JP2016212087A - Dual layered photocatalyst formaldehyde sensor and manufacturing method therefor - Google Patents

Dual layered photocatalyst formaldehyde sensor and manufacturing method therefor Download PDF

Info

Publication number
JP2016212087A
JP2016212087A JP2016059182A JP2016059182A JP2016212087A JP 2016212087 A JP2016212087 A JP 2016212087A JP 2016059182 A JP2016059182 A JP 2016059182A JP 2016059182 A JP2016059182 A JP 2016059182A JP 2016212087 A JP2016212087 A JP 2016212087A
Authority
JP
Japan
Prior art keywords
formaldehyde
material layer
sensor
light source
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016059182A
Other languages
Japanese (ja)
Other versions
JP6239668B2 (en
Inventor
ユ リュ
Yu Liu
ユ リュ
シングオ リ
Xingguo Li
シングオ リ
ジェン ジー
Zheng Jie
ジェン ジー
シンファ チャン
Xinghua Chang
シンファ チャン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Peking University
Sharp Corp
Original Assignee
Peking University
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peking University, Sharp Corp filed Critical Peking University
Publication of JP2016212087A publication Critical patent/JP2016212087A/en
Application granted granted Critical
Publication of JP6239668B2 publication Critical patent/JP6239668B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a dual layered photocatalyst formaldehyde sensor and a method for manufacturing the same.SOLUTION: The formaldehyde sensor includes a light source, an electrode, a formaldehyde sensitive material layer applied on top of the electrode, and a formaldehyde adsorption material layer applied on top of the formaldehyde sensitive material layer. The light source is an ultraviolet light source radiated to a dual layered area. When a formaldehyde contaminant in the air is detected, a formaldehyde concentration on the surface of the formaldehyde sensitive material layer is raised by the formaldehyde adsorption material layer and the sensor sensitivity is thereby improved, so that sensitivity to low-concentration formaldehyde can be improved. The present invention greatly improves the sensitivity of a cadmium doped zinc oxide formaldehyde sensor to low-concentration formaldehyde, promotes a practical progress in the sensor, and can expect the future prospect of good applications.SELECTED DRAWING: Figure 1

Description

本発明は、ホルムアルデヒドガス監視、ホルムアルデヒドセンサの技術分野に属し、具体的には、二層構造光触媒式ホルムアルデヒドセンサ及びその製造方法に関する。   The present invention belongs to the technical fields of formaldehyde gas monitoring and formaldehyde sensor, and specifically relates to a two-layer photocatalytic formaldehyde sensor and a manufacturing method thereof.

安全濃度の限度を超えるホルムアルデヒドガスに長期間接触すると、人の健康に有害であり、目や喉の灼熱感、呼吸困難ひいては命に関わる病気、例えば、鼻がん、骨髄性白血病等を引き起こす可能性がある。目下、中国のホルムアルデヒド汚染は非常に深刻であり、改築されたばかりの家屋のうちの約70%にホルムアルデヒド汚染の問題があるため、ホルムアルデヒドは中国で最も懸念される室内汚染ガスである。   Long-term contact with formaldehyde gas exceeding the safe concentration limit is harmful to human health and may cause burning sensations in the eyes and throat, breathing difficulty and life-threatening diseases such as nasal cancer, myeloid leukemia, etc. There is sex. At present, formaldehyde is the most concerned indoor pollutant gas in China because formaldehyde contamination in China is very serious and about 70% of the newly renovated houses have the problem of formaldehyde contamination.

センサの技術は、空気の品質を管理する製品に非常に重要であり、消費者が空気の品質を管理する製品の真の役割について疑問があると、関連する製品を疑うことになる。従来、商用センサは、主に電気化学センサに基づくものであり、このようなセンサに白金電極が用いられるため、非常に高価になり、また、該種類センサの正確性、安定性及び選択性がいずれも不十分である。   Sensor technology is very important for products that control air quality, and if a consumer has doubts about the true role of a product that controls air quality, they will doubt the related product. Conventionally, commercial sensors are mainly based on electrochemical sensors, and since platinum electrodes are used for such sensors, they are very expensive, and the accuracy, stability and selectivity of the type sensors are high. Both are insufficient.

電気化学センサに比べて、半導体センサは、コストが低く、耐用年数が長い等の特殊な優位性を有し、且つ改善の余地が大きい。従来の商用センサは、いずれも200℃以上で作業する必要があるが、この温度ではほとんど全ての有機汚染物が反応して検出されるため、このようなセンサの選択性が非常に低い。ガスへの選択性を向上させるために、一部の研究者が室温下で作業する光触媒式半導体ホルムアルデヒドセンサを製造したが、実用する際にこれらのセンサの検出下限値(1ppmより大きい)が非常に高いままである。表1では、従来のセンサ材料及びその問題が挙げられる。   Compared to the electrochemical sensor, the semiconductor sensor has special advantages such as low cost and long service life, and has a large room for improvement. All conventional commercial sensors need to operate at 200 ° C. or higher, but at this temperature, almost all organic contaminants react and are detected, so the selectivity of such sensors is very low. In order to improve gas selectivity, some researchers have produced photocatalytic semiconductor formaldehyde sensors that work at room temperature, but when they are put into practical use, the lower detection limit of these sensors (greater than 1 ppm) is very high. Remains high. Table 1 lists conventional sensor materials and their problems.

Figure 2016212087
Figure 2016212087

特許出願CN2007153341(ホルムアルデヒド空気センサ材料及びホルムアルデヒド空気センサ装置の製造方法)は、ホルムアルデヒドガスセンサ材料及びその製造方法、並びにホルムアルデヒドガスセンサデバイスの製造方法に関する。該センサ材料はSnO−TiO二元ナノ粉末からなり、Ti/Snのモル比が0.2−0.5であり、且つ2%−5%のカドミウムをドープしたものであり、材料を無水エタノールとポリエチレングリコールと共にペースト状に粉砕し、その後、電極管に均一に塗布し、電極管を400℃で2−4時間アニールした後、溶接し、エージングし、シールしてホルムアルデヒドガスセンサを得る。該センサは操作温度が低く、ホルムアルデヒドへの感度が高く且つベンゼン、トルエン、キシレン、アンモニア等の室内汚染気体に対して妨害耐性が非常に高く、且つ応答時間と回復時間が非常に短いという特徴を有する。該センサは主に室内改装で生じたホルムアルデヒドガスを検出することに用いられる。しかしながら、該センサの作動温度は260−300℃であり、該温度下ではほとんどすべての室内有機汚染物がセンサ材料表面で酸化されることになり、従って材料の選択性が不十分であり、特にエタノールとホルムアルデヒドを十分に区別できない。また、該技術の検出下限値は20ppmであり、安全濃度(0.06ppm)より2桁高い。 Patent application CN2007153341 (formaldehyde air sensor material and formaldehyde air sensor device manufacturing method) relates to a formaldehyde gas sensor material and a method for manufacturing the same, and a method for manufacturing a formaldehyde gas sensor device. The sensor material is made of SnO 2 —TiO 2 binary nanopowder, has a Ti / Sn molar ratio of 0.2-0.5, and is doped with 2% -5% cadmium. It is pulverized into a paste with absolute ethanol and polyethylene glycol, and then uniformly applied to the electrode tube. The electrode tube is annealed at 400 ° C. for 2-4 hours, and then welded, aged, and sealed to obtain a formaldehyde gas sensor. The sensor is characterized by low operating temperature, high sensitivity to formaldehyde, very high interference resistance against indoor pollutant gases such as benzene, toluene, xylene and ammonia, and very short response time and recovery time. Have. The sensor is mainly used to detect formaldehyde gas generated by indoor refurbishment. However, the operating temperature of the sensor is 260-300 ° C., under which almost all indoor organic pollutants will be oxidized on the sensor material surface, thus the material selectivity is insufficient, especially Cannot distinguish ethanol and formaldehyde enough. Moreover, the detection lower limit of this technique is 20 ppm, which is two orders of magnitude higher than the safe concentration (0.06 ppm).

