JP2016210740A - Fluidized bed reactor and nitrile compound production process using the same - Google Patents

Fluidized bed reactor and nitrile compound production process using the same Download PDF

Info

Publication number
JP2016210740A
JP2016210740A JP2015096850A JP2015096850A JP2016210740A JP 2016210740 A JP2016210740 A JP 2016210740A JP 2015096850 A JP2015096850 A JP 2015096850A JP 2015096850 A JP2015096850 A JP 2015096850A JP 2016210740 A JP2016210740 A JP 2016210740A
Authority
JP
Japan
Prior art keywords
tubular
fluidized bed
partition plate
bed reactor
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015096850A
Other languages
Japanese (ja)
Other versions
JP6488869B2 (en
Inventor
高橋 哲也
Tetsuya Takahashi
哲也 高橋
俊介 木内
Shunsuke Kiuchi
俊介 木内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2015096850A priority Critical patent/JP6488869B2/en
Publication of JP2016210740A publication Critical patent/JP2016210740A/en
Application granted granted Critical
Publication of JP6488869B2 publication Critical patent/JP6488869B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress the accumulation of a catalyst on a partition plate within a fluidized bed reactor.SOLUTION: The fluidized bed reactor includes a partition plate (5) partitioning the inside of a fluidized bed reactor (11) into a lower region (A) and an upper region (B) and in which an opening area (25) is formed, and a tubular article (6) having open opening ends at both ends is provided in the opening area (25) of the partition plate (5).SELECTED DRAWING: Figure 1

Description

本発明は、流動床反応器及びそれを用いたニトリル化合物の製造方法に関し、より詳細には、内部を2区画に仕切る仕切り板を有する流動床反応器及びそれを用いたニトリル化合物の製造方法に関する。   The present invention relates to a fluidized bed reactor and a method for producing a nitrile compound using the same, and more particularly to a fluidized bed reactor having a partition plate for partitioning the interior into two compartments and a method for producing a nitrile compound using the same. .

流動床反応器は、様々な工業反応に用いられている。例えば、アクリロニトリル等のニトリル化合物は、流動床反応器を用いたアンモ酸化反応により工業的に製造されている。アンモ酸化反応とは、プロピレン等の炭化水素と、アンモニアと、空気等の酸素含有ガスとを原料として流動床反応器に導入し、金属酸化物触媒の存在下、気相酸化反応によってニトリル化合物を製造する方法である(特許文献1)。   Fluidized bed reactors are used for various industrial reactions. For example, nitrile compounds such as acrylonitrile are industrially produced by an ammoxidation reaction using a fluidized bed reactor. An ammoxidation reaction is a process in which a hydrocarbon such as propylene, ammonia, and an oxygen-containing gas such as air are introduced as raw materials into a fluidized bed reactor, and a nitrile compound is formed by a gas phase oxidation reaction in the presence of a metal oxide catalyst. This is a manufacturing method (Patent Document 1).

一般的に、流動床反応器内の反応によって生成した反応気体は、流動床反応器内の上部に設置されたサイクロンによって触媒と分離された後、流動床反応器外へ排出される。このとき、サイクロンの上部の水平になっている箇所に触媒が堆積すると、触媒粒子の表面が粘着性を帯びてきて粒子同士が付着し、ブロック化する。このブロック状になった触媒が触媒層に落下すると、反応ガスの流れを乱したり、極端な場合は触媒の流動層全体がねばりを帯びて流動不能になり、反応気体が局部的に吹き抜けたりする虞がある。   Generally, the reaction gas generated by the reaction in the fluidized bed reactor is separated from the catalyst by a cyclone installed in the upper part of the fluidized bed reactor, and then discharged out of the fluidized bed reactor. At this time, if the catalyst is deposited on the horizontal portion of the upper part of the cyclone, the surfaces of the catalyst particles become sticky, and the particles adhere to each other and block. If this blocked catalyst falls on the catalyst layer, the flow of the reaction gas is disturbed, or in the extreme case, the entire fluidized bed of the catalyst becomes sticky and cannot flow, and the reaction gas blows off locally. There is a risk of doing.

そこで、特許文献2には、流動床反応器の内部を、触媒が充填されている下部領域と、それ以外の上部領域とに仕切る仕切り板を設置することによって、サイクロン上で堆積してブロック状になった触媒が、触媒層に落下することを抑制する方法が開示されている。さらに、特許文献2には、流動床反応器の上部から不活性ガスを導入することにより、上部領域から下部領域へのガスの流れを形成し、触媒が上部領域側に流入することを抑制する方法も開示されている。   Therefore, in Patent Document 2, a partition plate that partitions the inside of a fluidized bed reactor into a lower region filled with a catalyst and an upper region other than that is deposited on a cyclone to form a block shape. There is disclosed a method for suppressing the catalyst that has become a catalyst layer from falling on the catalyst layer. Furthermore, in Patent Document 2, by introducing an inert gas from the upper part of the fluidized bed reactor, a gas flow from the upper region to the lower region is formed, and the catalyst is prevented from flowing into the upper region side. A method is also disclosed.

特開2006−247452号公報JP 2006-247452 A 特開2005−193172号公報JP 2005-193172 A

流動床反応器内の仕切り板が薄いと、反応圧力に耐え切れず仕切り板が壊れてしまう場合がある。そこで、下部領域及び上部領域の間で高い圧力差をもたないように、仕切り板に必要な均圧管又は穴を設けることによって、下部領域及び上部領域の2区画を均圧に保っている。   If the partition plate in the fluidized bed reactor is thin, the partition plate may be broken because it cannot withstand the reaction pressure. Therefore, by providing a pressure equalizing pipe or a hole necessary for the partition plate so as not to have a high pressure difference between the lower region and the upper region, the two sections of the lower region and the upper region are kept at a uniform pressure.

ここで、特許文献2のように流動床反応器の上部から不活性ガスを導入する場合、ガスは上部領域から下部領域に流れる。つまり、上部領域は、下部領域よりも圧力が若干高い状態になっている。しかし、上部領域と下部領域との間の差圧は、上部領域と下部領域との均圧を保つ目的から小さくする必要があるので、通常運転時の圧力変動により、または極端な場合は流動床反応器外への排出口の閉塞等により下部領域側の圧力が急激に上昇すると、反応気体が上部領域側に逆流し、触媒も反応気体に同伴して逆流する。   Here, when the inert gas is introduced from the upper part of the fluidized bed reactor as in Patent Document 2, the gas flows from the upper region to the lower region. That is, the upper region is in a slightly higher pressure than the lower region. However, the pressure difference between the upper and lower regions must be reduced for the purpose of maintaining a uniform pressure between the upper and lower regions. When the pressure on the lower region side suddenly increases due to the closure of the discharge port to the outside of the reactor, the reaction gas flows backward to the upper region side, and the catalyst also flows backward accompanying the reaction gas.

このように、特許文献2に開示されているような従来の方法では、上部領域側への触媒の流入を完全に抑制することができない。反応気体に同伴して触媒が上部領域側に逆流すると、仕切り板上に触媒が堆積し、仕切り板の材質劣化及び材質腐食等を引き起こす可能性がある。また、触媒が仕切り板上に堆積することで、上部領域において未反応の原料ガスまたは反応生成物が燃焼反応を起こしたり(アフターバーニング)、悪影響を与えたりする可能性がある。さらに、堆積した触媒の重みで仕切り板が変形したり、極端な場合には破損したりする可能性がある。   As described above, the conventional method as disclosed in Patent Document 2 cannot completely suppress the inflow of the catalyst to the upper region side. If the catalyst flows back to the upper region side accompanying the reaction gas, the catalyst is deposited on the partition plate, which may cause deterioration of the partition plate material, material corrosion, and the like. Further, when the catalyst is deposited on the partition plate, the unreacted raw material gas or the reaction product may cause a combustion reaction (afterburning) in the upper region or may have an adverse effect. Furthermore, the partition plate may be deformed by the weight of the accumulated catalyst, or may be damaged in an extreme case.

そこで、本発明は、上記の課題に鑑みてなされたものであり、その目的は、流動床反応器内の仕切り板に触媒が堆積することを抑制することができる流動床反応器及びそれを用いたニトリル化合物の製造方法を提供することにある。   Therefore, the present invention has been made in view of the above problems, and an object of the present invention is to provide a fluidized bed reactor capable of suppressing the catalyst from being deposited on the partition plate in the fluidized bed reactor and the use thereof. Another object of the present invention is to provide a method for producing a nitrile compound.

上記の課題を解決するために、本発明の一態様に係る流動床反応器は、流動床反応器の内部を下部領域と上部領域とに仕切り、開口部が形成されている仕切り板を備え、両端に、開口している開口端を有する管状物は、前記仕切り板の開口部に設けられている。   In order to solve the above problems, a fluidized bed reactor according to an aspect of the present invention includes a partition plate in which an interior of the fluidized bed reactor is partitioned into a lower region and an upper region, and an opening is formed. Tubular objects having open ends that are open at both ends are provided at the openings of the partition plate.

流動床反応器の仕切り板の下部領域で生成された反応気体が上部領域側に逆流し、触媒も反応気体に同伴して逆流する場合がある。上記の構成によれば、反応気体に同伴して流動床反応器の下部領域から上部領域の方に流れる触媒を、管状物によって下部領域側に落下させることができるため、仕切り板上に触媒が堆積することを抑制することができる。   In some cases, the reaction gas generated in the lower region of the partition plate of the fluidized bed reactor flows backward to the upper region side, and the catalyst also flows back along with the reaction gas. According to the above configuration, since the catalyst that flows along with the reaction gas and flows from the lower region of the fluidized bed reactor toward the upper region can be dropped to the lower region side by the tubular material, the catalyst is placed on the partition plate. Accumulation can be suppressed.

