introduced from the refrigerant introduction portion 102 of the refrigerant distributor 100 to the branching portion 103, and the convex shape By setting the position of the notch n100 according to the distribution ratio of the refrigerant, the distribution ratio of the refrigerant can be adjusted, and the heat exchange efficiency can be improved.

例えば、空気調和機の室外機においては熱交換器の冷媒管に対して、送風機は均一な位置に配置されておらず、各冷媒管と送風機との位置関係から、必ず熱交換効率の高い冷媒管と低い冷媒管とが発生する。   For example, in an outdoor unit of an air conditioner, the blower is not arranged at a uniform position with respect to the refrigerant pipe of the heat exchanger, and the refrigerant having a high heat exchange efficiency is surely determined from the positional relationship between each refrigerant pipe and the blower. A pipe and a low refrigerant pipe are generated.

これら熱交換効率の高い冷媒管には多くの冷媒を供給し、低い冷媒管には冷媒を少なく供給することで室外機全体の熱交換効率が向上することが判明している。
これに対して、上述の冷媒分流器100に凸形状のノッチn100を付与する技術では、ノッチn100の位置を、2つの導出方向の導出部104、105に対して均等でない位置に配置することで、片方の導出部104または導出部105に多くの冷媒を誘導することができる。これにより、効率的な熱交換サイクルを形成することが可能である。
以上のことは特許文献1からも自明であるが、これらの技術でも完全な比率での冷媒の分配は困難である。
It has been found that the heat exchange efficiency of the entire outdoor unit is improved by supplying a large amount of refrigerant to the refrigerant tubes with high heat exchange efficiency and supplying a small amount of refrigerant to the low refrigerant tubes.
On the other hand, in the technique of providing the convex notch n100 to the refrigerant flow distributor 100 described above, the position of the notch n100 is arranged at an unequal position with respect to the derivation units 104 and 105 in the two derivation directions. A large amount of refrigerant can be guided to one of the derivation unit 104 or the derivation unit 105. Thereby, it is possible to form an efficient heat exchange cycle.
The above is obvious from Patent Document 1, but even with these techniques, it is difficult to distribute the refrigerant at a perfect ratio.

具体的な技術課題として、流量の大小で冷媒分配挙動の変化がある。
一般的に流量が大きいほど、冷媒の分流比は顕著になることが分っている。
例えば、大流量時に45%:55%の分配比率であったものは、中程度の流量で46%:54%、小流量で47%:53%など、低流量になるほど、分流しにくくなり基準の50%の等比率に近くなっていき、目的の分流比率と乖離してしまう。
これらの結果は冷媒流量が大きく変化する環境での冷媒分配性能に解決すべき課題があることに他ならない。
As a specific technical problem, there is a change in refrigerant distribution behavior depending on the flow rate.
In general, it has been found that the larger the flow rate, the more prominent the refrigerant diversion ratio.
For example, the distribution ratio of 45%: 55% at a large flow rate is 46%: 54% at a medium flow rate and 47%: 53% at a low flow rate. It becomes close to an equal ratio of 50%.
These results are none other than the problem to be solved in the refrigerant distribution performance in an environment where the refrigerant flow rate greatly changes.

本発明は上記実状に鑑み創案されたものであり、冷媒流量が大きく変化する環境においても、所定のまたは所定範囲の分流比率にすることが可能な冷媒分配器およびその製造方法の提供を目的とする。   The present invention was devised in view of the above circumstances, and it is an object of the present invention to provide a refrigerant distributor capable of setting a diversion ratio within a predetermined range or a predetermined range even in an environment where the refrigerant flow rate greatly changes, and a method for manufacturing the same. To do.

前記課題を解決するため、本発明の冷媒分配器は、冷媒が導入される導入部と、冷媒が導出される第1の導出部および第2の導出部と、前記導入部から送られる冷媒が前記第1の導出部と前記第2の導出部とに分岐される分岐部とを備え、前記分岐部は、内壁面に前記導入部に向かって突出する凸部を有し、前記凸部は、端部が中央部より高さが低い形状を有している。   In order to solve the above-described problem, the refrigerant distributor of the present invention includes an introduction part into which a refrigerant is introduced, a first derivation part and a second derivation part from which the refrigerant is derived, and a refrigerant sent from the introduction part. A branch portion branched into the first lead-out portion and the second lead-out portion, the branch portion having a convex portion projecting toward the introduction portion on an inner wall surface, The end portion has a shape lower than the central portion.

本発明によれば、冷媒流量が大きく変化する環境においても、所定のまたは所定範囲の分流比率にすることが可能な冷媒分配器およびその製造方法を実現できる。   ADVANTAGE OF THE INVENTION According to this invention, even in the environment where a refrigerant | coolant flow volume changes a lot, the refrigerant | coolant divider | distributor which can be made into a predetermined or the predetermined flow-division ratio, and its manufacturing method are realizable.

(a)は本発明に係る実施形態1の冷媒分配器の上面図、(b)は(a)のA方向矢視図、(c)は(a)のB方向矢視図、(d)は(a)のC−C断面図。(A) is a top view of the refrigerant distributor according to the first embodiment of the present invention, (b) is a view in the direction of arrow A in (a), (c) is a view in the direction of arrow B in (a), (d) (A) CC sectional drawing. 実施形態1の冷媒分配器の断面斜視図。FIG. 3 is a cross-sectional perspective view of the refrigerant distributor according to the first embodiment. ノッチの図1(a)のB方向矢視拡大図、(b)はノッチの図1(a)のA方向矢視拡大図。FIG. 1B is an enlarged view of the notch in the direction B of FIG. 1A, and FIG. (a)は比較例(従来)の冷媒分配器の上面図、(b)は(a)のD方向矢視図、(c)は(a)のE方向矢視図、(d)は図4(a)のF−F断面図。(A) is a top view of a refrigerant distributor of a comparative example (conventional), (b) is a view taken in the direction of arrow D in (a), (c) is a view taken in the direction of arrow E, (d) is a view of FIG. FF sectional drawing of 4 (a). 比較例の冷媒分配器の断面斜視図。The cross-sectional perspective view of the refrigerant distributor of a comparative example. 比較例(従来技術)での分岐性能結果。Branch performance results in a comparative example (prior art). 実施形態1(本発明)での分岐性能結果。The branch performance result in Embodiment 1 (this invention). 実施形態1の冷媒分岐部の冷媒配管内のノッチ近傍での冷媒の流れを示す模式図。The schematic diagram which shows the flow of the refrigerant | coolant in the notch vicinity in the refrigerant | coolant piping of the refrigerant | coolant branch part of Embodiment 1. FIG. ノッチnの高さと分流のばらつきとの関係を表した実験データを示す図。The figure which shows the experimental data showing the relationship between the height of the notch n, and the dispersion | distribution of a shunt flow. (a)は冷媒分配器の素形状を示す正面図、(b)は冷媒分配器の素形状にノッチを形成する過程を示す断面図、(c)は完成した冷媒分配器の正面図。(A) is a front view showing the original shape of the refrigerant distributor, (b) is a cross-sectional view showing a process of forming a notch in the original shape of the refrigerant distributor, and (c) is a front view of the completed refrigerant distributor. (a)は上型の斜視図、(b)は下型の斜視図、(c)はノッチをプレス成形する状態を示す拡大正面図。(A) is a perspective view of an upper mold | type, (b) is a perspective view of a lower mold | type, (c) is an enlarged front view which shows the state which press-molds a notch. (a)は本発明に係る実施形態2の冷媒分配器の上面図、(b)は(a)のG方向矢視図、(c)は(b)のH−H断面図、(d)は(a)のI−I断面図。(A) is a top view of the refrigerant distributor according to the second embodiment of the present invention, (b) is a view taken in the direction of the arrow G in (a), (c) is a cross-sectional view along HH in (b), (d). FIG. 11 is a cross-sectional view taken along the line II of FIG. 代表的な冷凍サイクル構成を示す図。The figure which shows a typical refrigeration cycle structure. 代表的な冷凍サイクル構成を示す図。The figure which shows a typical refrigeration cycle structure. (a)は変形形態1のノッチの図1のB方向矢視相当図、(b)は変形形態1のノッチの図1のA方向矢相当視図。FIG. 2A is a view corresponding to the arrow B in FIG. 1 of the notch of the first modification, and FIG. 2B is a view corresponding to the arrow A of FIG. (a)は変形形態2のノッチの図1のB方向矢視相当図、(b)は変形形態2のノッチの図1のA方向矢相当視図。(A) is a view corresponding to the arrow B in FIG. 1 of the notch of the second modification, and (b) is a view corresponding to the arrow A in FIG. (a)は変形形態3のノッチの図1のB方向矢視相当図、(b)は変形形態3のノッチの図1のA方向矢相当視図。1A is a view corresponding to the direction of arrow B in FIG. 1 of the notch of the third modification, and FIG. 1B is a view corresponding to the direction of arrow A of FIG. (a)は変形形態4のY字管の上面図、(b)は(a)のL方向矢視図、(c)は(a)のM方向矢視図。(A) is a top view of the Y-shaped tube of modification 4, (b) is an L direction arrow view of (a), (c) is an M direction arrow view of (a). (a)は変形形態5のU字管の上面図、(b)は(a)のR方向矢視図、(c)は(b))のP方向矢視図、(d)は(a)のQ−Q断面図。(A) is a top view of the U-shaped tube of the modified embodiment 5, (b) is a view in the R direction of (a), (c) is a view in the P direction of (b), and (d) is (a) ) QQ sectional view.

