JP2016215103A - Method and apparatus for producing mineral component-containing salt water - Google Patents

Method and apparatus for producing mineral component-containing salt water Download PDF

Info

Publication number
JP2016215103A
JP2016215103A JP2015101127A JP2015101127A JP2016215103A JP 2016215103 A JP2016215103 A JP 2016215103A JP 2015101127 A JP2015101127 A JP 2015101127A JP 2015101127 A JP2015101127 A JP 2015101127A JP 2016215103 A JP2016215103 A JP 2016215103A
Authority
JP
Japan
Prior art keywords
housing
salt
stage
seawater
tourmalines
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015101127A
Other languages
Japanese (ja)
Other versions
JP6344304B2 (en
Inventor
ゾン セ ジョン
Jon-Se Jeong
ゾン セ ジョン
司 小柳
Tsukasa Koyanagi
司 小柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2015101127A priority Critical patent/JP6344304B2/en
Publication of JP2016215103A publication Critical patent/JP2016215103A/en
Application granted granted Critical
Publication of JP6344304B2 publication Critical patent/JP6344304B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Filtering Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce salt water containing a large amount of mineral components beneficial to the human body inexpensively and in large quantity by removing heavy metals and impurities from sea water.SOLUTION: A method for producing mineral component-containing salt water is provided that comprises: a first step of passing sea water through a first housing in which a filter media made of chemical fiber is housed; a second step of passing sea water obtained in the first step through a second housing in which a cube-shaped tourmalines having a side of 80 to 100 mm are densely housed; a third step of passing sea water obtained in the second step through a third housing in which sphere-shaped tourmalines having a diameter of 5 to 10 mm are densely housed and maintained at 30 to 36°C; and a fourth step of passing sea water obtained in the third step through a fourth housing in which sphere-shaped tourmalines having a diameter of 0.5 to 1 mm are densely housed.SELECTED DRAWING: Figure 1

Description

本発明は、ミネラル成分含有食塩水の製造方法及び製造装置に関する。より詳細には、トルマリン(電気石)を用いたろ過装置により重金属や不純物を除去するとともに人体に必須のミネラル成分を高めた、調味用、美容用及び飲料用のミネラル成分含有食塩水の製造方法及び製造装置に関するものである。   The present invention relates to a method and apparatus for producing a mineral component-containing saline solution. In more detail, the manufacturing method of the mineral component containing salt solution for seasonings, cosmetics, and drinks which removed the heavy metal and impurities with the filtration apparatus using tourmaline (tourmaline), and raised the essential mineral component for the human body. And a manufacturing apparatus.

天日塩は、海水を塩田に引き入れ、風と日光を利用して水分を蒸発させて作られる。天然塩は、海水に由来する様々なミネラル、特に、人体に必須のカルシウム、カリウム、マグネシウムなどを豊富に含み、干潟の有機成分も含有していることから、栄養学的に優れている。なお、マグネシウムは、細胞の新陳代謝を促進させ、酵素を活性化させ、カルシウム、燐と共に骨の代謝に作用をする。カルシウムは、細胞膜と骨を強化し、心臓筋肉と神経に関与する。カリウムは、水分維持を通じて老廃物を体外へ排出し、筋肉収縮を調節し、神経筋接合部における神経伝達を円滑にする。一方、現在一般家庭で広く使われる精製塩は、精製過程を経ているため衛生面は保障されるが、成分の約95%を塩化ナトリウムが占めておりその他の栄養成分はゼロに近い。   Sun salt is made by drawing seawater into salt fields and evaporating water using wind and sunlight. Natural salt is nutritionally superior because it contains abundant minerals derived from seawater, especially calcium, potassium, magnesium, etc. essential for the human body and also contains organic components of tidal flats. Magnesium promotes cell metabolism, activates enzymes, and acts on bone metabolism together with calcium and phosphorus. Calcium strengthens cell membranes and bones and is involved in heart muscle and nerves. Potassium expels waste through the maintenance of water, regulates muscle contraction, and facilitates neurotransmission at the neuromuscular junction. On the other hand, refined salt that is widely used in general households is guaranteed hygiene because it has undergone a refining process, but sodium chloride accounts for about 95% of the ingredients, and other nutrient ingredients are close to zero.

天日塩の韓国における年間生産量は約30万tであり、これは韓国の塩消費量の43%を占める。しかし、天日塩は精製過程を経ずに生産されるため、韓国では非衛生的という理由で1963年塩管理法によって鉱物に分類され、1992年発刊された食品公典に記載されることもなかった。そして、韓国食品医薬品安全庁は、天日塩を白菜魚などの保存用だけで使うように制限した。このために天日塩は、家庭でキムチや醤油を仕込むときや、魚を漬けるときには使うことができるが、加工食品製造などの産業用途では使用することができなかった。   The annual production of sun salt in Korea is about 300,000 tons, which accounts for 43% of salt consumption in Korea. However, because sun salt is produced without going through a refining process, it was classified as a mineral by the 1963 Salt Management Act because it was unhygienic in Korea, and was not described in a food official book published in 1992. The Korean Food and Drug Administration has restricted the use of sun salt for preserving Chinese cabbage fish. For this reason, sun salt can be used when preparing kimchi or soy sauce at home or when pickling fish, but it cannot be used in industrial applications such as the manufacture of processed foods.