特許出願CN201410461045.9(光触媒式ホルムアルデヒドセンサ材料及びその合成方法とホルムアルデヒドセンサ)は、光触媒式ホルムアルデヒドセンサ材料及びその合成方法とホルムアルデヒドセンサに関する。該光触媒式ホルムアルデヒドセンサ材料は主に酸化亜鉛ナノ粒子とカドミウム添加剤からなる。該材料の合成過程で、まず予め合成された酸化亜鉛ナノ粒子をカドミウム塩溶液に均一に分散させ、撹拌しながら溶媒を蒸発させて除去し、得られた沈殿物を高温か焼した後、粉砕し且つ特定の溶媒に均一に分散させてスラリーを形成し、最終的にスラリーを特定のパターンが印刷された電極に回転塗布することによりホルムアルデヒドセンサを得る。該手段は、低コスト、高感度、高選択性の光触媒式ホルムアルデヒドセンサ材料を提供し、酸化亜鉛へのカドミウムドープ量を最適化することによって、コストを大幅に低減させ、選択性を向上させ、且つ検出限度を顕著に改善した。しかしながら、該技術によりホルムアルデヒドの検出下限値を0.5ppmに低下させるものの、安全濃度(0.06ppm)より約1桁高いままであり、生活環境に応用できない。   Patent application CN2014410461045.9 (photocatalytic formaldehyde sensor material and synthesis method thereof and formaldehyde sensor) relates to a photocatalytic formaldehyde sensor material and synthesis method thereof and a formaldehyde sensor. The photocatalytic formaldehyde sensor material mainly comprises zinc oxide nanoparticles and a cadmium additive. In the process of synthesizing the material, the zinc oxide nanoparticles synthesized in advance are uniformly dispersed in the cadmium salt solution, the solvent is evaporated and removed with stirring, and the resulting precipitate is calcined at high temperature and then pulverized. The slurry is uniformly dispersed in a specific solvent to form a slurry, and finally the slurry is spin-coated on an electrode on which a specific pattern is printed to obtain a formaldehyde sensor. The means provides a low-cost, high-sensitivity, high-selectivity photocatalytic formaldehyde sensor material, and by optimizing the amount of cadmium doped into zinc oxide, greatly reduces costs and improves selectivity, And the detection limit was remarkably improved. However, although the lower limit of detection of formaldehyde is lowered to 0.5 ppm by this technique, it remains about one digit higher than the safe concentration (0.06 ppm) and cannot be applied to the living environment.

本発明は、上記問題に対して、ホルムアルデヒドセンサの感度を向上させることができる二層構造光触媒式ホルムアルデヒドセンサ及びその製造方法を提供する。   The present invention provides a two-layer structure photocatalytic formaldehyde sensor that can improve the sensitivity of the formaldehyde sensor and a method for manufacturing the same, in response to the above-described problems.

本発明に用いられる技術案は、以下のとおりである。   The technical solutions used in the present invention are as follows.

二層構造光触媒式ホルムアルデヒドセンサであって、光源、電極、前記電極上に被覆されるホルムアルデヒド感受性材料層及び前記ホルムアルデヒド感受性材料層上に被覆されるホルムアルデヒド吸着材料層を含むことを特徴とする二層構造光触媒式ホルムアルデヒドセンサ。   A two-layer photocatalytic formaldehyde sensor comprising a light source, an electrode, a formaldehyde sensitive material layer coated on the electrode, and a formaldehyde adsorbing material layer coated on the formaldehyde sensitive material layer Structure photocatalytic formaldehyde sensor.

更に、前記光源の位置について、前記ホルムアルデヒド感受性材料層に照射できることが好ましい。例えば、光源をホルムアルデヒド吸着材料層側に設置する場合は、ホルムアルデヒド吸着材料層が透光性を有するため、光源から発光する光がホルムアルデヒド吸着材料層を透過してホルムアルデヒド感受性材料層に到着する。又は、光源をホルムアルデヒド感受性材料層側に設置する場合は、前記ホルムアルデヒド感受性材料層に直接照射する。この場合に、電極部が光を遮ることを回避するために、紫外線透過可能な透明電極を使用してもよい。   Furthermore, it is preferable that the formaldehyde sensitive material layer can be irradiated with respect to the position of the light source. For example, when the light source is installed on the formaldehyde adsorbing material layer side, since the formaldehyde adsorbing material layer has translucency, light emitted from the light source passes through the formaldehyde adsorbing material layer and reaches the formaldehyde sensitive material layer. Alternatively, when the light source is installed on the formaldehyde sensitive material layer side, the formaldehyde sensitive material layer is directly irradiated. In this case, a transparent electrode capable of transmitting ultraviolet light may be used in order to prevent the electrode portion from blocking light.

更に、前記ホルムアルデヒド感受性材料層はカドミウム(Cd)ドープ酸化亜鉛ナノ粒子、前記ホルムアルデヒド吸着材料層は多孔質酸化ケイ素ナノ粒子である。   Further, the formaldehyde sensitive material layer is cadmium (Cd) -doped zinc oxide nanoparticles, and the formaldehyde adsorbing material layer is porous silicon oxide nanoparticles.

更に、前記ホルムアルデヒド感受性材料層の厚みは5ミクロン〜100ミクロン、前記ホルムアルデヒド吸着材料層の厚みは1ミクロン〜50ミクロンである。   The formaldehyde-sensitive material layer has a thickness of 5 to 100 microns, and the formaldehyde-adsorbing material layer has a thickness of 1 to 50 microns.