以下、本発明の実施形態について、適宜図面を参照しながら詳細に説明する。
本発明は、空気調和機とその冷凍サイクル部品に関するものである。
<<実施形態1>>
図1(a)は本発明に係る実施形態1の冷媒分配器の上面図であり、図1(b)は、図1(a)のA方向矢視図であり、図1(c)は、図1(a)のB方向矢視図であり、図1(d)は、図1(a)のC−C断面図である。図2は、実施形態1の冷媒分配器の断面斜視図である。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings as appropriate.
The present invention relates to an air conditioner and its refrigeration cycle components.
<< Embodiment 1 >>
FIG. 1A is a top view of the refrigerant distributor of Embodiment 1 according to the present invention, FIG. 1B is a view in the direction of arrow A in FIG. 1A, and FIG. 1A is a view in the direction of the arrow B in FIG. 1A, and FIG. 1D is a cross-sectional view taken along the line CC in FIG. FIG. 2 is a cross-sectional perspective view of the refrigerant distributor of the first embodiment.

実施形態1の冷媒分配器1は、一つの冷媒の導入部2と2つの導出部4、5とを有する。
冷媒分配器1は、冷媒を一つの導入部2から2つの導出部4、5に分配する機能を果たすものである。冷媒分配器1の外形状は、直管に対して前記したハイドロフォーミング加工、いわゆる液圧バルジ加工を施して形成される。
The refrigerant distributor 1 according to the first embodiment includes one refrigerant introduction unit 2 and two lead-out units 4 and 5.
The refrigerant distributor 1 functions to distribute the refrigerant from one introduction part 2 to two lead-out parts 4 and 5. The outer shape of the refrigerant distributor 1 is formed by subjecting a straight pipe to the above-described hydroforming process, so-called hydraulic bulge process.

導入部2と2つの導出部4、5との間には、冷媒分岐部3が形成されている。冷媒分岐部3には、導入部2に入った冷媒を導出部4と導出部5とに所定比率で分流するための凸部のノッチnが導入部2に向けて突出して形成されている(図2参照)。
冷媒は、導入部2から冷媒分配器1に流入し、冷媒分岐部3にてノッチnの影響を受けて、導出部4と導出部5とに分流される。
A refrigerant branching section 3 is formed between the introduction section 2 and the two outlet sections 4 and 5. The refrigerant branch part 3 is formed with a notch n that protrudes toward the introduction part 2 so as to divert the refrigerant that has entered the introduction part 2 to the deriving part 4 and the deriving part 5 at a predetermined ratio ( (See FIG. 2).
The refrigerant flows into the refrigerant distributor 1 from the introduction unit 2, and is divided into the derivation unit 4 and the derivation unit 5 under the influence of the notch n in the refrigerant branching unit 3.

図3(a)は、ノッチの図1(a)のB方向矢視拡大図であり、図3(b)は、ノッチの図1(a)のA方向矢視拡大図である。
図3(a)に示すように、ノッチnは、導出部4、5から見た場合、X軸方向に対して中央部n1が高く端部n2、n2が低い曲線を成すアーチ形状を有している。また、ノッチnは、図3(b)に示すように、Y軸方向に対して中央部n1が高く端部n3、n3が低い形状を有している。なお、ノッチ根元部n9は有っても無くてもよい。
換言すれば、導入部2から送られる冷媒が当たる管内壁面3h1またはその延長面に対して、凸部のノッチnの端部n2、n2は、ノッチnの中央部n1より高さが低い形状としている。なお、図3(b)の二点鎖線に示すように、中央部n1を中央が高いアーチ状にすると好ましい。これにより、冷媒をY方向にスムーズに分流することが促進される
3A is an enlarged view of the notch as viewed in the direction B of FIG. 1A, and FIG. 3B is an enlarged view of the notch as viewed in the direction of the arrow A in FIG. 1A.
As shown in FIG. 3A, the notch n has an arch shape that forms a curve in which the central portion n1 is high and the end portions n2 and n2 are low when viewed from the lead-out portions 4 and 5. ing. Further, as shown in FIG. 3B, the notch n has a shape in which the central portion n1 is high and the end portions n3 and n3 are low with respect to the Y-axis direction. Note that the notch root n9 may or may not be present.
In other words, the end portions n2 and n2 of the notch n of the convex portion have a lower height than the central portion n1 of the notch n with respect to the tube inner wall surface 3h1 to which the refrigerant sent from the introduction portion 2 hits or its extended surface. Yes. In addition, as shown to the dashed-two dotted line of FIG.3 (b), it is preferable when the center part n1 is made into an arch shape with a high center. This facilitates smooth diversion of the refrigerant in the Y direction.

ノッチnは、導出部4と導出部5との中心位置からの偏芯と、ノッチnの形状とで、導出部4と導出部5とに分流される流量を変えるとともに、分流のばらつきを抑えている。
つまり、冷媒はノッチnの導入部2の導出部4、5方向の中心軸O(図1(a)、(b)参照)から偏向した位置を変えることで、導出部4と導出部5との二分岐での分流比率が調整される。
例えば、外径8mm、肉厚0.8mmの銅管において、大流量時の分流比率を45:55に設定した場合、概ねそのノッチnの中心位置は高さ1.5mm、中心Oから分流比率45側に1mm偏向させることで設定の分流比率を得ることができる。
また、後記するように、ノッチnは、導出部4、5から見た場合、X軸方向に対して中央部n1が高く端部n2、n2が低い曲線を成すアーチ形状にすることで、所定の分流比率に近く、分流比率のばらつきを小さくできる。なお、Y軸方向に対して中央部n1が高く端部n3、n3が低い形状を有することが好ましい。
The notch n changes the flow rate diverted to the derivation unit 4 and the derivation unit 5 by the eccentricity of the derivation unit 4 and the derivation unit 5 from the center position and the shape of the notch n, and suppresses variation in the diversion. ing.
That is, by changing the position where the refrigerant is deflected from the central axis O (see FIGS. 1A and 1B) of the derivation part 4 and the five directions of the introduction part 2 of the notch n, the derivation part 4 and the derivation part 5 The diversion ratio at the two branches is adjusted.
For example, in a copper tube having an outer diameter of 8 mm and a wall thickness of 0.8 mm, when the diversion ratio at a large flow rate is set to 45:55, the center position of the notch n is approximately 1.5 mm in height and the diversion ratio from the center O. The set diversion ratio can be obtained by deflecting 1 mm toward the 45 side.
Further, as will be described later, the notch n has a predetermined arch shape with a curved center portion n1 and lower end portions n2 and n2 with respect to the X-axis direction when viewed from the lead-out portions 4 and 5. Therefore, the variation in the diversion ratio can be reduced. In addition, it is preferable that the central part n1 is high and the end parts n3 and n3 are low with respect to the Y-axis direction.