そのため、仕切り板上に触媒が堆積することで仕切り板の材質劣化及び材質腐食等を引き起こすことを抑制することができる。また、触媒が仕切り板上に堆積することで流動床反応器内の反応に悪影響を与えることも抑制することができる。   Therefore, it is possible to suppress the deterioration of the material of the partition plate and the material corrosion caused by the accumulation of the catalyst on the partition plate. Moreover, it can also suppress that a reaction in a fluidized bed reactor is adversely affected by depositing a catalyst on a partition plate.

また、本発明の一態様に係る流動床反応器においては、前記管状物は、前記開口部に嵌入又は開口端が密接して前記仕切り板に設けられている。   Moreover, in the fluidized bed reactor which concerns on 1 aspect of this invention, the said tubular thing is fitted in the said opening part, or the opening edge is closely_contact | adhered and it is provided in the said partition plate.

また、本発明の一態様に係る流動床反応器においては、前記管状物は、前記下部領域から前記上部領域に向かうにつれて、前記管状物内の流路面積が大きくなる部分を有している。   Moreover, in the fluidized bed reactor which concerns on 1 aspect of this invention, the said tubular thing has a part from which the flow-path area in the said tubular thing becomes large as it goes to the said upper area | region from the said lower area | region.

上記の構成によれば、管状物の下部開口端から上部開口端に向かうにつれて、管状物内の流路面積が大きくなるため、触媒を同伴している反応気体が管状物内を通過する流速を落とすことができる。これにより、触媒を、再び管状物を通って下部領域側に自然落下させることができる。   According to the above configuration, as the flow path area in the tubular object increases from the lower opening end of the tubular object to the upper opening end, the flow rate at which the reaction gas accompanying the catalyst passes through the tubular object is increased. Can be dropped. Thereby, the catalyst can be naturally dropped again through the tubular object to the lower region side.

また、本発明の一態様に係る流動床反応器においては、前記管状物内の流路面積は、前記下部領域から前記上部領域にかけて略一定である。   In the fluidized bed reactor according to an aspect of the present invention, the flow path area in the tubular material is substantially constant from the lower region to the upper region.

上記の構成によれば、反応気体に同伴して流動床反応器の下部領域から上部領域の方に流れる触媒を、管状物によって下部領域側に落下させることができるため、仕切り板上に触媒が堆積することを抑制することができる。   According to the above configuration, since the catalyst that flows along with the reaction gas and flows from the lower region of the fluidized bed reactor toward the upper region can be dropped to the lower region side by the tubular material, the catalyst is placed on the partition plate. Accumulation can be suppressed.

また、本発明の一態様に係る流動床反応器においては、前記管状物内には、邪魔板が設けられている。   Moreover, in the fluidized bed reactor which concerns on 1 aspect of this invention, the baffle plate is provided in the said tubular thing.

上記の構成によれば、下部領域から管状物を通って上部領域の方へ流れる触媒が邪魔板に衝突するため、管状物の上部開口端から上部領域側に飛散する触媒の量を低減することができる。   According to the above configuration, since the catalyst flowing from the lower region through the tubular member toward the upper region collides with the baffle plate, the amount of catalyst scattered from the upper opening end of the tubular member to the upper region side is reduced. Can do.

また、本発明の一態様に係る流動床反応器においては、前記管状物内には、少なくとも1つのオリフィスが形成されたオリフィス板が設けられている。さらに、各前記オリフィスは、前記下部領域から前記上部領域に向かうにつれて、前記管状物内の流路面積が大きくなることが好ましい。   In the fluidized bed reactor according to one aspect of the present invention, an orifice plate in which at least one orifice is formed is provided in the tubular material. Furthermore, it is preferable that the flow path area in the said tubular thing becomes large as each said orifice goes to the said upper area | region from the said lower area | region.

上記の構成によれば、管状物の各オリフィスが、管状物の下部開口端から上部開口端に向かうにつれて、管状物内の流路面積が大きくなる形状(絞り部分)を有しているため、触媒を同伴している反応気体が管状物内を通過する流速を落とすことができ、触媒を、再び管状物を通って下部領域側に自然落下させることができる。   According to the above configuration, each orifice of the tubular object has a shape (throttle portion) in which the flow passage area in the tubular object increases as it goes from the lower opening end of the tubular object to the upper opening end. The flow rate at which the reaction gas accompanying the catalyst passes through the tubular material can be reduced, and the catalyst can be naturally dropped again through the tubular material to the lower region side.

また、本発明の一態様に係る流動床反応器においては、前記仕切り板には、複数の前記開口部が形成されており、前記複数の開口部は、前記仕切り板上に均等配置されている。   In the fluidized bed reactor according to one aspect of the present invention, the partition plate is formed with a plurality of the openings, and the plurality of openings are equally arranged on the partition plate. .

上記の構成によれば、流動床反応器の下部領域に乱流が生じることを防ぐことができ、流動床反応器内の反応への悪影響を最小限にすることができる。   According to said structure, it can prevent that a turbulent flow arises in the lower area | region of a fluidized bed reactor, and it can minimize the bad influence on the reaction in a fluidized bed reactor.

なお、前述した流動床反応器を用いて、ニトリル化合物を製造してもよく、この場合には、前述した流動床反応器を用いるニトリル化合物の製造方法も、本発明の範疇に入る。   In addition, you may manufacture a nitrile compound using the fluidized bed reactor mentioned above, In this case, the manufacturing method of the nitrile compound which uses the fluidized bed reactor mentioned above also falls under the category of the present invention.

本発明の一態様によれば、反応気体に同伴して流動床反応器の下部領域から上部領域の方に流れる触媒を、管状物によって下部領域側に落下させることができるため、仕切り板上に触媒が堆積することを抑制することができる。   According to one aspect of the present invention, the catalyst entrained with the reaction gas and flowing from the lower region to the upper region of the fluidized bed reactor can be dropped to the lower region side by the tubular material. Accumulation of the catalyst can be suppressed.

本発明の一実施形態に係る流動床反応器の縦断面図である。It is a longitudinal cross-sectional view of the fluidized bed reactor which concerns on one Embodiment of this invention. 本発明の一実施形態に係る管状物の一例を示す縦断面図である。It is a longitudinal section showing an example of a tubular thing concerning one embodiment of the present invention. 図中の(a)及び(b)は、本発明の一実施形態に係る管状物の他の例を示す縦断面図である。(A) and (b) in a figure is a longitudinal section showing other examples of a tubular thing concerning one embodiment of the present invention. 図中の(a)〜(e)は、本発明の一実施形態に係る管状物の他の例を示す斜視図である。(A)-(e) in a figure is a perspective view which shows the other example of the tubular article which concerns on one Embodiment of this invention.

以下、本発明の実施の形態について、詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

〔流動床反応器の構成〕
本実施形態に係る流動床反応器の縦断面図を図1に示す。本実施形態に係る流動床反応器11は、例えば、アクリロニトリルの製造、塩化ビニルの製造、または無水マレイン酸の製造等に用いられる。以下では、流動床反応器11において、プロピレンと、アンモニアと、空気とを気相酸化反応させることによってアクリロニトリルを製造する方法を例に挙げて、本発明の実施の形態を説明する。
[Configuration of fluidized bed reactor]
A longitudinal sectional view of a fluidized bed reactor according to this embodiment is shown in FIG. The fluidized bed reactor 11 according to this embodiment is used, for example, for the production of acrylonitrile, the production of vinyl chloride, or the production of maleic anhydride. In the following, an embodiment of the present invention will be described by taking as an example a method for producing acrylonitrile by subjecting propylene, ammonia and air to a gas phase oxidation reaction in the fluidized bed reactor 11.

図1に示すように、流動床反応器11は、内部を下部領域Aと上部領域Bとの2区画に仕切り、開口部25が形成されている仕切り板5、および、両端が開口しており、前記仕切り板5の開口部25に嵌入又は開口端が密接して前記仕切り板5に設けられている管状物6を有している。本図では、管状物6は、仕切り板5の開口部25に嵌入されている。   As shown in FIG. 1, the fluidized bed reactor 11 is divided into two sections of a lower region A and an upper region B, the partition plate 5 in which an opening 25 is formed, and both ends are open. The tubular member 6 is provided in the partition plate 5 so that the opening portion 25 of the partition plate 5 is fitted in or close to the opening end. In this figure, the tubular object 6 is fitted in the opening 25 of the partition plate 5.

流動床反応器11の下部領域Aには、触媒7が充填されている。酸化反応では、触媒7としてモリブデン、鉄又はアンチモン等を含有する金属酸化物触媒等が好適に用いられる。また、流動床反応器11の下部領域Aには、空気1を導入するための空気導入管12、空気導入管12から導入された空気1を下部領域A内に吹き出すための吹き出し口13、反応原料を導入するための原料導入管14、及び内部に冷媒4を通した冷却コイル15が設けられている。本例の酸化反応では、反応原料としてプロピレンとアンモニアとの混合気体2を導入する。   The lower region A of the fluidized bed reactor 11 is filled with the catalyst 7. In the oxidation reaction, a metal oxide catalyst containing molybdenum, iron, antimony, or the like is preferably used as the catalyst 7. Further, in the lower region A of the fluidized bed reactor 11, an air introduction pipe 12 for introducing air 1, a blowout port 13 for blowing out the air 1 introduced from the air introduction pipe 12 into the lower region A, a reaction A raw material introduction pipe 14 for introducing the raw material and a cooling coil 15 through which the refrigerant 4 passes are provided. In the oxidation reaction of this example, a mixed gas 2 of propylene and ammonia is introduced as a reaction raw material.