更に、前記光源は紫外光源であり、例えば、365nm波長の紫外線ランプ又は385nm波長の紫外線発光ダイオードであり、前記電極は櫛型電極、アレイ電極、又は帯状電極である。   Further, the light source is an ultraviolet light source, for example, an ultraviolet lamp having a wavelength of 365 nm or an ultraviolet light emitting diode having a wavelength of 385 nm, and the electrode is a comb electrode, an array electrode, or a strip electrode.

上記二層構造光触媒式ホルムアルデヒドセンサの製造方法であって、
1)カドミウムドープ酸化亜鉛ナノ粒子の合成:予め製造された酸化亜鉛ナノ粒子をカドミウム塩溶液中に浸し、その後、昇温して溶媒を揮発させ、加熱してサンプルを乾燥させ、その後、サンプルをか焼し、か焼後、サンプルを微細粉末に粉砕してエタノールで分散させてスラリーを形成するステップと、
2)多孔質酸化ケイ素ナノ粒子の合成:水、エタノール、CATC(ヘキサデシルトリメチルアンモニウムクロリド)、DEA(ジエタノールアミン)を混合して水浴において加熱し、その後、TEOS(オルトケイ酸テトラエチル)を撹拌しながら混合物に滴下し、所定の時間撹拌し続けた後、生成物をエタノールに分散させてゾル分散液を形成するステップと、
3)ステップ1)で製造されたカドミウムドープ酸化亜鉛スラリーを電極に塗布し、乾かして溶媒を揮発させ、その後、ステップ2)で製造された多孔質酸化ケイ素のゾル分散液をカドミウムドープ酸化亜鉛層に塗布し、乾かして溶媒を揮発させ、その後、光源を追加してホルムアルデヒドセンサを得るステップと、を含む製造方法。ホルムアルデヒドを検出する場合には、紫外光源で二層構造領域を照射し、センサの紫外光源照射における抵抗変化をホルムアルデヒド濃度の計算に用いることができる。
A method for producing the two-layer photocatalytic formaldehyde sensor,
1) Synthesis of cadmium-doped zinc oxide nanoparticles: Preliminarily prepared zinc oxide nanoparticles are immersed in a cadmium salt solution, then heated to volatilize the solvent, heated to dry the sample, and then the sample is Calcining, after calcination, crushing the sample into fine powder and dispersing with ethanol to form a slurry;
2) Synthesis of porous silicon oxide nanoparticles: water, ethanol, CATC (hexadecyltrimethylammonium chloride), DEA (diethanolamine) are mixed and heated in a water bath, and then TEOS (tetraethyl orthosilicate) is stirred and mixed. Dropping the solution into the water and continuing stirring for a predetermined time, and then dispersing the product in ethanol to form a sol dispersion; and
3) Apply the cadmium-doped zinc oxide slurry produced in step 1) to the electrode, dry it to evaporate the solvent, and then use the porous silicon oxide sol dispersion produced in step 2) as the cadmium-doped zinc oxide layer. And then drying to evaporate the solvent, and then adding a light source to obtain a formaldehyde sensor. In the case of detecting formaldehyde, the two-layer structure region is irradiated with an ultraviolet light source, and the resistance change due to irradiation of the sensor with the ultraviolet light source can be used for calculating the formaldehyde concentration.

更に、ステップ1)において、酸化亜鉛ナノ粒子をカドミウム塩溶液中に浸した後、70〜90℃まで昇温して溶媒を揮発させ、該温度下で10〜14時間加熱して110〜130℃で1〜3時間加熱してサンプルを乾燥させ、その後、サンプルを400〜500℃(好ましくは450℃)でか焼する。   Furthermore, in step 1), after immersing the zinc oxide nanoparticles in the cadmium salt solution, the temperature is raised to 70 to 90 ° C. to volatilize the solvent, and the mixture is heated at the temperature for 10 to 14 hours to 110 to 130 ° C. The sample is dried by heating for 1-3 hours, and then the sample is calcined at 400-500 ° C (preferably 450 ° C).

更に、ステップ2)において、前記混合後、50〜70℃の水浴中で20〜40分間加熱し、オルトケイ酸テトラエチルを混合物に加えた後、1〜3時間撹拌し続ける。   Further, in step 2), after the mixing, the mixture is heated in a water bath at 50 to 70 ° C. for 20 to 40 minutes, tetraethyl orthosilicate is added to the mixture, and stirring is continued for 1 to 3 hours.

本発明は、簡便な方法により、低濃度ホルムアルデヒドに対するカドミウムドープ酸化亜鉛ホルムアルデヒドセンサの感度を大幅に向上させ、該センサの実用的進展を推進し、良好な応用の将来性が期待できる。   The present invention greatly improves the sensitivity of a cadmium-doped zinc oxide formaldehyde sensor for low-concentration formaldehyde by a simple method, promotes practical progress of the sensor, and can be expected to have good application potential.

本発明に係るホルムアルデヒドセンサの構造模式図である。It is a structural schematic diagram of the formaldehyde sensor according to the present invention. 本発明に係る好ましいセンサの二層構造部の模式図である。It is a schematic diagram of the two-layer structure part of the preferable sensor which concerns on this invention. 二層構造センサの製造ステップの模式図である。It is a schematic diagram of the manufacturing step of a two-layer structure sensor. 多孔質酸化ケイ素ナノ粒子(サンプル量5mg、テスト容器1L)の静的吸着性能図である。It is a static adsorption performance figure of porous silicon oxide nanoparticles (sample amount 5mg, test container 1L). 多孔質酸化ケイ素ナノ粒子、ZIF−8及び活性炭吸着材料層を塗布した後のホルムアルデヒド感度比較図である。It is a formaldehyde sensitivity comparison figure after apply | coating a porous silicon oxide nanoparticle, ZIF-8, and an activated carbon adsorption material layer. カドミウムドープ酸化亜鉛センサと多孔質酸化ケイ素塗膜を追加したセンサとのホルムアルデヒド感度曲線比較図である。It is a formaldehyde sensitivity curve comparison figure of the sensor which added the cadmium dope zinc oxide sensor and the porous silicon oxide coating film.

以下、本発明の上記目的、特徴及び利点を更に分かりやすくするために、具体的な実施例と図面により、本発明を更に説明する。   Hereinafter, in order to make the above-mentioned objects, features and advantages of the present invention easier to understand, the present invention will be further described with reference to specific examples and drawings.

