JP2016210981A - Biodegradable resin porous body - Google Patents

Biodegradable resin porous body Download PDF

Info

Publication number
JP2016210981A
JP2016210981A JP2016089165A JP2016089165A JP2016210981A JP 2016210981 A JP2016210981 A JP 2016210981A JP 2016089165 A JP2016089165 A JP 2016089165A JP 2016089165 A JP2016089165 A JP 2016089165A JP 2016210981 A JP2016210981 A JP 2016210981A
Authority
JP
Japan
Prior art keywords
biodegradable resin
acid
porous body
copolymer
structural unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016089165A
Other languages
Japanese (ja)
Other versions
JP6950885B2 (en
Inventor
秀子 大山
Hideko Oyama
秀子 大山
中村 裕介
Yusuke Nakamura
裕介 中村
亮平 小川
Ryohei Ogawa
亮平 小川
加賀山 陽史
Akishi Kagayama
陽史 加賀山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Publication of JP2016210981A publication Critical patent/JP2016210981A/en
Application granted granted Critical
Publication of JP6950885B2 publication Critical patent/JP6950885B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a biodegradable resin porous body that has excellent hydrolyzability, particularly, the porous body being resistant to decrease in hydrolysis rate even with a small hole diameter.SOLUTION: A resin composition comprising a copolymer (A) composed of a constitutional unit (a-1) derived from polycarboxylic acid and a constitutional unit (a-2) derived from hydroxy carboxylic acid, and a biodegradable resin (B) is formed into a porous body.SELECTED DRAWING: Figure 1

Description

本発明は、生分解性樹脂多孔質体に関し、特に加水分解性に優れる生分解性樹脂多孔質体に関する。   The present invention relates to a biodegradable resin porous body, and particularly to a biodegradable resin porous body excellent in hydrolyzability.

生分解性樹脂はフィルムや繊維としてさまざまな用途に用いられているが、多孔質体としても薬物輸送等の用途に有用であるとの期待がある。   Biodegradable resins are used in various applications as films and fibers, but are expected to be useful for applications such as drug transport as porous bodies.

非特許文献1には、生分解性樹脂で多孔質体を成形し、水系溶液中での加水分解性速度について観察した報告がある。通常、同サイズで孔のない成形体と比較して、多孔質体は表面積が大きくなる分、水との接触が多くなり加水分解が促進される、と考えられる。そして、比重が同じ場合、孔径が小さいほど多孔質体の表面積が大きくなるため、分解速度もそれに比例して速くなると考えられる。   Non-Patent Document 1 reports that a porous body is formed from a biodegradable resin and the hydrolyzation rate in an aqueous solution is observed. In general, it is considered that the porous body has a larger surface area than that of a molded body having the same size and no pores, so that contact with water is increased and hydrolysis is promoted. And when specific gravity is the same, since the surface area of a porous body becomes large, so that a hole diameter is small, it is thought that a decomposition | disassembly rate becomes proportionally faster.

非特許文献2には、ポリ乳酸の多孔質膜をポリ乳酸−1,4−ジオキサン−水溶液から熱誘起相分離法により製造する方法が開示されており、0.6〜4.4μmの微細孔を有する多孔質膜を形成している。   Non-Patent Document 2 discloses a method for producing a polylactic acid porous membrane from a polylactic acid-1,4-dioxane-water solution by a heat-induced phase separation method, and has a pore size of 0.6 to 4.4 μm. The porous membrane which has is formed.

また、本出願人は、特許文献1及び特許文献2において、生分解性樹脂(ポリ乳酸)に多価カルボン酸・ヒドロキシカルボン酸共重合体を配合すると、加水分解が促進されることをフィルムや繊維形状では確認している。   In addition, in the patent document 1 and the patent document 2, the applicant of the present invention described that when a polycarboxylic acid / hydroxycarboxylic acid copolymer is blended with a biodegradable resin (polylactic acid), hydrolysis is accelerated. The fiber shape is confirmed.

WO2012/137681WO2012 / 137683 WO2014/038608WO2014 / 038608

Biomaterials 21 (2000) 1595−1605Biomaterials 21 (2000) 1595-1605 Journal of Membrane Science 238 (2004) 65−73Journal of Membrane Science 238 (2004) 65−73

しかし非特許文献1においては、孔のサイズがある程度より小さくなると、加水分解がむしろ遅くなるという現象が確認されている。その理由としては、生分解性樹脂のカルボン酸残基が自己触媒として機能しているものが、水中に逃げやすくなるためではないかと推測されている(非特許文献1、1603頁参照)。   However, in Non-Patent Document 1, it has been confirmed that when the pore size is smaller than a certain degree, the hydrolysis is rather slow. The reason is presumed that the carboxylic acid residue of the biodegradable resin functions as an autocatalyst because it easily escapes into water (see Non-Patent Document 1, page 1603).

本発明の目的は、加水分解性に優れ、特に孔径が小さい多孔質体でも加水分解速度の低下が少ない生分解性樹脂多孔質体を提供することにある。   An object of the present invention is to provide a biodegradable resin porous body that is excellent in hydrolyzability, and in particular, has a small decrease in hydrolysis rate even with a porous body having a small pore diameter.

本発明は、多価カルボン酸に由来する構成単位(a−1)及びヒドロキシカルボン酸に由来する構成単位(a−2)から構成される共重合体(A)と、生分解性樹脂(B)とを含有する生分解性樹脂多孔質体に関する。   The present invention relates to a copolymer (A) composed of a structural unit (a-1) derived from a polyvalent carboxylic acid and a structural unit (a-2) derived from a hydroxycarboxylic acid, and a biodegradable resin (B ) And a biodegradable resin porous body.

本発明者らは、生分解性樹脂の多孔質体において、特許文献1及び2に記載の共重合体を配合してみたところ、孔径が小さい多孔質体でも加水分解速度の低下がみられなかった。
即ち、本発明により、加水分解性に優れ、特に孔径が小さい多孔質体でも加水分解速度の低下が少ない生分解性樹脂多孔質体を提供することができる。
The present inventors tried blending the copolymers described in Patent Documents 1 and 2 in the porous body of the biodegradable resin, and no decrease in the hydrolysis rate was observed even in the porous body having a small pore diameter. It was.
That is, according to the present invention, it is possible to provide a biodegradable resin porous body that is excellent in hydrolyzability and that has a small decrease in hydrolysis rate even with a porous body having a particularly small pore size.

実施例1、2および比較例1で製造した多孔質体(1)〜(3)の加水分解試験における質量保持率の変化を示すグラフである。It is a graph which shows the change of the mass retention in the hydrolysis test of the porous bodies (1)-(3) manufactured in Examples 1 and 2 and Comparative Example 1.