流動床反応器11では、空気導入管12から空気1を導入し、吹き出し口13から空気1を吹き出すことにより、下部領域A内に充填されている触媒7を流動化させる。原料導入管14から混合気体2が導入され、前記混合気体2と空気1とを接触させることにより、空気1中の酸素により酸化反応が起こり、生成物が得られる。本例の酸化反応では、プロピレン1当量あたり、1当量のアクリロニトリル及び3当量の水が生成される。この際、酸化反応の反応温度を適切な温度に一定に保つために、内部に冷媒4を通した冷却コイル15で流動床反応器11内の反応気体3を冷却して温度制御を行いながら酸化反応を行っている。   In the fluidized bed reactor 11, the air 7 is introduced from the air introduction pipe 12 and the air 1 is blown out from the outlet 13, thereby fluidizing the catalyst 7 filled in the lower region A. When the mixed gas 2 is introduced from the raw material introduction pipe 14 and the mixed gas 2 and the air 1 are brought into contact with each other, an oxidation reaction occurs due to oxygen in the air 1 and a product is obtained. In the oxidation reaction of this example, 1 equivalent of acrylonitrile and 3 equivalents of water are produced per 1 equivalent of propylene. At this time, in order to keep the reaction temperature of the oxidation reaction constant at an appropriate temperature, the reaction gas 3 in the fluidized bed reactor 11 is cooled by the cooling coil 15 through which the refrigerant 4 is passed and the temperature is controlled while the temperature is controlled. The reaction is going on.

流動床反応器11の上部領域Bには、仕切り板5に挿通され、酸化反応によって生成した化合物を含む反応気体3を回収するための反応気体回収管16、反応気体回収管16によって回収された反応気体3から触媒7を分離するサイクロン17、サイクロン17によって触媒7が分離された反応気体3を流動床反応器11外部に抜き出すための製品抜出管18、及び製品抜出管18から抜き出された反応気体3を冷却するための熱交換器19が設けられている。   In the upper region B of the fluidized bed reactor 11, the reaction gas is recovered by the reaction gas recovery pipe 16 and the reaction gas recovery pipe 16 that are inserted into the partition plate 5 and recover the reaction gas 3 containing the compound generated by the oxidation reaction. A cyclone 17 for separating the catalyst 7 from the reaction gas 3, a product extraction pipe 18 for extracting the reaction gas 3 from which the catalyst 7 has been separated by the cyclone 17 to the outside of the fluidized bed reactor 11, and a product extraction pipe 18 A heat exchanger 19 for cooling the reaction gas 3 is provided.

酸化反応によって生成された化合物を含む反応気体3は、反応気体回収管16によって回収された後、サイクロン17によって触媒7と分離され、未反応の原料及び副生不純物を含んだ反応気体3として製品抜出管18から抜き出される。抜き出された反応気体3を熱交換器19によって冷却した後、精製することによって、最終的な製品が得られる。   The reaction gas 3 containing the compound produced by the oxidation reaction is recovered by the reaction gas recovery pipe 16 and then separated from the catalyst 7 by the cyclone 17 to produce the product as the reaction gas 3 containing unreacted raw materials and by-product impurities. It is extracted from the extraction tube 18. The extracted reaction gas 3 is cooled by the heat exchanger 19 and then purified to obtain a final product.

なお、流動床反応器11の上部領域Bには、酸化反応に悪影響を与えない気体20(例えば、空気、不活性ガス又は水蒸気等)を導入する気体導入管21が設けられている。気体導入管21から気体20を導入することにより、上部領域Bから下部領域Aへの気流を形成し、触媒7が上部領域B側に流入して仕切り板5上に堆積することを抑制することができる。   In the upper region B of the fluidized bed reactor 11, a gas introduction pipe 21 for introducing a gas 20 (for example, air, inert gas or water vapor) that does not adversely affect the oxidation reaction is provided. By introducing the gas 20 from the gas introduction pipe 21, an air flow from the upper region B to the lower region A is formed, and the catalyst 7 is prevented from flowing into the upper region B side and accumulating on the partition plate 5. Can do.

流動床反応器11の本体、仕切り板5及び管状物6等、流動床反応器11を構成する各種部材の材料は、酸化反応に耐え得る金属材料であれば特に限定はなく、カーボンスチール又はステンレススチール等を用いることができる。カーボンスチールとしては、特に限定はないが、S45C、S55C又はS65C等を好適に用いることができる。また、ステンレススチールとしては、特に限定はないが、SUS27、SUS304、SUS304L、SUS316又はSUS316L等を好適に用いることができる。   The material of the various members constituting the fluidized bed reactor 11 such as the main body of the fluidized bed reactor 11, the partition plate 5 and the tubular material 6 is not particularly limited as long as it is a metal material that can withstand the oxidation reaction. Steel or the like can be used. Although there is no limitation in particular as carbon steel, S45C, S55C, or S65C etc. can be used conveniently. The stainless steel is not particularly limited, but SUS27, SUS304, SUS304L, SUS316, SUS316L, or the like can be suitably used.

金属材料で形成した各種部材には、必要に応じて溶射又はメッキ処理等によって表面処理を施すこともできる。溶射又はメッキ処理等で形成される金属皮膜を構成する金属としては、例えば、モリブデン、銅、銀、チタン、アルミニウム、クロム及びニッケル等の金属、INCONEL(登録商標)等のニッケル−クロム−モリブデン−鉄を含む合金、INCOLOY(登録商標)等のアルミニウム−クロム−鉄を含む合金、HASTELLOY(登録商標)等のニッケル−モリブデン−タングステンを含む合金、MONEL(登録商標)等のニッケル−銅を含む合金、STELLITE(登録商標)等のコバルト−クロム−タングステンを含む合金、SUS304及びSUS27等のニッケル−クロム−鉄からなるステンレス合金、サーメット、クロムカーバイドあるいは酸化チタン等が挙げられ、これらを単独又は複合して用いることができる。   Various members formed of a metal material can be subjected to surface treatment by thermal spraying or plating treatment as necessary. Examples of the metal constituting the metal film formed by thermal spraying or plating include metals such as molybdenum, copper, silver, titanium, aluminum, chromium and nickel, and nickel-chromium-molybdenum- such as INCONEL (registered trademark). Alloys including iron, alloys including aluminum-chromium-iron such as INCOLOY (registered trademark), alloys including nickel-molybdenum-tungsten such as HASTELLOY (registered trademark), alloys including nickel-copper such as MONEL (registered trademark) , Alloys including cobalt-chromium-tungsten such as STELLITE (registered trademark), stainless steel alloys made of nickel-chromium-iron such as SUS304 and SUS27, cermet, chromium carbide or titanium oxide. Can be used.

〔仕切り板の機能〕
仕切り板5には、両端が開口している管状物6が設けられているため、仕切り板5は、実質的に開口している。流動床反応器11内は、仕切り板5が開口していることで下部領域A及び上部領域Bの2区画が均圧に保たれている。
[Function of partition plate]
Since the partition plate 5 is provided with a tubular object 6 that is open at both ends, the partition plate 5 is substantially open. In the fluidized bed reactor 11, the two sections of the lower region A and the upper region B are maintained at a uniform pressure by opening the partition plate 5.

ここで、流動床反応器11の上部領域Bでは気体導入管21から気体20を導入しているため、反応気体3が上部領域B側に逆流し、触媒7も反応気体3に同伴して逆流する場合がある。   Here, since the gas 20 is introduced from the gas introduction pipe 21 in the upper region B of the fluidized bed reactor 11, the reaction gas 3 flows backward to the upper region B side, and the catalyst 7 also flows back with the reaction gas 3. There is a case.

逆流した触媒7がサイクロン17上に堆積すると、触媒粒子の表面が粘着性を帯びてきて粒子同士が付着し、ブロック化する。流動床反応器11では、仕切り板5を設置することにより、このブロック状になった触媒7が、触媒層に落下することを抑制している。   When the back-flowed catalyst 7 is deposited on the cyclone 17, the surfaces of the catalyst particles become sticky and the particles adhere to each other and block. In the fluidized bed reactor 11, by installing the partition plate 5, the block-shaped catalyst 7 is suppressed from falling on the catalyst layer.

〔管状物の機能〕
逆流した触媒7が仕切り板5上に堆積すると、仕切り板5の材質劣化及び材質腐食等を引き起こす可能性がある。
[Function of tubular material]
If the back-flowed catalyst 7 accumulates on the partition plate 5, there is a possibility that the material of the partition plate 5 is deteriorated and the material is corroded.

そこで、流動床反応器11では、管状物6が仕切り板5の開口部25に嵌入又は管状物6の開口端が密接して設けられていることにより、反応気体3に同伴して流動床反応器11の下部領域Aから前記管状物6を通って上部領域Bの方に流れる触媒7を、下部領域A側に落下させている。   Therefore, in the fluidized bed reactor 11, the tubular product 6 is fitted into the opening 25 of the partition plate 5, or the open end of the tubular product 6 is closely provided, so that the fluidized bed reaction is accompanied by the reaction gas 3. The catalyst 7 flowing from the lower region A of the vessel 11 to the upper region B through the tubular material 6 is dropped to the lower region A side.