そこで、韓国においては、天日塩生産業者などが天日塩の機能性と安全性を主張し、天日塩を食品として認めさせるために総力を尽くした。その結果、韓国食品医薬品安全庁は、遂に天日塩生産業者が提出した研究結果と分析結果から天日塩の栄養成分と安全性を確認し、塩管理法を改正した。そして、天日塩は食品として認定され、2008年から食品公典に記載された。   In South Korea, therefore, sun salt producers and others insisted on the functionality and safety of sun salt, and made every effort to allow sun salt to be recognized as food. As a result, the Korean Food and Drug Safety Agency finally revised the salt management law after confirming the nutritional components and safety of solar salt from the research results and analysis results submitted by solar salt producers. And sun salt has been certified as a food, and since 2008, it has been described in the food officials.

天日塩の生産工程では、一般的に、塩田で天日塩を採塩後、感触が良い塩を製造するために、塩倉庫に一定期間保管して、苦塩を含んだ水分を除去する。しかしながら、このような苦塩を含んだ水分が十分に除去されない場合は、湿気により包装が汚れてしまうほか、塩に苦味が残るという問題があった。このため、一般的に、天日塩は遠心脱水機により脱水されているが、そうすると天日塩に含まれている多様なミネラル成分も水分とともに除去されてしまうという問題があった。   In the production process of sun salt, after salt salt is collected from a salt paddy, it is stored in a salt warehouse for a certain period of time in order to produce a salt with a good feel, and moisture containing bitter salt is removed. However, when the moisture containing such bitter salt is not sufficiently removed, there is a problem that the package becomes dirty due to moisture and the bitter taste remains in the salt. For this reason, in general, the salt is dehydrated by a centrifugal dehydrator, but there is a problem that various mineral components contained in the salt are also removed together with moisture.

天日塩にミネラル成分を保持するために、天日塩の製造工程で海水を沸かす方法や、噴霧乾燥してミネラル含有量が高い塩を製造する方法などが知られている。しかしながら、このような方法は、装置が大掛かりになってしまい、簡単でない。また、天日塩のミネラル含有量を高めるために、外部からミネラル成分を添加して天日塩のミネラル含有量を増加させる方法も利用されている。しかし、天日塩の固有のミネラル成分を保持させて天日塩を製造する方法はあまり研究されていない。   In order to retain the mineral component in the sun salt, a method of boiling seawater in the sun salt production process, a method of producing a salt having a high mineral content by spray drying, and the like are known. However, such a method is not easy because the apparatus becomes large. Moreover, in order to raise the mineral content of solar salt, the method of adding the mineral component from the outside and increasing the mineral content of solar salt is also utilized. However, a method for producing sun salt while retaining the natural mineral components of sun salt has not been studied much.

天日塩は、海水を塩田に引き込んで風と日光を利用して水分を蒸発させて作るという製造工程の特性上、非衛生的であることもあって、天日塩から異物を除去する精製過程が必要である。なお、天日塩が食品と認定されたのは、天日塩に含まれる重金属の問題が完全に解決されたからではなく、単に分析の技術と資料によってすべての天然物には少量ではあるが重金属が含まれており、天日塩に存在する重金属の量が健康に害を与える水準ではないという判断からである。   Solar salt is unsanitary due to the characteristics of the manufacturing process, in which seawater is drawn into salt fields and water is evaporated using wind and sunlight, and a purification process to remove foreign substances from solar salt is necessary. is there. In addition, the reason why sun salt is certified as food is not because the problem of heavy metals contained in sun salt has been completely solved, but all natural products contain small amounts of heavy metals according to analytical techniques and materials. This is because the amount of heavy metals present in the salt is not at a level that is harmful to health.

韓国食品医薬品安全庁の塩規格基準値(mg/kg)には、ヒ素0.5以下、鉛2.0以下、カドミウム0.5以下、水銀0.1以下と規定されている。また、すべての食品にいかなる量であっても発癌性物質があってはいけないというデラニー条項が、分析技術の発達と伴ってほとんどの天然物から発癌物質が発見されるようになったことから、発癌物質の存在有無の代わりに有害水準の発癌物質の存在有無に変更された。   The salt standard (mg / kg) of the Korean Food and Drug Administration stipulates that arsenic is 0.5 or less, lead 2.0 or less, cadmium 0.5 or less, and mercury 0.1 or less. In addition, the Delaney clause that all foods should be free of carcinogenic substances in any amount, with the development of analytical techniques, carcinogens are now found in most natural products. Instead of the presence or absence of carcinogens, it was changed to the presence or absence of harmful levels of carcinogens.

天日塩にはカドミウム、水銀、鉛、ヒ素などの重金属と、内分泌障害や発癌を及ぼす成分であるダイオキシン、フェロシアン化イオンなど多様な物質が含まれる。また、環境ホルモンであるフタル酸エステル(DEHP:フタル酸ビス(2−エチルヘキシル)は、天日塩(35.35μg/kg)の方が精製塩(2.25μg/kg)よりも15.7倍多く含まれる。精製塩は天日塩から純粋な塩化ナトリウムだけを取り出す方式であるため、重金属と環境ホルモンがほとんど含まれない。   Solar salt includes heavy metals such as cadmium, mercury, lead, and arsenic, and various substances such as dioxins and ferrocyanide ions, which are components that cause endocrine disorders and carcinogenesis. The environmental hormone phthalate ester (DEHP: bis (2-ethylhexyl) phthalate) contains 15.7 times more sun salt (35.35 μg / kg) than purified salt (2.25 μg / kg). Purified salt is a method that removes only pure sodium chloride from sun salt, so it contains almost no heavy metals and environmental hormones.

天日塩には、上記以外の不純物も多く含まれる。砂粉は砂の成分で砂潟、岩石潟、干潟などに位置した塩田に比較的高く含まれるし、総菌数は精製塩では不検出であるが天日塩の場合は1g当たり1,000cfu程度の微細な量の細菌が検出される場合もある。   Solar salt contains many impurities other than those described above. Sand dust is a component of sand and is relatively high in salt fields located in sand lagoons, rock lagoons, tidal flats, etc. The total number of bacteria is not detected in purified salt, but in the case of sun salt, about 1,000 cfu per gram Sometimes a minute amount of bacteria is detected.