<共重合体(A)>
本発明に用いる共重合体(A)は、多価カルボン酸に由来する構成単位(a−1)とヒドロキシカルボン酸に由来する構成単位(a−2)を有する。なお、「構成単位」とは、重合性単量体に由来する単位であり、末端基は含まない。共重合体(A)はランダム共重合体、ブロック共重合体、グラフト共重合体の何れでも構わない。
<Copolymer (A)>
The copolymer (A) used in the present invention has a structural unit (a-1) derived from a polyvalent carboxylic acid and a structural unit (a-2) derived from a hydroxycarboxylic acid. The “structural unit” is a unit derived from a polymerizable monomer and does not include a terminal group. The copolymer (A) may be a random copolymer, a block copolymer, or a graft copolymer.

構成単位(a−1)は多価カルボン酸に由来する構成単位であれば良く、特に限定されない。多価カルボン酸は2価または3価の多価カルボン酸から選択される1種以上であることが好ましく、中でも、アミノジカルボン酸、ヒドロキシジカルボン酸、ヒドロキシトリカルボン酸がより好ましく、アスパラギン酸、グルタミン酸、リンゴ酸、クエン酸、酒石酸から選択される1種以上であることが特に好ましい。これら多価カルボン酸は1種または異なる2種以上を有していてもよい。多価カルボン酸に由来する構成単位は、イミド環等の環構造を形成していてもよく、該環構造が開環していてもよく、またはこれらが混在していてもよい。   The structural unit (a-1) is not particularly limited as long as it is a structural unit derived from a polyvalent carboxylic acid. The polyvalent carboxylic acid is preferably at least one selected from divalent or trivalent polyvalent carboxylic acids, among which aminodicarboxylic acid, hydroxydicarboxylic acid, and hydroxytricarboxylic acid are more preferable, aspartic acid, glutamic acid, Particularly preferred is at least one selected from malic acid, citric acid and tartaric acid. These polyvalent carboxylic acids may have one kind or two or more different kinds. The structural unit derived from the polyvalent carboxylic acid may form a ring structure such as an imide ring, the ring structure may be ring-opened, or these may be mixed.

構成単位(a−2)はヒドロキシカルボン酸に由来する構成単位であれば良く、特に限定されない。中でも、グリコール酸、乳酸、2−ヒドロキシ酪酸、2−ヒドロキシ吉草酸、2−ヒドロキシカプロン酸、2−ヒドロキシカプリン酸等のα−ヒドロキシカルボン酸;グリコライド、ラクタイド、p−ジオキサノン、β−プロピオラクトン、β−ブチロラクトン、δ−バレロラクトン又はε−カプロラクトンに由来する構成単位が好ましく、乳酸、グリコール酸から選択される1種以上に由来する構成単位がより好ましい。   The structural unit (a-2) is not particularly limited as long as it is a structural unit derived from hydroxycarboxylic acid. Among them, glycolic acid, lactic acid, 2-hydroxybutyric acid, 2-hydroxyvaleric acid, 2-hydroxycaproic acid, α-hydroxycarboxylic acid such as 2-hydroxycapric acid; glycolide, lactide, p-dioxanone, β-propio A structural unit derived from lactone, β-butyrolactone, δ-valerolactone or ε-caprolactone is preferred, and a structural unit derived from one or more selected from lactic acid and glycolic acid is more preferred.

共重合体(A)は、以上説明した構成単位(a−1)及び構成単位(a−2)を有する共重合体であれば良く、特に限定されない。中でも、アスパラギン酸−乳酸共重合体、リンゴ酸−乳酸共重合体、クエン酸−乳酸共重合体が特に好ましい。   The copolymer (A) is not particularly limited as long as it is a copolymer having the structural unit (a-1) and the structural unit (a-2) described above. Among these, aspartic acid-lactic acid copolymer, malic acid-lactic acid copolymer, and citric acid-lactic acid copolymer are particularly preferable.

共重合体(A)における構成単位(a−1)と構成単位(a−2)のモル組成比[(a−1)/(a−2)]は、重合時の仕込量で、好ましくは1/1〜1/50、より好ましくは1/10〜1/20である。モル組成比がこれらの範囲内にあると、分解速度促進効果に優れ、生分解性樹脂(B)との相溶性にも優れた共重合体が得られる。   The molar composition ratio [(a-1) / (a-2)] of the structural unit (a-1) and the structural unit (a-2) in the copolymer (A) is a charge amount during polymerization, preferably 1/1 to 1/50, more preferably 1/10 to 1/20. When the molar composition ratio is within these ranges, a copolymer excellent in degradation rate promoting effect and excellent in compatibility with the biodegradable resin (B) can be obtained.

共重合体(A)中には、多価カルボン酸やヒドロキシカルボン酸以外の構成単位(他の共重合成分に由来する単位)が存在していてもよい。ただし、その量は共重合体(A)の性質を大きく損なわない程度であることが必要である。かかる点から、その量は共重合体(A)全体の構成単位100モル%中、およそ20モル%以下であることが望ましい。   In the copolymer (A), structural units other than polyvalent carboxylic acid and hydroxycarboxylic acid (units derived from other copolymer components) may be present. However, the amount must be such that the properties of the copolymer (A) are not significantly impaired. From this point, the amount is desirably about 20 mol% or less in 100 mol% of the entire structural unit of the copolymer (A).

共重合体(A)の酸価は、0.2mmol/g〜5mmol/g(KOH)であることが好ましい。酸価は、より好ましくは、0.5mmol/g〜5mmol/gである。本発明で言う「酸価」は、後述する実施例に記載の方法で測定されたものである。共重合体(A)の酸価が上記範囲にあれば、多孔質体とした時に加水分解促進効果が大きくなる。   The acid value of the copolymer (A) is preferably 0.2 mmol / g to 5 mmol / g (KOH). The acid value is more preferably 0.5 mmol / g to 5 mmol / g. The “acid value” as used in the present invention is measured by the method described in the examples described later. When the acid value of the copolymer (A) is in the above range, the hydrolysis promoting effect is increased when the copolymer is made porous.

共重合体(A)の重量平均分子量は1,000以上、50,000以下であり、好ましくは2,500以上、30,000以下であり、特に好ましくは2,500〜10,000の範囲内である。この重量平均分子量は、後述する実施例に記載の条件で、ゲル・パーミエーション・クロマトグラフィー(GPC)により求めた値である。   The weight average molecular weight of the copolymer (A) is 1,000 or more and 50,000 or less, preferably 2,500 or more and 30,000 or less, and particularly preferably in the range of 2,500 to 10,000. It is. This weight average molecular weight is a value determined by gel permeation chromatography (GPC) under the conditions described in the Examples described later.

共重合体(A)の製造方法は特に限定されない。一般的には、多価カルボン酸とヒドロキシカルボン酸を所望の比で混合し、触媒の存在下又は非存在下で、加熱減圧下にて脱水重縮合することで得ることができる。また、ラクチド、グリコリド、カプロラクトン等のヒドロキシカルボン酸の無水環状化合物と多価カルボン酸とを反応させることで得ることもできる。   The manufacturing method of a copolymer (A) is not specifically limited. In general, it can be obtained by mixing polycarboxylic acid and hydroxycarboxylic acid at a desired ratio and performing dehydration polycondensation under heating and reduced pressure in the presence or absence of a catalyst. It can also be obtained by reacting an anhydrous cyclic compound of hydroxycarboxylic acid such as lactide, glycolide, caprolactone and the like with a polyvalent carboxylic acid.

