JP2016212668A - Operation plan method for omnidirectional carriage - Google Patents

Operation plan method for omnidirectional carriage Download PDF

Info

Publication number
JP2016212668A
JP2016212668A JP2015096456A JP2015096456A JP2016212668A JP 2016212668 A JP2016212668 A JP 2016212668A JP 2015096456 A JP2015096456 A JP 2015096456A JP 2015096456 A JP2015096456 A JP 2015096456A JP 2016212668 A JP2016212668 A JP 2016212668A
Authority
JP
Japan
Prior art keywords
caster
angle
turning
omnidirectional
plan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015096456A
Other languages
Japanese (ja)
Inventor
崇博 山名
Takahiro Yamana
崇博 山名
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2015096456A priority Critical patent/JP2016212668A/en
Publication of JP2016212668A publication Critical patent/JP2016212668A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0268Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means
    • G05D1/0272Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means comprising means for registering the travel distance, e.g. revolutions of wheels

Abstract

PROBLEM TO BE SOLVED: To provide an operation plan method for an omnidirectional carriage planning a track reducing revolving resistance due to a revolving caster and being capable of preventing positional deviations.SOLUTION: In an omnidirectional carriage 30 comprising: a pair of driving wheels 3 and 4; a caster 2 being driving and turned with a caster pivot 5 as a center in association with traveling of the omnidirectional carriage 30; and a sensor detecting a revolving angle of the caster 2, an operation plan method for the omnidirectional carriage 30 sets a plan of an initial travel locus of the omnidirectional carriage 30, calculates a caster turning scheduled angle 10 in which turning of the caster is scheduled by traveling from a detected revolving angle 11, changes the plan of the travel locus such that the caster turning scheduled angle 10 is less than a caster limit angle when the caster turning scheduled angle 10 is equal to or more than a predetermined caster limit angle, and controls the pair of driving wheels 3 and 4 so as to maintain the plan of the travel locus when the caster turning scheduled angle 10 is less than the caster limit angle.SELECTED DRAWING: Figure 1

Description

本発明は、全方位に移動自在な全方位台車の軌道を制御するための動作計画方法に関する。   The present invention relates to an operation planning method for controlling the trajectory of an omnidirectional carriage that is movable in all directions.

移動ロボットや運搬用台車を自動走行させるために各種の移動経路を計画する方法が提案されている。特許文献1には、無人車両のナビゲーション装置が記載されている。この無人車両には、一対の駆動輪と、車両の方向を変化させるための旋回用のキャスタと、キャスタの方向角度を検出する角度検出センサと、車両の位置に基づいて車両を制御するナビゲーション装置を有している。   There have been proposed methods for planning various movement paths in order to automatically move a mobile robot or a transport cart. Patent Document 1 describes a navigation device for unmanned vehicles. The unmanned vehicle includes a pair of drive wheels, a turning caster for changing the direction of the vehicle, an angle detection sensor for detecting the direction angle of the caster, and a navigation device for controlling the vehicle based on the position of the vehicle. have.

特開平10−307030号公報JP-A-10-307030

旋回用のキャスタで車両の方向を変化させる場合、キャスタの車両の進行方向に対する角度の条件により、車両が方向転換する際にキャスタの旋回抵抗を受け、車両が計画された走行軌跡からずれる場合がある。特許文献1に記載されたナビゲーション装置によると、旋回用のキャスタによる旋回抵抗の影響が考慮されておらず、旋回抵抗により車両の位置や姿勢にずれが生じる虞がある。
本発明は、旋回用のキャスタに起因する旋回抵抗を低減する軌道を計画し、位置ずれを防止することができる全方位台車の動作計画方法を提供することを目的とする。
When the direction of the vehicle is changed by a caster for turning, depending on the angle condition of the caster with respect to the traveling direction of the vehicle, the turning resistance of the caster may be received when the vehicle changes direction, and the vehicle may deviate from the planned traveling locus. is there. According to the navigation device described in Patent Document 1, the influence of turning resistance due to a turning caster is not taken into consideration, and there is a possibility that the position and posture of the vehicle may be shifted due to turning resistance.
An object of the present invention is to provide an operation planning method for an omnidirectional cart that can plan a trajectory that reduces turning resistance caused by a caster for turning, and can prevent positional deviation.