<比較例のノッチn100と実施形態1のノッチnとの比較>
実施形態1のノッチnとの対比のため、図4に比較例(従来技術)の冷媒分配器100を示す。図4(a)は比較例(従来)の冷媒分配器の上面図であり、図4(b)は図4(a)のD方向矢視図であり、図4(c)は、図4(a)のE方向矢視図であり、図4(d)は、図4(a)のF−F断面図である。図5は、比較例の冷媒分配器の断面斜視図である。
比較例の冷媒分配器100は、一つの冷媒導入部102と2つの導出部104、105とを有する。
<Comparison between Notch n100 of Comparative Example and Notch n of Embodiment 1>
For comparison with the notch n of the first embodiment, FIG. 4 shows a refrigerant distributor 100 of a comparative example (prior art). 4A is a top view of a refrigerant distributor of a comparative example (conventional), FIG. 4B is a view in the direction of arrow D in FIG. 4A, and FIG. 4C is FIG. It is an E direction arrow directional view of (a), and FIG.4 (d) is FF sectional drawing of Fig.4 (a). FIG. 5 is a cross-sectional perspective view of a refrigerant distributor of a comparative example.
The refrigerant distributor 100 of the comparative example has one refrigerant introduction unit 102 and two lead-out units 104 and 105.

冷媒は、導入部2から冷媒分配器1に流入し、冷媒分岐部3にてノッチn100の影響を受けて、導出部104と導出部5とに分流される。
比較例のノッチn100は、図4(a)のE方向矢視で、上面n101が平な平面形状を有している(図4(c)参照)。これに対して、実施形態1のノッチnは、前記したように、図1(a)のB方向矢視で、中央部n1が高く端部n2、n2が低い曲線を成すアーチ形状を有している(図5参照)。
The refrigerant flows into the refrigerant distributor 1 from the introduction unit 2, and is divided into the derivation unit 104 and the derivation unit 5 under the influence of the notch n100 in the refrigerant branching unit 3.
The notch n100 of the comparative example has a flat planar shape with the upper surface n101 as viewed in the direction of the arrow E in FIG. 4A (see FIG. 4C). On the other hand, the notch n of the first embodiment has an arch shape that forms a curve with the central portion n1 being high and the end portions n2 and n2 being low as seen in the direction of the arrow B in FIG. (See FIG. 5).

図6、図7は、比較例(従来技術)と実施形態1(本発明)での分岐性能結果であり、それぞれ比較例と実施形態1の2股に分岐する片側の導出部に全冷媒100%のうち45%を流すことを意図して、冷媒の流量が大、中、小の場合の実験データをそれぞれ表したものである。なお、冷媒は、空気調和機の冷媒状態を模する目的で、水と空気を指定の割合で均一混合させた擬似冷媒である。#1〜#5は、試験品を表す。   FIGS. 6 and 7 show the branching performance results in the comparative example (prior art) and Embodiment 1 (the present invention). The experimental data when the flow rate of the refrigerant is large, medium, and small with the intention of flowing 45% out of% are respectively shown. The refrigerant is a pseudo refrigerant in which water and air are uniformly mixed at a specified ratio for the purpose of imitating the refrigerant state of the air conditioner. # 1 to # 5 represent test products.

実験の際の大流量・中流量・小流量は擬似冷媒の相対的流量を示す。具体的な擬似冷媒の流量条件は気温20〜25℃において、下記条件である。
小流量は水が毎分0.35L(リットル)、空気が毎分15L。
中流量は水が毎分0.70L、空気が毎分32.5L。
大流量は水が毎分1.17L、空気が毎分50Lである。
本擬似冷媒による検討は実機による検討とよく追従していることが判明している。
The large flow, medium flow, and small flow during the experiment indicate the relative flow rate of the pseudo refrigerant. Specific flow conditions of the pseudo refrigerant are the following conditions at an air temperature of 20 to 25 ° C.
The small flow rate is 0.35L / liter for water and 15L / minute for air.
Medium flow rate is 0.70L / min for water and 32.5L / min for air.
The large flow rate is 1.17 L / min for water and 50 L / min for air.
It has been found that the study with this pseudo refrigerant closely follows the study with the actual machine.

図6より、比較例の図4のノッチn100は、大流量の平均は、45.2%、中流量の平均は、46.1%、小流量の平均は、47.0%であり、大・中・小流量の各流量のばらつき(最大値―最小値)の平均は2.1%であった。
これに対して、実施形態1の図1、図3のノッチnは、図7より、大流量の平均は、45.2%、中流量の平均は、45、7%、小流量の平均は、46.0%であり、大・中・小流量の各流量のばらつき(最大値―最小値)の平均は0.76%であった。
From FIG. 6, the notch n100 in FIG. 4 of the comparative example has a large flow rate average of 45.2%, a medium flow rate average of 46.1%, and a small flow rate average of 47.0%.・ The average of the dispersion (maximum value-minimum value) of each medium and small flow rate was 2.1%.
On the other hand, the notch n of FIG. 1 and FIG. 3 of Embodiment 1 shows that the average of the large flow rate is 45.2%, the average of the medium flow rate is 45, 7%, and the average of the small flow rate is FIG. 46.0%, and the average of the variations (maximum value-minimum value) of the large, medium, and small flow rates was 0.76%.

図6、図7を参照して、比較例、実施形態1ともに、大流量の方が目標値の45%に近く分流が良好に行われることが分る。
比較例、実施形態1のデータを比較すると、実施形態1の図1〜図3に示すノッチnは、比較例の図4、図5に示すノッチn100に比較し、大・中・小流量で目標分流の45%に等しいかより近い。また、分流量のバラツキは、比較例が2.1%に対し、実施形態1が0.76%と、実施形態1のノッチnにすることで、分流量の変動は大きく抑えられていることが分った。
With reference to FIGS. 6 and 7, it can be seen that in both the comparative example and the first embodiment, the large flow rate is close to 45% of the target value and the diversion is performed well.
Comparing the data of the comparative example and the first embodiment, the notch n shown in FIGS. 1 to 3 of the first embodiment is larger, the middle, and the lower flow rate than the notch n100 shown in FIGS. 4 and 5 of the comparative example. Equal to or closer to 45% of the target diversion. Moreover, the fluctuation of the partial flow rate is greatly suppressed by setting the notch n of the first embodiment to 0.76% in the first embodiment compared to 2.1% in the comparative example. I found out.

図4、図5に図示した比較例(従来技術)の冷媒分配器100の分岐性能を測定すると、中流量と小流量を考慮する場合、大流量と比して壁面での抵抗が減ることに起因して、管中心部と壁面103s(図5参照)側での流速差が小さくなり、従来技術の項に記載したように、分岐性能が変化してしまうことが判明している。このことが、図6の結果より明らかになった。   When the branching performance of the refrigerant distributor 100 of the comparative example (prior art) illustrated in FIGS. 4 and 5 is measured, the resistance on the wall surface is reduced compared to the large flow rate when the medium flow rate and the small flow rate are considered. As a result, it has been found that the flow velocity difference between the tube center and the wall surface 103s (see FIG. 5) is reduced, and the branching performance is changed as described in the section of the prior art. This became clear from the results of FIG.

これに対して、本実施形態1のノッチnのアーチ形状(図2、図3(a)参照)では、上述の図6、図7の結果で説明するように、中流量と小流量においても従来技術によるノッチn100の形状よりも設定した分流比率に近い値で分流させることが可能である。さらに、上述したように、分流比率の変動が、比較例の平均2.1%から、実施形態1の平均0.76%に抑えられている。   On the other hand, in the arch shape of the notch n of the first embodiment (see FIG. 2 and FIG. 3A), as described in the results of FIG. 6 and FIG. It is possible to divert at a value closer to the set diversion ratio than the shape of the notch n100 according to the prior art. Furthermore, as described above, the fluctuation of the diversion ratio is suppressed from an average of 2.1% in the comparative example to an average of 0.76% in the first embodiment.