人体にとって食塩は必須的な要素であるが、食塩を生産している塩田環境の劣悪さや、潟で採取される食塩の重金属や異物質による汚染など、様々な要因によって食塩が深刻な程度まで汚染され、私たちの健康を脅かしている。   Salt is an essential element for the human body, but salt is contaminated to a serious degree due to various factors such as the poor environment of salt fields that produce salt and the contamination of salt collected from lagoons with heavy metals and foreign substances. And is threatening our health.

すなわち、海水を太陽熱で水分を蒸発させて作る天日塩は、海水に含まれている工場廃水、生活汚水、近所の田畑などから流入した農薬成分、中国の黄砂に含まれた重金属などで汚染されている。癌などの恐ろしい病気を誘発させるヒ素、鉛、水銀、カドミウムなどの有害物質も含まれている。   In other words, solar salt produced by evaporating seawater from solar water is contaminated with industrial wastewater contained in seawater, domestic sewage, agrochemical components flowing in from nearby fields, and heavy metals contained in Chinese yellow sand. Yes. It also contains harmful substances such as arsenic, lead, mercury, and cadmium that can cause terrible diseases such as cancer.

また、天日塩でない加工塩の場合、塩へ高い熱を加えるとヒ素や鉛などが除去されるということから、煮たり焼いたりする方法が用いられるが、この過程で多量のダイオキシンが発生する。このダイオキシンは、塩素化合物の不完全煙硝過程で作られるが、これも人体に致命的な発癌物質である。   Also, in the case of processed salt that is not solar salt, arsenic and lead are removed when high heat is applied to the salt, so a method of boiling or baking is used, but a large amount of dioxin is generated in this process. This dioxin is produced by the incomplete smoke glass process of chlorine compounds, and it is also a fatal carcinogen for the human body.

韓国では、中国やその他海外から輸入した岩塩から青酸カリ成分が検出され大きな衝撃を与えたが、価格が安いため、今でも様々な食品加工に使用されている。   In Korea, the potassium cyanide component was detected in rock salt imported from China and other countries, and it had a big impact, but it is still used for various food processing due to its low price.

そして、韓国は、固有の塩蔵食文化のため食塩の基準使用量がなく、食塩の一日の摂取量が世界勧告基準量(WHO)よりはるかに高いため、食生活文化の改善が必要とされると同時に、有害物質ができるだけ含まれない食塩が必要とされている。   South Korea has no standard salt consumption due to its unique salted food culture, and daily intake of salt is much higher than the World Recommended Standard (WHO), so the dietary culture needs to be improved. At the same time, there is a need for salt that contains as little harmful substances as possible.

大韓民国特許公開第2005−099474号公報Korean Patent Publication No. 2005-099474 特表2013−507121号公報Special table 2013-507121 gazette

そこで、本発明は、海水から重金属や不純物を除去して、人体に有益なミネラル成分を多く含む食塩水を安価にかつ大量に製造するためのミネラル成分含有食塩水の製造方法及び製造装置を提供することを目的とする。また、本発明の他の目的は、上記方法で製造したミネラル成分含有食塩水を提供することである。   Accordingly, the present invention provides a method and apparatus for producing a mineral component-containing saline solution for removing a heavy metal and impurities from seawater and producing a salt solution containing a large amount of mineral components beneficial to the human body at low cost and in large quantities. The purpose is to do. Moreover, the other objective of this invention is to provide the mineral component containing salt solution manufactured by the said method.

本発明者らは、上記の問題点を解決するために鋭意検討した結果、トルマリン(電気石)を用いたろ過装置により、重金属や不純物を除去するとともに人体に必須のミネラル成分を高めることができることを見出し、本発明に想到した。   As a result of intensive studies to solve the above problems, the present inventors have been able to remove heavy metals and impurities and increase essential mineral components in the human body by a filtration device using tourmaline (tourmaline). As a result, the present invention has been conceived.

すなわち、本発明のミネラル成分含有食塩水の製造方法は、
(a)塩度15〜21度の海水を化学繊維からなるろ材が収容された第1のハウジング内を通過させる第1の段階と、
(b)前記第1の段階で得られた海水を多数の一辺が80〜100mmの立方体形状のトルマリンが密集して収容された第2のハウジング内を通過させる第2の段階と、
(c)前記第2の段階で得られた海水を多数の直径が5〜10mmの球形状のトルマリンが密集して収容されるとともに30〜36℃に維持された第3のハウジング内を通過させる第3の段階と、
(d)前記第3の段階で得られた海水を多数の直径が0.5〜1mmの球形状のトルマリンが密集して収容された第4のハウジング内を通過させる第4の段階と
を備えたことを特徴とする。
That is, the method for producing a mineral component-containing saline solution of the present invention includes:
(A) a first stage in which seawater having a salinity of 15 to 21 degrees is passed through a first housing in which a filter medium made of chemical fiber is accommodated;
(B) a second stage in which the seawater obtained in the first stage passes through a second housing in which a large number of cube-shaped tourmalines each having a side of 80 to 100 mm are housed densely;
(C) The seawater obtained in the second stage passes through a third housing in which a large number of spherical tourmalines having a diameter of 5 to 10 mm are densely accommodated and maintained at 30 to 36 ° C. The third stage,
(D) a fourth stage in which the seawater obtained in the third stage passes through a fourth housing in which a large number of spherical tourmalines having a diameter of 0.5 to 1 mm are housed densely. It is characterized by that.