図2に、管状物6の縦断面図を示す。図2に示すように、管状物6は、2つの開口端(下部開口端10a及び上部開口端10b)を有する筒状の部材である。管状物6は、反応気体3に同伴して流動床反応器11の下部領域Aから前記管状物6を通って上部領域Bの方に流れる触媒7を、下部領域A側に落下させるために、下部領域から上部領域(すなわち、下部開口端10aから上部開口端10b)に向かうにつれて、管状物6内の流路面積が大きくなる絞り部分を有している。本図の管状物6には、管状物6内の流路面積が大きくなる絞り部分が2箇所に設けられている。   In FIG. 2, the longitudinal cross-sectional view of the tubular article 6 is shown. As shown in FIG. 2, the tubular object 6 is a cylindrical member having two open ends (a lower open end 10a and an upper open end 10b). In order to drop the catalyst 7 flowing along the reaction gas 3 from the lower region A of the fluidized bed reactor 11 through the tubular material 6 toward the upper region B to the lower region A side, There is a constricted portion in which the flow path area in the tubular object 6 increases from the lower region toward the upper region (that is, from the lower opening end 10a to the upper opening end 10b). The tubular object 6 in this figure is provided with two narrowed portions where the flow path area in the tubular object 6 increases.

管状物6の下部開口端10aから上部開口端10bに向かうにつれて、管状物6内の流路面積が大きくなる絞り部分を有していることにより、触媒7を同伴している反応気体3が管状物6内を通過する流速を落とすことができる。具体的には、触媒7を同伴している反応気体3が管状物6の絞り部分を通過する線速度よりも、管状物6の上部開口端10b近傍を通過する線速度が小さくなる。そのため、線速度が小さくなった触媒7は、再び管状物6を通って下部領域A側に自然落下する。   The reaction gas 3 accompanied by the catalyst 7 is tubular because the flow passage area in the tubular material 6 increases from the lower opening end 10a of the tubular material 6 toward the upper opening end 10b. The flow velocity passing through the object 6 can be reduced. Specifically, the linear velocity at which the reaction gas 3 accompanied by the catalyst 7 passes through the vicinity of the upper opening end 10 b of the tubular product 6 is smaller than the linear velocity at which the reaction gas 3 passing through the throttle portion of the tubular product 6. Therefore, the catalyst 7 whose linear velocity has decreased naturally passes through the tubular object 6 again and naturally falls to the lower region A side.

本実施形態に係る流動床反応器11では、反応気体3に同伴して流動床反応器11の下部領域Aから管状物6を通って上部領域Bの方に流れる触媒7を、下部領域A側に落下させることができるため、仕切り板5上に触媒7が堆積することを抑制することができる。そのため、仕切り板5上に触媒7が堆積することで仕切り板5の材質劣化及び材質腐食等を引き起こすことを抑制することができる。また、触媒7が仕切り板5上に堆積することでアンモ酸化反応に悪影響を与えることも抑制することができる。   In the fluidized bed reactor 11 according to this embodiment, the catalyst 7 flowing along the reaction gas 3 from the lower region A of the fluidized bed reactor 11 through the tubular material 6 toward the upper region B is supplied to the lower region A side. Therefore, it is possible to suppress the catalyst 7 from being deposited on the partition plate 5. Therefore, it is possible to prevent the catalyst 7 from being deposited on the partition plate 5 from causing material deterioration, material corrosion, and the like of the partition plate 5. Moreover, it can also suppress that a catalyst 7 deposits on the partition plate 5 and exerts a bad influence on ammoxidation reaction.

本発明に係る流動床反応器11が備える管状物6は、下部領域Aから上部領域Bの方に流れる触媒7を下部領域A側に落下させる、両端が開口している構造を有していればよいが、ディフューザであるか、又は、管状物6の一部がディフューザであることがより好ましい。ディフューザとは、触媒7の流路の入口から出口にかけて管状物6内の流路面積が大きくなる構造によって触媒7を同伴している反応気体3の流速を落とす機能を有するものである。   The tubular product 6 provided in the fluidized bed reactor 11 according to the present invention has a structure in which the catalyst 7 flowing from the lower region A toward the upper region B is dropped to the lower region A side and both ends are open. However, it is more preferable that it is a diffuser or a part of the tubular article 6 is a diffuser. The diffuser has a function of reducing the flow rate of the reaction gas 3 accompanied by the catalyst 7 due to the structure in which the flow path area in the tubular object 6 increases from the inlet to the outlet of the flow path of the catalyst 7.

図2に示す管状物6は、絞り部分を2箇所有しているため、触媒7を同伴している反応気体3が管状物6内を通過する流速をより効果的に落とすことができるので、仕切り板5上に触媒7が堆積することをより効果的に抑制することができる。   Since the tubular product 6 shown in FIG. 2 has two throttle portions, the flow rate of the reaction gas 3 accompanied by the catalyst 7 passing through the tubular product 6 can be reduced more effectively. It is possible to more effectively suppress the catalyst 7 from being deposited on the partition plate 5.

なお、管状物6内の最も大きい流路面積R1に対する管状物6内の最も小さい流路面積R2の比は、仕切り板5上に堆積し得る触媒7の堆積量に応じて適宜設定すればよいが、例えば、前記比の下限は0.02以上が好ましく、0.10以上がより好ましく、前記比の上限は0.40以下が好ましく、0.25以下がより好ましい。ここで、「仕切り板5上に堆積し得る触媒7の堆積量」とは、仕切り板5に管状物6を設けなかった場合に、開口した仕切り板5上に堆積し得る触媒7の堆積量を意味する。   The ratio of the smallest flow path area R2 in the tubular body 6 to the largest flow path area R1 in the tubular body 6 may be set as appropriate according to the amount of catalyst 7 that can be deposited on the partition plate 5. However, for example, the lower limit of the ratio is preferably 0.02 or more, more preferably 0.10 or more, and the upper limit of the ratio is preferably 0.40 or less, more preferably 0.25 or less. Here, the “deposition amount of the catalyst 7 that can be deposited on the partition plate 5” means the deposition amount of the catalyst 7 that can be deposited on the opened partition plate 5 when the tubular material 6 is not provided on the partition plate 5. Means.

また、仕切り板5と流動床反応器11の頂部との間の長さに対する管状物6の下部開口端10aと上部開口端10bとの間の長さの比は、下限が0.002以上であることが好ましく、0.01以上であることがより好ましく、上限が0.90以下であることが好ましく、0.75以下であることがより好ましい。前記比が上記の範囲内であれば、反応気体3と同伴して下部領域Aから上部領域Bの方に流れた触媒7を、下部領域Aに効率良く落下させることができる。これは、管状物6の長さが、触媒粒子が管状物6の中に入ってから、上向き速度の加速度がゼロになるまでに進む距離以上の長さであるからである。触媒粒子は、上向き速度の加速度がゼロになった後は、下向きの速度を持って落下するため、触媒7を下部領域Aに効率良く落下させることができる。   Further, the ratio of the length between the lower opening end 10a and the upper opening end 10b of the tubular product 6 to the length between the partition plate 5 and the top of the fluidized bed reactor 11 has a lower limit of 0.002 or more. Preferably, it is 0.01 or more, more preferably 0.90 or less, and even more preferably 0.75 or less. If the ratio is within the above range, the catalyst 7 that flows along with the reaction gas 3 and flows from the lower region A toward the upper region B can be efficiently dropped into the lower region A. This is because the length of the tubular product 6 is equal to or longer than the distance traveled until the acceleration of the upward velocity becomes zero after the catalyst particles enter the tubular product 6. Since the catalyst particles fall at a downward speed after the upward acceleration becomes zero, the catalyst 7 can be efficiently dropped into the lower region A.

管状物6及び仕切り板5は、別体として形成してもよいし、一体成型してもよい。なお、仕切り板5には少なくとも1つの管状物6を設ければよく、仕切り板5に管状物6を設けなかった場合に、仕切り板5上に堆積し得る触媒7の堆積量に応じて、仕切り板5に設ける管状物6の数を決めればよい。例えば、1つの仕切り板5に対して4〜10個の管状物6を好適に設けることができる。   The tubular object 6 and the partition plate 5 may be formed as separate bodies or may be integrally formed. The partition plate 5 may be provided with at least one tubular product 6. When the tubular product 6 is not provided on the partition plate 5, depending on the amount of catalyst 7 that can be deposited on the partition plate 5, What is necessary is just to determine the number of the tubular objects 6 provided in the partition plate 5. FIG. For example, 4 to 10 tubular objects 6 can be suitably provided for one partition plate 5.

仕切り板5に設ける管状物6の配置に特に限定はないが、仕切り板5上に管状物6を均等配置することが好ましい。管状物6を仕切り板5上に均等配置することにより、下部領域Aに乱流が生じることを防ぐことができ、酸化反応への悪影響を最小限にすることができる。   The arrangement of the tubular objects 6 provided on the partition plate 5 is not particularly limited, but it is preferable that the tubular objects 6 are arranged uniformly on the partition plate 5. By arranging the tubular objects 6 evenly on the partition plate 5, it is possible to prevent the turbulent flow from occurring in the lower region A and to minimize the adverse effect on the oxidation reaction.

〔邪魔板の設置〕
図2に示すように、管状物6内には邪魔板8,9が設けられていてもよい。邪魔板8,9を設置する位置に限定はないが、邪魔板8,9は、触媒7の流路を遮るような位置に配置することが好ましい。例えば、邪魔板8のように、上部開口端10bの水平断面における中心部分に対向する位置に配置してもよいし、邪魔板9のように、上部開口端10bの縁部に配置してもよい。
[Installation of baffle plates]
As shown in FIG. 2, baffle plates 8 and 9 may be provided in the tubular object 6. Although the position where the baffle plates 8 and 9 are installed is not limited, it is preferable that the baffle plates 8 and 9 are arranged at positions that block the flow path of the catalyst 7. For example, the baffle plate 8 may be disposed at a position facing the central portion of the upper opening end 10b in the horizontal cross section, or the baffle plate 9 may be disposed at the edge of the upper opening end 10b. Good.