図8は、実施形態1の冷媒分岐部の冷媒配管内のノッチ近傍での冷媒の流れを示す模式図である。
図8に示すように、ノッチnから遠い位置の流れr0は、冷媒配管3hの管内壁面3h1の摩擦抵抗と冷媒の粘性により管内壁面3h1近傍の流れr02の流速が遅く、中央側の流れr01の流速が速い。そのため、中央側の流れr01が最もノッチnに近い流線をもつ。
FIG. 8 is a schematic diagram illustrating a refrigerant flow in the vicinity of a notch in the refrigerant pipe of the refrigerant branching portion of the first embodiment.
As shown in FIG. 8, the flow r0 far from the notch n has a slow flow velocity of the flow r02 in the vicinity of the pipe inner wall surface 3h1 due to the frictional resistance of the pipe inner wall surface 3h1 of the refrigerant pipe 3h and the viscosity of the refrigerant. The flow rate is fast. Therefore, the flow r01 on the center side has a streamline closest to the notch n.

さらに、流れが下流側に進むと、冷媒の流れr1は、中央側の流れr11が、下流側でノッチnに当たり始めるので流速が遅くなる。そのため、上流側の流れr0に比較して、流れr1は、中央側の流れr11が管内壁面3h1近傍の流れr12に近い遅い流れとなり、中央側と管内壁面3h1近傍との流速差が小さくなる。   Further, when the flow proceeds downstream, the flow rate of the refrigerant flow r1 becomes slow because the flow r11 on the central side starts to hit the notch n on the downstream side. Therefore, compared with the upstream flow r0, the flow r1 is a slow flow in which the central flow r11 is close to the flow r12 in the vicinity of the pipe inner wall surface 3h1, and the flow velocity difference between the central side and the vicinity of the pipe inner wall surface 3h1 is reduced.

理論的には、対象流体を非圧縮性ニュートン流体と仮定した場合、冷媒配管3h内を通過するときに管内壁面3h1より摩擦抵抗を受ける。
ナビエ・ストークス方程式より条件を限定した理論状態から導出されるハーゲン・ポアズイユの法則から、管内での流速分布は下記の式で表される。
Theoretically, when the target fluid is assumed to be an incompressible Newtonian fluid, it receives a frictional resistance from the inner wall surface 3h1 when passing through the refrigerant pipe 3h.
From Hagen-Poiseuille's law derived from theoretical states with limited conditions from the Navier-Stokes equation, the flow velocity distribution in the pipe is expressed by the following equation.

u(r)=(gI/4ν)・(a−r) (1)
ここでuは流速、aは冷媒配管3hの円管半径、rは冷媒配管3hの円管中心からの距離、gは重力加速度、νは動粘性係数、Iはエネルギー勾配である。
この式は粘性流体層流の流体において、円管内流体速度分布は円管中心が速く、壁面側が遅いという放物線を描くことを示している。
u (r) = (gI / 4ν) · (a 2 −r 2 ) (1)
Here, u is a flow velocity, a is a circular pipe radius of the refrigerant pipe 3h, r is a distance from the center of the circular pipe of the refrigerant pipe 3h, g is a gravitational acceleration, ν is a kinematic viscosity coefficient, and I is an energy gradient.
This equation shows that in a viscous fluid laminar fluid, the fluid velocity distribution in the circular tube draws a parabola with the center of the circular tube being fast and the wall surface side being slow.

さらに、流れが下流側に進むとノッチnに近い冷媒の流れr2は、中央側の流れr21がノッチnに当たり、粘性により、冷媒配管3hの管内壁面3h1近傍の流れr22を巻き込んで合流して進む。   Further, when the flow proceeds downstream, the refrigerant flow r2 close to the notch n, the central flow r21 hits the notch n, and due to viscosity, the refrigerant flows r22 near the inner wall surface 3h1 of the refrigerant pipe 3h, and merges and advances. .

以上のことから、本実施形態1(本発明)での動作原理として、流速の速い冷媒配管3hの中心における冷媒(r01、r11、r21)が、ノッチnのアーチ状の高くなっている部分(中央部n1)に衝突することで、速度の遅い管内壁面3h1側の冷媒(r02、r12、r22)を誘導・追従させる流路に適している構造・形状であることが推定される。   From the above, as an operation principle in the first embodiment (the present invention), the refrigerant (r01, r11, r21) at the center of the refrigerant pipe 3h having a high flow velocity has a high arched portion of the notch n ( By colliding with the central portion n1), it is presumed that the structure and shape are suitable for the flow path for guiding and following the refrigerant (r02, r12, r22) on the pipe inner wall surface 3h1 side, which is slow in speed.

従来技術では、上述のように流速差があるにもかかわらず、円管中心と管内壁面103h1(図5参照)での凸形状は同じ高さ・形状であった。
これに対して、本発明では円管中心部の凸形状を管内壁面3h1(図2参照)と比して円管中心部側をアーチ状に高くするようにノッチ付加金型を形成し、ノッチnの形状を成形する。
In the prior art, the convex shape at the center of the circular tube and the inner wall surface 103h1 (see FIG. 5) has the same height and shape despite the difference in flow velocity as described above.
On the other hand, in the present invention, the notch-added mold is formed so that the convex shape of the central part of the circular tube is higher than the inner wall surface 3h1 of the pipe (see FIG. 2) so that the central part of the circular tube is arched. The shape of n is formed.

図9は、ノッチnの高さと分流のばらつきとの関係を表した実験データを示す図である。横軸にアーチ部高さHとして、アーチ高さh1(図3(a)参照)と冷媒配管3hの肉厚tとを用いて、アーチ部高さHを下記とする。
H=h1/t
縦軸は、分流のばらつき(=最大%―最小%)をとっている。
図9中の一点鎖線は冷媒配管3hの外径6.35mm、肉厚t0.8mmの分流ばらつきを示す。破線は冷媒配管3hの外径7.0mm、肉厚t0.8mmの分流ばらつきを示す。実線は冷媒配管3hの外径8.0mm、肉厚t0.8mmの分流ばらつきを示す。
FIG. 9 is a diagram showing experimental data representing the relationship between the height of the notch n and the variation in the diversion. Using the arch height h1 (see FIG. 3A) and the wall thickness t of the refrigerant pipe 3h as the arch height H on the horizontal axis, the arch height H is defined as follows.
H = h1 / t
The vertical axis represents the variation in the diversion (= maximum% -minimum%).
The alternate long and short dash line in FIG. 9 indicates the diversion variation of the refrigerant pipe 3h having an outer diameter of 6.35 mm and a wall thickness of t0.8 mm. The broken line shows the variation in the shunt flow of the refrigerant pipe 3h having an outer diameter of 7.0 mm and a wall thickness of t0.8 mm. The solid line shows the variation in the diversion of the refrigerant pipe 3h with an outer diameter of 8.0 mm and a wall thickness of t0.8 mm.

図9より、その高さの差(アーチ部高さH)を管肉厚tの1.5倍以上設けることで、冷媒の流速の高低に由来する流量の大小による分流比率の変動を改善することができる。より具体的には、ノッチnの管中心と管内壁面3h1側の高低差のアーチ部高さHが1.5倍未満の場合は概ね効果が薄いことと2.5倍以上は効果が飽和していることが判明した。
ここで、ノッチnはプレス成形で形成しているため、アーチ部高さHが大きくなり過ぎる(例えば、H>3.0など)と冷媒配管3hの肉が足らず、肉破れ等の現象が生じる。
また、アーチ部高さHが大きくなると振動音が発生する。
From FIG. 9, by providing the height difference (arch portion height H) at least 1.5 times the pipe wall thickness t, fluctuations in the diversion ratio due to the magnitude of the flow rate due to the flow rate of the refrigerant are improved. be able to. More specifically, when the arch height H of the height difference between the tube center of the notch n and the tube inner wall surface 3h1 is less than 1.5 times, the effect is generally small, and the effect is saturated when 2.5 times or more. Turned out to be.
Here, since the notch n is formed by press molding, if the arch portion height H becomes too large (for example, H> 3.0), the refrigerant pipe 3h is insufficient in thickness, and a phenomenon such as meat breaking occurs. .
Further, when the arch height H is increased, a vibration sound is generated.