<生分解性樹脂(B)>
本発明に用いる生分解性樹脂(B)は、生分解性を有する樹脂であれば良く、特に限定されない。例えば、ポリヒドロキシカルボン酸、ジオールとジカルボン酸からなる脂肪族ポリエステル樹脂を使用できる。なお、生分解性樹脂(B)には共重合体(A)は含まれない。
<Biodegradable resin (B)>
The biodegradable resin (B) used in the present invention is not particularly limited as long as it is a biodegradable resin. For example, an aliphatic polyester resin composed of polyhydroxycarboxylic acid, diol and dicarboxylic acid can be used. The biodegradable resin (B) does not include the copolymer (A).

本発明において、ポリヒドロキシカルボン酸は、水酸基とカルボキシル基とを併せ有するヒドロキシカルボン酸に由来する繰り返し単位(構成単位)を有する重合体又は共重合体を意味する。   In the present invention, polyhydroxycarboxylic acid means a polymer or copolymer having a repeating unit (constituent unit) derived from hydroxycarboxylic acid having both a hydroxyl group and a carboxyl group.

ヒドロキシカルボン酸の具体例としては、乳酸、グリコール酸、3−ヒドロキシ酪酸、4−ヒドロキシ酪酸、2−ヒドロキシ−n−酪酸、2−ヒドロキシ−3,3−ジメチル酪酸、2−ヒドロキシ−3−メチル酪酸、2−メチル乳酸、2−ヒドロキシ吉草酸、2−ヒドロキシカプロン酸、2−ヒドロキシラウリン酸、2−ヒドロキシミリスチン酸、2−ヒドロキシパルミチン酸、2−ヒドロキシステアリン酸、リンゴ酸、クエン酸、酒石酸、2−ヒドロキシ−3−メチル酪酸、2−シクロヘキシル−2−ヒドロキシ酢酸、マンデル酸、サリチル酸、カプロラクトン等のラクトン類の開環生成物が挙げられる。これらの2種以上を混合して用いても良い。   Specific examples of the hydroxycarboxylic acid include lactic acid, glycolic acid, 3-hydroxybutyric acid, 4-hydroxybutyric acid, 2-hydroxy-n-butyric acid, 2-hydroxy-3,3-dimethylbutyric acid, and 2-hydroxy-3-methyl. Butyric acid, 2-methyl lactic acid, 2-hydroxyvaleric acid, 2-hydroxycaproic acid, 2-hydroxylauric acid, 2-hydroxymyristic acid, 2-hydroxypalmitic acid, 2-hydroxystearic acid, malic acid, citric acid, tartaric acid Ring-opening products of lactones such as 2-hydroxy-3-methylbutyric acid, 2-cyclohexyl-2-hydroxyacetic acid, mandelic acid, salicylic acid and caprolactone. Two or more of these may be mixed and used.

ポリヒドロキシカルボン酸は、生分解性樹脂(B)としての性質を損なわない限り、ヒドロキシカルボン酸以外の他の構成単位(共重合成分)を有していてもよいが、ポリヒドロキシカルボン酸の全構成単位100モル%中、ヒドロキシカルボン酸由来の構成単位は好ましくは20モル%以上であり、より好ましくは50モル%以上であり、特に好ましくは100%である。   The polyhydroxycarboxylic acid may have other structural units (copolymerization components) other than the hydroxycarboxylic acid as long as the properties as the biodegradable resin (B) are not impaired. In 100 mol% of the structural units, the structural units derived from hydroxycarboxylic acid are preferably 20 mol% or more, more preferably 50 mol% or more, and particularly preferably 100%.

ポリヒドロキシカルボン酸のうち、共重合体(A)との相溶性の点からは、ヒドロキシカルボン酸が乳酸である重合体または共重合体が好ましく、ポリ乳酸(単独重合体)がより好ましい。ポリ乳酸は、乳酸を出発原料として合成されたものであっても、ラクタイドを出発原料として合成されたものであっても良い。   Among the polyhydroxycarboxylic acids, from the viewpoint of compatibility with the copolymer (A), a polymer or copolymer in which the hydroxycarboxylic acid is lactic acid is preferable, and polylactic acid (homopolymer) is more preferable. Polylactic acid may be synthesized using lactic acid as a starting material or synthesized using lactide as a starting material.

本発明において、ジオールとジカルボン酸からなる脂肪族ポリエステル樹脂は、ジオール及びジカルボン酸に由来する繰り返し単位(構成単位)を有する重合体又は共重合体を意味し、生分解性樹脂(B)としての性質を損なわない限り、ジオールとジカルボン酸からなる脂肪族ポリエステル以外の他の構成単位(共重合成分)を有していてもよい。   In the present invention, the aliphatic polyester resin composed of diol and dicarboxylic acid means a polymer or copolymer having a repeating unit (constituent unit) derived from diol and dicarboxylic acid, and is used as a biodegradable resin (B). As long as the properties are not impaired, other structural units (copolymerization components) other than the aliphatic polyester composed of diol and dicarboxylic acid may be included.

ジオールとジカルボン酸からなる脂肪族ポリエステル樹脂の具体例としては、ポリエチレンサクシネート、ポリエチレンアジペート、ポリエチレンセバケート、ポリジエチレンサクシネート、ポリジエチレンアジペート、ポリエチレンサクシネートアジペート、ポリジエチレンセバケート、ポリブチレンサクシネート、ポリブチレンアジペート、ポリブチレンサクシネートアジペート、ポリブチレンセバケートが挙げられる。   Specific examples of the aliphatic polyester resin composed of diol and dicarboxylic acid include polyethylene succinate, polyethylene adipate, polyethylene sebacate, polydiethylene succinate, polydiethylene adipate, polyethylene succinate adipate, polydiethylene sebacate, polybutylene succinate. , Polybutylene adipate, polybutylene succinate adipate, and polybutylene sebacate.

生分解性樹脂(B)の分子量は特に限定されないが、共重合体(A)よりも分子量の大きなものが好ましい。共重合体(A)との混合のし易さを考慮すると、生分解性樹脂(B)の重量平均分子量は、好ましくは2,000〜2,000,000、より好ましくは3,000〜1,000,000、特に好ましくは50,000超、500,000以下である。この重量平均分子量は、後述する実施例に記載の条件で、ゲル・パーミエーション・クロマトグラフィー(GPC)により求めた値である。   The molecular weight of the biodegradable resin (B) is not particularly limited, but a molecular weight higher than that of the copolymer (A) is preferable. Considering the ease of mixing with the copolymer (A), the weight average molecular weight of the biodegradable resin (B) is preferably 2,000 to 2,000,000, more preferably 3,000 to 1. 1,000,000, particularly preferably more than 50,000 and 500,000 or less. This weight average molecular weight is a value determined by gel permeation chromatography (GPC) under the conditions described in the Examples described later.