また、本発明のミネラル成分含有食塩水の製造装置は、化学繊維からなるろ材が収容された第1のハウジングと、前記第1のハウジングと連結され、多数の一辺が80〜100mmの立方体形状のトルマリンが密集して収容された第2のハウジングと、前記第2のハウジングと連結され、直径が5〜10mmの球形状のトルマリンが密集して収容された第3のハウジングと、前記第3のハウジングと連結され、直径が0.5〜1mmの球形状のトルマリンが密集して収容された第4のハウジングとを備えたことを特徴とする。   The apparatus for producing a mineral component-containing saline solution of the present invention is connected to the first housing in which a filter medium made of chemical fibers is accommodated and the first housing, and has a cubic shape with a large number of sides of 80 to 100 mm. A second housing in which tourmalines are densely accommodated, a third housing connected to the second housing and containing a spherical tourmaline having a diameter of 5 to 10 mm, and the third housing And a fourth housing which is connected to the housing and in which spherical tourmalines having a diameter of 0.5 to 1 mm are densely accommodated.

また、本発明のミネラル成分含有食塩水は、本発明のミネラル成分含有食塩水の製造方法により製造されたものである。   The mineral component-containing saline of the present invention is produced by the method for producing a mineral component-containing saline of the present invention.

本発明によれば、第1の段階で懸濁物質を除去し、第2の段階で重金属を除去し、第3の段階でミネラル成分の含有量を増加させ、第4の段階で水分子のクラスターを細分化することにより、海水から重金属や不純物を除去して、人体に有益なミネラル成分を多く含む食塩水を安価にかつ大量に製造することができる。   According to the present invention, suspended substances are removed in the first stage, heavy metals are removed in the second stage, the content of mineral components is increased in the third stage, and water molecules are removed in the fourth stage. By subdividing the clusters, it is possible to remove heavy metals and impurities from seawater, and to produce a large amount of saline containing a large amount of mineral components beneficial to the human body at low cost.

本発明のミネラル成分含有食塩水の製造方法を示すフロー図である。It is a flowchart which shows the manufacturing method of the mineral component containing salt solution of this invention. 本発明のミネラル成分含有食塩水の製造装置の一実施例を示す平面図である。It is a top view which shows one Example of the manufacturing apparatus of the mineral component containing salt solution of this invention. 同上正面図である。It is a front view same as the above. 同上右側面図である。It is a right side view same as the above. 同上ハウジングの断面図である。It is sectional drawing of a housing same as the above. 同上第1のハウジングの動作を示す模式図である。It is a schematic diagram which shows operation | movement of a 1st housing same as the above. 本発明のミネラル成分含有食塩水の製造方法の第2の段階における重金属除去のメカニズムを示す模式図である。It is a schematic diagram which shows the mechanism of the heavy metal removal in the 2nd step of the manufacturing method of the mineral component containing salt solution of this invention.

以下、本発明のミネラル成分含有食塩水の製造方法及び製造装置について説明する。   Hereinafter, the manufacturing method and manufacturing apparatus of the mineral component containing salt solution of this invention are demonstrated.

本発明のミネラル成分含有食塩水の製造方法は、図1に示す4つの段階S1〜S4を備えている。これに対応して、本発明のミネラル成分含有食塩水の製造装置は、図2〜5に示す4つのハウジング1〜4を備えている。なお、ハウジング1〜4は、アルミニウム、ステンレス等の金属、又はプラスチック等からなり、その中には、後述するようにろ材又はトルマリンが収容されている。   The method for producing a mineral component-containing saline solution of the present invention includes four stages S1 to S4 shown in FIG. Correspondingly, the apparatus for producing a mineral component-containing saline solution of the present invention includes four housings 1 to 4 shown in FIGS. The housings 1 to 4 are made of metal such as aluminum or stainless steel, plastic, or the like, and contain a filter medium or tourmaline as will be described later.

まず、第1の段階S1において、塩度15〜21度の海水を化学繊維からなるろ材が収容された第1のハウジング1内を通過させる。この第1の段階の主な目的は、懸濁物質を除去することである。   First, in the first stage S1, seawater having a salinity of 15 to 21 degrees is passed through the first housing 1 in which a filter medium made of chemical fibers is accommodated. The main purpose of this first stage is to remove suspended material.

ここで、原水として用いる塩度15〜21度の海水としては、例えば、塩田において天日塩として食塩が晶出する直前の海水を好適に用いることができる。また、ここでいう塩度は、ボーメ度のことをいう。   Here, as the seawater having a salinity of 15 to 21 degrees used as the raw water, for example, seawater immediately before the salt crystallizes out as the salt in the salt field can be suitably used. The salinity here refers to the degree of baume.

第1のハウジング1には、化学繊維からなるろ材11が収容されている。このろ材としては、例えば、ポリプロピレン繊維からなる糸を熱融着加工したものなどが好適に用いられる。また、第1のハウジング1の上部には、ポンプ5の吐出口に接続する配管12が接続するとともに、第2のハウジング2に接続する配管22が接続している。また、第1のハウジング1の下部には、排水用の配管13が接続している。ポンプ5の吸入口は図示しない海水タンクに接続する配管51に接続している。そして、ポンプ5から配管12を経由して供給された海水が第1のハウジング1内のろ材11を通過し、懸濁物質が除去された後に配管22を経由して第2のハウジング2に送られるようになっている。   The first housing 1 accommodates a filter medium 11 made of chemical fiber. As this filter medium, for example, a material obtained by heat-sealing a yarn made of polypropylene fiber is preferably used. A pipe 12 connected to the discharge port of the pump 5 is connected to the upper portion of the first housing 1, and a pipe 22 connected to the second housing 2 is connected. A drainage pipe 13 is connected to the lower portion of the first housing 1. The suction port of the pump 5 is connected to a pipe 51 connected to a seawater tank (not shown). Then, the seawater supplied from the pump 5 via the pipe 12 passes through the filter medium 11 in the first housing 1 and is sent to the second housing 2 via the pipe 22 after the suspended substances are removed. It is supposed to be.