本発明にかかる全方位台車の動作計画方法は、一対の駆動輪と、全方位台車の進行に伴って、キャスタ旋回軸を中心に従動旋回するキャスタと、前記キャスタの旋回角を検出するセンサとを備える全方位台車において、
前記全方位台車の初期の走行軌跡の計画を設定し、
検出された前記旋回角から前記進行によって前記キャスタの旋回が予定されるキャスタ旋回予定角を算出し、
前記キャスタ旋回予定角が予め定められたキャスタ制限角度以上となった場合は、前記キャスタ旋回予定角が前記キャスタ制限角度より小さくなるように前記走行軌跡の前記計画を変更し、
前記キャスタ旋回予定角が前記キャスタ制限角度より小さい場合は、前記走行軌跡の前記計画を維持するように前記駆動輪を制御する。
An omnidirectional cart motion planning method according to the present invention includes a pair of drive wheels, a caster that turns following a caster turning axis as the omnidirectional cart progresses, and a sensor that detects a turning angle of the caster. In an omnidirectional cart with
Set a plan for the initial trajectory of the omnidirectional cart,
From the detected turning angle, a caster turning scheduled angle at which the caster is scheduled to turn by the progress is calculated,
When the expected caster turning angle is equal to or greater than a predetermined caster limit angle, the plan of the travel locus is changed so that the expected caster turn angle is smaller than the caster limit angle,
If the caster turning expected angle is smaller than the caster limit angle, the drive wheels are controlled so as to maintain the plan of the travel locus.

本発明にかかる全方位台車の動作計画方法は、キャスタ旋回予定角が予め定められたキャスタ制限角度以上となった場合は、走行軌跡の計画を変更することで方向転換時のキャスタに生じる旋回抵抗を低減し、位置ずれを防止する。   The operation plan method for an omnidirectional cart according to the present invention is such that, when the planned caster turning angle is equal to or greater than a predetermined caster limit angle, the turning resistance generated in the caster at the time of turning is changed by changing the plan of the traveling locus. To prevent misalignment.

本発明にかかる全方位台車の動作計画方法によると、旋回用のキャスタに起因する旋回抵抗を低減する軌道を計画し、位置ずれを防止することができる。   According to the operation planning method for an omnidirectional cart according to the present invention, it is possible to plan a track that reduces the turning resistance caused by a turning caster, and to prevent positional deviation.

本発明にかかる全方位台車の底面図である。It is a bottom view of the omnidirectional cart concerning the present invention. 全方位台車の内部構成を示したブロック図である。It is the block diagram which showed the internal structure of the omnidirectional cart. キャスタ旋回角とキャスタの旋回抵抗に関する説明図である。It is explanatory drawing regarding a caster turning angle and the turning resistance of a caster. キャスタ旋回予定角が大きい場合のキャスタの状態を示した図である。It is the figure which showed the state of the caster when a caster turning plan angle is large. 全方位台車の走行軌跡の動作計画を変更する状態を示した図である。It is the figure which showed the state which changes the operation plan of the driving | running | working locus | trajectory of an omnidirectional cart. 全方位台車の走行軌跡の動作計画を決定する処理を示したフローチャートである。It is the flowchart which showed the process which determines the operation | movement plan of the driving | running | working locus | trajectory of an omnidirectional cart.

以下、図面を参照して本発明にかかる全方位台車の実施形態について説明する。   Hereinafter, an embodiment of an omnidirectional cart according to the present invention will be described with reference to the drawings.

図1〜図2に示されるように、全方位台車30は、上面に物を載置するための天板1と、天板1を駆動して移動させる一対の右側の駆動輪3および左側の駆動輪4と、天板1の前方に設けられ、移動方向に従動旋回するキャスタ2とを有する。全方位台車30は、走行軌跡の動作計画を演算する演算部7の演算結果に基づいて制御部8によって駆動輪3,4を駆動するモータ3a,4aが制御され、自動走行を行う。全方位台車30は、例えばロボット本体(不図示)の移動用の台車として用いられる。   As shown in FIGS. 1 to 2, the omnidirectional cart 30 includes a top plate 1 for placing an object on the upper surface, a pair of right drive wheels 3 for driving and moving the top plate 1, and a left side It has a drive wheel 4 and a caster 2 that is provided in front of the top plate 1 and that turns following the moving direction. The omnidirectional cart 30 is driven automatically by the control unit 8 controlling the motors 3a and 4a that drive the drive wheels 3 and 4 based on the calculation result of the calculation unit 7 that calculates the operation plan of the travel locus. The omnidirectional cart 30 is used as a cart for moving a robot body (not shown), for example.