また、生分解性樹脂(B)の酸価が0.005mmol/g〜0.2mmol/gであることが好ましい。生分解性樹脂(B)の酸価は、0.005mmol/g〜0.1mmol/gであることがより好ましい。生分解性樹脂(B)の酸価は、共重合体(A)の酸価と同様にして測定される。   The acid value of the biodegradable resin (B) is preferably 0.005 mmol / g to 0.2 mmol / g. The acid value of the biodegradable resin (B) is more preferably 0.005 mmol / g to 0.1 mmol / g. The acid value of the biodegradable resin (B) is measured in the same manner as the acid value of the copolymer (A).

〔生分解性樹脂多孔質体〕
本発明の生分解性樹脂多孔質体は、共重合体(A)と生分解性樹脂(B)を混合した樹脂組成物(以下、樹脂組成物(C)という)を多孔質化することにより得られる。その質量組成比[(A)/(B)]は、共重合体(A)と生分解性樹脂(B)の合計量を100として、1/99〜50/50であり、好ましくは1/99〜45/55であり、より好ましくは1/99〜40/60であり、特に好ましくは5/95〜20/80である。質量組成比がこれらの範囲内にあると、生分解性樹脂(B)の持つ性質を維持しつつ共重合体(A)による分解速度促進効果が発揮されるため好ましい。また、共重合体(A)の量が多いほど分解速度の大きな樹脂組成物が得られる。
[Biodegradable resin porous body]
The biodegradable resin porous body of the present invention is obtained by making a resin composition (hereinafter referred to as a resin composition (C)) obtained by mixing a copolymer (A) and a biodegradable resin (B) porous. can get. The mass composition ratio [(A) / (B)] is 1/99 to 50/50, preferably 1/99 to 50/50, where the total amount of the copolymer (A) and the biodegradable resin (B) is 100. It is 99-45 / 55, More preferably, it is 1 / 99-40 / 60, Especially preferably, it is 5 / 95-20 / 80. When the mass composition ratio is within these ranges, the decomposition rate promoting effect by the copolymer (A) is exhibited while maintaining the properties of the biodegradable resin (B). Moreover, a resin composition with a large decomposition rate is obtained, so that there are many amounts of a copolymer (A).

生分解性樹脂(B)に共重合体(A)を混合する方法は特に限定されない。好ましくは両者を溶融混練するか、溶媒に溶解させ攪拌混合する。このような製法により、共重合体(A)と生分解性樹脂(B)とから、均一な樹脂組成物を得ることが出来る。   The method for mixing the copolymer (A) with the biodegradable resin (B) is not particularly limited. Preferably, both are melt-kneaded or dissolved in a solvent and mixed with stirring. By such a production method, a uniform resin composition can be obtained from the copolymer (A) and the biodegradable resin (B).

樹脂組成物(C)は、生分解性樹脂(B)のもつ性質を大きく損なわない範囲で、共重合体(A)及び生分解性樹脂(B)以外のポリマーや通常の樹脂に添加され得る添加剤が含まれていても良い。   The resin composition (C) can be added to a polymer other than the copolymer (A) and the biodegradable resin (B) or a normal resin as long as the properties of the biodegradable resin (B) are not significantly impaired. Additives may be included.

樹脂組成物(C)の分子量は特に限定されない。成形性を考慮すると、樹脂組成物(C)の重量平均分子量は、好ましくは1,000〜100万、より好ましくは5,000〜50万、特に好ましくは50,000〜30万である。この重量平均分子量は、後述する実施例に記載の条件で、ゲル・パーミエーション・クロマトグラフィー(GPC)により求めた値である。   The molecular weight of the resin composition (C) is not particularly limited. Considering moldability, the weight average molecular weight of the resin composition (C) is preferably 1,000 to 1,000,000, more preferably 5,000 to 500,000, and particularly preferably 50,000 to 300,000. This weight average molecular weight is a value determined by gel permeation chromatography (GPC) under the conditions described in the Examples described later.

多孔質体を得る方法としては、特に制限されることなく、従来公知の方法により多孔質体とすることができる。例えば、相分離法、抽出法、化学処理法、延伸法、照射エッチング法、融着法、発泡法、これらの組み合わせなどが挙げられる。特に、本発明においては、孔径の小さい細孔を有する多孔質体を提供できる相分離法、特に熱誘起相分離法が好ましい。熱誘起相分離法については非特許文献2に詳細が記載されている。   The method for obtaining the porous body is not particularly limited, and the porous body can be obtained by a conventionally known method. Examples thereof include a phase separation method, an extraction method, a chemical treatment method, a stretching method, an irradiation etching method, a fusion method, a foaming method, and combinations thereof. In particular, in the present invention, a phase separation method capable of providing a porous body having pores having a small pore diameter, particularly a thermally induced phase separation method is preferred. Details of the thermally induced phase separation method are described in Non-Patent Document 2.

本発明に係る生分解性樹脂多孔質体は、後述する水銀圧入法で測定した場合の容積基準の平均細孔径が10μm以下であることが好ましく、5μm以下であることがより好ましく、1μm以下であることがさらに好ましい。また、空隙率は60%以上が好ましく、70%以上がより好ましい。また、比表面積は0.04m/g以上であることが好ましく、1m/g以上がより好ましく、50m/g以上がさらに好ましい。また、後述する水銀圧入法での測定値から算出した極大細孔直径(水銀圧入法による極大細孔直径)は100μm以下であることが好ましく、50μm以下であることがより好ましく、10μm以下であることがさらに好ましい。多孔質体がこれらの範囲にあると、共重合体(A)を添加したときの加水分解速度が大きくなる点で好ましい。 The biodegradable resin porous body according to the present invention preferably has a volume-based average pore diameter of 10 μm or less, more preferably 5 μm or less, and more preferably 1 μm or less when measured by a mercury intrusion method described later. More preferably it is. Further, the porosity is preferably 60% or more, and more preferably 70% or more. The specific surface area is preferably at 0.04 m 2 / g or more, more preferably at least 1 m 2 / g, still more preferably at least 50 m 2 / g. Further, the maximum pore diameter (maximum pore diameter by the mercury intrusion method) calculated from the measured value by the mercury intrusion method described later is preferably 100 μm or less, more preferably 50 μm or less, and 10 μm or less. More preferably. When the porous body is within these ranges, it is preferable in terms of increasing the hydrolysis rate when the copolymer (A) is added.

多孔質体には、細孔が連続して繋がっている開孔型と、細孔が孤立している独立気孔型とがあるが、本発明に係る生分解性樹脂多孔質体の細孔は、開孔型であることが好ましい。開孔型であると分解速度が速くなるため好ましい。   The porous body includes an open pore type in which the pores are continuously connected and an independent pore type in which the pores are isolated, but the pores of the biodegradable resin porous body according to the present invention are It is preferable to be an open-hole type. An open-hole type is preferable because the decomposition rate is increased.