また、第1のハウジング1は、図6に示すような振動圧縮ろ過装置により構成することができる。振動圧縮ろ過装置には、密閉構造になっているハウジング内にポリプロピレン繊維からなる糸を熱溶着加工してなる球状のろ材が多数収容されており、その上方には上下に動作してろ材を加圧するピストンが設けられ、上部には海水原水を導入する配管、下部にはろ過後の海水を排出するとともに逆洗水を導入する配管が設けられている。振動圧縮ろ過装置の動作は、図6に示すように、(a−1)ピストンが下降してろ材への加圧が開始され、(a−2)ピストンが下限点に到達したところで圧力を高めた海水原水の導入が開始されてろ過工程が始まり、ろ過工程は入口圧力が所定値に到達するまで持続される。(a−3)入口圧力が所定値に到達するとピストンが上昇してピストンによる加圧が解放されるとともに逆洗水が導入され、(a−4)ピストンが上限点に到達したところで逆洗水と空気が導入されて逆洗工程に入る。ここでは、ろ材の下方から逆洗水と空気を噴出させてろ材を洗浄する。この逆洗工程における撹拌と振動、ろ材同士の衝突によって、ろ材に付着した懸濁物質が除去されてろ材が再生される。そして、再び上記の動作が繰り返される。このように、振動圧縮ろ過装置を採用することにより、ろ材の再生を容易に行うことができる。   Moreover, the 1st housing 1 can be comprised by a vibration compression filtration apparatus as shown in FIG. The vibration compression filtration apparatus contains a large number of spherical filter media obtained by heat-welding a thread made of polypropylene fibers in a housing having a sealed structure, and the filter media is moved up and down to add the filter media. A piston for pressure is provided, a pipe for introducing raw seawater at the upper part, and a pipe for discharging backwash water while discharging filtered seawater at the lower part. As shown in FIG. 6, the operation of the vibration compression filter is as follows: (a-1) The piston descends and pressurization to the filter medium is started. (A-2) The pressure is increased when the piston reaches the lower limit point. The introduction of the raw seawater is started and the filtration process starts, and the filtration process is continued until the inlet pressure reaches a predetermined value. (A-3) When the inlet pressure reaches a predetermined value, the piston rises to release the pressurization by the piston and backwash water is introduced. (A-4) Backwash water when the piston reaches the upper limit point And air is introduced to enter the backwash process. Here, the filter medium is washed by ejecting backwash water and air from below the filter medium. Suspended substances attached to the filter medium are removed and the filter medium is regenerated by agitation and vibration in the backwashing process, and collision between the filter media. Then, the above operation is repeated again. Thus, by adopting the vibration compression filtration device, it is possible to easily regenerate the filter medium.

この第1の段階S1においては、好ましくは海水に含まれる懸濁物質や重金属などの不純物のうちの70〜80%、或いはそれ以上が除去される。   In the first stage S1, 70 to 80% or more of impurities such as suspended substances and heavy metals contained in seawater are preferably removed.

第2の段階S2において、第1の段階で得られた海水を多数の一辺が80〜100mmの立方体形状のトルマリンが密集して収容された第2のハウジング2内を通過させる。この第2の段階の主な目的は、重金属を除去することである。   In the second stage S2, the seawater obtained in the first stage is passed through the second housing 2 in which a large number of cube-shaped tourmalines having sides of 80 to 100 mm are densely accommodated. The main purpose of this second stage is to remove heavy metals.

ここで、トルマリンとしては、特に鉄電気石が好適に用いられる。これは第3及び第4の段階におけるトルマリンも同様である。   Here, as tourmaline, iron tourmaline is particularly preferably used. The same applies to tourmaline in the third and fourth stages.

第2のハウジング2には、多数の一辺が80〜100mmの立方体形状のトルマリン21が密集して収容されている。また、第2のハウジング2の上部には、第1のハウジング1に接続する配管22が接続するとともに、第3のハウジング3に接続する配管32が接続している。そして、配管22を経由して供給された海水が第2のハウジング2内の多数のトルマリン21の間を通過し、重金属が除去された後に配管32を経由して第3のハウジング3に送られるようになっている。   The second housing 2 contains a large number of cubic tourmalines 21 each having a side of 80 to 100 mm. A pipe 22 connected to the first housing 1 and a pipe 32 connected to the third housing 3 are connected to the upper portion of the second housing 2. And the seawater supplied via the piping 22 passes between many tourmalines 21 in the 2nd housing 2, and after a heavy metal is removed, it is sent to the 3rd housing 3 via the piping 32. It is like that.

この第2の段階S2においては、第1の段階S1と併せて、好ましくは海水に含まれる懸濁物質や重金属などの不純物のうちの90〜99%、或いはそれ以上が除去される。   In the second stage S2, 90 to 99% or more of impurities such as suspended substances and heavy metals contained in seawater are preferably removed together with the first stage S1.