管状物6内に邪魔板8,9が設けられていることにより、前記管状物6を通って上部領域Bの方へと流れる触媒7が前記邪魔板8,9に衝突するため、上部開口端10bから上部領域B側に飛散する触媒7の量を低減することができる。   Since the baffle plates 8 and 9 are provided in the tubular body 6, the catalyst 7 flowing toward the upper region B through the tubular body 6 collides with the baffle plates 8 and 9. The amount of the catalyst 7 scattered from 10b to the upper region B side can be reduced.

なお、邪魔板8,9の設置枚数に特に限定はないが、仕切り板5に管状物6を設けなかった場合に、仕切り板5上に堆積し得る触媒7の堆積量に応じて、管状物6に設ける邪魔板8,9の枚数を決めればよい。   The number of the baffle plates 8 and 9 is not particularly limited. However, when the tubular material 6 is not provided on the partition plate 5, the tubular material is formed according to the amount of catalyst 7 that can be deposited on the partition plate 5. What is necessary is just to determine the number of baffle plates 8 and 9 provided in 6.

例えば、1つの管状物6に対して1〜5枚の邪魔板8,9を好適に設けることができる。図2では、上部開口端10bの縁部に逆テーパ形状の環状の邪魔板9が設置され、前記邪魔板9の下方(より具体的には、上部開口端10bの水平断面における中心部分に対向する位置)に、1枚の円錐形の邪魔板8が設置され、合計2枚の邪魔板8,9が設置されている。   For example, 1 to 5 baffle plates 8 and 9 can be suitably provided for one tubular object 6. In FIG. 2, an inverted baffle-shaped annular baffle plate 9 is installed at the edge of the upper opening end 10 b, and is below the baffle plate 9 (more specifically, facing the central portion of the horizontal section of the upper opening end 10 b. In this position, one conical baffle plate 8 is installed, and a total of two baffle plates 8 and 9 are installed.

また、邪魔板8,9の形状に特に限定はないが、仕切り板5に管状物6を設けなかった場合に、仕切り板5上に堆積し得る触媒7の堆積量に応じて、邪魔板8,9の形状を決めればよい。例えば、邪魔板8,9として、四角形状又は三角形状等のものを好適に用いることができる。また、邪魔板8のように、上部開口端10bに向かって凸となるようにL字型に折れ曲げたものも好適に用いることができる。   Further, the shape of the baffle plates 8 and 9 is not particularly limited, but the baffle plate 8 is set according to the amount of the catalyst 7 that can be deposited on the partition plate 5 when the tubular material 6 is not provided on the partition plate 5. , 9 can be determined. For example, as the baffle plates 8 and 9, a rectangular shape or a triangular shape can be suitably used. Moreover, the thing bent in the L shape so that it may become convex toward the upper opening end 10b like the baffle plate 8 can be used suitably.

さらに、邪魔板8,9は、平板状のものに限定されない。例えば、邪魔板8,9として波状の板を用いてもよい。   Furthermore, the baffle plates 8 and 9 are not limited to flat plate-like ones. For example, corrugated plates may be used as the baffle plates 8 and 9.

管状物6に対する邪魔板8,9の大きさに特に限定はないが、例えば、管状物6の上部開口端10bの開口径に対する邪魔板8の断面形状における斜辺の長さの比は、およそ0.47であることが好ましく、前記上部開口端10bの開口径に対する邪魔板9の断面形状における斜辺の長さの比は、およそ0.42であることが好ましい。   The size of the baffle plates 8 and 9 with respect to the tubular object 6 is not particularly limited. For example, the ratio of the length of the hypotenuse in the cross-sectional shape of the baffle plate 8 to the opening diameter of the upper opening end 10b of the tubular object 6 is approximately 0. .47, and the ratio of the length of the hypotenuse in the cross-sectional shape of the baffle plate 9 to the opening diameter of the upper opening end 10b is preferably about 0.42.

〔管状物の設置例〕
図2では、管状物6が仕切り板5の開口部25に嵌入されている形態を示したが、本発明はこれに限定されるわけではない。上述したように、管状物6は、仕切り板5の開口部25に開口端が密接して仕切り板5に設けられていてもよい。
[Tubular installation example]
Although FIG. 2 shows a form in which the tubular object 6 is fitted into the opening 25 of the partition plate 5, the present invention is not limited to this. As described above, the tubular object 6 may be provided on the partition plate 5 with the opening end in close contact with the opening 25 of the partition plate 5.

例えば、図3中の(a)及び(b)に示すような管状物6a,6bを、その開口端を仕切り板5の開口部25に密接させて、仕切り板5に設けてもよい。図3中の(a)及び(b)は、それぞれ管状物6a,6bを示す縦断面図である。   For example, tubular objects 6a and 6b as shown in FIGS. 3A and 3B may be provided on the partition plate 5 with their open ends in close contact with the openings 25 of the partition plate 5. (A) and (b) in FIG. 3 are longitudinal sectional views showing the tubular objects 6a and 6b, respectively.

図3中の(a)に示す管状物6aを、上部領域B側から下部開口端10aを仕切り板5の開口部25(すなわち、開口部25の上部)に密接させて、仕切り板5に設けてもよい。あるいは、管状物6aを、下部領域A側から上部開口端10bを仕切り板5の開口部25(すなわち、開口部25の下部)に密接させて、仕切り板5に設けてもよい。この場合は、管状物6aの上部開口端10bにおける管状物6内の流路面積が、仕切り板5の開口部25における流路面積と同じ大きさになるように、前記管状物6aの上部開口端10bが下部領域Aから上部領域B(すなわち、下部開口端10aから上部開口端10b)に向かうにつれて、管状物6内の流路面積が小さくなる形状にすればよい。   3 is provided in the partition plate 5 with the lower opening end 10a in close contact with the opening 25 of the partition plate 5 (that is, the upper portion of the opening 25) from the upper region B side. May be. Alternatively, the tubular member 6a may be provided on the partition plate 5 with the upper opening end 10b in close contact with the opening 25 of the partition plate 5 (that is, the lower portion of the opening 25) from the lower region A side. In this case, the upper opening of the tubular object 6a is such that the flow area in the tubular object 6 at the upper opening end 10b of the tubular object 6a is the same as the flow area in the opening 25 of the partition plate 5. What is necessary is just to make it the shape which the flow-path area in the tubular article 6 becomes small as the edge 10b goes to the upper area | region B from the lower area | region A (namely, lower opening edge 10a to the upper opening edge 10b).

又は、図3中の(b)に示す管状物6bを、下部領域A側から上部開口端10bを仕切り板5の開口部25に密接させて、仕切り板5に設けてもよい。あるいは、管状物6bを、上部領域B側から下部開口端10aを仕切り板5の開口部25に密接させて、仕切り板5に設けてもよい。   Alternatively, the tubular product 6b shown in FIG. 3B may be provided on the partition plate 5 with the upper opening end 10b in close contact with the opening 25 of the partition plate 5 from the lower region A side. Alternatively, the tubular member 6b may be provided on the partition plate 5 with the lower opening end 10a in close contact with the opening 25 of the partition plate 5 from the upper region B side.

管状物6aは、下部開口端10aの近傍に、下部領域Aから上部領域B(すなわち、下部開口端10aから上部開口端10b)に向かうにつれて、管状物6内の流路面積が大きくなる絞り部分を1箇所有している。同様に、管状物6bは、下部開口端10aの近傍に、下部領域Aから上部領域B(すなわち、下部開口端10aから上部開口端10b)に向かうにつれて、管状物6内の流路面積が大きくなる絞り部分を1箇所有している。   The tubular object 6a is a constricted portion in the vicinity of the lower opening end 10a, in which the flow path area in the tubular object 6 increases as it goes from the lower area A to the upper area B (that is, from the lower opening end 10a to the upper opening end 10b). It has one place. Similarly, in the tubular object 6b, the flow path area in the tubular object 6 increases in the vicinity of the lower opening end 10a from the lower area A to the upper area B (that is, from the lower opening end 10a to the upper opening end 10b). It has one aperture part.

管状物6a,6bのように、絞り部分を1箇所有しているだけでも、触媒7を同伴している反応気体3が管状物6a,6b内を通過する流速を十分に落とすことができるので、仕切り板5上に触媒7が堆積することを十分に抑制することができる。このように、流動床反応器11に設置する管状物は、少なくとも1箇所に、下部領域Aから上部領域B(すなわち、下部開口端10aから上部開口端10b)に向かうにつれて、管状物6内の流路面積が大きくなる絞り部分を有していることが好ましい。   Since the reaction gas 3 accompanied by the catalyst 7 can sufficiently reduce the flow velocity of passing through the tubular objects 6a and 6b even if it has only one throttle portion as in the tubular objects 6a and 6b. The catalyst 7 can be sufficiently prevented from being deposited on the partition plate 5. As described above, the tubular material installed in the fluidized bed reactor 11 is at least at one place in the tubular material 6 from the lower region A toward the upper region B (that is, from the lower opening end 10a to the upper opening end 10b). It is preferable to have a throttle portion that increases the flow path area.

なお、管状物6bに対しても、管状物6aと同様に邪魔板8,9を設けてもよい。これにより、上部開口端10bから上部領域B側に飛散する触媒7の量を低減することができる。   In addition, you may provide the baffle plates 8 and 9 similarly to the tubular thing 6a also with respect to the tubular thing 6b. Thereby, the amount of the catalyst 7 scattered from the upper opening end 10b to the upper region B side can be reduced.