中国では室内改装汚染問題が深刻であるため、低コスト、高選択性のホルムアルデヒドセンサ製品を求めている。本発明は、二層構造光触媒式ホルムアルデヒドセンサを提供する。図1に示されるように、該センサは、光源、電極及び二層の材料塗膜構造を含む。該二層構造は、電極上に直接被覆される一層の光触媒原理に基づくホルムアルデヒド感受性材料層、及びホルムアルデヒド感受性材料層上に被覆される一層のホルムアルデヒド吸着材料層を含む。光源は、該二層構造領域に照射する紫外光源である。空気中のホルムアルデヒド汚染物が検出されると、該ホルムアルデヒド吸着材料層によりホルムアルデヒド感受性材料層表面のホルムアルデヒド濃度が増され、それによりセンサの感度を向上させる効果を実現し、即ち、低濃度ホルムアルデヒドへの感度を向上させることができる。   China is looking for low-cost, high-selectivity formaldehyde sensor products due to the serious indoor refurbishment problem. The present invention provides a two-layer photocatalytic formaldehyde sensor. As shown in FIG. 1, the sensor includes a light source, an electrode, and a two-layer material coating structure. The two-layer structure includes a single formaldehyde-sensitive material layer based on the photocatalytic principle that is coated directly on the electrode, and a single formaldehyde-adsorbing material layer that is coated on the formaldehyde-sensitive material layer. The light source is an ultraviolet light source that irradiates the two-layer structure region. When formaldehyde contaminants in the air are detected, the formaldehyde adsorbing material layer increases the formaldehyde concentration on the surface of the formaldehyde sensitive material layer, thereby realizing the effect of improving the sensitivity of the sensor, i.e. Sensitivity can be improved.

図2に示されるように、該センサにおいて、ホルムアルデヒド感受性材料層は、ホルムアルデヒドに感応するカドミウム(Cd)ドープ酸化亜鉛ナノ粒子を用いることが好ましく、ホルムアルデヒド吸着材料層は、多孔質酸化ケイ素ナノ粒子を用いることが好ましく、電極は、櫛型電極等を用いてもよい。該ホルムアルデヒド吸着材料層は、ホルムアルデヒドに対して吸着能力を有し、透光性を有し(紫外線を透過できる)、光源から発光する光に吸着材料を透過させて感受性材料に到着でき、電気的性質、光電性質等の感受性材料の半導体特性に悪影響が発生しないという特徴を有する。本発明は、多孔質酸化ケイ素、活性炭、カーボンブラック、ZIF−8等のホルムアルデヒドに対して吸着能力を有する複数種の吸着材料をテストした。そのうち、多孔質酸化ケイ素ナノ粒子だけは、センサのホルムアルデヒド検出に対して好ましい効果を有し、多孔質酸化ケイ素ナノ粒子が上記特徴を有するからである。なお、本発明は、光源をホルムアルデヒド感受性材料層側に設置することで、前記ホルムアルデヒド感受性材料層に直接照射してもよい。この場合に、電極部が光を遮ることを回避するために、紫外線透過可能な透明電極を使用してもよい。   As shown in FIG. 2, in the sensor, the formaldehyde-sensitive material layer preferably uses cadmium (Cd) -doped zinc oxide nanoparticles that are sensitive to formaldehyde, and the formaldehyde-adsorbing material layer contains porous silicon oxide nanoparticles. Preferably, a comb electrode or the like may be used as the electrode. The formaldehyde adsorbing material layer has an adsorbing ability with respect to formaldehyde, has translucency (can transmit ultraviolet rays), allows the adsorbing material to pass through the light emitted from the light source, and arrives at the sensitive material. It has the characteristic that there is no adverse effect on the semiconductor properties of sensitive materials such as properties and photoelectric properties. In the present invention, a plurality of kinds of adsorbing materials having adsorption ability to formaldehyde such as porous silicon oxide, activated carbon, carbon black, and ZIF-8 were tested. Among them, only the porous silicon oxide nanoparticles have a favorable effect on the detection of formaldehyde by the sensor, and the porous silicon oxide nanoparticles have the above characteristics. In the present invention, the formaldehyde-sensitive material layer may be directly irradiated by installing a light source on the formaldehyde-sensitive material layer side. In this case, a transparent electrode capable of transmitting ultraviolet light may be used in order to prevent the electrode portion from blocking light.

本発明に係る二層構造センサの製造ステップは、図3に示され、以下、実施例により製造工程を具体的に説明する。   The manufacturing steps of the two-layer structure sensor according to the present invention are shown in FIG. 3, and the manufacturing process will be described in detail below by examples.

ステップ1: 酸化亜鉛ナノ粒子の合成
10.77gのZnSO・7HO(375mmol)を25mLの脱イオン水に溶解させる。溶液を50mLの100g/L(1.36mmol/L)NHHCO溶液に滴下し、40℃の水浴下で1h撹拌する。上澄み液を除去し、15mLの脱イオン水で沈殿を三回洗浄し、その後、沈殿を80℃で12h乾燥させ、120℃で2h乾燥させる。乾燥終了後、サンプルをマッフル炉中に入れて500℃で2hか焼する。
Step 1: Synthesis of zinc oxide nanoparticles 10.77 g ZnSO 4 .7H 2 O (375 mmol) is dissolved in 25 mL deionized water. The solution is added dropwise to 50 mL of 100 g / L (1.36 mmol / L) NH 4 HCO 3 solution and stirred for 1 h in a 40 ° C. water bath. The supernatant is removed and the precipitate is washed three times with 15 mL of deionized water, after which the precipitate is dried at 80 ° C. for 12 h and dried at 120 ° C. for 2 h. After drying, the sample is placed in a muffle furnace and calcined at 500 ° C. for 2 hours.

ステップ2:カドミウム元素の添加
0.4gの予め製造された酸化亜鉛ナノ粒子を秤量して60mLのカドミウム塩溶液(3CdSO・8HO 0.019g)に分散させ、溶液を80℃で撹拌しながら溶媒を蒸発させて除去し、その後、沈殿を80℃で12h乾燥させ、120℃で2h乾燥させる。その後、沈殿を450℃でか焼する。
Step 2: The prefabricated zinc oxide nanoparticles added 0.4g of cadmium element was weighed and dispersed cadmium salt solution (3CdSO 4 · 8H 2 O 0.019g ) in 60 mL, the solution was stirred at 80 ° C. The The solvent is then removed by evaporation, after which the precipitate is dried at 80 ° C. for 12 h and at 120 ° C. for 2 h. The precipitate is then calcined at 450 ° C.

ステップ3:多孔質酸化ケイ素ナノ粒子の合成
6.4mLの水、0.9gのエタノール、1.04gの25%重量百分率のCATC(ヘキサデシルトリメチルアンモニウムクロリド)溶液、0.02gのDEA(ジエタノールアミン)を混合して60℃の水浴に30分間加熱する。その後、0.73mLのTEOS(オルトケイ酸テトラエチル)を撹拌しながら混合物に滴下し、その後、2時間撹拌し続ける。
Step 3: Synthesis of porous silicon oxide nanoparticles 6.4 mL water, 0.9 g ethanol, 1.04 g 25% weight percent CATC (hexadecyltrimethylammonium chloride) solution, 0.02 g DEA (diethanolamine) And heat in a 60 ° C. water bath for 30 minutes. Thereafter, 0.73 mL of TEOS (tetraethyl orthosilicate) is added dropwise to the mixture with stirring, and then stirring is continued for 2 hours.