一対の駆動輪3,4は、モータ3a,4aによってそれぞれ独立に駆動される。モータ3a,4aには車軸線L周りの駆動輪3,4の回転12を検出する、エンコーダ等の回転検出センサ3b,4bが設けられている。制御部8は、回転検出センサ3b,4bの出力から回転角度、速度を取得し、その値に基づいて全方位台車30の中心位置と姿勢を制御する。   The pair of drive wheels 3 and 4 are independently driven by motors 3a and 4a. The motors 3a and 4a are provided with rotation detection sensors 3b and 4b such as encoders for detecting the rotation 12 of the drive wheels 3 and 4 around the axle L. The control unit 8 acquires the rotation angle and speed from the outputs of the rotation detection sensors 3b and 4b, and controls the center position and posture of the omnidirectional vehicle 30 based on the values.

駆動輪3,4の回転差により天板1の進行方向13が定まる。進行方向13に従動旋回してキャスタ2は、キャスタ旋回軸5周りに旋回する。キャスタ旋回軸5周りにおけるキャスタ2のキャスタ旋回角11=θ1は、キャスタ旋回軸5に設けられたエンコーダ(旋回検出センサ)6によって検出される。キャスタ2は、天板1の前方に1個設けられているが、より安定性を向上させるために前方に2個配置してもよい。キャスタ2は、進行方向13に従動旋回するため、キャスタ旋回角11に基づいて進行方向13への進行によってキャスタ2の旋回が予定されるキャスタ旋回予定角10(=θ)が定まる。   The traveling direction 13 of the top plate 1 is determined by the rotational difference between the drive wheels 3 and 4. The caster 2 swivels around the caster swivel axis 5 following the swiveling direction 13. A caster turning angle 11 = θ1 of the caster 2 around the caster turning shaft 5 is detected by an encoder (turn detection sensor) 6 provided on the caster turning shaft 5. One caster 2 is provided in front of the top plate 1, but two casters 2 may be arranged in front in order to improve stability. Since the caster 2 is driven to turn in the traveling direction 13, the caster turning scheduled angle 10 (= θ) at which the caster 2 is scheduled to turn is determined based on the caster turning angle 11.

エンコーダ6および回転検出センサ3b,4bの出力は、演算部7に入力される。演算部7は、回転検出センサ3b,4bの出力に基づいて全方位台車30の中心の現在位置を算出する。演算部7は、現在位置から到達点までの走行軌跡を計画する。演算部7は、走行軌跡から全方位台車30の進むべき進行方向を算出する。演算部7は、エンコーダ6の出力に基づいて検出されたキャスタ2のキャスタ旋回角11に基づいて進行によってキャスタ2の旋回が予定されるキャスタ旋回予定角10を算出する。制御部8は、モータ3a,4aを制御して駆動輪3,4を回転させ、全方位台車30が走行軌跡に従うよう制御する。   The outputs of the encoder 6 and the rotation detection sensors 3b and 4b are input to the calculation unit 7. The calculation unit 7 calculates the current position of the center of the omnidirectional cart 30 based on the outputs of the rotation detection sensors 3b and 4b. The calculation unit 7 plans a travel locus from the current position to the arrival point. The calculation unit 7 calculates the traveling direction in which the omnidirectional vehicle 30 should travel from the travel locus. The calculation unit 7 calculates a caster turning expected angle 10 at which the caster 2 is scheduled to turn based on the caster turning angle 11 of the caster 2 detected based on the output of the encoder 6. The control unit 8 controls the motors 3a and 4a to rotate the drive wheels 3 and 4 so that the omnidirectional cart 30 follows the travel locus.