本発明に係る生分解性樹脂多孔質体が、孔のサイズが小さくても加水分解を促進する理由は、以下のように考えている。すなわち、非特許文献1では孔のサイズがある程度より小さくなると、生分解性樹脂のカルボン酸残基が自己触媒として機能しているものが水中に逃げやすくなるため、加水分解がむしろ遅くなると推測されているが、本発明の生分解性樹脂多孔質体に含有される共重合体(A)は、多価カルボン酸残基を多く含むことにより触媒機能を発現するとともに、生分解性樹脂(B)との相溶性が高いため、すぐには水中に逃げず生分解性樹脂多孔質体中に留まり、触媒作用を継続して発現しているものと推察している。   The reason why the biodegradable resin porous body according to the present invention promotes hydrolysis even if the pore size is small is considered as follows. That is, in Non-Patent Document 1, when the pore size is smaller than a certain degree, it is estimated that the carboxylic acid residue of the biodegradable resin easily functions as an autocatalyst, so that the hydrolysis is rather slow. However, the copolymer (A) contained in the biodegradable resin porous body of the present invention exhibits a catalytic function by containing a large amount of polyvalent carboxylic acid residues, and also exhibits a biodegradable resin (B )), It does not escape immediately into water and remains in the biodegradable resin porous body, and it is assumed that the catalytic action is continuously exhibited.

多孔質体の形態としては、膜・フィルム、シート、粒状体、発泡体等、目的に応じて所望の形状とすることができる。   As a form of a porous body, it can be set as a desired shape according to the objective, such as a film / film, a sheet, a granular body, and a foam.

本発明に係る生分解性樹脂多孔質体は、創傷被覆材、細胞培養基材、薬物輸送システム(DDS)用の担体などの医療材料、農業用の農薬徐放基材、触媒担持体、酸触媒、油吸着材などの用途に適している。   The biodegradable resin porous body according to the present invention includes a wound dressing material, a cell culture substrate, a medical material such as a carrier for a drug delivery system (DDS), an agricultural pesticide sustained release substrate, a catalyst carrier, an acid Suitable for applications such as catalysts and oil adsorbents.

以下、本発明について実施例を挙げて具体的に説明するが、本発明はこれらの実施例のみに限定されるものではない。実施例における各測定方法は以下の通りである。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated concretely, this invention is not limited only to these Examples. Each measuring method in an Example is as follows.

<重量平均分子量(Mw)>
試料をクロロホルムに溶解し(濃度約0.5質量%)、ゲル・パーミエーション・クロマトグラフィー(GPC)により、重量平均分子量(Mw)をポリスチレン換算の値として求めた。
測定条件を以下に示す。
RI検出器:日本分光RI−2031、
カラム:SHODEX製 LF−GおよびLF−804、
カラム温度:40℃、
溶媒:クロロホルム、
流速:1.0ml/分。
<Weight average molecular weight (Mw)>
The sample was dissolved in chloroform (concentration of about 0.5% by mass), and the weight average molecular weight (Mw) was determined as a value in terms of polystyrene by gel permeation chromatography (GPC).
The measurement conditions are shown below.
RI detector: JASCO RI-2031,
Column: LF-G and LF-804 made by SHODEX,
Column temperature: 40 ° C
Solvent: chloroform,
Flow rate: 1.0 ml / min.

<酸価>
試料約0.5gを精秤し、クロロホルム/メタノール(70/30 (v/v))20mLに溶解させ、自動滴定装置(京都電子工業社製AT−510)を用い、0.1N水酸化カリウム/2−プロパノール溶液を滴定液とし、当量点までに要した容量から逆算して求めた。
<Acid value>
About 0.5 g of a sample is precisely weighed and dissolved in 20 mL of chloroform / methanol (70/30 (v / v)), and 0.1N potassium hydroxide is used using an automatic titrator (AT-510, manufactured by Kyoto Electronics Industry Co., Ltd.). A / 2-propanol solution was used as a titrant, and the amount was calculated from the volume required up to the equivalent point.

<走査型電子顕微鏡(SEM)観察>
日本電子(株)製、JSM−6010LA型を用い、70μA、20kVで観察した。
<Scanning electron microscope (SEM) observation>
JSM-6010LA type manufactured by JEOL Ltd. was used and observed at 70 μA and 20 kV.

<空隙率、平均及び極大細孔直径、比表面積>
全自動細孔分布測定装置(Pore Master 60-GT、カンタクローム社製)を用いて測定した。測定範囲400μm〜0.0036μm、水銀接触角140°、水銀表面張力480dyn/cmの条件設定にて、約0.1gの試料を10Φx30mmのセルを用いて細孔分布曲線を測定した。得られた細孔分布曲線から得られる累積細孔容積と、用いた試料の水銀圧入前後の重量の変化から、水銀の密度を13.5487g/cc(20℃)として細孔容積を算出し、以下の式により空隙率を測定した。また、単位重量1gあたりの表面積として比表面積を算出し、細孔を一つの円筒形と仮定したときの平均細孔直径として平均細孔直径を算出した。また、極大細孔直径を、対数細孔径頻度分布曲線(dv/dlogD)の極大値から求めた。
空隙率(%)={細孔容積(cm)/(試料の嵩容積+細孔容積)(cm)}×100
<Porosity, average and maximum pore diameter, specific surface area>
Measurement was performed using a fully automatic pore distribution measuring device (Pore Master 60-GT, manufactured by Cantachrome). A pore distribution curve was measured using a cell having a diameter of about 0.1 g for a sample of about 0.1 g under conditions of a measurement range of 400 μm to 0.0036 μm, a mercury contact angle of 140 °, and a mercury surface tension of 480 dyn / cm. From the cumulative pore volume obtained from the obtained pore distribution curve and the change in the weight of the sample used before and after mercury intrusion, the mercury volume was calculated as 13.5487 g / cc (20 ° C.), The porosity was measured by the following formula. The specific surface area was calculated as the surface area per 1 g of unit weight, and the average pore diameter was calculated as the average pore diameter when the pores were assumed to be one cylindrical shape. The maximum pore diameter was determined from the maximum value of the logarithmic pore diameter frequency distribution curve (dv / dlogD).
Porosity (%) = {pore volume (cm 3 ) / (sample bulk volume + pore volume) (cm 3 )} × 100

<製造例1> 乳酸−リンゴ酸共重合体(PML)の製造
撹拌装置、脱気口をつけた500mlサイズのガラス製反応器に和光純薬製D,L−リンゴ酸13.4g(0.1モル)、Purac社製90%L−乳酸100.2g(1.0モル)及び和光純薬製チタンテトライソプロポキシド18.5mg(0.0016モル)を装入した。この場合、仕込みのリンゴ酸と乳酸とのモル比は1:10であった。反応器をオイルバスに漬け、135℃、1.33kPa(10mmHg)で窒素を流通させながら30時間撹拌した。反応器をオイルバスから取り出し、反応溶液をステンレスバット上に取り出して冷却固化させた。得られた無色透明の固体を粉砕し、粉末状ポリマー(PML)65gを得た。
得られたPMLについて、上述の方法により測定した重量平均分子量は3300であった。また、酸価は2.1mmol/gであった。
<Production Example 1> Production of lactic acid-malic acid copolymer (PML) Stirring apparatus, 13.4 g of D, L-malic acid (0. 1 mol), 100.2 g (1.0 mol) of 90% L-lactic acid manufactured by Purac, and 18.5 mg (0.0016 mol) of titanium tetraisopropoxide manufactured by Wako Pure Chemical Industries, Ltd. were charged. In this case, the molar ratio of charged malic acid and lactic acid was 1:10. The reactor was immersed in an oil bath and stirred for 30 hours while flowing nitrogen at 135 ° C. and 1.33 kPa (10 mmHg). The reactor was taken out from the oil bath, and the reaction solution was taken out on a stainless steel vat and solidified by cooling. The obtained colorless and transparent solid was pulverized to obtain 65 g of a powdery polymer (PML).
About the obtained PML, the weight average molecular weight measured by the above-mentioned method was 3300. The acid value was 2.1 mmol / g.