ステップ4:感受性材料層の塗布
ステップ2で得られた固体生成物を微細粉末に粉砕した後無水エタノールに均一に分散させてスラリーを製造し、その後、製造されたスラリーを電極に回転塗布し、ドライヤーでエタノールを蒸発させる(1min)。
Step 4: Application of Sensitive Material Layer The solid product obtained in Step 2 is pulverized into a fine powder and then uniformly dispersed in absolute ethanol to produce a slurry, and then the produced slurry is spin-coated on an electrode, Ethanol is evaporated with a dryer (1 min).

ステップ5:吸着材料層の塗布
ステップ3で得られた生成物をエタノールで分散させてゾル分散液を製造し、その後、得られた分散液をステップ4で得られた感受性材料層に回転塗布し、ドライヤーでエタノールを蒸発させて二層構造を形成する。
Step 5: Application of adsorption material layer The product obtained in Step 3 is dispersed with ethanol to produce a sol dispersion, and then the obtained dispersion is spin-coated on the sensitive material layer obtained in Step 4. The ethanol is evaporated with a dryer to form a two-layer structure.

ステップ6:ホルムアルデヒドの検出
紫外光源は感受性材料に光触媒効果を発生するため、ホルムアルデヒドの検出に用いられる。紫外光源として365nm波長の紫外線ランプ又は385nm波長の紫外線発光ダイオードが用いられてもよい。紫外光源を開くと、酸化亜鉛材料の光電導効果により、センサの抵抗が低下し始める。所定の時間後(通常、5分間)、抵抗値が安定する。クリーンな空気にある場合には、該抵抗値をRにする。センサをクリーンな空気からホルムアルデヒド含有空気に移すと、センサの抵抗値が低下する。所定の時間後(通常、3分間)、抵抗値が安定し、且つRにする。予め確定される関係に基づき、ホルムアルデヒドの濃度をR/Rにより算出することができる。検出終了後、光触媒効果がセンサ材料に吸着されるホルムアルデヒドに対して分解除去効果を有するため、該センサの抵抗値がRに自動回復できる。
Step 6: Detection of formaldehyde An ultraviolet light source generates photocatalytic effects on sensitive materials and is used to detect formaldehyde. As the ultraviolet light source, an ultraviolet lamp having a wavelength of 365 nm or an ultraviolet light emitting diode having a wavelength of 385 nm may be used. When the ultraviolet light source is opened, the resistance of the sensor starts to decrease due to the photoconductive effect of the zinc oxide material. After a predetermined time (usually 5 minutes), the resistance value becomes stable. If it is in clean air, the resistance is set to R0 . When the sensor is moved from clean air to formaldehyde-containing air, the resistance of the sensor decreases. After a predetermined time (typically 3 minutes), the resistance value is stable, and to R s. Based on a predetermined relationship, the concentration of formaldehyde can be calculated by R s / R 0 . After the detection is completed, the photocatalytic effect has an effect of decomposing and removing formaldehyde adsorbed on the sensor material, so that the resistance value of the sensor can be automatically recovered to R0 .

多孔質酸化ケイ素ナノ粒子の静的吸着性能曲線は、図4に示され、1L容器中での5mgの多孔質酸化ケイ素ナノ粒子のサンプルによるホルムアルデヒドへの吸着は、200s程度に平衡に達する。   The static adsorption performance curve of porous silicon oxide nanoparticles is shown in FIG. 4, and the adsorption of 5 mg of porous silicon oxide nanoparticles in a 1 L container to formaldehyde reaches an equilibrium of about 200 s.

カドミウムドープ酸化亜鉛ナノ粒子の表面にそれぞれ多孔質酸化ケイ素ナノ粒子、ZIF−8及び活性炭吸着材料層を塗布した後のホルムアルデヒド感度の比較は、図5に示される。吸着材料塗膜を追加していないカドミウムドープ酸化亜鉛ナノ粒子に比べて、多孔質酸化ケイ素ナノ粒子を塗布したサンプルは、3ppmホルムアルデヒドに対する感度が30%から45%に向上することが分かる。また、ZIF−8や活性炭を塗布したサンプルは、センサの感度を大幅に低下させる。ZIF−8や活性炭がホルムアルデヒドに対して吸着能力を有するが、両者が紫外線を感受性材料層に照射することを阻害し、且つ酸化亜鉛自体の光電性質に対して悪影響を与えるからである。   A comparison of formaldehyde sensitivity after applying porous silicon oxide nanoparticles, ZIF-8 and activated carbon adsorbent material layers respectively to the surface of cadmium doped zinc oxide nanoparticles is shown in FIG. It can be seen that the sensitivity with respect to 3 ppm formaldehyde is improved from 30% to 45% in the sample coated with porous silicon oxide nanoparticles, compared to cadmium-doped zinc oxide nanoparticles to which no adsorbent coating is added. Moreover, the sample which apply | coated ZIF-8 and activated carbon reduces the sensitivity of a sensor significantly. This is because ZIF-8 and activated carbon have the ability to adsorb formaldehyde, but both inhibit irradiation of the sensitive material layer with ultraviolet rays and adversely affect the photoelectric properties of zinc oxide itself.

図6はカドミウムドープ酸化亜鉛センサと多孔質酸化ケイ素塗膜を追加したセンサとのホルムアルデヒド感度曲線比較図であり、その横軸はホルムアルデヒド濃度、縦軸はセンサのホルムアルデヒド含有空気への抵抗とクリーンな空気への抵抗との比R/Rである。R/Rの値が小さいほど、ホルムアルデヒドへの感度が高い。同じホルムアルデヒド濃度下で、多孔質酸化ケイ素塗膜を追加したセンサの感度が塗膜のないカドミウムドープ酸化亜鉛センサより著しく高いことが分かる。 Fig. 6 is a comparison graph of formaldehyde sensitivity between a cadmium-doped zinc oxide sensor and a sensor to which a porous silicon oxide coating is added. The horizontal axis is the formaldehyde concentration, the vertical axis is the resistance of the sensor to formaldehyde-containing air, and The ratio to the resistance to air is R s / R 0 . The smaller the value of R s / R 0, the higher the sensitivity to formaldehyde. It can be seen that under the same formaldehyde concentration, the sensitivity of the sensor with the addition of the porous silicon oxide coating is significantly higher than the cadmium doped zinc oxide sensor without the coating.

実施例1において、ステップ2の方法を下記手段に変更する。   In the first embodiment, the method of step 2 is changed to the following means.