まとめると、アーチ部高さH=h1/tが小さ過ぎるとノッチnの冷媒の分流に対する効果は小さくなる。そして、アーチ部高さH=h1/tが大き過ぎると冷媒の分流に対する効果は飽和し、一定の効果(H=1.5〜2.5時の効果)を上回る効果はみられない。また、Hが大きい場合には振動音が発生するという現象が生じる。   In summary, if the arch height H = h1 / t is too small, the effect of the notch n on the refrigerant flow is reduced. If the arch height H = h1 / t is too large, the effect on the refrigerant flow is saturated, and no effect exceeding a certain effect (effect at H = 1.5 to 2.5 hours) is observed. Further, when H is large, a phenomenon that vibration noise is generated occurs.

検討の結果、アーチ部高さHが1.3t以上2.6t以下が分流のばらつきが小さく良好であり、アーチ部高さHが1.5t以上2.5t以下が最適である。
これらの検討から、実施形態1による冷媒分配器1は空気調和機における流領域で設定した分流比を従来技術に比して精度よく得ることができることが確認できた。
As a result of the examination, when the arch height H is 1.3 t or more and 2.6 t or less, the variation in shunt flow is small and good, and when the arch height H is 1.5 t or more and 2.5 t or less is optimal.
From these examinations, it was confirmed that the refrigerant distributor 1 according to Embodiment 1 can obtain the shunt ratio set in the flow region in the air conditioner more accurately than in the prior art.

<ノッチnの形成法>
次に、図1、図2に示すノッチnの形成法について、説明する。
ノッチnは、冷媒分配器1の形状がハイドロフォーミング加工で形成された後に、形成される。図10(a)は、冷媒分配器の素形状を示す正面図であり、図10(b)は、冷媒分配器の素形状にノッチを形成する過程を示す断面図であり、図10(c)は、完成した冷媒分配器の正面図である。
図11(a)は、上型の斜視図であり、図11(b)は、下型の斜視図であり、 図11(c)は、ノッチをプレス成形する状態を示す拡大正面図である。
<Formation method of notch n>
Next, a method for forming the notch n shown in FIGS. 1 and 2 will be described.
The notch n is formed after the shape of the refrigerant distributor 1 is formed by hydroforming. FIG. 10A is a front view showing the original shape of the refrigerant distributor, and FIG. 10B is a cross-sectional view showing a process of forming a notch in the original shape of the refrigerant distributor, and FIG. ) Is a front view of the completed refrigerant distributor.
11A is a perspective view of the upper die, FIG. 11B is a perspective view of the lower die, and FIG. 11C is an enlarged front view showing a state where the notch is press-molded. .

まず、素管の直管等からハイドロフォーミング加工により、図10(a)に示す冷媒分配器1の素形状1Sが形成される。
その後、図11(a)に示す頂部に平面状の(平坦な)平坦部u2が形成されるとともに上方に行くに従い広がる傾斜部u3、u4を有する凸部u1を有する上型Uが準備される。また、図11(b)に示すように、アーチ形状の凹部s1を有する下型Sとが準備される。下型Sの凹部s1は中央部s1aが深く、端部s1b、s1cが浅い深さに形成され、アーチ形状の凸状のノッチnが形成される形状を有している。
First, the element shape 1S of the refrigerant distributor 1 shown in FIG. 10A is formed by hydroforming from a straight pipe or the like of the element pipe.
After that, a flat (flat) flat portion u2 is formed at the top shown in FIG. 11A, and an upper mold U having a convex portion u1 having inclined portions u3 and u4 that spread upward is prepared. . Further, as shown in FIG. 11B, a lower mold S having an arch-shaped recess s1 is prepared. The concave part s1 of the lower mold S has a shape in which the central part s1a is deep, the end parts s1b and s1c are formed to a shallow depth, and an arch-shaped convex notch n is formed.

そして、図10(b)、図11(c)に示すように、白抜き矢印β1、β2の方向に下型Sと上型Uとでプレスすることで、ノッチnを有する冷媒分配器1が完成する(図10(c)参照)。
上述したように、金型冶工具の構成上、管外側のプレス冶工具(上型U)はアーチ形にすることよりも、平坦部u2(図11(a)参照)を設けるほうがよい。
本実施形態1(本発明)では、ノッチnのプレス成形前にハイドロフォーミング加工を行っている影響で、ノッチn形成部位の肉厚が素管に比して概ね20〜40%肉厚になっている。
上述の冶工具構造により、アーチ形状の凸状のノッチnを形成できる。
Then, as shown in FIG. 10B and FIG. 11C, the refrigerant distributor 1 having the notch n is pressed by pressing with the lower mold S and the upper mold U in the directions of the white arrows β1 and β2. Completed (see FIG. 10C).
As described above, it is better to provide the flat portion u2 (see FIG. 11 (a)) than the arched shape of the press jig tool (upper die U) outside the pipe because of the configuration of the die jig tool.
In the first embodiment (the present invention), the thickness of the notch n forming portion is approximately 20 to 40% thicker than the raw tube due to the effect of hydroforming before the press forming of the notch n. ing.
With the above-mentioned jig / tool structure, an arch-shaped convex notch n can be formed.

また、本実施形態1の主たる円管中心部がアーチ状に凸形状を構成する場合に、円管中心部のノッチ部nは素管肉厚よりも肉厚に成型が可能である。凸部のノッチnが形成される分岐部3の領域は、ノッチnの中央部領域がノッチnの端部領域より厚みが厚い。
この肉厚の肥厚化の効果は、前記したノッチn高さ約3tより上に観察される分流時の振動を低減させることが可能であり、結果的に冷媒の安定分流にも効果がある。
Moreover, when the main circular pipe center part of this Embodiment 1 comprises convex shape in an arch shape, the notch part n of a circular pipe center part can be shape | molded more thickly than a raw tube thickness. In the region of the branch portion 3 where the notch n of the convex portion is formed, the central region of the notch n is thicker than the end region of the notch n.
This thickening effect can reduce the vibration at the time of the diversion observed above the notch n height of about 3t, and as a result, it is effective for the stable diversion of the refrigerant.

前記したように、従来技術では、冷媒の流量の大小で分配性能の安定性に課題(問題)があったが、本実施形態1では、冷媒の流量の大小で分配性能の目標値からのズレが小さくなった。また、冷媒の流量の大小で分配性能のばらつきを抑えることができる。   As described above, in the prior art, there is a problem (problem) in the stability of distribution performance depending on the flow rate of the refrigerant. However, in the first embodiment, a deviation from the target value of the distribution performance due to the flow rate of the refrigerant. Became smaller. In addition, variation in distribution performance can be suppressed depending on the flow rate of the refrigerant.

従って、従来の冷媒の流量の大小で分配性能の安定性の課題(問題)が改善および解決が可能となった。つまり、冷媒の流量の大小で目的の分流比率が正確に得にくかった冷媒分配器1の分配性能が従来技術に比して安定する。
実施形態1の構成によれば、冷媒の流量変化による所定の分流比率からの乖離に対して有効に乖離を抑え、所定の分流比率近くにすることが可能である。
Therefore, the problem (problem) of the stability of the distribution performance can be improved and solved by the flow rate of the conventional refrigerant. That is, the distribution performance of the refrigerant distributor 1 which is difficult to obtain the target diversion ratio accurately due to the flow rate of the refrigerant is more stable than that of the prior art.
According to the configuration of the first embodiment, it is possible to effectively suppress the deviation with respect to the deviation from the predetermined diversion ratio due to the change in the flow rate of the refrigerant, and to make it close to the predetermined diversion ratio.