なお、トルマリンは、結晶構造が六方晶系に属し、鉄、マグネシウム、アルミニウムなどを含み、マイナスイオンや遠赤外線を発生すると言われている。また、結晶を熱すると電気を帯びるため、電気石と呼ばれている。トルマリンは水分に接触すると放電を引き起こし、約0.06mAの微弱電流を発する。このとき水は電気分解され、水素イオンはトルマリンに引き寄せられた電子と結合して水素ガス(H)に変わって放出されると考えられる。水酸化物イオンは周辺の水と結合することでヒドロキシルイオン(H )に変化し、このヒドロキシルイオンの作用によって、図7に示すように重金属が無害化され、不純物が取り除かれると考えられる。 Note that tourmaline has a hexagonal crystal structure and contains iron, magnesium, aluminum, etc., and is said to generate negative ions and far infrared rays. In addition, it is called tourmaline because it takes electricity when the crystal is heated. Tourmaline causes a discharge when it comes into contact with moisture, and generates a weak current of about 0.06 mA. At this time, water is electrolyzed, and hydrogen ions are combined with electrons attracted to tourmaline to be converted into hydrogen gas (H 2 ) and released. Hydroxide ions are changed to hydroxyl ions (H 3 O 2 ) by binding with surrounding water, and the action of the hydroxyl ions detoxifies heavy metals and removes impurities as shown in FIG. Conceivable.

第3の段階S3において、第2の段階で得られた海水を多数の直径が5〜10mmの球形状のトルマリンが密集して収容されるとともに30〜36℃に維持された第3のハウジング3内を通過させる。この第3の段階の主な目的は、ミネラル成分の含有量を増加させることである。   In the third stage S3, the third housing 3 in which the seawater obtained in the second stage contains a large number of spherical tourmalines having a diameter of 5 to 10 mm and is maintained at 30 to 36 ° C. Let the inside pass. The main purpose of this third stage is to increase the content of mineral components.

第3のハウジング3には、多数の直径が5〜10mmの球形状のトルマリンが密集して収容されている。また、第3のハウジング3の上部には、第2のハウジング2に接続する配管32が接続するとともに、第4のハウジング4に接続する配管42が接続している。そして、配管32を経由して供給された海水が第3のハウジング3内の多数のトリマリンの間を通過し、ミネラル成分の含有量が増加した後に配管42を経由して第4のハウジング4に送られるようになっている。   A large number of spherical tourmalines having a diameter of 5 to 10 mm are densely accommodated in the third housing 3. A pipe 32 connected to the second housing 2 and a pipe 42 connected to the fourth housing 4 are connected to the upper portion of the third housing 3. And the seawater supplied via the piping 32 passes between many trimarine in the 3rd housing 3, and after the content of a mineral component increases, it passes into the 4th housing 4 via the piping 42. It is supposed to be sent.

また、第3のハウジング3内には、図示しない温度センサーと加熱手段を備えた温度制御装置が設けられており、第3のハウジング内3は30〜36℃に保たれるようになっている。これにより、第3のハウジング3内のトルマリンも30〜36℃に保たれ、トルマリンの加熱により電気を帯びる性質が助長される。   The third housing 3 is provided with a temperature control device having a temperature sensor and heating means (not shown), and the third housing 3 is maintained at 30 to 36 ° C. . Thereby, the tourmaline in the 3rd housing 3 is also maintained at 30-36 degreeC, and the property which takes electricity by the heating of tourmaline is promoted.

この第3の段階S3においては、トルマリンに含まれるマグネシウム、鉄、ホウ素、ケイ素などのミネラル成分が海水中に溶出し、海水中のミネラル成分が増加する。また、第3のハウジング3を通過する海水の温度は、20〜25℃に達する。   In the third stage S3, mineral components such as magnesium, iron, boron, and silicon contained in tourmaline are eluted in seawater, and the mineral components in seawater increase. Moreover, the temperature of the seawater which passes the 3rd housing 3 reaches 20-25 degreeC.

第4の段階において、第3の段階で得られた海水を多数の直径が0.5〜1mmの球形状のトルマリンが密集して収容された第4のハウジング4内を通過させる。この第4の段階の主な目的は、トリマリンが発する遠赤外線を照射させることである。   In the fourth stage, the seawater obtained in the third stage is passed through a fourth housing 4 in which a large number of spherical tourmalines having a diameter of 0.5 to 1 mm are accommodated. The main purpose of this fourth stage is to irradiate far-infrared rays emitted by trimarin.

第4のハウジング4には、多数の直径が0.5〜1mmの球形状のトルマリンが密集して収容されている。また、第4のハウジング4の上部には、配管42が接続するとともに、排出口に接続する配管52が接続している。そして、配管42を経由して供給された海水が第4のハウジング4内の多数のトルマリンの間を通過し、トリマリンが発する遠赤外線が照射された後に配管52を経由して排出口に向けて送られるようになっている。   A large number of spherical tourmalines having a diameter of 0.5 to 1 mm are densely accommodated in the fourth housing 4. A pipe 42 is connected to the upper portion of the fourth housing 4 and a pipe 52 connected to the discharge port is connected. And the seawater supplied via the piping 42 passes between many tourmalines in the 4th housing 4, and after irradiating the far-infrared ray which a trimarin emits, toward the discharge port via the piping 52 It is supposed to be sent.

この第4の段階S4においては、第3の段階S3で加熱された海水が多数の直径が0.5〜1mmの微細な球形状のトルマリン間を通過する際に、海水にトルマリンが発する遠赤外線が照射されることによって、海水のクラスターが、細分化されると考えられる。   In the fourth stage S4, when the seawater heated in the third stage S3 passes between a large number of spherical spherical tourmalines having a diameter of 0.5 to 1 mm, far-infrared rays are emitted from the tourmaline to the seawater. It is considered that the seawater cluster is subdivided by the irradiation.