<実施例1> 多孔質体(1)の製造
ポリ乳酸(三井化学社製「レイシア(登録商標)H100」、重量平均分子量=16.6万、酸価=0.081mmol/g)80質量部および製造例1で調製したPMLの20質量部に、前記ポリ乳酸/PML混合物の濃度が10質量%となるように1,4−ジオキサンを加え、80℃、3時間で溶解した。脱イオン水を1,4−ジオキサン/脱イオン水=88/12(質量比)となるように加え、80℃で15分加熱した。得られた溶液を氷浴で急冷し、得られたゲルを脱イオン水により溶媒置換したのち、室温にて真空乾燥して多孔質体を得た。得られた多孔質体の分析結果を表1に示した。
<Example 1> Production of porous body (1) Polylactic acid ("Lacia (registered trademark) H100" manufactured by Mitsui Chemicals, weight average molecular weight = 166,000, acid value = 0.081 mmol / g) 80 parts by mass 1,4-Dioxane was added to 20 parts by mass of the PML prepared in Production Example 1 so that the concentration of the polylactic acid / PML mixture was 10% by mass, and dissolved at 80 ° C. for 3 hours. Deionized water was added so that 1,4-dioxane / deionized water = 88/12 (mass ratio), and the mixture was heated at 80 ° C. for 15 minutes. The obtained solution was quenched in an ice bath, and the resulting gel was subjected to solvent substitution with deionized water and then vacuum dried at room temperature to obtain a porous body. The analysis results of the obtained porous body are shown in Table 1.

<実施例2> 多孔質体(2)の製造
ポリ乳酸を90質量部、乳酸−リンゴ酸共重合体を10質量部用いた以外は実施例1と同様に多孔質体を製造した。得られた多孔質体の分析結果を表1に示した。
<Example 2> Production of porous body (2) A porous body was produced in the same manner as in Example 1 except that 90 parts by mass of polylactic acid and 10 parts by mass of a lactic acid-malic acid copolymer were used. The analysis results of the obtained porous body are shown in Table 1.

<比較例1> 多孔質体(3)の製造
乳酸−リンゴ酸共重合体を用いなかった以外は実施例1と同様に多孔質体を製造した。得られた多孔質体の分析結果を表1に示した。
Comparative Example 1 Production of Porous Body (3) A porous body was produced in the same manner as in Example 1 except that the lactic acid-malic acid copolymer was not used. The analysis results of the obtained porous body are shown in Table 1.

Figure 2016210981
Figure 2016210981

<加水分解試験1>
実施例1,2及び比較例で製造した多孔質体(1)〜(3)各0.4gを、それぞれpH7.4のリン酸緩衝液4mLに浸漬し、37℃で静置した。所定の時間が経過した後試料を回収し、5℃の蒸留水で試料を洗浄した後、24時間室温にて真空乾燥して質量を測定した。加水分解による質量保持率は以下の式により算出した。
試験前の試料の質量をW、試験後の真空乾燥した試料の質量をWとすると、
質量保持率(%) = W/W ×100 (%)
結果を表2に示す。また、図1に実施例1、2および比較例1により得られた多孔質体の質量保持率の変化を示す。
<Hydrolysis test 1>
0.4 g of each of the porous bodies (1) to (3) produced in Examples 1 and 2 and Comparative Example was immersed in 4 mL of a phosphate buffer solution having a pH of 7.4 and allowed to stand at 37 ° C. After a predetermined time had elapsed, the sample was collected, washed with distilled water at 5 ° C., and then vacuum-dried at room temperature for 24 hours to measure the mass. Mass retention by hydrolysis was calculated by the following formula.
When the mass of the sample before the test is W 0 and the mass of the vacuum-dried sample after the test is W t ,
Mass retention (%) = W t / W 0 × 100 (%)
The results are shown in Table 2. Moreover, the change of the mass retention of the porous body obtained by Example 1, 2 and the comparative example 1 is shown in FIG.

Figure 2016210981
Figure 2016210981

<製造例2> 乳酸−アスパラギン酸共重合体(PAL)の製造
撹拌装置、脱気口をつけた500mlサイズのガラス製反応器に和光純薬製L−アスパラギン酸39.9g(0.3モル)、Purac社製90%L−乳酸300.3g(3.0モル)を装入した。反応器をオイルバスに漬け、180℃で窒素を流通させながら7時間脱水重合した。得られた固体を粉砕し、粉末状ポリマー(PAL)を得た。得られたPALについて、上述の方法により測定した重量平均分子量は3500であった。また、酸価は1.5mmol/gであった。
Production Example 2 Production of Lactic Acid-Aspartic Acid Copolymer (PAL) 3500 g (0.3 mol) of Wako Pure Chemical Industries L-aspartic acid was added to a 500 ml glass reactor equipped with a stirring device and a degassing port. ), 300.3 g (3.0 mol) of 90% L-lactic acid manufactured by Purac Co. was charged. The reactor was immersed in an oil bath and subjected to dehydration polymerization for 7 hours while flowing nitrogen at 180 ° C. The obtained solid was pulverized to obtain a powdery polymer (PAL). About the obtained PAL, the weight average molecular weight measured by the above-mentioned method was 3500. The acid value was 1.5 mmol / g.

<実施例3> 多孔質体(4)の製造
乳酸−リンゴ酸共重合体を製造例2で調製した乳酸−アスパラギン酸共重合体に変更した以外は実施例1と同様に多孔質体(4)を製造した。得られた多孔質体(4)の分析結果を表3に示した。
<Example 3> Production of porous body (4) Porous body (4) as in Example 1 except that the lactic acid-malic acid copolymer was changed to the lactic acid-aspartic acid copolymer prepared in Production Example 2. ) Was manufactured. The analysis result of the obtained porous body (4) is shown in Table 3.

<実施例4> 多孔質体(5)の製造
ポリ乳酸を80質量部、製造例2で調製した乳酸−アスパラギン酸共重合体を20質量部用いた以外は実施例3と同様に多孔質体(5)を製造した。得られた多孔質体(5)の分析結果を表3に示した。
<Example 4> Production of porous body (5) Porous body as in Example 3 except that 80 parts by mass of polylactic acid and 20 parts by mass of the lactic acid-aspartic acid copolymer prepared in Production Example 2 were used. (5) was produced. The analysis result of the obtained porous body (5) is shown in Table 3.