<<実施形態2>>
実施形態1ではチーズ管(T字管)の冷媒分配器1について述べたが、実施形態2では、空気調和機における実際のU字形状の冷媒分配器21(図12参照)を説明する。
空気調和機に本発明の構成を搭載する場合はT字形状のチーズ管よりもU字形状の管継手の方が省スペースであり、配置の自由度が高い。
<< Embodiment 2 >>
Although the refrigerant distributor 1 of the cheese tube (T-shaped tube) has been described in the first embodiment, an actual U-shaped refrigerant distributor 21 (see FIG. 12) in the air conditioner will be described in the second embodiment.
When the configuration of the present invention is mounted on an air conditioner, a U-shaped pipe joint saves more space than a T-shaped cheese pipe, and the degree of freedom in arrangement is high.

図12(a)は、本発明に係る実施形態2の冷媒分配器の上面図であり、図12(b)は、図12(a)のG方向矢視図、図12(c)は、図12(b)のH−H断面図、図12(d)は、図12(a)のI−I断面図である。   12 (a) is a top view of the refrigerant distributor of Embodiment 2 according to the present invention, FIG. 12 (b) is a view in the direction of the arrow G in FIG. 12 (a), and FIG. FIG. 12B is a cross-sectional view taken along the line H-H, and FIG. 12D is a cross-sectional view taken along the line II in FIG.

実施形態2の冷媒分配器21は、一つの導入部22と、2つの導出部24、25と、導入部22、導出部24、25間の分岐部23とを有する。
冷媒分配器21は、上面視の図12(a)で、分岐部23と導出部24、25とでU字形状を有している。
The refrigerant distributor 21 according to the second embodiment includes one introduction unit 22, two derivation units 24 and 25, and an introduction unit 22 and a branching unit 23 between the derivation units 24 and 25.
The refrigerant distributor 21 has a U-shape with a branch portion 23 and lead-out portions 24 and 25 in FIG.

図12(c)に示すように、分岐部23内には、実施形態1と同様なノッチ2nが形成されている。ノッチ2nは、導出部24または導出部25から見て、中央部2n1が高く端部2n2、2n2が低い曲線を成すアーチ形状を有している。また、図12(a)の図12(a)のI−I断面の図12(d)に示すように、ノッチ2nは、中央部2n1が高く、一端部2n3と他端部2n4とが低い形状を有している。   As shown in FIG. 12C, a notch 2n similar to that of the first embodiment is formed in the branch portion 23. The notch 2n has an arch shape in which the center 2n1 is high and the ends 2n2 and 2n2 are low when viewed from the lead 24 or the lead 25. Further, as shown in FIG. 12 (d) of the II cross section of FIG. 12 (a) in FIG. 12 (a), the notch 2n has a high central portion 2n1 and a low one end 2n3 and the other end 2n4. It has a shape.

図12(b)、(d)に示すように、ノッチ2nの受け部2uは、実施形態1の対称のV字形状の受け部1u(図1(b)、(d)参照)と異なり、非対称の受け部2uとなっている。
ノッチ2nについては、プレス工具の寿命を考慮すると対称のV字での受け部1uを設けるよりも、非対称の受け部2uにして加工圧力を逃がす形状の方が望ましい。これに伴い、図12(b)、(d)に示すように、図12(a)のG方向視の一端部2n3と他端部2n4とは、中央部2n1の中心線O1に対して、非対称となる。
ノッチ2nは、実施形態1と同様な方法で、プレス成形される。
As shown in FIGS. 12B and 12D, the receiving portion 2u of the notch 2n is different from the symmetrical V-shaped receiving portion 1u of the first embodiment (see FIGS. 1B and 1D), It is an asymmetric receiving portion 2u.
Regarding the notch 2n, in consideration of the life of the press tool, it is desirable that the notch 2n has an asymmetrical receiving portion 2u to release the processing pressure, rather than a symmetrical V-shaped receiving portion 1u. Accordingly, as shown in FIGS. 12B and 12D, the one end 2n3 and the other end 2n4 as viewed in the G direction in FIG. 12A are relative to the center line O1 of the center 2n1. Asymmetric.
The notch 2n is press-molded by the same method as in the first embodiment.

本発明を適用する空気調和機として、図13、図14に代表的な冷凍サイクル構成を示す。図13、図14は、実施形態1(2)の冷媒分配器1(21)を適用した一つの冷凍サイクルの構成図である。
図13、図14の構成では暖房運転時の冷凍サイクルの構成を示す。図13は室外機を示し、図14は室内機を示す。
As an air conditioner to which the present invention is applied, FIGS. 13 and 14 show typical refrigeration cycle configurations. FIGS. 13 and 14 are configuration diagrams of one refrigeration cycle to which the refrigerant distributor 1 (21) of the first embodiment (2) is applied.
13 and 14 show the configuration of the refrigeration cycle during heating operation. FIG. 13 shows an outdoor unit, and FIG. 14 shows an indoor unit.

図13に示す圧縮機6から吐出された高温、高圧のガス冷媒は図14の室内熱交換器12に流入し、室内熱交換器12で室内の空気と熱交換して熱を与える。その後、冷媒は気液混合状態で室外機に還流し、図13の電動膨張弁11にて圧力を調整され、冷媒分配器1(21)にて、所定の分流比で分配される。冷媒分配器1(21)で分配された冷媒は、室外熱交換器7に流入する。   The high-temperature and high-pressure gas refrigerant discharged from the compressor 6 shown in FIG. 13 flows into the indoor heat exchanger 12 of FIG. 14, and heat is exchanged with indoor air in the indoor heat exchanger 12 to give heat. Thereafter, the refrigerant recirculates to the outdoor unit in a gas-liquid mixed state, the pressure is adjusted by the electric expansion valve 11 of FIG. 13, and is distributed by the refrigerant distributor 1 (21) at a predetermined diversion ratio. The refrigerant distributed by the refrigerant distributor 1 (21) flows into the outdoor heat exchanger 7.

その後、室外熱交換器7で熱交換してガス化した冷媒は流路切替器8を経由して圧縮機6に戻される。
このほか、冷凍サイクルには冷媒の均質化や静音化、コンタミネーションからの機器の保護の目的でサイレンサ9やストレーナ10(図13参照)、除湿効率向上の目的で冷媒絞り弁13(図14参照)などが配置される。
Thereafter, the refrigerant gasified by heat exchange in the outdoor heat exchanger 7 is returned to the compressor 6 via the flow path switch 8.
In addition, in the refrigeration cycle, the silencer 9 and the strainer 10 (see FIG. 13) are used for the purpose of homogenizing and quieting the refrigerant and protecting the equipment from contamination, and the refrigerant throttle valve 13 (see FIG. 14) for the purpose of improving the dehumidification efficiency. ) Etc. are arranged.

冷媒分配器1(21)は室内外合わせて、複数使用されることもある。
本例では、図13に示す室外機では、室外熱交換器7近くに一つの冷媒分配器1(21)を適用し、図14に示す室内機では、室内熱交換器12周りに四つの冷媒分配器1(21)を適用したケースを示している。
A plurality of refrigerant distributors 1 (21) may be used indoors and outdoors.
In this example, in the outdoor unit shown in FIG. 13, one refrigerant distributor 1 (21) is applied near the outdoor heat exchanger 7, and in the indoor unit shown in FIG. 14, four refrigerants are provided around the indoor heat exchanger 12. The case where distributor 1 (21) is applied is shown.

まとめると、本発明は、ハイドロフォーミング加工にて当該冷媒分配器1(21)外観形状を製造した後、プレス加工にて凸形状のノッチn(2n)を形成して指定の分流比率を有する冷媒分流器1(21)を供する。
そのノッチn(2n)形成工程において、凸形状を形成時に、凸形状中心がその端部と比してパイプの肉厚の1.3〜.5倍以上の高低差を設けた曲面形状を有する凸形状が形成できるように、プレス金型(下型S、上型U)を製作する。
In summary, according to the present invention, after the external shape of the refrigerant distributor 1 (21) is manufactured by hydroforming, a convex notch n (2n) is formed by pressing, and the refrigerant has a specified flow dividing ratio. Shunt 1 (21) is provided.
In the notch n (2n) formation step, when the convex shape is formed, the center of the convex shape is 1.3 to. A press mold (lower mold S, upper mold U) is manufactured so that a convex shape having a curved surface shape with a height difference of 5 times or more can be formed.