キャスタ旋回予定角10が予め定められたキャスタ制限角度(リミット角度:θlim)14を超えるとキャスタ2に旋回抵抗が生じる。そのため、キャスタ旋回予定角10がリミット角度14を超えないように、演算部7は、現在位置から到達点までの走行軌跡を計画を変更する。即ち、演算部7は、キャスタ旋回予定角10とリミット角度14=θlimを比較し、キャスタ旋回予定角10がリミット角度14を超えた場合、キャスタ旋回予定角10がリミット角度14を超えないように走行軌跡の計画を変更する。リミット角度14は、実験により予め確認することにより設定される。   When the caster turning expected angle 10 exceeds a predetermined caster limit angle (limit angle: θlim) 14, turning resistance is generated in the caster 2. For this reason, the calculation unit 7 changes the plan of the travel locus from the current position to the arrival point so that the caster turning expected angle 10 does not exceed the limit angle 14. That is, the calculation unit 7 compares the caster turning expected angle 10 and the limit angle 14 = θlim so that when the caster turning expected angle 10 exceeds the limit angle 14, the caster turning expected angle 10 does not exceed the limit angle 14. Change the running track plan. The limit angle 14 is set by confirming in advance through experiments.

演算部7は、変更された走行軌跡の計画に基づいて駆動輪3,4の目標回転速度(位置)を計算する。制御部8は、目標回転速度(位置)となるようにモータ3a,4aを制御し、変更された走行軌跡に沿って全方位台車30を走行させる。   The calculation unit 7 calculates the target rotational speed (position) of the drive wheels 3 and 4 based on the changed travel locus plan. The control unit 8 controls the motors 3a and 4a so as to achieve the target rotational speed (position), and causes the omnidirectional cart 30 to travel along the changed travel locus.

図3に示されるように、全方位台車30において、キャスタ2が基準線Mに対してキャスタ旋回角11=θ1をなしている。この状態から全方位台車30が進行方向13に進行しようとすると、キャスタ2は、進行によってキャスタ旋回軸5周りに旋回し、走行時にキャスタ旋回角11は、進行方向13と180度をなす角度に落ち着く。従って、全方位台車30において、次の走行軌跡が計画された場合、キャスタ2は、現在のキャスタ旋回角11=θ1の状態からθの角度量(キャスタ旋回予定角10)旋回することが予想される。キャスタ旋回予定角10が180度に近づくほどキャスタ2が旋回しにくくなる。   As shown in FIG. 3, in the omnidirectional cart 30, the caster 2 forms a caster turning angle 11 = θ1 with respect to the reference line M. From this state, when the omnidirectional cart 30 tries to travel in the traveling direction 13, the caster 2 pivots around the caster turning shaft 5 by traveling, and the caster turning angle 11 is 180 degrees with the traveling direction 13 during traveling. Calm down. Therefore, when the next travel locus is planned in the omnidirectional cart 30, the caster 2 is expected to turn from the current caster turning angle 11 = θ1 by the angle amount θ (caster turning expected angle 10). The As the caster turning expected angle 10 approaches 180 degrees, the caster 2 is less likely to turn.

即ち、キャスタ旋回予定角10が180度に近い状態で全方位台車30が計画に基づいた進行方向に進行しようとした場合、台車速度が高くなればなるほどキャスタ2の旋回抵抗が大きくなる。そして、全方位台車30の位置および姿勢がずれる可能性が高くなる。その状態では、全方位台車30の上部にロボット本体等が載置されている場合、ロボット本体やロボットアームに振動が発生する。   In other words, when the omnidirectional cart 30 tries to travel in the traveling direction based on the plan with the caster turning planned angle 10 close to 180 degrees, the turning resistance of the caster 2 increases as the cart speed increases. And possibility that the position and attitude | position of the omnidirectional trolley | bogie 30 will shift becomes high. In this state, when a robot main body or the like is placed on the upper side of the omnidirectional cart 30, vibration is generated in the robot main body or the robot arm.