Figure 2016210981
Figure 2016210981

<加水分解試験2>
実施例3および4で製造した多孔質体(4)および(5)の加水分解試験を上述の実施例1の場合と同様に行った。結果を比較例1の結果と共に表4に示す。
<Hydrolysis test 2>
The hydrolysis tests of the porous bodies (4) and (5) produced in Examples 3 and 4 were performed in the same manner as in Example 1 described above. The results are shown in Table 4 together with the results of Comparative Example 1.

Figure 2016210981
Figure 2016210981

表2、表4の結果から、本発明の多孔質体は細孔が小さくても、加水分解速度が従来品より速いのは明らかである。   From the results of Tables 2 and 4, it is clear that the porous body of the present invention has a faster hydrolysis rate than conventional products even if the pores are small.

<実施例5>多孔質体(6)の製造
ポリ乳酸/PML混合物の濃度が15質量%となるように1,4−ジオキサンを加えた以外は実施例1と同様に製造し、多孔質体(1)よりも極大細孔径の小さい多孔質体(6)を製造した。
<Example 5> Production of porous body (6) The porous body was produced in the same manner as in Example 1 except that 1,4-dioxane was added so that the concentration of the polylactic acid / PML mixture was 15% by mass. A porous body (6) having a maximum pore diameter smaller than that of (1) was produced.

<実施例6>多孔質体(7)の製造
ポリ乳酸/PML混合物の濃度が15質量%となるように1,4−ジオキサンを加えた以外は実施例2と同様に製造し、多孔質体(2)よりも極大細孔径の小さい多孔質体(7)を製造した。
<Example 6> Production of porous body (7) The porous body was produced in the same manner as in Example 2 except that 1,4-dioxane was added so that the concentration of the polylactic acid / PML mixture was 15% by mass. A porous body (7) having a maximum pore diameter smaller than that of (2) was produced.

<比較例2> 多孔質体(8)の製造
ポリ乳酸の濃度を15%とした以外は比較例1と同様に多孔質体(8)を製造した。
<Comparative Example 2> Production of porous body (8) A porous body (8) was produced in the same manner as in Comparative Example 1 except that the concentration of polylactic acid was 15%.

<加水分解試験3>
実施例5および6で製造した多孔質(6)および(7)、比較例2で製造した多孔質体(8)の加水分解試験を上述の実施例1の場合と同様に行った。結果を表5に示す。
<Hydrolysis test 3>
The hydrolysis tests of the porous bodies (6) and (7) produced in Examples 5 and 6 and the porous body (8) produced in Comparative Example 2 were carried out in the same manner as in Example 1 above. The results are shown in Table 5.

Figure 2016210981
Figure 2016210981

表5から、細孔がより小さくなっても加水分解速度が従来品より速いのは明らかである。   From Table 5, it is clear that the hydrolysis rate is faster than the conventional product even if the pores are smaller.

Claims (14)

多価カルボン酸に由来する構成単位(a−1)及びヒドロキシカルボン酸に由来する構成単位(a−2)から構成される共重合体(A)と、生分解性樹脂(B)とを含有する生分解性樹脂多孔質体。   Contains a copolymer (A) composed of a structural unit (a-1) derived from a polycarboxylic acid and a structural unit (a-2) derived from a hydroxycarboxylic acid, and a biodegradable resin (B) Biodegradable resin porous body. 共重合体(A)と生分解性樹脂(B)との質量組成比[(A)/(B)]が、共重合体(A)と生分解性樹脂(B)との合計量を100として1/99〜50/50である請求項1に記載の生分解性樹脂多孔質体。   The mass composition ratio [(A) / (B)] of the copolymer (A) and the biodegradable resin (B) is 100% of the total amount of the copolymer (A) and the biodegradable resin (B). The biodegradable resin porous body according to claim 1, wherein the biodegradable resin porous body is 1/99 to 50/50. 共重合体(A)の構成単位(a−1)と構成単位(a−2)のモル組成比[(a−1)/(a−2)]が、1/1〜1/50である請求項1または2に記載の生分解性樹脂多孔質体。   The molar composition ratio [(a-1) / (a-2)] of the structural unit (a-1) and the structural unit (a-2) of the copolymer (A) is 1/1 to 1/50. The biodegradable resin porous body according to claim 1 or 2. 共重合体(A)の酸価が0.2mmol/g〜5mmol/gである請求項1〜3のいずれか1項に記載の生分解性樹脂多孔質体。   The biodegradable resin porous body according to any one of claims 1 to 3, wherein the acid value of the copolymer (A) is 0.2 mmol / g to 5 mmol / g. 共重合体(A)の重量平均分子量が1,000以上、50,000以下である請求項1〜3のいずれか1項に記載の生分解性樹脂多孔質体。   The biodegradable resin porous body according to any one of claims 1 to 3, wherein the copolymer (A) has a weight average molecular weight of 1,000 or more and 50,000 or less. 生分解性樹脂(B)の酸価が0.005mmol/g〜0.2mmol/gである請求項1〜3のいずれか1項に記載の生分解性樹脂多孔質体。   The biodegradable resin porous body according to any one of claims 1 to 3, wherein the biodegradable resin (B) has an acid value of 0.005 mmol / g to 0.2 mmol / g. 生分解性樹脂(B)の重量平均分子量が50,000超、500,000以下である請求項1〜3のいずれか1項に記載の生分解性樹脂多孔質体。   The biodegradable resin porous body according to any one of claims 1 to 3, wherein the biodegradable resin (B) has a weight average molecular weight of more than 50,000 and 500,000 or less. 多価カルボン酸に由来する構成単位(a−1)が、2価または3価の多価カルボン酸から選択される1種以上である請求項1〜5のいずれか1項に記載の生分解性樹脂多孔質体。   The biodegradation according to any one of claims 1 to 5, wherein the structural unit (a-1) derived from a polyvalent carboxylic acid is at least one selected from divalent or trivalent polyvalent carboxylic acids. Porous resin. 多価カルボン酸に由来する構成単位(a−1)が、アスパラギン酸、グルタミン酸、リンゴ酸、クエン酸、酒石酸から選択される1種以上である請求項8に記載の生分解性樹脂多孔質体。   The biodegradable resin porous body according to claim 8, wherein the structural unit (a-1) derived from a polyvalent carboxylic acid is at least one selected from aspartic acid, glutamic acid, malic acid, citric acid, and tartaric acid. . ヒドロキシカルボン酸に由来する構成単位(a−2)が、乳酸、グリコール酸から選択される1種以上に由来する構成単位である請求項1〜5のいずれか1項に記載の生分解性樹脂多孔質体。   The biodegradable resin according to any one of claims 1 to 5, wherein the structural unit (a-2) derived from hydroxycarboxylic acid is a structural unit derived from one or more selected from lactic acid and glycolic acid. Porous body. 生分解性樹脂(B)が脂肪族ポリエステルである請求項10に記載の生分解性樹脂多孔質体。   The biodegradable resin porous body according to claim 10, wherein the biodegradable resin (B) is an aliphatic polyester. 生分解性樹脂(B)がポリ乳酸である請求項10に記載の生分解性樹脂多孔質体。   The biodegradable resin porous body according to claim 10, wherein the biodegradable resin (B) is polylactic acid. 空隙率が60%以上である、請求項1〜12のいずれか1項に記載の生分解性樹脂多孔質体。   The biodegradable resin porous body according to any one of claims 1 to 12, wherein the porosity is 60% or more. 水銀圧入法による極大細孔直径が100μm以下である、請求項1〜13のいずれか1項に記載の生分解性樹脂多孔質体。   The biodegradable resin porous body according to any one of claims 1 to 13, wherein a maximum pore diameter by a mercury intrusion method is 100 µm or less.
JP2016089165A 2015-05-08 2016-04-27 Biodegradable resin porous body Active JP6950885B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015095601 2015-05-08
JP2015095601 2015-05-08