ここで、仕切り板5の開口部25に開口端を密接させて仕切り板5に設けられる管状物は、管状物6a,6bに限定されない。例えば、図2に示した管状物6を、上部領域B側から下部開口端10aを仕切り板5の開口部25に密接させて、仕切り板5に設けてもよい。   Here, the tubular object provided in the partition plate 5 with the opening end in close contact with the opening 25 of the partition plate 5 is not limited to the tubular objects 6a and 6b. For example, the tubular object 6 shown in FIG. 2 may be provided on the partition plate 5 with the lower opening end 10 a in close contact with the opening 25 of the partition plate 5 from the upper region B side.

あるいは、図2に示した管状物6を、下部領域A側から上部開口端10bを仕切り板5の開口部25に密接させて、仕切り板5に設けてもよい。この場合は、管状物6の上部開口端10bにおける管状物6内の流路面積が、仕切り板5の開口部25における流路面積と同じ大きさになるように、前記管状物6の上部開口端10bが下部領域Aから上部領域B(すなわち、下部開口端10aから上部開口端10b)に向かうにつれて、管状物6内の流路面積が小さくなる絞り部分を有する形状にすればよい。   Alternatively, the tubular object 6 shown in FIG. 2 may be provided on the partition plate 5 with the upper opening end 10b in close contact with the opening 25 of the partition plate 5 from the lower region A side. In this case, the upper opening of the tubular object 6 is such that the flow area in the tubular object 6 at the upper opening end 10 b of the tubular object 6 is the same as the flow area in the opening 25 of the partition plate 5. What is necessary is just to make it the shape which has the aperture | diaphragm | squeeze part which the flow-path area in the tubular article 6 becomes small as the edge 10b goes to the upper area | region B from the lower area | region A (namely, lower opening edge 10a to the upper opening edge 10b).

〔管状物の形状例〕
管状物6は、円柱状、三角柱状、四角柱状又はその他の多角柱状の形状を有していてもよい。中でも、管状物6が円柱状又は四角柱状の形状を有していると、上部領域B側に触媒7が流入しにくいため好ましい。
[Examples of tubular shapes]
The tubular object 6 may have a cylindrical shape, a triangular prism shape, a quadrangular prism shape, or other polygonal column shape. Among these, it is preferable that the tubular body 6 has a columnar shape or a quadrangular prism shape because the catalyst 7 hardly flows into the upper region B side.

なお、管状物6は、触媒7を下部領域A側に自然落下させるディフューザとして機能する形状を有していれば、その具体的な形状は図2(及び図3)の形状に限定されない。例えば、図2(及び図3)の管状物6のように絞り部分を管状物6の一部に有していなくてもよく、管状物6全体が絞り部分となっていてもよい。すなわち、管状物6全体が、下部領域Aから上部領域Bに向かうにつれて、管状物6内の流路面積が大きくなる絞り形状となっていてもよい。   In addition, the specific shape is not limited to the shape of FIG. 2 (and FIG. 3), if the tubular thing 6 has a shape which functions as a diffuser which naturally drops the catalyst 7 to the lower area | region A side. For example, like the tubular object 6 of FIG. 2 (and FIG. 3), the throttle part may not be provided in a part of the tubular object 6, and the entire tubular object 6 may be the throttle part. That is, the entire tubular object 6 may have a drawn shape in which the flow path area in the tubular object 6 increases as it goes from the lower region A to the upper region B.

管状物6が絞り形状を有している例を図4中の(a)〜(c)に示す。図4中の(a)に示す管状物6cは、下部領域Aから上部領域Bに向かうにつれて、管状物6内の流路面積が大きくなる円柱形状(円錐形状)を有している。また、図4中の(b)に示す管状物6dは、下部領域Aから上部領域Bに向かうにつれて、管状物6内の流路面積が大きくなる四角柱形状(四角錐形状)を有している。図4中の(c)に示す管状物6eは、下部領域Aから上部領域Bに向かうにつれて、管状物6内の流路面積が大きくなる三角柱形状(三角錐形状)を有している。   An example in which the tubular object 6 has a drawn shape is shown in FIGS. The tubular product 6c shown in FIG. 4A has a cylindrical shape (conical shape) in which the flow path area in the tubular product 6 increases from the lower region A toward the upper region B. 4B has a quadrangular prism shape (quadrangular pyramid shape) in which the flow path area in the tubular product 6 increases from the lower region A toward the upper region B. Yes. The tubular product 6e shown in FIG. 4C has a triangular prism shape (triangular pyramid shape) in which the flow path area in the tubular product 6 increases from the lower region A toward the upper region B.

管状物6c〜6eでは、管状物6c〜6eの下部開口端10aから上部開口端10bに向かうにつれて、管状物6内の流路面積が大きくなる絞り形状を有しているため、触媒7を同伴している反応気体3が管状物6c〜6e内を通過する流速を落とすことができ、触媒7を、再び管状物6c〜6eを通って下部領域A側に自然落下させることができる。   The tubular objects 6c to 6e have a throttle shape in which the flow passage area in the tubular object 6 increases from the lower opening end 10a to the upper opening end 10b of the tubular objects 6c to 6e. The flow rate of the reaction gas 3 passing through the tubular objects 6c to 6e can be decreased, and the catalyst 7 can be naturally dropped again to the lower region A side through the tubular objects 6c to 6e.

あるいは、図4中の(d)に示すように、単管の内部に、下部領域Aから上部領域Bに向かうにつれて、管状物6内の流路面積が大きくなる円柱形状(円錐形状)の絞り部分22を設置した構造を有する管状物6fも本発明に適用可能である。   Alternatively, as shown in FIG. 4 (d), a cylindrical (conical) throttle that increases the flow area in the tubular object 6 from the lower region A toward the upper region B inside the single tube. A tubular object 6f having a structure in which the portion 22 is installed is also applicable to the present invention.

管状物6fも、管状物6fの下部開口端10aから上部開口端10bに向かうにつれて、管状物6内の流路面積が大きくなる絞り部分22を有しているため、触媒7を同伴している反応気体3が管状物6f内を通過する流速を落とすことができ、触媒7を、再び管状物6fを通って下部領域A側に自然落下させることができる。   The tubular product 6f also has the throttle portion 22 in which the flow passage area in the tubular product 6 increases from the lower opening end 10a to the upper opening end 10b of the tubular product 6f. The flow velocity at which the reaction gas 3 passes through the tubular product 6f can be reduced, and the catalyst 7 can be naturally dropped again to the lower region A side through the tubular product 6f.

また、管状物6には、内部に少なくとも1つのオリフィスが形成されたオリフィス板が設けられていてもよい。各オリフィスは、下部領域Aから上部領域Bに向かうにつれて、管状物6内の流路面積が大きくなる形状を有していることが好ましい。   Further, the tubular object 6 may be provided with an orifice plate having at least one orifice formed therein. Each orifice preferably has a shape in which the flow path area in the tubular object 6 increases as it goes from the lower region A to the upper region B.

この場合、管状物6の各オリフィスが、管状物6の下部開口端10aから上部開口端10bに向かうにつれて、管状物6内の流路面積が大きくなる形状(絞り部分)を有しているため、触媒7を同伴している反応気体3が管状物6内を通過する流速を落とすことができ、触媒7を、再び管状物6を通って下部領域A側に自然落下させることができる。   In this case, each orifice of the tubular object 6 has a shape (a throttle portion) in which the flow path area in the tubular object 6 increases as it goes from the lower opening end 10a of the tubular object 6 toward the upper opening end 10b. The flow rate at which the reaction gas 3 accompanied by the catalyst 7 passes through the tubular product 6 can be lowered, and the catalyst 7 can be naturally dropped again through the tubular product 6 to the lower region A side.

なお、図4中の(e)に示す管状物6gのように、管状物6g内の流路面積が下部領域Aから上部領域Bにかけて略一定となっている形状を有していても、触媒7を下部領域A側に自然落下させるディフューザとしての機能を発揮することができる。   In addition, even if it has a shape in which the flow passage area in the tubular product 6g is substantially constant from the lower region A to the upper region B like the tubular product 6g shown in FIG. A function as a diffuser that naturally drops 7 to the lower region A side can be exhibited.

〔ニトリル化合物の製造方法〕
本発明に係るニトリル化合物の製造方法は、上述した本発明に係る流動床反応器を用いて行われる。例えば、本発明に係るニトリル化合物の製造方法の一実施形態は流動床反応器11を用いて行われる。流動床反応器11を用いることにより、製造したニトリル化合物を含む反応気体に同伴して流動床反応器11の下部領域Aから上部領域Bの方に流れる触媒7を、管状物6によって下部領域B側に落下させることができるため、仕切り板5上に触媒7が堆積することを抑制することができる。そのため、触媒7が仕切り板5上に堆積することでアンモ酸化反応に悪影響を与えることも抑制することができ、ニトリル化合物の製造を良好に行うことができる。
[Method for producing nitrile compound]
The method for producing a nitrile compound according to the present invention is performed using the fluidized bed reactor according to the present invention described above. For example, one embodiment of the method for producing a nitrile compound according to the present invention is performed using a fluidized bed reactor 11. By using the fluidized bed reactor 11, the catalyst 7 flowing from the lower region A to the upper region B of the fluidized bed reactor 11 along with the reaction gas containing the produced nitrile compound is converted into the lower region B by the tubular material 6. Therefore, the catalyst 7 can be prevented from being deposited on the partition plate 5. For this reason, it is possible to prevent the catalyst 7 from being deposited on the partition plate 5 from adversely affecting the ammoxidation reaction, and the nitrile compound can be manufactured satisfactorily.

本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。   The present invention is not limited to the above-described embodiments, and various modifications are possible within the scope shown in the claims, and embodiments obtained by appropriately combining technical means disclosed in different embodiments. Is also included in the technical scope of the present invention.