図4に示されるように、全方位台車30において、次の走行軌跡が計画される。そして、走行軌跡の進行方向13よってキャスタ旋回予定角10がθ=170度となった場合(A)、全方位台車30が進行方向13へ進行開始する。その際、キャスタ2は、進行方向13とのなす角が170度から0度に近づこうとして旋回する(B)。そして、全方位台車30の進行中にキャスタ2は、進行方向13とのなす角が180度になる(C)。この場合、キャスタ旋回予定角10が170度であり、180度に近い。そのため、この状態では全方位台車30が計画された進行方向に進行しようとした場合、キャスタ2の旋回抵抗が大きい。以下、キャスタ2の旋回抵抗を低減する全方位台車30の動作計画方法について説明する。   As shown in FIG. 4, the next travel locus is planned in the omnidirectional cart 30. Then, when the caster turning expected angle 10 becomes θ = 170 degrees according to the traveling direction 13 of the travel locus (A), the omnidirectional cart 30 starts to travel in the traveling direction 13. At that time, the caster 2 turns so that the angle formed by the traveling direction 13 approaches 170 degrees from 0 degrees (B). Then, during the traveling of the omnidirectional cart 30, the caster 2 has an angle of 180 degrees with the traveling direction 13 (C). In this case, the expected caster turning angle 10 is 170 degrees, which is close to 180 degrees. Therefore, in this state, when the omnidirectional cart 30 tries to travel in the planned traveling direction, the turning resistance of the caster 2 is large. Hereinafter, an operation planning method for the omnidirectional cart 30 for reducing the turning resistance of the casters 2 will be described.

図5に示されるように、全方位台車30の動作計画方法において、キャスタ旋回予定角10にリミット角度14(θlim=160度)を設定する。そして、全方位台車30の初期の走行軌跡16の計画を設定する(A)。初期の走行軌跡16の計画における進行方向13において、キャスタ旋回予定角10が170度となった場合、リミット角度14(θlim=160度)を超える。この時、演算部7(図2参照)は、キャスタ旋回予定角10とリミット角度14を比較した結果、キャスタ旋回予定角10がリミット角度14を超えているため、キャスタ旋回予定角10がリミット角度14を超えないように走行軌跡の計画を変更する。   As shown in FIG. 5, the limit angle 14 (θlim = 160 degrees) is set to the caster turning expected angle 10 in the operation planning method of the omnidirectional cart 30. And the plan of the initial traveling locus 16 of the omnidirectional cart 30 is set (A). In the traveling direction 13 in the plan of the initial traveling locus 16, when the caster turning expected angle 10 becomes 170 degrees, the limit angle 14 (θlim = 160 degrees) is exceeded. At this time, as a result of comparing the caster turning expected angle 10 and the limit angle 14 as a result of comparing the caster turning expected angle 10 with the limit angle 14, the calculation unit 7 (see FIG. 2) The travel locus plan is changed so as not to exceed 14.

演算部7は、例えば、キャスタ旋回予定角10がリミット角度14より小さい90度以下となるように変更後の走行軌跡17,18,19を設定する。変更後の走行軌跡17における進行方向15では、キャスタ旋回予定角10が90度以下となる。制御部8(図2参照)は、演算部7の演算に基づいて駆動輪3,4を駆動し、全方位台車30を進行方向15の走行軌跡17で走行させる(B)。同様にして、制御部8は、駆動輪3,4を駆動し、全方位台車30を走行軌跡18,19で走行させる(C),(D)。その結果、全方位台車30は、初期の走行軌跡16における終点20と同じ場所に到達する。   For example, the calculation unit 7 sets the travel loci 17, 18, and 19 after the change so that the expected caster turning angle 10 is 90 degrees or less, which is smaller than the limit angle 14. In the traveling direction 15 in the travel locus 17 after the change, the caster turning expected angle 10 is 90 degrees or less. The control unit 8 (see FIG. 2) drives the drive wheels 3 and 4 based on the calculation of the calculation unit 7 and causes the omnidirectional vehicle 30 to travel along the travel locus 17 in the traveling direction 15 (B). Similarly, the control unit 8 drives the drive wheels 3 and 4 to cause the omnidirectional cart 30 to travel along the travel tracks 18 and 19 (C) and (D). As a result, the omnidirectional cart 30 reaches the same location as the end point 20 in the initial travel locus 16.

次に、全方位台車30の動作計画方法の処理の流れを説明する。   Next, the process flow of the operation planning method for the omnidirectional cart 30 will be described.