また、トルマリンに含まれるミネラル分が溶出し、最終的には、原水よりも塩度が3度程度高くなった塩度18〜24度の海水が得られる。   Moreover, the mineral content contained in tourmaline elutes, and finally, seawater having a salinity of 18 to 24 degrees with a salinity of about 3 degrees higher than the raw water is obtained.

本発明によれば、細胞への浸透性が高く、柔らかく美味しいミネラル成分含有食塩水が得られる。   According to the present invention, a soft and delicious mineral component-containing saline with high cell permeability is obtained.

大韓民国全羅南道霊光郡落月面の海から採取した海水を、図6に示す振動圧縮ろ過装置により処理したところ、表1に示すの結果が得られた。懸濁物質(SS)の除去率は93.57%であった。   Table 1 shows the results shown in Table 1 when seawater collected from the sea surface of Seogwang-gun, Jeollanam-do, South Korea was treated with the vibration compression filtration device shown in FIG. The removal rate of suspended solids (SS) was 93.57%.

大韓民国全羅南道霊光郡白岫邑にある洗浄天日塩製造工場にて最終処理された海水を採取した。そして、この海水を発明のミネラル成分含有食塩水の製造装置により処理した。処理済の海水を韓国食品研究所に依頼して分析したところ、表2に示す結果が得られた。   The final processed seawater was collected at the washing sun salt production plant in Shirakaba, Seiko-gun, Jeollanam-do, South Korea. And this seawater was processed with the manufacturing apparatus of the mineral component containing salt solution of invention. When the processed seawater was commissioned and analyzed by the Korea Food Research Institute, the results shown in Table 2 were obtained.

カルシウム14.08(mg/100g)、カリウム745.57(mg/100g)、マグネシウム2,742.90(mg/100g)など、健康に有益なミネラル成分が多量に含まれていた。   A large amount of mineral components beneficial to health such as calcium 14.08 (mg / 100 g), potassium 745.57 (mg / 100 g), magnesium 2,742.90 (mg / 100 g) were contained.

韓国において天日塩が生産されている池において、海水の重金属の汚染度を分析した結果、表3に示すとおりであった。これらの海水を発明のミネラル成分含有食塩水の製造装置により処理したところ、カドミウム、鉛は不検出となった。   Table 3 shows the results of analysis of the pollution level of heavy metals in seawater in ponds where solar salt is produced in Korea. When these seawaters were processed by the manufacturing apparatus of the mineral component-containing saline solution of the invention, cadmium and lead were not detected.

1 第1のハウジング
2 第2のハウジング
3 第3のハウジング
4 第4のハウジング
11 ろ材
21 トルマリン
31 トルマリン
41 トルマリン
S1 第1の段階
S2 第2の段階
S3 第3の段階
S4 第4の段階
DESCRIPTION OF SYMBOLS 1 1st housing 2 2nd housing 3 3rd housing 4 4th housing
11 Filter media
21 Tourmaline
31 Tourmaline
41 Tourmaline S1 First stage S2 Second stage S3 Third stage S4 Fourth stage

Claims (3)

(a)塩度15〜21度の海水を化学繊維からなるろ材が収容された第1のハウジング内を通過させる第1の段階と、
(b)前記第1の段階で得られた海水を多数の一辺が80〜100mmの立方体形状のトルマリンが密集して収容された第2のハウジング内を通過させる第2の段階と、
(c)前記第2の段階で得られた海水を多数の直径が5〜10mmの球形状のトルマリンが密集して収容されるとともに30〜36℃に維持された第3のハウジング内を通過させる第3の段階と、
(d)前記第3の段階で得られた海水を多数の直径が0.5〜1mmの球形状のトルマリンが密集して収容された第4のハウジング内を通過させる第4の段階と
を備えたことを特徴とするミネラル成分含有食塩水の製造方法。
(A) a first stage in which seawater having a salinity of 15 to 21 degrees is passed through a first housing in which a filter medium made of chemical fiber is accommodated;
(B) a second stage in which the seawater obtained in the first stage passes through a second housing in which a large number of cube-shaped tourmalines each having a side of 80 to 100 mm are housed densely;
(C) The seawater obtained in the second stage passes through a third housing in which a large number of spherical tourmalines having a diameter of 5 to 10 mm are densely accommodated and maintained at 30 to 36 ° C. The third stage,
(D) a fourth stage in which the seawater obtained in the third stage passes through a fourth housing in which a large number of spherical tourmalines having a diameter of 0.5 to 1 mm are housed densely. A method for producing a mineral component-containing saline solution.
化学繊維からなるろ材が収容された第1のハウジングと、前記第1のハウジングと連結され、多数の一辺が80〜100mmの立方体形状のトルマリンが密集して収容された第2のハウジングと、前記第2のハウジングと連結され、直径が5〜10mmの球形状のトルマリンが密集して収容された第3のハウジングと、前記第3のハウジングと連結され、直径が0.5〜1mmの球形状のトルマリンが密集して収容された第4のハウジングとを備えたことを特徴とするミネラル成分含有食塩水の製造装置。 A first housing containing a filter medium made of a chemical fiber, a second housing connected to the first housing, and containing a large number of cube-shaped tourmalines each having a side of 80 to 100 mm; A third housing connected to the second housing and containing a spherical tourmaline having a diameter of 5 to 10 mm, and a spherical shape having a diameter of 0.5 to 1 mm connected to the third housing. And a fourth housing in which the tourmaline is housed densely. 請求項1記載のミネラル成分含有食塩水の製造方法により製造されたミネラル成分含有食塩水。 The mineral component containing salt solution manufactured by the manufacturing method of the mineral component containing salt solution of Claim 1.
JP2015101127A 2015-05-18 2015-05-18 Method and apparatus for producing mineral component-containing saline Active JP6344304B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015101127A JP6344304B2 (en) 2015-05-18 2015-05-18 Method and apparatus for producing mineral component-containing saline