Publications (2)

Publication Number Publication Date
JP2016210981A true JP2016210981A (en) 2016-12-15
JP6950885B2 JP6950885B2 (en) 2021-10-13

Family

ID=57552329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016089165A Active JP6950885B2 (en) 2015-05-08 2016-04-27 Biodegradable resin porous body

Country Status (1)

Country Link
JP (1) JP6950885B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019127573A (en) * 2018-01-26 2019-08-01 学校法人立教学院 Method for hydrolyzing resin composition
JP7471049B2 (en) 2018-06-07 2024-04-19 株式会社日本触媒 Cosmetic composition containing biodegradable resin particles

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11240941A (en) * 1998-02-26 1999-09-07 Nishikawa Rubber Co Ltd Production of hydrolyzable and biodegradable polyhydroxycarboxylic acid copolymer resin
JP2005036178A (en) * 2003-05-08 2005-02-10 Nishikawa Rubber Co Ltd Biodegradable resin composition and biodegradable resin-molded article
WO2006129731A1 (en) * 2005-06-01 2006-12-07 Mitsui Chemicals, Inc. Biodegradable polyester fiber
JP2008179788A (en) * 2006-12-27 2008-08-07 National Institute Of Advanced Industrial & Technology Resin composition containing physiologically active substance and its preparation method
WO2012023465A1 (en) * 2010-08-18 2012-02-23 東レ株式会社 Porous film
WO2012137681A1 (en) * 2011-04-01 2012-10-11 三井化学株式会社 Biodegradable resin composition and molded article thereof
WO2014038608A1 (en) * 2012-09-07 2014-03-13 三井化学株式会社 Aqueous dispersion, and additive for fracturing work

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11240941A (en) * 1998-02-26 1999-09-07 Nishikawa Rubber Co Ltd Production of hydrolyzable and biodegradable polyhydroxycarboxylic acid copolymer resin
JP2005036178A (en) * 2003-05-08 2005-02-10 Nishikawa Rubber Co Ltd Biodegradable resin composition and biodegradable resin-molded article
WO2006129731A1 (en) * 2005-06-01 2006-12-07 Mitsui Chemicals, Inc. Biodegradable polyester fiber
JP2008179788A (en) * 2006-12-27 2008-08-07 National Institute Of Advanced Industrial & Technology Resin composition containing physiologically active substance and its preparation method
WO2012023465A1 (en) * 2010-08-18 2012-02-23 東レ株式会社 Porous film
WO2012137681A1 (en) * 2011-04-01 2012-10-11 三井化学株式会社 Biodegradable resin composition and molded article thereof
WO2014038608A1 (en) * 2012-09-07 2014-03-13 三井化学株式会社 Aqueous dispersion, and additive for fracturing work

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019127573A (en) * 2018-01-26 2019-08-01 学校法人立教学院 Method for hydrolyzing resin composition
JP7049627B2 (en) 2018-01-26 2022-04-07 学校法人立教学院 Hydrolysis method of resin composition
JP7471049B2 (en) 2018-06-07 2024-04-19 株式会社日本触媒 Cosmetic composition containing biodegradable resin particles

Also Published As

Publication number Publication date
JP6950885B2 (en) 2021-10-13

Similar Documents

Publication Publication Date Title
Tsuji Poly (lactide) stereocomplexes: formation, structure, properties, degradation, and applications
JP6016577B2 (en) Polylactic acid-containing block copolymer grafted polyrotaxane and resin composition containing the block copolymer grafted polyrotaxane
Shinoda et al. Amphiphilic biodegradable copolymer, poly (aspartic acid-co-lactide): acceleration of degradation rate and improvement of thermal stability for poly (lactic acid), poly (butylene succinate) and poly (ε-caprolactone)
JP6950885B2 (en) Biodegradable resin porous body
CN108291029B (en) Copolymer, process for producing the same, and resin composition
Hwang et al. Synthesis, physical properties and enzymatic degradation of poly (oxyethylene-b-butylene succinate) ionomers
Wu et al. Preparation and properties of BMPLGA/NBAG-β-TCP composite scaffold materials
Jahno et al. Chemical synthesis and in vitro biocompatibility tests of poly (l‐lactic acid)
JP5823500B2 (en) Biodegradable resin composition and molded body thereof
Lu et al. Synthesis and characterization of amphiphilic biodegradable hyperbranched-linear-hyperbranched copolymers based on PEG, PLA, and BHP
Leng et al. Rheological properties and crystallization behavior of comb-like graft poly (L-lactide): influences of graft length and graft density
JP6717459B2 (en) Nanofiber manufacturing method
Wang et al. Degradation and 5‐fluorouracil release behavior in vitro of polycaprolactone/poly (ethylene oxide)/polylactide tri‐component copolymer† 1
Duarte et al. In vitro degradation of poly (L-co-D, L lactic acid) containing PCL-T
Yao et al. Synthesis and characterization of multiblock copolymers based on l‐lactic acid, citric acid, and poly (ethylene glycol)
Chen et al. In vitro degradation of biodegradable blending materials based on poly (p‐dioxanone) and poly (vinyl alcohol)‐graft‐poly (p‐dioxanone) with high molecular weights
Zhu et al. Cellulose diacetate-g-poly (p-dioxanone) co-polymer: synthesis, properties and microsphere preparation
Jin et al. Biodegradation behaviors of poly (p-dioxanone) in different environment media
Ding et al. Preparation, characterization and hydrolytic degradation of poly [p-dioxanone-(butylene succinate)] multiblockcopolymer
JP7049627B2 (en) Hydrolysis method of resin composition
Han et al. Biodegradation behavior of amorphous polyhydroxyalkanoate-incorporated poly (l-lactic acid) under modulated home-composting conditions
JP6679072B2 (en) Resin composition and hydrolysis method thereof
JP2000345033A (en) Resin composition
JP5098443B2 (en) Polylactic acid separation membrane and method for producing the same
Xiong et al. Synthesis, characterization and degradation of poly (dl-lactide)-block-polyvinylpyrrolidone-block-poly (dl-lactide) copolymers

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160428

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210817

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210913

R150 Certificate of patent or registration of utility model

Ref document number: 6950885

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150