具体的には、冷媒導入部2(22)の管中心側の凸形状n1(2n1)を高くし、管内壁面3h1(23h1)側となる端部n2(2n2)を低くなるようにアーチ状の凸形状を形成するものである。
上記形状はプレス金型の工具寿命を勘案して、図12(a)、(b)、(d)に示すように、凸形状として正面に見た場合に非対称の形状としてもよい。
上記の如く、部品機能上不可欠な冷媒導入部2(22)の凸形状のノッチn(2n)に冷媒導入部2(22)の中心と管内壁面3h1(23h1)側で高低差を設けることが本発明のポイントである。
Specifically, the convex shape n1 (2n1) on the tube center side of the refrigerant introduction portion 2 (22) is increased, and the end portion n2 (2n2) on the tube inner wall surface 3h1 (23h1) side is decreased. A convex shape is formed.
In consideration of the tool life of the press die, the shape may be asymmetric when viewed from the front as a convex shape as shown in FIGS. 12 (a), 12 (b), and 12 (d).
As described above, the convex notch n (2n) of the refrigerant introduction part 2 (22), which is indispensable for component functions, is provided with a height difference between the center of the refrigerant introduction part 2 (22) and the pipe inner wall surface 3h1 (23h1). This is the point of the present invention.

<<変形形態1>>
図15(a)は、変形形態1のノッチの図1のB方向矢視相当図であり、図15(b)は、変形形態1のノッチの図1のA方向矢相当視図である。
変形形態1のノッチ3nは、図15(a)に示すように中央部3n1が尖って高く端部3n2、3n2が低い三角形状としている。また、図15(b)に示すように、中央部3n1が高く端部3n3、3n3が低い形状としている。なお、ノッチ根元部3n9は有っても無くてもよい。
変形形態1でも、実施形態1,2と同様な効果を奏する。
<< Modification 1 >>
15A is a view corresponding to the arrow B in FIG. 1 of the notch of the first modification, and FIG. 15B is a view corresponding to the arrow A of FIG.
As shown in FIG. 15A, the notch 3n of the first modification has a triangular shape with a sharp central portion 3n1 and high end portions 3n2 and 3n2. Further, as shown in FIG. 15B, the central portion 3n1 is high and the end portions 3n3 and 3n3 are low. The notch root 3n9 may or may not be present.
Even in the first modification, the same effects as in the first and second embodiments are obtained.

<<変形形態2>>
図16(a)は、変形形態2のノッチの図1のB方向矢視相当図であり、図16(b)は、変形形態2のノッチの図1のA方向矢相当視図である。
変形形態2のノッチ4nは、図16(a)に示すように中央部4n1が平面状で高く端部4n2、4n2が低い台形形状としている。また、図16(b)に示すように、中央部4n1が平面状で高く端部4n3、4n3が低い形状としている。なお、ノッチ根元部4n9は有っても無くてもよい。
変形形態2でも、実施形態1,2と同様な効果を奏する。
<< Modification 2 >>
FIG. 16A is a view corresponding to the arrow B in FIG. 1 of the notch of the second modification, and FIG. 16B is a view corresponding to the arrow A of FIG.
As shown in FIG. 16A, the notch 4n of the second modification has a trapezoidal shape in which the central portion 4n1 is planar and the end portions 4n2, 4n2 are low. Further, as shown in FIG. 16B, the central portion 4n1 has a planar shape and the end portions 4n3 and 4n3 have a low shape. The notch root 4n9 may or may not be present.
In the second modification, the same effects as those in the first and second embodiments are obtained.

<<変形形態3>>
図17(a)は、変形形態3のノッチの図1のB方向矢視相当図であり、図17(b)は、変形形態3のノッチの図1のA方向矢相当視図である。
変形形態3のノッチ5nは、図17(a)に示すように中央部5n1が平面状で高く端部5n2、5n2が低い台形形状であり傾斜部5n5が凹状に凹む形状としている。また、図17(b)に示すように、中央部5n1が高く端部5n3、5n3が低い形状としている。なお、ノッチ根元部5n9は有っても無くてもよい。
変形形態3でも、実施形態1,2と同様な効果を奏する。
<< Modification 3 >>
17A is a view corresponding to the arrow B in FIG. 1 of the notch of the third modification, and FIG. 17B is a view corresponding to the arrow A in FIG. 1 of the notch of the third modification.
As shown in FIG. 17A, the notch 5n of the third modification has a trapezoidal shape in which the central portion 5n1 is flat and the end portions 5n2 and 5n2 are low, and the inclined portion 5n5 is recessed. Further, as shown in FIG. 17B, the central portion 5n1 is high and the end portions 5n3 and 5n3 are low. Note that the notch root portion 5n9 may or may not be present.
The modification 3 has the same effect as the first and second embodiments.

<<変形形態4>>
図18(a)は、変形形態4のY字管の上面図であり、 図18(b)は、図18(a)のL方向矢視図であり、図18(c)は、図18(a)のM方向矢視図である。
変形形態4の冷媒分配器61は、図18(a)に示すように、導入部62と導出部64、65、66をもつY字管に、中央部6n1が高く端部6n2が低い形状のノッチ6n(図18(c)参照)を適用したものである。
ノッチ6nは、分岐部63より偏芯して設けている。
変形形態4でも、実施形態1,2と同様な効果を奏する。
<< Modification 4 >>
18 (a) is a top view of the Y-shaped tube of variant 4, FIG. 18 (b) is a view in the direction of the arrow L in FIG. 18 (a), and FIG. 18 (c) is a view in FIG. It is an M direction arrow directional view of (a).
As shown in FIG. 18 (a), the refrigerant distributor 61 of the modified embodiment 4 has a Y-shaped tube having an introduction part 62 and lead-out parts 64, 65, 66, and has a shape in which the central part 6n1 is high and the end part 6n2 is low. The notch 6n (see FIG. 18C) is applied.
The notch 6n is provided eccentric from the branch part 63.
The modification 4 has the same effects as those of the first and second embodiments.

<<変形形態5>>
図19(a)は、変形形態5のU字管の上面図であり、 図19(b)は、図19(a)のR方向矢視図であり、図19(c)は、図19(b)のP方向矢視図であり、図19(d)は、図19(a)のQ−Q断面図である。
変形形態5の冷媒分配器71は、図19(a)に示すように、導入部72と導出部74、75をもつU字管に、中央部7n1が高く端部7n2が低い形状のノッチ7n(図19(c)参照)を適用したものである。
ノッチ7nは、U字管に偏芯して設けている。
変形形態5でも、実施形態1,2と同様な効果を奏する。
<< Modification 5 >>
FIG. 19A is a top view of the U-shaped tube of the modified embodiment 5, FIG. 19B is a view as viewed in the R direction of FIG. 19A, and FIG. 19C is FIG. It is a P direction arrow view of (b), and FIG.19 (d) is QQ sectional drawing of Fig.19 (a).
As shown in FIG. 19 (a), the refrigerant distributor 71 of the modified embodiment 5 has a U-shaped tube having an introduction part 72 and lead-out parts 74 and 75, and a notch 7n having a shape in which the center part 7n1 is high and the end part 7n2 is low. (See FIG. 19C) is applied.
The notch 7n is provided eccentric to the U-shaped tube.
The modification 5 has the same effect as the first and second embodiments.

なお、前記実施形態では、様々な構成を説明したが、各構成を選択したり、各構成を適宜選択して組み合わせて構成してもよい。   In the above-described embodiment, various configurations have been described. However, each configuration may be selected, or each configuration may be appropriately selected and combined.

なお、前記実施形態は、本発明の一例を説明したものであり、本発明は、特許請求の範囲内または実施形態で説明した範囲において、様々な具体的な変形形態が可能である。   The above-described embodiments are examples of the present invention, and the present invention can be modified in various ways within the scope of the claims or the scope described in the embodiments.