図6に示されるように、演算部7は、全方位台車30の初期の走行軌跡の計画を設定する(S100)。演算部7は、現時点におけるキャスタ旋回角11をエンコーダ6から取得する(S101)。演算部7は、走行軌跡と取得したキャスタ旋回角11からキャスタ旋回予定角10を計算する(S102)。演算部7は、キャスタ旋回角11とリミット角度14とを比較する(S103)。キャスタ旋回予定角10がリミット角度14以上となった場合(S103:No)、演算部7は、キャスタ旋回予定角10がリミット角度14より小さくなるように走行軌跡の計画を変更する(S104)。   As shown in FIG. 6, the calculation unit 7 sets an initial travel locus plan for the omnidirectional cart 30 (S <b> 100). The computing unit 7 acquires the current caster turning angle 11 from the encoder 6 (S101). The calculation unit 7 calculates the caster turning expected angle 10 from the traveling locus and the acquired caster turning angle 11 (S102). The calculation unit 7 compares the caster turning angle 11 with the limit angle 14 (S103). When the caster turning expected angle 10 becomes equal to or greater than the limit angle 14 (S103: No), the calculation unit 7 changes the plan of the traveling locus so that the caster turning expected angle 10 becomes smaller than the limit angle 14 (S104).

制御部8は、全方位台車30が変更後の計画された走行軌跡を走行するようモータ3a,4aを駆動する(S105)。キャスタ旋回予定角10がリミット角度14より小さい場合(S103:Yes)、演算部7は、走行軌跡の計画を維持するようにモータ3a,4aを制御する(S105)。   The control unit 8 drives the motors 3a and 4a so that the omnidirectional cart 30 travels the planned travel locus after the change (S105). When the caster turning expected angle 10 is smaller than the limit angle 14 (S103: Yes), the calculation unit 7 controls the motors 3a and 4a so as to maintain the plan of the traveling locus (S105).

上述したように本発明にかかる全方位台車30によると、キャスタ旋回予定角10が予め定められたキャスタ制限角度14以上となった場合は、走行軌跡の計画を変更することでキャスタ2に生じる旋回抵抗を低減し、全方位台車30の位置ずれを防止することができる。   As described above, according to the omnidirectional cart 30 according to the present invention, when the planned caster turning angle 10 is equal to or greater than the predetermined caster limit angle 14, the turning that occurs in the caster 2 by changing the plan of the traveling track is performed. The resistance can be reduced and the displacement of the omnidirectional cart 30 can be prevented.

なお、本発明は上記実施の形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。   Note that the present invention is not limited to the above-described embodiment, and can be changed as appropriate without departing from the spirit of the present invention.

1…天板 2…キャスタ 3,4…駆動輪 3a,4a…モータ 3b,4b…回転検出センサ 5…キャスタ旋回軸 6…エンコーダ 7…演算部 8…制御部 10…キャスタ旋回予定角 11…キャスタ旋回角 12…回転 13…進行方向 14…リミット角度(キャスタ制限角度) 15…進行方向 16…走行軌跡 17…走行軌跡 17,18,19…走行軌跡 20…終点 30…全方位台車 L…車軸線 M…基準線 DESCRIPTION OF SYMBOLS 1 ... Top plate 2 ... Caster 3, 4 ... Drive wheel 3a, 4a ... Motor 3b, 4b ... Rotation detection sensor 5 ... Caster turning shaft 6 ... Encoder 7 ... Calculation part 8 ... Control part 10 ... Caster turning angle 11 ... Caster Turning angle 12 ... Rotation 13 ... Traveling direction 14 ... Limit angle (caster limit angle) 15 ... Traveling direction 16 ... Traveling track 17 ... Traveling track 17, 18, 19 ... Traveling track 20 ... End point 30 ... Omnidirectional truck L ... Axle M ... Reference line

Claims (1)