以下、実施例により本発明を具体的に説明するが、本発明はその要旨を超えない限り、以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited to a following example, unless the summary is exceeded.

〔実施例1〕
図1に記載の流動床反応器を用いて、プロピレンのアンモ酸化反応によるアクリロニトリルの製造を行った。
[Example 1]
Using the fluidized bed reactor shown in FIG. 1, acrylonitrile was produced by ammoxidation of propylene.

管状物としては図2に記載の管状物を使用し、管状物の上部開口端における管状物内の流路面積(図2中のR1)に対する管状物内の最も小さい流路面積(図2中のR2)の比が0.153となっている管状物を使用した。管状物には、計2枚の邪魔板を設置した。上部開口端の縁部に1枚の逆テーパ形状の環状の邪魔板(図2中の邪魔板9)を設置し、前記邪魔板の下方(より具体的には、上部開口端の水平断面における中心部分に対向する位置)に、円錐形の邪魔板(図2中の邪魔板8)を1枚設置した。なお、前記管状物を仕切り板上に6個設置した。   As the tubular object, the tubular object shown in FIG. 2 is used, and the smallest flow path area in the tubular object (R1 in FIG. 2) relative to the flow area (R1 in FIG. 2) in the tubular object at the upper open end of the tubular object. A tubular product having a ratio of R2) of 0.153 was used. A total of two baffle plates were installed in the tubular object. One reverse tapered annular baffle plate (baffle plate 9 in FIG. 2) is installed at the edge of the upper opening end, and below the baffle plate (more specifically, in the horizontal section of the upper opening end). One conical baffle plate (baffle plate 8 in FIG. 2) was installed at a position facing the central portion. In addition, six said tubular objects were installed on the partition plate.

本体(内壁)がSUS27からなる流動床反応器内に、触媒として、MoBi系触媒(触媒組成 Mo:Bi:Fe:Ce:Cr:Ni:Mg:Co:K:Rb:O:SiO=12:0.5:2:0.5:0.4:4:1.5:1:0.07:0.06:X:42(Xは、ケイ素を除く前記各元素の原子価を満足するのに必要な酸素の原子比である))を84kg導入した。 In a fluidized bed reactor whose main body (inner wall) is made of SUS27, as a catalyst, a MoBi-based catalyst (catalyst composition Mo: Bi: Fe: Ce: Cr: Ni: Mg: Co: K: Rb: O: SiO 2 = 12 : 0.5: 2: 0.5: 0.4: 4: 1.5: 1: 0.07: 0.06: X: 42 (X satisfies the valence of each of the above elements except silicon) 84 kg of the atomic ratio of oxygen necessary for the above was introduced.

冷却コイル(伝熱面積:0.33m)の内部には、冷媒としてゲージ圧が3kg/cmの水蒸気を流通させた。気体導入管からは、管状物の上部開口端と下部開口端との差圧が0.0015kg/cmとなるように、ゲージ圧が0.8kg/cmの水蒸気を導入させた。 Inside the cooling coil (heat transfer area: 0.33 m 2 ), steam having a gauge pressure of 3 kg / cm 2 was circulated as a refrigerant. From the gas introducing tube, a differential pressure between the upper opening end and a lower open end of the tubing is such that a 0.0015kg / cm 2, gauge pressure was introducing steam of 0.8 kg / cm 2.

次いで、流動床反応器内に、原料導入管からプロピレンを流量7.8kg/hで導入すると共に、アンモニアを流量3.5kg/hで導入し、空気導入管から空気を流量54kg/hで導入して、反応温度440℃、反応圧力0.6〜1kg/cm、反応気体線速度58〜64cm/秒の下でアンモ酸化反応を360日間行った。この間のアクリロニトリルの総合反応収率は78.0%であった。 Next, propylene is introduced into the fluidized bed reactor at a flow rate of 7.8 kg / h from the raw material introduction tube, ammonia is introduced at a flow rate of 3.5 kg / h, and air is introduced from the air introduction tube at a flow rate of 54 kg / h. Then, an ammoxidation reaction was carried out for 360 days under a reaction temperature of 440 ° C., a reaction pressure of 0.6 to 1 kg / cm 2 , and a reaction gas linear velocity of 58 to 64 cm / sec. During this period, the overall reaction yield of acrylonitrile was 78.0%.

反応終了後の仕切り板上には、0.9kgの触媒の堆積が確認されたが、触媒の堆積量が少なかったので、仕切り板が異常加熱することで生じる鋼の黒鉛化現象に起因する仕切り板の材質の劣化はほとんど認められなかった。   On the partition plate after the reaction was completed, 0.9 kg of catalyst was confirmed to be deposited. However, since the amount of catalyst deposited was small, the partition caused by the graphitization phenomenon of steel caused by abnormal heating of the partition plate. There was almost no deterioration of the material of the plate.

〔実施例2〕
管状物として、図2に記載の管状物の替わりに図4中の(b)に記載の管状物を用いた点以外は、実施例1と同様の操作を行った。なお、本実施例で用いた管状物は、最上部開口端における管状物内の流路面積に対する、管状物内の最も小さい流路面積である最下部における管状物内の流路面積の比が0.137である。また、気体導入管からは、管状物の上部開口端と下部開口端との差圧が0.0037kg/cmとなるように、ゲージ圧が0.8kg/cmの水蒸気を流通させた。
[Example 2]
The same operation as in Example 1 was performed except that the tubular product described in (b) of FIG. 4 was used as the tubular product instead of the tubular product described in FIG. In addition, the ratio of the channel area in the tubular object in the lowest part which is the smallest channel area in the tubular object with respect to the channel area in the tubular object in the uppermost opening end is the tubular object used in the present Example. 0.137. Also, from the gas inlet pipe, the differential pressure between the upper opening end and a lower open end of the tubing is such that a 0.0037kg / cm 2, gauge pressure was allowed to flow steam 0.8 kg / cm 2.

アンモ酸化反応を360日間行ったところ、この間のアクリロニトリルの総合反応収率は77.8%であった。   When the ammoxidation reaction was carried out for 360 days, the overall reaction yield of acrylonitrile during this period was 77.8%.

反応終了後の仕切り板上には、1.1kgの触媒の堆積が確認されたが、触媒の堆積量が少なかったので、仕切り板上に触媒が堆積して前記仕切り板が異常加熱することで生じる鋼の黒鉛化現象に起因する仕切り板の材質の劣化はほとんど認められなかった。   1.1 kg of catalyst was confirmed to be deposited on the partition plate after the reaction was completed, but the amount of catalyst deposited was small, so that the catalyst was deposited on the partition plate and the partition plate was abnormally heated. Almost no deterioration of the partition plate material due to the graphitization phenomenon of the steel was observed.

〔実施例3〕
管状物として、図2に記載の管状物の替わりに図4中の(e)に記載の管状物を用いた点以外は、実施例1と同様の操作を行った。なお、本実施例で用いた管状物は、下部領域から上部領域にかけて管状物内の流路面積が一定である。また、気体導入管からは、管状物の上部開口端と下部開口端との差圧が0.0037kg/cmとなるように、ゲージ圧が0.8kg/cmの水蒸気を流通させながらアンモ酸化反応を360日間行った。
Example 3
The same operation as in Example 1 was performed except that the tubular product described in (e) of FIG. 4 was used as the tubular product instead of the tubular product described in FIG. In addition, as for the tubular thing used in the present Example, the flow-path area in a tubular thing is constant from a lower area to an upper area. Also, from the gas inlet pipe, as the differential pressure between the upper opening end and a lower open end of the tubing is 0.0037kg / cm 2, while the gauge pressure allowed to flow steam 0.8 kg / cm 2 amm The oxidation reaction was carried out for 360 days.

反応終了後の仕切り板上には、1.3kgの触媒の堆積が確認されたが、触媒の堆積量が少なかったので、仕切り板上に触媒が堆積して前記仕切り板が異常加熱することで生じる鋼の黒鉛化現象に起因する仕切り板の材質の劣化はほとんど認められなかった。   After the reaction was completed, 1.3 kg of catalyst was confirmed to be deposited on the partition plate, but since the amount of catalyst deposited was small, the catalyst was deposited on the partition plate and the partition plate was abnormally heated. Almost no deterioration of the partition plate material due to the graphitization phenomenon of the steel was observed.

〔比較例1〕
実施例1で使用した仕切り板上に、管状物を設置しないで実施例1と同様の操作を行った。すなわち、図2に記載の管状物内の最も小さい流路面積と同じ流路面積の穴を仕切り板に6個開けた流動床反応器を用いて実施例1と同様の操作を行った。
[Comparative Example 1]
On the partition plate used in Example 1, the same operation as in Example 1 was performed without installing a tubular material. That is, the same operation as in Example 1 was performed using a fluidized bed reactor in which six holes having the same channel area as the smallest channel area in the tubular article shown in FIG.

アンモ酸化反応を360日間行ったところ、この間のアクリロニトリルの総合反応収率は74.2%であった。   When the ammoxidation reaction was carried out for 360 days, the overall reaction yield of acrylonitrile during this period was 74.2%.

反応終了後の仕切り板上には、5.0kgの触媒の堆積が確認された。また、触媒の堆積量が多かったため、仕切り板上に触媒が堆積して前記仕切り板が異常加熱することで生じる鋼の黒鉛化現象に起因する仕切り板の材質の劣化が認められた。   On the partition plate after completion of the reaction, 5.0 kg of catalyst was confirmed to be deposited. Further, since the amount of catalyst deposited was large, deterioration of the partition plate material due to the graphitization phenomenon of steel caused by the catalyst being deposited on the partition plate and abnormal heating of the partition plate was observed.