1、21、61、71 冷媒分配器
2 導入部
3 冷媒分岐部(分岐部)
3h1、23h1 管内壁面
4、24、64、74 導出部(第1の導出部)
5、25、65、75 導出部(第2の導出部)
n、2n、3n、4n、5n、6n、7n ノッチ(凸部)
n1、2n1 中央部
n2、n3、2n2、2n3 端部
S 下型(第2の型)
s1 凹部
t 肉厚
U 上型(第1の型)
u2 平坦部
u1 凸部
1, 21, 61, 71 Refrigerant distributor 2 Introduction part 3 Refrigerant branch part (branch part)
3h1, 23h1 Pipe inner wall surface 4, 24, 64, 74 Deriving section (first deriving section)
5, 25, 65, 75 Deriving unit (second deriving unit)
n, 2n, 3n, 4n, 5n, 6n, 7n Notch (convex part)
n1, n2 central part n2, n3, 2n2, 2n3 end S lower mold (second mold)
s1 Recess t Thickness U Upper mold (first mold)
u2 Flat part u1 Convex part

Claims (7)

冷媒が導入される導入部と、
冷媒が導出される第1の導出部および第2の導出部と、
前記導入部から送られる冷媒が前記第1の導出部と前記第2の導出部とに分岐される分岐部とを備え、
前記分岐部は、
管内壁面に前記導入部に向かって突出する凸部を有し、
前記凸部は、端部が中央部より高さが低い形状を有する
ことを特徴とする冷媒分配器。
An introduction part into which the refrigerant is introduced;
A first derivation unit and a second derivation unit from which the refrigerant is derived;
A branching part for branching the refrigerant sent from the introduction part into the first lead-out part and the second lead-out part;
The branch portion is
A convex portion projecting toward the introduction portion on the inner wall surface of the tube;
The convex portion has a shape in which an end portion is lower in height than a central portion.
請求項1に記載の冷媒分配器において、
前記管内壁面に対して、前記凸部の端部は、前記凸部の中央部より高さが低い
ことを特徴とする冷媒分配器。
The refrigerant distributor according to claim 1, wherein
The refrigerant distributor according to claim 1, wherein an end of the convex portion is lower than a central portion of the convex portion with respect to the inner wall surface of the pipe.
請求項1に記載の冷媒分配器において、
前記凸部は、
前記分岐部の肉厚tに対して、1.3t以上2.6t以下の高さを有する
ことを特徴とする冷媒分配器。
The refrigerant distributor according to claim 1, wherein
The convex portion is
The refrigerant distributor has a height of 1.3 t or more and 2.6 t or less with respect to a wall thickness t of the branch portion.
請求項1に記載の冷媒分配器において、
前記凸部が形成される前記分岐部の領域は、中央部領域が端部領域より厚みが厚い
ことを特徴とする冷媒分配器。
The refrigerant distributor according to claim 1, wherein
As for the area | region of the said branch part in which the said convex part is formed, thickness is thick in a center part area | region than an edge part area | region.
請求項1に記載の冷媒分配器において、
前記凸部は、
前記分岐部の管中心部が高く、当該管中心部と前記管内壁面側で高低差が当該管の肉厚の1.5倍以上のアーチ形状を有する
ことを特徴とする冷媒分配器。
The refrigerant distributor according to claim 1, wherein
The convex portion is
The refrigerant distributor is characterized in that a pipe center portion of the branch portion is high and an arch shape having a height difference of 1.5 times or more of a wall thickness of the tube center portion and the inner wall surface side of the tube.
請求項1に記載の冷媒分配器において、
前記凸部は、
前記第1の導出部と前記第2の導出部との分流比率を調整する
ことを特徴とする冷媒分配器。
The refrigerant distributor according to claim 1, wherein
The convex portion is
The refrigerant distributor is characterized in that a diversion ratio between the first derivation unit and the second derivation unit is adjusted.
冷媒が導入される導入部と、
冷媒が導出される第1の導出部および第2の導出部と、
前記導入部から送られる冷媒が前記第1の導出部と前記第2の導出部とに分岐される分岐部とを備え、
前記分岐部は、
内壁面に前記導入部に向かって突出する凸部を有し、
前記凸部の端部は、他の前記凸部の箇所より高さが低い形状を有する冷媒分配器の製造方法であって、
前記分岐部は、中央部に平坦な平坦部を有する凸部を有する第1の型と、端部が浅く中央部が深い形状の凹部を有する第2の型とでプレスすることで、前記凸部が形成される
ことを特徴とする冷媒分配器の製造方法。
An introduction part into which the refrigerant is introduced;
A first derivation unit and a second derivation unit from which the refrigerant is derived;
A branching part for branching the refrigerant sent from the introduction part into the first lead-out part and the second lead-out part;
The branch portion is
A convex portion projecting toward the introduction portion on the inner wall surface;
The end of the convex part is a method of manufacturing a refrigerant distributor having a shape having a lower height than the other convex part,
The branch portion is pressed by a first die having a convex portion having a flat portion at the center portion and a second die having a concave portion having a shallow end portion and a deep central portion. A method of manufacturing a refrigerant distributor, wherein: a portion is formed.
JP2015098950A 2015-05-14 2015-05-14 Refrigerant distributor and manufacturing method thereof Pending JP2016217542A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015098950A JP2016217542A (en) 2015-05-14 2015-05-14 Refrigerant distributor and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015098950A JP2016217542A (en) 2015-05-14 2015-05-14 Refrigerant distributor and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2016217542A true JP2016217542A (en) 2016-12-22

Family

ID=57580477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015098950A Pending JP2016217542A (en) 2015-05-14 2015-05-14 Refrigerant distributor and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2016217542A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018162863A (en) * 2017-03-27 2018-10-18 栗田工業株式会社 T-shaped joint and water quality measurement device
CN113203227A (en) * 2021-05-07 2021-08-03 广东威灵电机制造有限公司 Electronic expansion valve and refrigeration equipment
CN113203226A (en) * 2021-05-07 2021-08-03 广东威灵电机制造有限公司 Electronic expansion valve and refrigeration equipment

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018162863A (en) * 2017-03-27 2018-10-18 栗田工業株式会社 T-shaped joint and water quality measurement device
CN113203227A (en) * 2021-05-07 2021-08-03 广东威灵电机制造有限公司 Electronic expansion valve and refrigeration equipment
CN113203226A (en) * 2021-05-07 2021-08-03 广东威灵电机制造有限公司 Electronic expansion valve and refrigeration equipment

Similar Documents

Publication Publication Date Title
JP2016217542A (en) Refrigerant distributor and manufacturing method thereof
JP6278904B2 (en) Refrigerant distributor and heat pump device using the refrigerant distributor
US20170089643A1 (en) Heat Exchanger
WO2013105316A1 (en) Scroll structure of turbine housing
CN105299976A (en) Filter and air conditioner with same
US20190390687A1 (en) Compressor suction pipe, compression unit, and chiller
JP2013148345A (en) Micromixer of turbine system
Mojaddam et al. Design and optimization of meridional profiles for the impeller of centrifugal compressors
RU2015143876A (en) REFRIGERATOR UNIT WITH EVAPORATOR
JP5153701B2 (en) Fluid distributor and method for manufacturing the same
JP6425830B2 (en) Refrigerant distributor and air conditioner using the same
JP2016095132A (en) Method for manufacturing double pipe
JP2015178945A (en) refrigerant flow divider
CN106003679A (en) Air injection member and manufacturing method of film using same
CN109312970B (en) Expansion valve and refrigeration cycle device provided with same
CN202001765U (en) Flow rate adjuster for bent pipe
CN205014712U (en) Idle call knockout
JP2015148006A (en) Device and method for controlling molten metal plating deposition amount
CN104595253A (en) Air suction pipe structure for compressor
JP6715958B2 (en) Expansion valve and refrigeration cycle apparatus including the same
JP2016085000A (en) Refrigerant distributor, its process of manufacture and die
JP6223588B2 (en) Refrigerant piping and heat pump device
JP2009180444A (en) Coolant distributor
EP3842698A1 (en) Heat exchanger unit, and refrigeration cycle device
JP2014137219A (en) Cooler

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20171011