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015101127A JP6344304B2 (en) 2015-05-18 2015-05-18 Method and apparatus for producing mineral component-containing saline

Publications (2)

Publication Number Publication Date
JP2016215103A true JP2016215103A (en) 2016-12-22
JP6344304B2 JP6344304B2 (en) 2018-06-20

Family

ID=57580015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015101127A Active JP6344304B2 (en) 2015-05-18 2015-05-18 Method and apparatus for producing mineral component-containing saline

Country Status (1)

Country Link
JP (1) JP6344304B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0910765A (en) * 1995-06-28 1997-01-14 Akuton Kk Seawater pretreatment method for desalting seawater by reverse osmosis method
JPH09122U (en) * 1993-12-24 1997-03-28 和幸 田中 Seawater for natural seasonings
JP2003335655A (en) * 2002-05-15 2003-11-25 Oota Corporation:Kk Mineral water
JP2004357534A (en) * 2003-06-03 2004-12-24 Yoshitaka Oku Clean brine, clean natural salt and clean bitter
JP2005211765A (en) * 2004-01-28 2005-08-11 Toshishige Naoko Health drinking water, and apparatus and method for producing the same
JP2006150205A (en) * 2004-11-29 2006-06-15 Sukemitsu Onodera Water treatment device
JP2008006343A (en) * 2006-06-27 2008-01-17 Ers Hanbai Kk Method for producing useful tourmaline-treated water from water in water receiving tank, water receiving tank having function of producing tourmaline-treated water and water treatment unit
US20130115335A1 (en) * 2010-11-15 2013-05-09 Chen-Sheng Tsai Preparation method of weakly basic, ionized, mineralization and healthy drinking water

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09122U (en) * 1993-12-24 1997-03-28 和幸 田中 Seawater for natural seasonings
JPH0910765A (en) * 1995-06-28 1997-01-14 Akuton Kk Seawater pretreatment method for desalting seawater by reverse osmosis method
JP2003335655A (en) * 2002-05-15 2003-11-25 Oota Corporation:Kk Mineral water
JP2004357534A (en) * 2003-06-03 2004-12-24 Yoshitaka Oku Clean brine, clean natural salt and clean bitter
JP2005211765A (en) * 2004-01-28 2005-08-11 Toshishige Naoko Health drinking water, and apparatus and method for producing the same
JP2006150205A (en) * 2004-11-29 2006-06-15 Sukemitsu Onodera Water treatment device
JP2008006343A (en) * 2006-06-27 2008-01-17 Ers Hanbai Kk Method for producing useful tourmaline-treated water from water in water receiving tank, water receiving tank having function of producing tourmaline-treated water and water treatment unit
US20130115335A1 (en) * 2010-11-15 2013-05-09 Chen-Sheng Tsai Preparation method of weakly basic, ionized, mineralization and healthy drinking water

Also Published As

Publication number Publication date
JP6344304B2 (en) 2018-06-20

Similar Documents

Publication Publication Date Title
CN101456642A (en) Method for producing high magnetic activated water
Mahmoud et al. Immobilization of Fusarium verticillioides fungus on nano-silica (NSi–Fus): A novel and efficient biosorbent for water treatment and solid phase extraction of Mg (II) and Ca (II)
Ghebremichael et al. Performance of Moringa oliefera as a biosorbent for chromium removal
Esmael et al. Adsorption of heavy metals from industrial wastewater using palm date pits as low cost adsorbent
CN103880213A (en) Tap water purification technique
CN104986903A (en) Production method for mineral water
CN203346200U (en) Drinking water treatment equipment
RU2012128229A (en) METHOD FOR PROCESSING GOLD-CONTAINING RAW MATERIAL DOUBLE RESISTANCE
JP6344304B2 (en) Method and apparatus for producing mineral component-containing saline
Madrona et al. The potential of different saline solution on the extraction of the Moringa oleifera seed's active component for water treatment
TWM537931U (en) Negative ionized hydrogen water making equipment capable of generating water with negative hydrogen ion, negative potential, energy resonance, and alkaline ion
CN202555080U (en) High-efficiency filtration and purification living water machine
CN107986506A (en) A kind of preparation method of flotation fluid, preparation system, purification method and cleaning system
CN203904310U (en) Medical stone dissolution system for preparing edible oil
Parvatham et al. Evaluation of Wastewater Treatment using Banana Fruit Peel Powder as Natural Coagulant
JP3215349U (en) Hydrogen molecule activating water device that improves cancer symptoms, diabetes, high cholesterol symptoms, high blood pressure, kidney disease by neutralizing free radicals (active oxygen) and antioxidant action
CN204752431U (en) Automatic change weak base water processing system
CN104017644A (en) Medical stone dissolution system and process for preparing edible oil
Majumdar et al. Devising an economical water purification unit using bio-adsorbent
CN204752432U (en) Automatic change weak base pi ization water processing system
Ruholahi et al. Nickel biosorption by fungal chitosan from Mucor Indicus
China Adsorption studies on water hardness removal by using cashewnut shell activated carbon as an adsorbent
CN209835861U (en) Water treatment device adopting medical stone for mineralization and water storage
CN202988879U (en) Efficiently-sterilizing water purifier
KR101589015B1 (en) Mineral water manufacturing apparatus for mineral water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180320

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180424

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180507

R150 Certificate of patent or registration of utility model

Ref document number: 6344304

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250