本発明は、内部を上下2区画に仕切る仕切り板を有する流動床反応器及びそれを用いるニトリル化合物の製造方法として、広く適用することができる。   INDUSTRIAL APPLICABILITY The present invention can be widely applied as a fluidized bed reactor having a partition plate that partitions the interior into two upper and lower sections and a method for producing a nitrile compound using the same.

1 空気
2 混合気体
3 反応気体
4 冷媒
5 仕切り板
6,6a〜6g 管状物
7 触媒
8,9 邪魔板
10a 下部開口端
10b 上部開口端
11 流動床反応器
12 空気導入管
13 吹き出し口
14 原料導入管
15 冷却コイル
16 反応気体回収管
17 サイクロン
18 製品抜出管
19 熱交換器
20 気体
21 気体導入管
25 開口部
DESCRIPTION OF SYMBOLS 1 Air 2 Mixed gas 3 Reaction gas 4 Refrigerant 5 Partition plate 6,6a-6g Tubular material 7 Catalyst 8,9 Baffle plate 10a Lower opening end 10b Upper opening end 11 Fluidized bed reactor 12 Air introduction pipe 13 Outlet 14 Raw material introduction Pipe 15 Cooling coil 16 Reaction gas recovery pipe 17 Cyclone 18 Product extraction pipe 19 Heat exchanger 20 Gas 21 Gas introduction pipe 25 Opening

Claims (9)

流動床反応器の内部を下部領域と上部領域とに仕切り、開口部が形成されている仕切り板を備え、
両端に、開口している開口端を有する管状物は、前記仕切り板の開口部に設けられている流動床反応器。
Partitioning the inside of the fluidized bed reactor into a lower region and an upper region, comprising a partition plate in which an opening is formed,
The tubular product having open ends at both ends is a fluidized bed reactor provided at the opening of the partition plate.
前記管状物は、前記開口部に嵌入又は開口端が密接して前記仕切り板に設けられている請求項1に記載の流動床反応器。   2. The fluidized bed reactor according to claim 1, wherein the tubular member is provided in the partition plate by being fitted into the opening or having an open end in close contact. 前記管状物は、前記下部領域から前記上部領域に向かうにつれて、前記管状物内の流路面積が大きくなる部分を有している請求項1又は2に記載の流動床反応器。   3. The fluidized bed reactor according to claim 1, wherein the tubular material has a portion in which a flow passage area in the tubular material increases from the lower region toward the upper region. 前記管状物内の流路面積は、前記下部領域から前記上部領域にかけて略一定である請求項1又は2に記載の流動床反応器。   The fluidized bed reactor according to claim 1 or 2, wherein a flow path area in the tubular material is substantially constant from the lower region to the upper region. 前記管状物内には、邪魔板が設けられている請求項1〜4のいずれか1項に記載の流動床反応器。   The fluidized bed reactor according to any one of claims 1 to 4, wherein a baffle plate is provided in the tubular material. 前記管状物内には、少なくとも1つ以上のオリフィスが形成されたオリフィス板が設けられている請求項1又は2に記載の流動床反応器。   The fluidized bed reactor according to claim 1 or 2, wherein an orifice plate in which at least one or more orifices are formed is provided in the tubular material. 各前記オリフィスは、前記下部領域から前記上部領域に向かうにつれて、前記管状物内の流路面積が大きくなる請求項6に記載の流動床反応器。   The fluidized bed reactor according to claim 6, wherein each of the orifices has a channel area in the tubular material that increases from the lower region toward the upper region. 前記仕切り板には、複数の前記開口部が形成されており、
前記複数の開口部は、前記仕切り板上に均等配置されている請求項1〜7のいずれか1項に記載の流動床反応器。
The partition plate is formed with a plurality of the openings.
The fluidized bed reactor according to any one of claims 1 to 7, wherein the plurality of openings are equally arranged on the partition plate.
請求項1〜8のいずれか1項に記載の流動床反応器を用いるニトリル化合物の製造方法。   The manufacturing method of the nitrile compound using the fluidized bed reactor of any one of Claims 1-8.
JP2015096850A 2015-05-11 2015-05-11 Fluidized bed reactor and method for producing nitrile compound using the same Active JP6488869B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015096850A JP6488869B2 (en) 2015-05-11 2015-05-11 Fluidized bed reactor and method for producing nitrile compound using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015096850A JP6488869B2 (en) 2015-05-11 2015-05-11 Fluidized bed reactor and method for producing nitrile compound using the same

Publications (2)

Publication Number Publication Date
JP2016210740A true JP2016210740A (en) 2016-12-15
JP6488869B2 JP6488869B2 (en) 2019-03-27

Family

ID=57550453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015096850A Active JP6488869B2 (en) 2015-05-11 2015-05-11 Fluidized bed reactor and method for producing nitrile compound using the same

Country Status (1)

Country Link
JP (1) JP6488869B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106622044A (en) * 2017-01-22 2017-05-10 清华大学 Ammonia oxidation reactor and preparation method of nitrile compounds
JP6427723B1 (en) * 2017-07-03 2018-11-21 旭化成株式会社 Method for producing unsaturated nitrile
WO2019008924A1 (en) * 2017-07-03 2019-01-10 旭化成株式会社 Method for producing unsaturated nitrile
US11369934B2 (en) 2019-09-24 2022-06-28 Lg Chem, Ltd. Fluidized bed reactor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5123637Y1 (en) * 1973-08-06 1976-06-17
JPS5271378A (en) * 1975-12-11 1977-06-14 Babcock Hitachi Kk Blowing through preventing device in series multstage fluidized bed
JPS5973557A (en) * 1976-06-01 1984-04-25 サン・ベンチヤ−ズ・インコ−ポレイテツド Ammoxidation
JPS6133229A (en) * 1984-07-23 1986-02-17 Mitsubishi Heavy Ind Ltd Fluidized bed heating furnace
JPH02231459A (en) * 1988-12-29 1990-09-13 Monsanto Co Fluidized bed method
JP2001303068A (en) * 2000-04-11 2001-10-31 Uop Llc Process and apparatus for rapid contact separation of catalyst

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5123637Y1 (en) * 1973-08-06 1976-06-17
JPS5271378A (en) * 1975-12-11 1977-06-14 Babcock Hitachi Kk Blowing through preventing device in series multstage fluidized bed
JPS5973557A (en) * 1976-06-01 1984-04-25 サン・ベンチヤ−ズ・インコ−ポレイテツド Ammoxidation
JPS6133229A (en) * 1984-07-23 1986-02-17 Mitsubishi Heavy Ind Ltd Fluidized bed heating furnace
JPH02231459A (en) * 1988-12-29 1990-09-13 Monsanto Co Fluidized bed method
JP2001303068A (en) * 2000-04-11 2001-10-31 Uop Llc Process and apparatus for rapid contact separation of catalyst

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106622044A (en) * 2017-01-22 2017-05-10 清华大学 Ammonia oxidation reactor and preparation method of nitrile compounds
JP6427723B1 (en) * 2017-07-03 2018-11-21 旭化成株式会社 Method for producing unsaturated nitrile
WO2019008924A1 (en) * 2017-07-03 2019-01-10 旭化成株式会社 Method for producing unsaturated nitrile
US10894762B2 (en) 2017-07-03 2021-01-19 Asahi Kasei Kabushiki Kaisha Process for producing unsaturated nitrile
US11369934B2 (en) 2019-09-24 2022-06-28 Lg Chem, Ltd. Fluidized bed reactor
CN114828995A (en) * 2019-09-24 2022-07-29 株式会社Lg化学 Fluidized bed reactor
CN114828995B (en) * 2019-09-24 2024-04-12 株式会社Lg化学 Fluidized bed reactor

Also Published As

Publication number Publication date
JP6488869B2 (en) 2019-03-27

Similar Documents

Publication Publication Date Title
JP6488869B2 (en) Fluidized bed reactor and method for producing nitrile compound using the same
KR100407030B1 (en) Method for producing acrylic acid
US8492587B2 (en) Reactor and process for preparing phosgene
US9156705B2 (en) Production of polycrystalline silicon by the thermal decomposition of dichlorosilane in a fluidized bed reactor
US9114996B2 (en) Production of polycrystalline silicon by the thermal decomposition of silane in a fluidized bed reactor
EP2514523B1 (en) Tubular reactor with jet impingement heat transfer
KR20110111410A (en) Reactor and method for producing phosgene
BR112021007336A2 (en) gas replacement method and apparatus and hydrogenation method for nitro compound
TW201827396A (en) Quench column aftercooler
JP2006247452A (en) Vapor phase reaction apparatus
JPWO2018135473A1 (en) Internal, fluidized bed reactor and method for producing trichlorosilane
US11976027B2 (en) High pressure strippers for use in urea plants
US11571678B2 (en) High pressure strippers for use in urea plants
JP6486015B2 (en) Fluidized bed reactor
ES2424689T3 (en) Tubular beam heat exchanger and procedure for the separation of volatile substances from a polymer solution
JP2014147925A (en) Multitubular reactor
JP2019105381A (en) Heat removal pipe, heat exchanger, and reactor
JP2019104693A (en) Method for producing (meth)acrylonitrile
US2492349A (en) Carrying out catalytic reactions
US20220289658A1 (en) Method for producing (meth)acrolein and method for producing (meth)acrylic acid
US2726951A (en) Process of producing metal powder from metal carbonyl
WO2020157089A1 (en) High pressure strippers for use in urea plants
KR20230106620A (en) Two-step manufacturing process for α,β-ethylenically unsaturated carboxylic acids and plant therefor
US20160348983A1 (en) Heat exchange apparatus
JP2011126890A (en) Gas phase reactor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190211

R151 Written notification of patent or utility model registration

Ref document number: 6488869

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151