ステップ2:カドミウム元素の添加
0.4gの予め製造された酸化亜鉛ナノ粒子を秤量して60mLのカドミウム塩溶液(3CdSO・8HO 0.019g)に分散させ、溶液を70℃で撹拌しながら溶媒を蒸発させ、その後、沈殿を70℃で10h乾燥させ、110℃で1h乾燥させる。その後、沈殿を400℃でか焼する。
Step 2: Weigh prefabricated zinc oxide nanoparticles added 0.4g of cadmium element was dispersed in 60mL of cadmium salt solution (3CdSO 4 · 8H 2 O 0.019g ), The solution was stirred at 70 ° C. The The solvent is evaporated while the precipitate is then dried at 70 ° C. for 10 h and dried at 110 ° C. for 1 h. The precipitate is then calcined at 400 ° C.

実施例1において、ステップ2の方法を下記手段に変更する。   In the first embodiment, the method of step 2 is changed to the following means.

ステップ2:カドミウム元素の添加
0.4gの予め製造された酸化亜鉛ナノ粒子を秤量して60mLのカドミウム塩溶液(3CdSO・8HO 0.019g)に分散させ、溶液を90℃で撹拌しながら溶媒を蒸発させ、その後、沈殿を90℃で14h乾燥させ、130℃で3h乾燥させる。その後、沈殿を500℃でか焼する。
Step 2: The prefabricated zinc oxide nanoparticles added 0.4g of cadmium element was weighed and dispersed cadmium salt solution (3CdSO 4 · 8H 2 O 0.019g ) in 60 mL, the solution was stirred at 90 ° C. While evaporating the solvent, the precipitate is then dried at 90 ° C. for 14 h and then dried at 130 ° C. for 3 h. The precipitate is then calcined at 500 ° C.

実施例1において、ステップ3の方法を下記手段に変更する:
ステップ3:多孔質酸化ケイ素ナノ粒子の合成
6.4mLの水、0.9gのエタノール、1.04gの25%重量百分率のCATC(ヘキサデシルトリメチルアンモニウムクロリド)溶液、0.02gのDEA(ジエタノールアミン)を混合して50℃の水浴において20分間加熱する。その後、0.73mLのTEOS(オルトケイ酸テトラエチル)を撹拌しながら混合物に滴下し、その後、1時間撹拌し続ける。
In Example 1, the method of Step 3 is changed to the following means:
Step 3: Synthesis of porous silicon oxide nanoparticles 6.4 mL water, 0.9 g ethanol, 1.04 g 25% weight percent CATC (hexadecyltrimethylammonium chloride) solution, 0.02 g DEA (diethanolamine) And heat in a 50 ° C. water bath for 20 minutes. Thereafter, 0.73 mL of TEOS (tetraethyl orthosilicate) is added dropwise to the mixture with stirring, and then stirring is continued for 1 hour.

実施例1において、ステップ3の方法を下記手段に変更する。   In the first embodiment, the method of step 3 is changed to the following means.

ステップ3:多孔質酸化ケイ素ナノ粒子の合成
6.4mLの水、0.9gのエタノール、1.04gの25%重量百分率のCATC(ヘキサデシルトリメチルアンモニウムクロリド)溶液、0.02gのDEA(ジエタノールアミン)を混合して70℃の水浴において40分間加熱する。その後、0.73mLのTEOS(オルトケイ酸テトラエチル)を撹拌しながら混合物に滴下し、その後、3時間撹拌し続ける。
Step 3: Synthesis of porous silicon oxide nanoparticles 6.4 mL water, 0.9 g ethanol, 1.04 g 25% weight percent CATC (hexadecyltrimethylammonium chloride) solution, 0.02 g DEA (diethanolamine) And heat in a 70 ° C. water bath for 40 minutes. Thereafter, 0.73 mL of TEOS (tetraethyl orthosilicate) is added dropwise to the mixture with stirring, and then stirring is continued for 3 hours.

上記実施例は本発明の技術案を説明するものに過ぎず、これらを制限するものではない。当業者にとっては、本発明の主旨及び範囲から逸脱することなく、本発明の技術案を改良するか又は同等置換してもよく、本発明の保護範囲が請求項書に記載の内容を基準とすべきである。   The above embodiments are merely illustrative of the technical solutions of the present invention and are not intended to limit them. For those skilled in the art, the technical solution of the present invention may be improved or equivalently replaced without departing from the spirit and scope of the present invention, and the protection scope of the present invention is based on the content described in the claims. Should.

Claims (10)