一対の駆動輪と、全方位台車の進行に伴って、キャスタ旋回軸を中心に従動旋回するキャスタと、前記キャスタの旋回角を検出するセンサとを備える全方位台車において、
前記全方位台車の初期の走行軌跡の計画を設定し、
検出された前記旋回角から前記進行によって前記キャスタの旋回が予定されるキャスタ旋回予定角を算出し、
前記キャスタ旋回予定角が予め定められたキャスタ制限角度以上となった場合は、前記キャスタ旋回予定角が前記キャスタ制限角度より小さくなるように前記走行軌跡の前記計画を変更し、
前記キャスタ旋回予定角が前記キャスタ制限角度より小さい場合は、前記走行軌跡の前記計画を維持するように前記駆動輪を制御する、
全方位台車の動作計画方法。
In an omnidirectional carriage comprising a pair of drive wheels, a caster that turns following a caster turning axis as the omnidirectional carriage advances, and a sensor that detects a turning angle of the caster,
Set a plan for the initial trajectory of the omnidirectional cart,
From the detected turning angle, a caster turning scheduled angle at which the caster is scheduled to turn by the progress is calculated,
When the expected caster turning angle is equal to or greater than a predetermined caster limit angle, the plan of the travel locus is changed so that the expected caster turn angle is smaller than the caster limit angle,
If the caster turning expected angle is smaller than the caster limit angle, the drive wheel is controlled to maintain the plan of the travel locus;
Operation planning method for omnidirectional carts.
JP2015096456A 2015-05-11 2015-05-11 Operation plan method for omnidirectional carriage Pending JP2016212668A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015096456A JP2016212668A (en) 2015-05-11 2015-05-11 Operation plan method for omnidirectional carriage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015096456A JP2016212668A (en) 2015-05-11 2015-05-11 Operation plan method for omnidirectional carriage

Publications (1)

Publication Number Publication Date
JP2016212668A true JP2016212668A (en) 2016-12-15

Family

ID=57551216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015096456A Pending JP2016212668A (en) 2015-05-11 2015-05-11 Operation plan method for omnidirectional carriage

Country Status (1)

Country Link
JP (1) JP2016212668A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110789523A (en) * 2018-08-01 2020-02-14 上海汽车集团股份有限公司 Trajectory planning method and device
EP3798783A1 (en) * 2019-09-25 2021-03-31 Husqvarna Ab Propulsion control arrangement, robotic tool, method of propelling robotic tool and related devices

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110789523A (en) * 2018-08-01 2020-02-14 上海汽车集团股份有限公司 Trajectory planning method and device
EP3798783A1 (en) * 2019-09-25 2021-03-31 Husqvarna Ab Propulsion control arrangement, robotic tool, method of propelling robotic tool and related devices

Similar Documents

Publication Publication Date Title
CN108473132B (en) Parking assistance system, parking assistance method, and program
CN108563227B (en) Motion control method of 2D wheeled robot based on movable caster
CN107589741B (en) Autonomous moving body and motion control method for autonomous moving body
JP2009525553A (en) Automatic guided vehicle with variable travel path
US20140236426A1 (en) Moving body control system, moving body control method, and non-transitory computer readable medium storing control program
CN110103998B (en) Method for controlling AGV steering and translation motion of asymmetric four-steering wheel
WO2013038998A1 (en) Self-propelled robot and self-propelled truck
CN110509991B (en) Method and device for adjusting rotating speed
JP6699592B2 (en) Steering control method for unmanned forklift
JP2016212668A (en) Operation plan method for omnidirectional carriage
JP4264399B2 (en) Automated guided vehicle
JP5859093B1 (en) Trajectory tracking control device
JP4577247B2 (en) Mobile body and control method thereof
JP2017045250A (en) Omnidirectional mobile body, control method thereof and program
JP2016062441A (en) Omnidirectional transfer vehicle
JP3902448B2 (en) Straight traveling control device and straight traveling control method for trackless traveling body
JP4984831B2 (en) Automated guided vehicle and control method thereof
JP5712643B2 (en) Moving body
CN114740861A (en) AGV zero correction method and system and AGV
JP6570237B2 (en) Self-propelled cart turning method and turning equipment
JP2000153988A (en) Trackless road surface traveling body and container terminal
CN115576310A (en) Motion control method and system for double-rudder wheel type autonomous mobile equipment and program product
CN117519213B (en) Multi-robot collaborative freight control method and system and storage medium
JP2006092424A (en) Track following control method and apparatus
JP2016136319A (en) Autonomous moving truck