二層構造光触媒式ホルムアルデヒドセンサであって、光源、電極、前記電極上に被覆されるホルムアルデヒド感受性材料層及び前記ホルムアルデヒド感受性材料層上に被覆されるホルムアルデヒド吸着材料層を含むことを特徴とする二層構造光触媒式ホルムアルデヒドセンサ。   A two-layer photocatalytic formaldehyde sensor comprising a light source, an electrode, a formaldehyde sensitive material layer coated on the electrode, and a formaldehyde adsorbing material layer coated on the formaldehyde sensitive material layer Structure photocatalytic formaldehyde sensor. 前記光源は前記ホルムアルデヒド吸着材料層側に設置され、前記ホルムアルデヒド吸着材料層は透光性を有し、前記光源から発光する光は前記ホルムアルデヒド吸着材料層を透過して前記ホルムアルデヒド感受性材料層に到着することを特徴とする請求項1に記載の二層構造光触媒式ホルムアルデヒドセンサ。   The light source is disposed on the formaldehyde adsorbing material layer side, the formaldehyde adsorbing material layer has translucency, and light emitted from the light source passes through the formaldehyde adsorbing material layer and reaches the formaldehyde sensitive material layer. The two-layer structure photocatalytic formaldehyde sensor according to claim 1. 前記光源は前記ホルムアルデヒド感受性材料層側に設置され、前記ホルムアルデヒド感受性材料層に直接照射することを特徴とする請求項1に記載の二層構造光触媒式ホルムアルデヒドセンサ。   2. The two-layer photocatalytic formaldehyde sensor according to claim 1, wherein the light source is installed on the formaldehyde sensitive material layer side and directly irradiates the formaldehyde sensitive material layer. 前記ホルムアルデヒド感受性材料層はカドミウムドープ酸化亜鉛ナノ粒子、前記ホルムアルデヒド吸着材料層は多孔質酸化ケイ素ナノ粒子であることを特徴とする請求項1〜3のうちのいずれかに記載の二層構造光触媒式ホルムアルデヒドセンサ。   The two-layer structure photocatalytic type according to any one of claims 1 to 3, wherein the formaldehyde-sensitive material layer is cadmium-doped zinc oxide nanoparticles, and the formaldehyde-adsorbing material layer is porous silicon oxide nanoparticles. Formaldehyde sensor. 前記ホルムアルデヒド感受性材料層の厚みは5〜100ミクロン、前記ホルムアルデヒド吸着材料層の厚みは1〜50ミクロンであることを特徴とする請求項4に記載の二層構造光触媒式ホルムアルデヒドセンサ。   The two-layer photocatalytic formaldehyde sensor according to claim 4, wherein the formaldehyde sensitive material layer has a thickness of 5 to 100 microns, and the formaldehyde adsorbing material layer has a thickness of 1 to 50 microns. 前記光源は紫外光源、前記電極は櫛型電極、アレイ電極又は帯状電極であることを特徴とする請求項1に記載の二層構造光触媒式ホルムアルデヒドセンサ。   2. The two-layer photocatalytic formaldehyde sensor according to claim 1, wherein the light source is an ultraviolet light source, and the electrode is a comb electrode, an array electrode, or a strip electrode. 前記紫外光源は365nm波長の紫外線ランプ又は385nm波長の紫外線発光ダイオードであることを特徴とする請求項6に記載の二層構造光触媒式ホルムアルデヒドセンサ。   7. The two-layer photocatalytic formaldehyde sensor according to claim 6, wherein the ultraviolet light source is an ultraviolet lamp having a wavelength of 365 nm or an ultraviolet light emitting diode having a wavelength of 385 nm. 二層構造光触媒式ホルムアルデヒドセンサの製造方法であって、
1)予め製造された酸化亜鉛ナノ粒子をカドミウム塩溶液中に浸し、昇温して溶媒を揮発させ、更に加熱し、乾燥させ、その後か焼し、か焼後微細粉末に粉砕し、前記微細粉末をエタノールに分散させてスラリーを形成するステップと、
2)水、エタノール、ヘキサデシルトリメチルアンモニウムクロリド、ジエタノールアミンの混合物を加熱し、オルトケイ酸テトラエチルを撹拌しながら前記混合物に滴下し、所定の時間撹拌し、生成物をエタノールに分散させてゾル分散液を形成するステップと、
3)ステップ1)で形成された前記スラリーを電極に塗布し、且つ乾かして溶媒を揮発させ、その後、ステップ2)で形成された前記ゾル分散液を前記電極に塗布し、乾かして溶媒を揮発させ、光源を追加してホルムアルデヒドセンサを得るステップと、を含む二層構造光触媒式ホルムアルデヒドセンサの製造方法。
A method for producing a two-layer structure photocatalytic formaldehyde sensor,
1) Soak zinc oxide nanoparticles prepared in advance in a cadmium salt solution, evaporate the solvent to volatilize it, further heat and dry it, then calcin it, and after calcination, pulverize into fine powder, Dispersing the powder in ethanol to form a slurry;
2) Heat a mixture of water, ethanol, hexadecyltrimethylammonium chloride, and diethanolamine, drop tetraethyl orthosilicate into the mixture while stirring, stir for a predetermined time, disperse the product in ethanol, and form a sol dispersion. Forming step;
3) Apply the slurry formed in step 1) to the electrode and dry it to volatilize the solvent, then apply the sol dispersion formed in step 2) to the electrode and dry it to volatilize the solvent And a step of adding a light source to obtain a formaldehyde sensor, and a method for producing a two-layer photocatalytic formaldehyde sensor.
ステップ1)において、70〜90℃に昇温して溶媒を揮発させ、該温度下で10〜14時間加熱し、その後、110〜130℃で1〜3時間乾燥させ、その後、400〜500℃でか焼することを特徴とする請求項8に記載の方法。   In step 1), the temperature is raised to 70 to 90 ° C. to volatilize the solvent, heated at the temperature for 10 to 14 hours, then dried at 110 to 130 ° C. for 1 to 3 hours, and then 400 to 500 ° C. 9. A method according to claim 8, characterized by calcining. ステップ2)において、前記混合物を50〜70℃で20〜40分間加熱し、前記所定の時間が1〜3時間であることを特徴とする請求項8に記載の方法。   The method according to claim 8, wherein in step 2), the mixture is heated at 50 to 70 ° C. for 20 to 40 minutes, and the predetermined time is 1 to 3 hours.
JP2016059182A 2015-04-28 2016-03-23 Double-layer photocatalytic formaldehyde sensor and manufacturing method thereof Expired - Fee Related JP6239668B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510208449.1 2015-04-28
CN201510208449.1A CN104897735B (en) 2015-04-28 2015-04-28 A kind of photocatalysis formula formaldehyde sensor of double-decker and preparation method thereof

Publications (2)

Publication Number Publication Date
JP2016212087A true JP2016212087A (en) 2016-12-15
JP6239668B2 JP6239668B2 (en) 2017-11-29

Family

ID=54030534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016059182A Expired - Fee Related JP6239668B2 (en) 2015-04-28 2016-03-23 Double-layer photocatalytic formaldehyde sensor and manufacturing method thereof

Country Status (2)

Country Link
JP (1) JP6239668B2 (en)
CN (1) CN104897735B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112034016A (en) * 2019-12-20 2020-12-04 湘潭大学 Holmium ferrite formaldehyde gas sensor in red light auxiliary mode and preparation method thereof
CN114624292A (en) * 2020-12-12 2022-06-14 中国科学院大连化学物理研究所 VOCs sensor and preparation method thereof

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105136863B (en) * 2015-09-11 2018-02-06 云南大学 Based on CdIn2O4The gas sensor and preparation method of nano thin-film
CN105866183B (en) * 2016-03-11 2019-03-22 北京大学 A kind of formaldehyde sensitive material of La doped and preparation method thereof and formaldehyde sensor
CN108426979B (en) * 2017-09-08 2020-09-29 重庆邮电大学 Gas/liquid safety detection unit
CN109030564B (en) * 2018-06-04 2021-05-11 深圳大学 Transistor type formaldehyde sensor and manufacturing method thereof
CN110726760B (en) * 2019-10-23 2020-08-11 山东交通学院 Ship mechanism with tail gas sensing device
CN112179956B (en) * 2020-09-29 2021-11-19 西安交通大学 Preparation method of MEMS formaldehyde sensor based on aluminum-doped zinc oxide porous nano film
CN114720521A (en) * 2022-03-30 2022-07-08 辽宁大学 Cd (cadmium)2+Preparation method of ZnO formaldehyde gas sensor material with ion adsorption function
CN117571794B (en) * 2024-01-15 2024-03-19 电子科技大学中山学院 Laser enhancement type zinc oxide formaldehyde detection device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62214336A (en) * 1986-03-15 1987-09-21 Matsushita Electric Works Ltd Production of gaseous ethanol sensor
JPH01191050A (en) * 1988-01-26 1989-08-01 Matsushita Electric Works Ltd Method for measuring concentration of reducing agent in electroless plating liquid and device for adjusting concentration
JP2005214626A (en) * 2002-01-16 2005-08-11 Matsushita Electric Ind Co Ltd Gas sensor, gas sensor unit, and freshness holding device using it
CN102507659A (en) * 2011-11-28 2012-06-20 电子科技大学 Methanol gas sensor based on organic filter transistor and preparation method of methanol gas sensor
JP2013027665A (en) * 2011-07-29 2013-02-07 Sanyo Electric Co Ltd Cleaning unit and deodorizing apparatus
CN103512950A (en) * 2013-10-25 2014-01-15 中国电子科技集团公司第三十八研究所 Surface acoustic wave (SAW) formaldehyde gas sensor using water to absorb formaldehyde
CN203502384U (en) * 2013-10-25 2014-03-26 中国电子科技集团公司第三十八研究所 Acoustic surface wave formaldehyde gas sensor based on conductive composite sensitive material

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10019979C1 (en) * 2000-04-22 2001-10-04 Dornier Gmbh Electrical material sensor used for determining the concentration of a component in a gas mixture has an intermediate layer arranged between a sensor function layer and a structural element
JP4883624B2 (en) * 2006-11-18 2012-02-22 独立行政法人産業技術総合研究所 High sensitivity gas sensor and manufacturing method thereof
CN101419181B (en) * 2008-11-21 2011-10-05 重庆大学 Air-sensitive material for detecting oxymethylene and air-sensitive device made from the material
CN101871904B (en) * 2009-04-25 2013-06-05 鸿富锦精密工业(深圳)有限公司 Gas detecting device, gas detecting system and manufacturing method of gas detecting device
CN101852754B (en) * 2010-05-14 2013-06-19 云南大学 Lanthanum-ferrite-doping formaldehyde gas sensitive material and preparation method thereof
CN102636544A (en) * 2012-04-23 2012-08-15 电子科技大学 Multilayer thin film OTFT (organic thin film transistor) formaldehyde gas sensor and preparation method thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62214336A (en) * 1986-03-15 1987-09-21 Matsushita Electric Works Ltd Production of gaseous ethanol sensor
JPH01191050A (en) * 1988-01-26 1989-08-01 Matsushita Electric Works Ltd Method for measuring concentration of reducing agent in electroless plating liquid and device for adjusting concentration
JP2005214626A (en) * 2002-01-16 2005-08-11 Matsushita Electric Ind Co Ltd Gas sensor, gas sensor unit, and freshness holding device using it
JP2013027665A (en) * 2011-07-29 2013-02-07 Sanyo Electric Co Ltd Cleaning unit and deodorizing apparatus
CN102507659A (en) * 2011-11-28 2012-06-20 电子科技大学 Methanol gas sensor based on organic filter transistor and preparation method of methanol gas sensor
CN103512950A (en) * 2013-10-25 2014-01-15 中国电子科技集团公司第三十八研究所 Surface acoustic wave (SAW) formaldehyde gas sensor using water to absorb formaldehyde
CN203502384U (en) * 2013-10-25 2014-03-26 中国电子科技集团公司第三十八研究所 Acoustic surface wave formaldehyde gas sensor based on conductive composite sensitive material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112034016A (en) * 2019-12-20 2020-12-04 湘潭大学 Holmium ferrite formaldehyde gas sensor in red light auxiliary mode and preparation method thereof
CN114624292A (en) * 2020-12-12 2022-06-14 中国科学院大连化学物理研究所 VOCs sensor and preparation method thereof

Also Published As

Publication number Publication date
JP6239668B2 (en) 2017-11-29
CN104897735A (en) 2015-09-09
CN104897735B (en) 2017-12-19

Similar Documents

Publication Publication Date Title
JP6239668B2 (en) Double-layer photocatalytic formaldehyde sensor and manufacturing method thereof
Hyodo et al. Semiconductor-type SnO2-based NO2 sensors operated at room temperature under UV-light irradiation
WO2017020859A1 (en) Stannum-doped photocatalysized formaldehyde sensing material and preparation method thereof, and formaldehyde sensor
Malik et al. Facile synthesis of hybridized mesoporous Au@ TiO2/SnO2 as efficient photocatalyst and selective VOC sensor
Dhahri et al. Enhanced performance of novel calcium/aluminum co-doped zinc oxide for CO2 sensors
Guo et al. Enhanced isoprene gas sensing performance based on p-CaFe2O4/n-ZnFe2O4 heterojunction composites
Ma et al. A simple absorbent cotton biotemplate to fabricate SnO2 porous microtubules and their gas-sensing properties for chlorine
CN105628748B (en) A kind of the tin dioxide nano fiber gas sensitive and its gas sensor of Supported Pt Nanoparticles
Deng et al. A novel ammonia gas sensors based on p-type delafossite AgAlO2
Sun et al. Synthesis of Zn-doped In 2 O 3 nano sphere architectures as a triethylamine gas sensor and photocatalytic properties
Zhang et al. Performance improvement of photoelectrochemical NO2 gas sensing at room temperature by BiVO4-polyoxometalate nanocomposite photoanode
Liu et al. Mesoporous Au@ ZnO flower-like nanostructure for enhanced formaldehyde sensing performance
Wang et al. Enhanced photoelectric gas sensing performance of SnO2 flower-like nanorods modified with polyoxometalate for detection of volatile organic compound at room temperature
Wysocka et al. Gas‐phase removal of indoor volatile organic compounds and airborne microorganisms over mono‐and bimetal‐modified (Pt, Cu, Ag) titanium (IV) oxide nanocomposites
Mokoena et al. Fabrication of a propanol gas sensor using p-type nickel oxide nanostructures: The effect of ramping rate towards luminescence and gas sensing characteristics
Gao et al. Synthesis of SnO 2 nanoparticles for formaldehyde detection with high sensitivity and good selectivity
Nadargi et al. Gas sensors and factors influencing sensing mechanism with a special focus on MOS sensors
CN103713016A (en) Palladium-doped stannic oxide wrapped carbon nano tube as well as preparation method and application of nano tube
Lin et al. Adsorption and Photocatalytic Kinetics of Visible‐Light Response N‐Doped TiO2 Nanocatalyst for Indoor Acetaldehyde Removal under Dark and Light Conditions
Zhang et al. Interfacial energy barrier tuning of hierarchical Bi2O3/WO3 heterojunctions for advanced triethylamine sensor
Wang et al. Highly sensitive and selective HCHO sensor based on Co doped ZnO hollow microspheres activated by UV light
Abbasi-Asl et al. Ag2C2O4/Ag3PO4 composites as efficient photocatalyst for solar light driven degradation of dyes pollutants
Abideen et al. Oxygen vacancies engineering in thick semiconductor films via deep ultraviolet photoactivation for selective and sensitive gas sensing
RU2544272C2 (en) Manufacturing method of gas sensor material for detection of carbon monoxide co without heating
Chen et al. Novel Pt/TiO2–WO3 materials irradiated by visible light used in a photoreductive ozone sensor

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170314

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171101

R150 Certificate of patent or registration of utility model

Ref document number: 6239668

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees