JP2014147925A - Multitubular reactor - Google Patents

Multitubular reactor Download PDF

Info

Publication number
JP2014147925A
JP2014147925A JP2013262333A JP2013262333A JP2014147925A JP 2014147925 A JP2014147925 A JP 2014147925A JP 2013262333 A JP2013262333 A JP 2013262333A JP 2013262333 A JP2013262333 A JP 2013262333A JP 2014147925 A JP2014147925 A JP 2014147925A
Authority
JP
Japan
Prior art keywords
heat medium
tube
heat transfer
heat
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013262333A
Other languages
Japanese (ja)
Other versions
JP2014147925A5 (en
Inventor
Masayuki Mizuno
昌幸 水野
Shigeyuki Toda
繁幸 戸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2013262333A priority Critical patent/JP2014147925A/en
Publication of JP2014147925A publication Critical patent/JP2014147925A/en
Publication of JP2014147925A5 publication Critical patent/JP2014147925A5/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce the pressure loss of a heat medium without deteriorating its heat exchange performance.SOLUTION: The multitubular reactor comprises, on both the edge parts of a reaction vessel 1, a reaction raw material distribution header 3 partitioned with tube plates 2 and 4; and a reaction product assembly header 5. The annular region between the respective tube plates 2 and 4 is provided with a tube group 6 made of a plurality of heat transfer tubes 7 connected to the respective headers 3 and 5 and filled with a catalyst 8, and the inside and the outer circumferential side are made into a heat medium dispersed region 9 and a heat medium assembled region 10. The heat transfer coefficient on the side of a reaction raw material 15 made into the factor of the rate-limiting of a heat transfer coefficient is fixed as the heat transfer coefficient on the inside of the tube. In this way, even if reduction in the flow velocity or the change in the flow velocity of a heat medium 13 flowing outwardly from the inside of the radial direction of the tube group 6 from the heat medium dispersed region 9 to the heat medium assembled region 10 is caused, its heat passing rate is made stable even without being reduced.

Description

本発明は、反応温度条件をコントロールしながら触媒反応を行わせるために用いる多管式反応器に関するものである。   The present invention relates to a multitubular reactor used for performing a catalytic reaction while controlling reaction temperature conditions.

触媒反応により反応原料から反応生成物を連続的に製造するプロセスでは、発熱反応や吸熱反応である触媒反応の進行に伴う温度変化を防止するために、触媒反応の実施時に、熱媒との間接的な熱交換を並行して行わせることにより、反応温度条件を一定に維持することが行われている。   In the process of continuously producing reaction products from reaction raw materials by catalytic reaction, in order to prevent temperature changes accompanying the progress of catalytic reaction, which is exothermic reaction or endothermic reaction, indirect contact with the heat medium during the catalytic reaction is performed. The reaction temperature condition is kept constant by performing simultaneous heat exchange in parallel.

この種の熱媒と反応原料及び反応生成物との熱交換を用いて反応温度条件をコントロールしながら触媒反応を効率よく実施させるための装置としては、たとえば、アクリル酸の製造や、エチレン酸、メタクリル酸、その他の各種化学物質の製造プロセスで広く用いられている多管式反応器(チューブラーリアクター)がある。   As an apparatus for efficiently carrying out the catalytic reaction while controlling the reaction temperature condition using heat exchange between this kind of heat medium and reaction raw materials and reaction products, for example, production of acrylic acid, ethylene acid, There are multi-tubular reactors (tubular reactors) widely used in the manufacturing process of methacrylic acid and other various chemical substances.

上記多管式反応器は、大別して管内触媒形式と、管外触媒形式のものがある。   The multitubular reactor is roughly classified into an in-tube catalyst type and an out-of-tube catalyst type.

管内触媒形式の多管式反応器は、一般に、反応容器の一端部に、管板によって仕切られた反応原料の分配室が設けてあると共に、該反応容器の他端部に、管板によって仕切られた反応生成物の集合室が設けてある。且つ上記各管板同士の間には、平行な複数の伝熱管による管群が配置してあり、各伝熱管の両端部は、上記分配室と集合室の双方にそれぞれ連通するように取り付けて、該各伝熱管の内部に、触媒を充填した構成とされている。   In general, a multi-tubular reactor of the in-tube catalyst type is provided with a reaction material distribution chamber partitioned by a tube plate at one end of a reaction vessel, and partitioned by a tube plate at the other end of the reaction vessel. A collection chamber for the reaction product produced is provided. A tube group of a plurality of parallel heat transfer tubes is arranged between the tube plates, and both end portions of each heat transfer tube are attached so as to communicate with both the distribution chamber and the collecting chamber. In each of the heat transfer tubes, a catalyst is filled.

上記のように各伝熱管内に触媒が充填された管内触媒形式の多管式反応器は、上記反応容器内における各管板同士の間で且つ上記各伝熱管の外側の空間が熱媒流通領域とされている。   As described above, the multi-tube reactor of the in-tube catalyst type in which the catalyst is filled in each heat transfer tube, the space between the tube plates in the reaction vessel and the space outside the heat transfer tubes is a heat medium flow. It is an area.

上記熱媒流通領域には、上記各管板のうちの一方の管板寄りとなる該熱媒流通領域の一方の端部と、他方の管板寄りとなる該熱媒流通領域の他方の端部に、熱媒の入口と出口をそれぞれ設け、更に、該熱媒流通領域内における上記一方の端部から他方の端部までの或る間隔ごとの複数個所に、バッフル(邪魔板)を設けた構成が広く採用されている。かかる構成によれば、上記熱媒流通領域に上記熱媒の入口より流入させる熱媒は、上記熱媒の出口へ向けて流通する過程で、上記各バッフルを順次迂回するようになる。これにより、上記熱媒流通領域では、熱媒の流れ方向が、常に管群の各伝熱管の長手方向に直交する方向の流れ(以下、管群直交流と云う)となって該各伝熱管に当たるようにしてある。しかも、上記熱媒流通領域では、上記各バッフルにより熱媒の流通経路の断面積を制限することにより、上記熱媒の流速を高めるようにしてある。   The heat medium flow area includes one end of the heat medium flow area close to one of the tube plates and the other end of the heat medium flow area close to the other tube plate. The heating medium inlet and outlet are respectively provided in the section, and further baffles (baffle plates) are provided at a plurality of intervals from the one end to the other end in the heating medium circulation area. The configuration is widely adopted. According to this configuration, the heating medium that flows into the heating medium circulation region from the inlet of the heating medium sequentially bypasses the baffles in the process of flowing toward the outlet of the heating medium. As a result, in the heat medium flow region, the flow direction of the heat medium is always a flow in a direction orthogonal to the longitudinal direction of each heat transfer tube of the tube group (hereinafter referred to as a tube group cross flow). It is trying to hit. Moreover, in the heat medium flow region, the flow rate of the heat medium is increased by restricting the cross-sectional area of the heat medium flow path by the baffles.

したがって、以上の構成を備えた従来の管内触媒形式の多管式反応器では、上記熱媒流通領域にて、上記熱媒の管群直交流を、流速を高めた状態で発生させることで、上記各伝熱管と、その外面に接する熱媒との間の熱伝達率(以下、管外側の熱伝達率と云う)を高めるようにしてある(たとえば、特許文献1参照)。   Therefore, in the conventional tube catalyst type multi-tube reactor having the above-described configuration, in the heat medium circulation region, the tube group cross-flow of the heat medium is generated in a state where the flow velocity is increased, The heat transfer coefficient between the heat transfer tubes and the heat medium in contact with the outer surface thereof (hereinafter referred to as the heat transfer coefficient outside the tubes) is increased (for example, see Patent Document 1).

管外触媒形式の多管式反応器は、一般に、反応容器の内部に、平行な複数の冷却管による管群(冷却管群)が配置してあり、各冷却管の一端側と他端側には、冷却媒体の分配管と集合管がそれぞれ接続してある。上記反応容器内における上記各冷却管の外側には、触媒を充填した構成としてある。   In general, an external catalyst type multi-tube reactor has a plurality of parallel cooling pipes (cooling pipes) arranged in a reaction vessel, and one end side and the other end side of each cooling pipe. The cooling medium distribution pipe and the collecting pipe are connected to each other. The outside of each cooling pipe in the reaction vessel is configured to be filled with a catalyst.

更に、この種の管外触媒形式の多管式反応器の1つとしては、たとえば、反応容器の外周部と中心部に、反応原料及び反応生成物は通す一方、触媒は通過不可能な孔(開口)を有する触媒保持用の仕切板で仕切られた外周部区画と中央部区画をそれぞれ形成し、該各区画のうち、いずれか一方の区画を、ガス入口に連通する反応原料の分散室とし、他方の区画をガス出口に連通する反応生成物の集合室として、上記各冷却管の外側の触媒層に、反応原料を、半径方向に沿う内向き又は外向きに流通させるようにした形式のものがある(たとえば、特許文献2参照)。   Furthermore, as one of the tube-type reactors of this type of extra-catalyst type, for example, a reaction raw material and a reaction product are passed through the outer peripheral portion and the central portion of the reaction vessel, but the catalyst cannot pass through. A reaction material dispersion chamber in which an outer peripheral section and a central section partitioned by a catalyst holding partition plate having (openings) are formed, and one of the sections communicates with a gas inlet. And the other compartment serves as a reaction product collecting chamber communicating with the gas outlet, and the reaction raw material is circulated inward or outward along the radial direction in the catalyst layer outside each cooling pipe. (For example, refer to Patent Document 2).

なお、通常、多管式反応器では、触媒反応を行わせる際の或る反応温度条件を一定に保持できるようするために、熱媒は、該熱媒の熱容量が大きくなるように、反応原料の供給量に比して大量に供給させるようにしてある。   Normally, in a multitubular reactor, in order to maintain a certain reaction temperature condition when performing a catalytic reaction, the heat medium is a reaction raw material so that the heat capacity of the heat medium is increased. It is made to supply in large quantities compared with the supply amount.

特開2006−510471号公報JP 2006-510471 A 特開昭55−149640号公報JP-A-55-149640

ところが、管内触媒形式の多管式反応器のうち、触媒を充填した各伝熱管内に、反応原料及び反応生成物としてガスを流通させる形式や、伝熱管の外側で熱媒が熱交換する際に液体と気体との間で蒸発又は凝縮のような相変化を生じる形式、更には、各伝熱管内における反応原料及び反応生成物の流速が遅く設定してある形式の多管式反応器では、各伝熱管と、その内面に接する反応原料や反応生成物との間の熱伝達率(以下、管内側の熱伝達率と云う)が、管外側の熱伝達率に比して小さい場合がある。   However, among the multi-tube reactors of the in-tube catalyst type, when the gas is circulated as the reaction raw material and the reaction product in each heat transfer tube filled with the catalyst, or when the heat medium exchanges heat outside the heat transfer tube In a multi-tube reactor in which a phase change such as evaporation or condensation occurs between a liquid and a gas, and the flow rates of the reaction raw materials and reaction products in each heat transfer tube are set low. In some cases, the heat transfer coefficient between each heat transfer tube and the reaction raw material or reaction product in contact with its inner surface (hereinafter referred to as the heat transfer coefficient inside the tube) is smaller than the heat transfer coefficient outside the tube. is there.

この場合、上記反応原料及び反応生成物と、上記熱媒との間の上記各伝熱管の管壁を介した管壁内外方向の熱通過率(総括熱伝達係数)は、上記管内側の熱伝達率に大きく依存している。そのために、上記管内側の熱伝達率が、上記管壁内外方向の熱通過率の全体に対して律速となる。   In this case, the heat passage rate (overall heat transfer coefficient) in the tube wall inside / outside through the tube wall of each heat transfer tube between the reaction raw material and reaction product and the heat medium is the heat inside the tube. It depends heavily on the transmission rate. Therefore, the heat transfer coefficient inside the tube is rate-limiting with respect to the entire heat transfer rate in the tube wall inside / outside direction.

上記のように管内側の熱伝達率が上記管壁内外方向の熱通過率に関して律速となっている場合は、特許文献1に示されたように、熱媒流通領域に複数のバッフルを設けて、該熱媒流通領域内に、熱媒の管群直交流を流速を高めた状態で発生させて、管外側の熱伝達率を増加させても、上記管内外方向の熱通過率の向上化による熱交換性能の改善には、殆ど寄与していない。   As described above, when the heat transfer coefficient inside the tube is rate-limiting with respect to the heat passage rate in the tube wall inside and outside, as shown in Patent Document 1, a plurality of baffles are provided in the heat medium circulation region. Even if the heat transfer rate outside the pipe is increased by generating a cross flow of the pipe group of the heat medium in the state where the flow velocity is increased in the heat medium circulation region, the heat transfer rate in the inside / outside direction of the pipe is improved. It hardly contributes to the improvement of the heat exchange performance by.

しかも、上記特許文献1に示されたものでは、熱媒流通領域内で、各バッフルにより熱媒の流れ方向を何度も折り返すようにしているため、圧力損失が大きくなると共に、各バッフルにより熱媒の流通経路の断面積を制限するようにしてあるために、熱媒供給用のポンプ動力の増加を招いているというのが実状である。   In addition, in the one shown in Patent Document 1, since the flow direction of the heat medium is folded back and forth by each baffle in the heat medium circulation region, the pressure loss increases and the heat is generated by each baffle. Since the cross-sectional area of the flow path of the medium is limited, the actual situation is that the pump power for supplying the heat medium is increased.

特許文献2に示されたものは、管外触媒形式の多管式反応器であるため、各冷却管と、その内面に接する冷却媒体との間の熱伝達率、すなわち、管内側の熱伝達率は、すべての冷却管でほぼ均一となる。   Since the one disclosed in Patent Document 2 is a multi-tubular reactor of an external catalyst type, the heat transfer coefficient between each cooling pipe and the cooling medium in contact with the inner surface thereof, that is, heat transfer inside the pipe. The rate is nearly uniform across all cooling tubes.

一方、各冷却管の外側の触媒の層に流通させるのは、ガスである反応原料及び反応生成物であるため、各冷却管と、その外面に接する反応原料や反応生成物との間の熱伝達率である管外側の熱伝達率が、上記管壁内外方向の熱通過率に関して律速となる。   On the other hand, since it is the reaction raw material and reaction product that are gases that flow through the catalyst layer outside each cooling pipe, the heat between each cooling pipe and the reaction raw material and reaction product in contact with the outer surface thereof. The heat transfer rate outside the tube, which is the transfer rate, becomes a rate-limiting factor with respect to the heat passage rate in the tube wall inside and outside.

この際、上記特許文献2に示されたものでは、反応容器の中心寄りと、外周寄りでの流路断面積の変化に伴う上記反応原料や反応生成物の流速の変化が、上記管外側の熱伝達率に大きな影響を与えるために、反応容器の中心寄りの冷却管と、反応容器の外周寄りの冷却管では、上記管壁内外方向の熱通過率に大きな差が生じてしまい、そのために、反応容器の中心付近と外周寄りでは、温度条件を均一にすることが難しく、触媒反応に偏りが生じる虞があり、反応容器内での触媒反応を均等に進行させることが難しい。   At this time, in the one disclosed in Patent Document 2, the change in the flow rate of the reaction raw material and the reaction product accompanying the change in the cross-sectional area of the flow channel near the center of the reaction vessel and the outer periphery is the outside of the tube. In order to greatly affect the heat transfer rate, a large difference occurs in the heat passage rate in the tube wall inside and outside the cooling tube near the center of the reaction vessel and the cooling tube near the outer periphery of the reaction vessel. In the vicinity of the center and the outer periphery of the reaction vessel, it is difficult to make the temperature conditions uniform, and there is a possibility that the catalytic reaction is biased, and it is difficult to make the catalytic reaction proceed uniformly in the reaction vessel.

そこで、本発明は、管内触媒形式であり且つ管内側の熱伝達率の方が管外側の熱伝達率よりも小さい場合について、熱交換性能の低下を招くことなく熱媒の圧力損失を低減させることができて、熱媒用のポンプ動力を削減でき、且つ、反応容器内の各伝熱管について、熱通過率の偏りが生じる虞を抑えることができて、各伝熱管内で均等に触媒反応を進行させることができる多管式反応器を提供しようとするものである。   Therefore, the present invention reduces the pressure loss of the heat medium without degrading the heat exchange performance when the heat transfer coefficient inside the tube is smaller than the heat transfer rate outside the tube, which is the in-tube catalyst type. It is possible to reduce the pump power for the heat medium, and to suppress the possibility that the heat transfer rate is uneven for each heat transfer tube in the reaction vessel. It is an object of the present invention to provide a multitubular reactor capable of proceeding with the above.

本発明は、上記課題を解決するために、請求項1に対応して、円筒状の反応容器内の軸心方向一端部に管板により仕切って形成した反応原料分配ヘッダと、上記反応容器内の軸心方向他端部に別の管板により仕切って形成した反応生成物集合ヘッダと、上記反応容器内の上記各管板の間の空間における中央部と外周部を除く環状の領域に配置した該反応容器の軸心方向に平行な複数の伝熱管からなり、且つ該各伝熱管の両端部を上記反応原料分配ヘッダと反応生成物集合ヘッダにそれぞれ連通接続させてなる管群と、各伝熱管に充填された触媒とを備え、且つ上記反応容器内の上記各管板同士の間にて、上記管群よりも内側の中心部の空間と、上記管群よりも外側の外周部の空間のいずれか一方の空間を熱媒分散領域、他方の空間を熱媒集合領域とし、更に、上記熱媒分散領域に連通させた熱媒供給管と、上記熱媒集合領域に連通させた熱媒排出管と、上記反応原料分配ヘッダに連通させた反応原料入口と、上記反応生成物集合ヘッダに連通させた反応生成物出口とを設けてなる構成を有する多管式反応器とする。   In order to solve the above problems, the present invention, corresponding to claim 1, is a reaction raw material distribution header formed by partitioning with a tube plate at one axial end in a cylindrical reaction vessel, and the reaction vessel The reaction product assembly header formed by partitioning at the other axial end with another tube plate, and the annular region excluding the central portion and the outer peripheral portion in the space between the tube plates in the reaction vessel A tube group comprising a plurality of heat transfer tubes parallel to the axial direction of the reaction vessel, and both ends of each heat transfer tube communicating with the reaction raw material distribution header and the reaction product assembly header, and each heat transfer tube And between the tube plates in the reaction vessel, a space in the central portion inside the tube group and a space in the outer peripheral portion outside the tube group. One of the spaces is the heat medium dispersion region, and the other space is the heat medium assembly A heat medium supply pipe communicated with the heat medium dispersion area, a heat medium discharge pipe communicated with the heat medium assembly area, a reaction raw material inlet communicated with the reaction raw material distribution header, and A multi-tube reactor having a configuration in which a reaction product outlet communicated with the reaction product assembly header is provided.

又、請求項2に対応して、上記構成において、管板同士の間における管群の内周側と外周側位置に、内周部熱媒分散板と外周部熱媒分散板を、該管群と熱媒分散領域や熱媒集合領域とを仕切る配置で設けるようにした構成とする。   Further, according to claim 2, in the above configuration, the inner peripheral heat medium dispersion plate and the outer peripheral heat medium dispersion plate are disposed at the inner peripheral side and outer peripheral side positions of the tube group between the tube plates. A configuration is adopted in which the group and the heat medium dispersion region and the heat medium assembly region are provided in a partitioning manner.

更に、請求項3に対応して、上記各構成において、熱媒供給管を、反応生成物集合ヘッダの内側を通して配置して、各伝熱管を通過した後に反応生成物集合ヘッダに流れる反応生成物の流れと、上記熱媒供給管を流れる熱媒の流れが対向流となるようにした構成とする。   Further, corresponding to claim 3, in each of the above-mentioned configurations, the heat medium supply pipe is disposed through the inside of the reaction product assembly header, and after passing through each heat transfer tube, the reaction product flowing to the reaction product assembly header And the flow of the heat medium flowing through the heat medium supply pipe are opposed to each other.

本発明の多管式反応器によれば、以下のような優れた効果を発揮する。
(1)管内側の熱伝達率が、管外側の熱伝達率に比して小さい場合に、各伝熱管の内外の該各伝熱管の管壁を介した熱交換性能の低下を招くことなく、熱媒の圧力損失を低減させることができて、熱媒供給用のポンプに必要とされるポンプ動力を削減できる。
(2)更に、反応容器内の各伝熱管について、熱通過率の偏りが生じる虞を抑えることができる。よって、各伝熱管内で均等に触媒反応を進行させることができる。
According to the multitubular reactor of the present invention, the following excellent effects are exhibited.
(1) When the heat transfer coefficient inside the tube is smaller than the heat transfer coefficient outside the tube, the heat exchange performance through the tube wall of each heat transfer tube inside and outside each heat transfer tube is not reduced. The pressure loss of the heat medium can be reduced, and the pump power required for the heat medium supply pump can be reduced.
(2) Furthermore, it is possible to suppress the possibility that the heat transfer rate is uneven for each heat transfer tube in the reaction vessel. Therefore, the catalytic reaction can proceed evenly in each heat transfer tube.

本発明の多管式反応器の実施の一形態を示すもので、(a)は反応容器軸心位置での断面図、(b)は(a)のA−A方向矢視図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 shows an embodiment of a multitubular reactor according to the present invention, in which FIG. 本発明の実施の他の形態を示すもので、(a)は反応容器軸心位置での断面図、(b)は(a)のB−B方向矢視図である。The other form of implementation of this invention is shown, (a) is sectional drawing in reaction container axial center position, (b) is a BB direction arrow directional view of (a). 本発明の実施の更に他の形態を示すもので、(a)は反応容器軸心位置での断面図、(b)は(a)のC−C方向矢視図である。The further another form of implementation of this invention is shown, (a) is sectional drawing in reaction container axial center position, (b) is a CC direction arrow directional view of (a). 本発明の多管式反応器について行った流動解析に関するもので、(a)は解析に用いた本発明の多管式反応器の解析モデルを示す図、(b)は比較例の解析モデルを示す図である。It relates to the flow analysis performed on the multitubular reactor of the present invention, (a) is a diagram showing an analysis model of the multitubular reactor of the present invention used for the analysis, (b) is an analysis model of the comparative example FIG. 本発明の多管式反応器について行った流動解析の結果を示すもので、(a)は本発明の多管式反応器における熱媒側の圧力分布について、比較例と対比して示す図、(b)は本発明の多管式反応器における熱媒側の圧力分布を拡大して示す図である。FIG. 9 shows the results of flow analysis performed on the multitubular reactor of the present invention, and (a) shows the pressure distribution on the heat medium side in the multitubular reactor of the present invention in comparison with the comparative example, (B) is an enlarged view showing the pressure distribution on the heat medium side in the multi-tubular reactor of the present invention.

以下、本発明を実施するための形態を図面を参照して説明する。   Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.

図1(a)(b)は本発明の多管式反応器の実施の一形態を示すものである。   1 (a) and 1 (b) show an embodiment of the multitubular reactor of the present invention.

すなわち、本発明の多管式反応器は、図1に示すように、円筒状の反応容器1内の軸心方向の一端部(図では下端部)に、管板2によって仕切られた反応原料分配ヘッダ3が設けてある。又、上記反応容器1内の軸心方向の他端部(図では上端部)には、別の管板4によって仕切られた反応生成物集合ヘッダ5が設けてある。   That is, as shown in FIG. 1, the multitubular reactor of the present invention is a reaction raw material partitioned by a tube plate 2 at one end portion (lower end portion in the figure) in the axial direction in a cylindrical reaction vessel 1. A distribution header 3 is provided. Further, a reaction product assembly header 5 partitioned by another tube plate 4 is provided at the other end portion (upper end portion in the figure) in the axial direction in the reaction vessel 1.

上記反応容器1内における各管板2と4の間には、反応容器1の中心部と外周部を除く環状の領域に、該反応容器1の軸心方向に平行に配置された複数の伝熱管7よりなる管群6を配置して、該各伝熱管7の両端部を、上記反応原料分配ヘッダ3と上記反応生成物集合ヘッダ5に、それぞれ連通接続してある。更に、各伝熱管7には、触媒8が充填してある。なお、図1(a)では、図示する便宜上、図1(b)に比して伝熱管7の数を減らして記載してある。又、図1(b)では、各伝熱管7内に充填された触媒の記載を省略してある。   Between the tube plates 2 and 4 in the reaction vessel 1, a plurality of transmission lines arranged parallel to the axial direction of the reaction vessel 1 are arranged in an annular region excluding the central portion and the outer peripheral portion of the reaction vessel 1. A tube group 6 composed of heat tubes 7 is arranged, and both ends of each heat transfer tube 7 are connected to the reaction raw material distribution header 3 and the reaction product assembly header 5 respectively. Further, each heat transfer tube 7 is filled with a catalyst 8. In FIG. 1A, for convenience of illustration, the number of heat transfer tubes 7 is reduced as compared with FIG. 1B. Moreover, in FIG.1 (b), description of the catalyst with which each heat exchanger tube 7 was filled is abbreviate | omitted.

上記反応容器1内における各管板2と4同士の間にて、上記管群6よりも内側の中心部の空間は、熱媒分散領域9とし、上記管群6よりも外側の外周部の空間は、熱媒集合領域10としてある。   The space inside the tube group 6 between the tube plates 2 and 4 in the reaction vessel 1 is a heat medium dispersion region 9, and the outer peripheral portion outside the tube group 6. The space is a heat medium assembly region 10.

上記熱媒分散領域9には、反応容器1の軸心方向の他端より上記反応生成物集合ヘッダ5の内側を通して配管した熱媒供給管11の下流側端部が、上記管板4の中央部を貫通させて連通接続してある。一方、上記熱媒集合領域10には、熱媒排出管12が、上記反応容器1の外周壁の周方向の1個所を貫通させて連通接続してある。これにより、外部の図示しない熱媒供給源より上記熱媒供給管11の上流側端部へ熱媒(熱媒体)13が供給されると、該熱媒13は、上記熱媒供給管11を経て上記熱媒分散領域9に流入されるようにしてある。上記熱媒分散領域9に流入した熱媒13は、該熱媒分散領域9の周囲に配置されている上記管群6の各伝熱管7の間を通って上記熱媒集合領域10へ向けて流れるようになる。この際、上記熱媒13の流れでは、上記管群6を形成している各伝熱管7が抵抗になって圧力損失が生じることに伴い、該熱媒13の流れは、周方向に一様に分散される状態で、上記各伝熱管7の間を通って外周側へ向かうようにしてある。   In the heat medium dispersion region 9, the downstream end of the heat medium supply pipe 11 piped from the other end in the axial direction of the reaction vessel 1 through the inside of the reaction product assembly header 5 is the center of the tube plate 4. The part is penetrated and connected in communication. On the other hand, a heat medium discharge pipe 12 is connected to the heat medium assembly region 10 through one place in the circumferential direction of the outer peripheral wall of the reaction vessel 1. As a result, when a heat medium (heat medium) 13 is supplied from an external heat medium supply source (not shown) to the upstream end of the heat medium supply pipe 11, the heat medium 13 passes through the heat medium supply pipe 11. Then, it flows into the heat medium dispersion region 9. The heat medium 13 that has flowed into the heat medium dispersion region 9 passes between the heat transfer tubes 7 of the tube group 6 arranged around the heat medium dispersion region 9 toward the heat medium assembly region 10. It begins to flow. At this time, the flow of the heat medium 13 is uniform in the circumferential direction as the heat transfer tubes 7 forming the tube group 6 become resistance and pressure loss occurs. In such a state that the heat transfer tubes 7 are dispersed, the heat transfer tubes 7 are passed toward the outer peripheral side.

その後、上記のようにして周方向に分散された状態で上記管群6を半径方向の内側から外向きに通過した熱媒13は、上記反応容器1内の外周部に設けてある熱媒集合領域10で集合させられた後、上記熱媒排出管12を通して外部に排出されるようにしてある。この外部へ排出される熱媒13は、たとえば、図示しない熱交換器に導いて、本発明の多管式反応器で行わせる触媒反応が発熱反応の場合は放熱(熱回収)させ、一方、上記触媒反応が吸熱反応の場合は昇温させてから、上記図示しない熱媒供給源に戻して、再循環させるようにすればよい。よって、上記図示しない熱媒供給源より上記熱媒供給管11へ連続的に熱媒13を供給させることで、本発明の多管式反応器では、上記各伝熱管7の周りに熱媒13を連続して流通させることができるようにしてある。   After that, the heat medium 13 that has passed through the tube group 6 from the inside in the radial direction to the outside while being dispersed in the circumferential direction as described above is a heat medium assembly provided on the outer peripheral portion in the reaction vessel 1. After being assembled in the region 10, it is discharged to the outside through the heat medium discharge pipe 12. The heat medium 13 discharged to the outside is, for example, guided to a heat exchanger (not shown), and when the catalytic reaction to be performed in the multi-tubular reactor of the present invention is an exothermic reaction, heat is dissipated (heat recovery), If the catalytic reaction is an endothermic reaction, the temperature is raised and then returned to the heating medium supply source (not shown) and recirculated. Therefore, by continuously supplying the heat medium 13 from the heat medium supply source (not shown) to the heat medium supply pipe 11, in the multitubular reactor of the present invention, the heat medium 13 around each heat transfer pipe 7. Can be continuously distributed.

上記反応容器1の軸心方向の一端部には、上記反応原料分配ヘッダ3に連通する反応原料入口14が設けてある。これにより、上記反応原料入口14より供給される反応原料15は、反応原料分配ヘッダ3に流入すると、該反応原料分配ヘッダ3内で分散された後、上記管群6を形成している各伝熱管7に対して均等に供給されるようにしてある。   A reaction material inlet 14 communicating with the reaction material distribution header 3 is provided at one end of the reaction vessel 1 in the axial direction. Thus, when the reaction raw material 15 supplied from the reaction raw material inlet 14 flows into the reaction raw material distribution header 3, the reaction raw material 15 is dispersed in the reaction raw material distribution header 3, and then each of the transmission lines forming the tube group 6. The heat pipe 7 is supplied evenly.

上記反応容器1の軸心方向の他端部における上記熱媒供給管11と干渉しない位置には、上記反応生成物集合ヘッダ5に連通する反応生成物出口16が設けてある。これにより、上記反応原料分配ヘッダ3より反応原料15が供給される上記各伝熱管7内で触媒反応により生成される反応生成物17は、上記反応生成物集合ヘッダ5で集合させられた後、上記反応生成物出口16より外部へ取り出されるようにしてある。更に、上記各伝熱管7より反応生成物集合ヘッダ5を経て上記反応生成物出口16へ導かれる反応生成物17の流れと、上記熱媒供給管11を通して上記熱媒分散領域9へ供給される熱媒13の流れが対向流となるようにすることで、該熱媒13の有する加熱能又は冷却能を有効に利用できるようにしてある。   A reaction product outlet 16 communicating with the reaction product assembly header 5 is provided at a position where it does not interfere with the heat medium supply pipe 11 at the other end in the axial direction of the reaction vessel 1. Thereby, after the reaction product 17 produced | generated by the catalytic reaction in each said heat exchanger tube 7 to which the reaction raw material 15 is supplied from the said reaction raw material distribution header 3 is aggregated by the said reaction product assembly header 5, The reaction product is taken out through the reaction product outlet 16. Furthermore, the flow of the reaction product 17 led from the heat transfer tubes 7 through the reaction product assembly header 5 to the reaction product outlet 16 and supplied to the heat medium dispersion region 9 through the heat medium supply tube 11. By making the flow of the heating medium 13 counter flow, the heating ability or cooling ability of the heating medium 13 can be used effectively.

なお、本実施の形態では、上記熱媒13は液体とし、上記反応原料15及び反応生成物17は、上記熱媒13に比して伝熱管7の管壁に対する熱伝達率がより低い(小さい)ガスであるものとする。   In the present embodiment, the heat medium 13 is liquid, and the reaction raw material 15 and the reaction product 17 have a lower (smaller) heat transfer coefficient with respect to the tube wall of the heat transfer tube 7 than the heat medium 13. ) Shall be gas.

又、上記熱媒13は、上記各伝熱管7内で反応原料15より反応生成物17を生じる触媒反応が発熱反応であるか、又は、吸熱反応であるかに応じて、冷却媒体、又は、加熱媒体を用いるようにすればよい。又、該熱媒13は、上記触媒反応に所望される温度条件に対応可能な種類のものを適宜選定して用いるようにすればよい。   The heat medium 13 is a cooling medium, depending on whether the catalytic reaction that generates the reaction product 17 from the reaction raw material 15 in each heat transfer tube 7 is an exothermic reaction or an endothermic reaction, or A heating medium may be used. In addition, the heat medium 13 may be appropriately selected and used in a kind that can meet the temperature conditions desired for the catalytic reaction.

以上の構成としてある本発明の多管式反応器を使用する場合は、先ず、上記外部の図示しない熱媒供給源より、後述する触媒反応を行わせる際の反応温度条件として所望する温度に予め温度調整した状態の熱媒13を、熱媒供給管11の上流側端部へ連続的に供給する。   When using the multitubular reactor according to the present invention having the above-described configuration, first, the external heating medium supply source (not shown) is previously set to a desired temperature as a reaction temperature condition for performing a catalytic reaction described later. The heat medium 13 with the temperature adjusted is continuously supplied to the upstream end of the heat medium supply pipe 11.

これにより、該熱媒13は、反応容器1内で、熱媒供給管11、熱媒分散領域9を経て、周方向及び各伝熱管7の長手方向に一様に分散された状態で、管群6を形成している各伝熱管7の間を連続的に流通させられるようになる。このため、該各伝熱管7は、その外面側で、上記熱媒13との熱交換が行われる。   As a result, the heat medium 13 passes through the heat medium supply tube 11 and the heat medium dispersion region 9 in the reaction vessel 1 and is uniformly dispersed in the circumferential direction and the longitudinal direction of each heat transfer tube 7. It becomes possible to continuously circulate between the heat transfer tubes 7 forming the group 6. For this reason, each heat exchanger tube 7 is subjected to heat exchange with the heat medium 13 on the outer surface side thereof.

その後、上記各伝熱管7との熱交換に供された後の熱媒13は、上記管群6の外周の熱媒集合領域10と、熱媒排出管12を経て外部に排出されるようになる。   Thereafter, the heat medium 13 after being subjected to heat exchange with each of the heat transfer tubes 7 is discharged to the outside through the heat medium assembly region 10 on the outer periphery of the tube group 6 and the heat medium discharge tube 12. Become.

この際、上記各伝熱管7の内面やその内側の触媒8は、該各伝熱管7と、その外側を流通する熱媒13との熱交換に伴って、上記所定の反応温度条件に常に保持されるようになる。   At this time, the inner surface of each heat transfer tube 7 and the catalyst 8 inside the heat transfer tube 7 are always maintained at the predetermined reaction temperature conditions in accordance with the heat exchange between the heat transfer tubes 7 and the heat medium 13 flowing outside the heat transfer tubes 7. Will come to be.

この状態で、図示しない反応原料供給手段により、反応原料15を、反応原料入口14より供給すると、該反応原料15は、反応原料分配ヘッダ3内で分散された後、上記各伝熱管7内へ平均して供給される。   In this state, when the reaction raw material 15 is supplied from the reaction raw material inlet 14 by a reaction raw material supply means (not shown), the reaction raw material 15 is dispersed in the reaction raw material distribution header 3 and then into the heat transfer tubes 7. Supplied on average.

上記各伝熱管7内では、該各伝熱管7内に充填されている触媒8の存在により、上記所定の反応温度条件の下で、上記供給された反応原料15より反応生成物17を生成する触媒反応が実施されるようになる。この際、上記触媒反応が発熱反応又は吸熱反応のいずれであるとしても、上記各伝熱管7の外側を連続的に流通させてある上記熱媒13との熱交換により、その発熱又は吸熱による熱の変化分が連続的に吸収されて、上記各伝熱管7内の触媒8を上記所定の反応温度条件に保持することができる。   In each of the heat transfer tubes 7, a reaction product 17 is generated from the supplied reaction raw material 15 under the predetermined reaction temperature condition due to the presence of the catalyst 8 filled in the heat transfer tubes 7. A catalytic reaction is carried out. At this time, regardless of whether the catalytic reaction is an exothermic reaction or an endothermic reaction, the heat exchange with the heat medium 13 continuously flowing outside the heat transfer tubes 7 causes heat generated by the heat generation or endotherm. Is continuously absorbed, and the catalyst 8 in each heat transfer tube 7 can be maintained at the predetermined reaction temperature condition.

上記各伝熱管7内での触媒反応によって生成された反応生成物17は、該各伝熱管7より上記反応生成物集合ヘッダ5へ導かれて、該反応生成物集合ヘッダ5内で一旦集合させられた後、反応生成物出口16を通して外部へ回収されるようになる。   The reaction products 17 generated by the catalytic reaction in the heat transfer tubes 7 are guided from the heat transfer tubes 7 to the reaction product assembly header 5 and are temporarily assembled in the reaction product assembly header 5. Then, it is recovered to the outside through the reaction product outlet 16.

このように、本発明の多管式反応器によれば、各伝熱管7の内部に流通させるガスとしての反応原料15及び反応生成物17と、各伝熱管7の外側に流通させる熱媒13との該各伝熱管7の管壁を介した熱交換により、各伝熱管7内における反応温度条件を保持しながら、上記触媒反応によって反応原料15より反応生成物17を連続的に製造することができる。   Thus, according to the multitubular reactor of the present invention, the reaction raw material 15 and the reaction product 17 as the gas to be circulated inside each heat transfer tube 7, and the heat medium 13 to be circulated outside each heat transfer tube 7. The reaction product 17 is continuously produced from the reaction raw material 15 by the above catalytic reaction while maintaining the reaction temperature condition in each heat transfer tube 7 by heat exchange with the heat transfer tube 7 through the tube wall. Can do.

この際、上記各伝熱管7と熱交換させる熱媒13の流れ方向は、反応容器1の中心部に設けてある上記熱媒分散領域9から、外周部に設けてある上記熱媒集合領域10まで半径方向に沿う外向き(放射方向)であるため、従来の熱媒流通領域にバッフルを備えた管内触媒形式の多管式反応器のように、熱媒13の流れが何度も折り返されることはない。又、上記熱媒分散領域9から上記熱媒集合領域10までの熱媒13の流通経路では、その断面積がバッフルにより制限されることもない。このため、本発明の多管式反応器では、熱媒13供給用のポンプ動力を削減することができる。   At this time, the flow direction of the heat medium 13 to exchange heat with the heat transfer tubes 7 is changed from the heat medium dispersion region 9 provided in the center of the reaction vessel 1 to the heat medium assembly region 10 provided in the outer periphery. Since it is outward (radial direction) along the radial direction, the flow of the heating medium 13 is folded many times like a conventional multi-tubular reactor with a baffle in a conventional heating medium circulation region. There is nothing. Further, in the flow path of the heat medium 13 from the heat medium dispersion region 9 to the heat medium assembly region 10, the cross-sectional area is not limited by the baffle. For this reason, in the multitubular reactor of the present invention, the pump power for supplying the heat medium 13 can be reduced.

なお、本発明の多管式反応器では、上記熱媒13の流通経路が従来のようにバッフルによる断面積の制限を受けないことに伴い、上記管群6の各伝熱管7の周りを流れる熱媒13の平均流速は遅くなり、この熱媒13の流速の減少に伴い、各伝熱管7の管外側の熱伝達率が低下する。   In the multi-tubular reactor of the present invention, the flow path of the heat medium 13 flows around each heat transfer tube 7 of the tube group 6 as the flow path of the heat medium 13 is not limited by the cross-sectional area due to the baffle as in the prior art. The average flow velocity of the heat medium 13 becomes slow, and as the flow velocity of the heat medium 13 decreases, the heat transfer coefficient outside the heat transfer tubes 7 decreases.

しかし、前述したように、本発明の多管式反応器では、伝熱管7の内部に流通させる反応原料15及び反応生成物17がガスであって、管内側の熱伝達率が、管外側の熱伝達率よりも小さくなっているため、この管内側の熱伝達率が律速の因子となる上記各伝熱管7の管壁内外方向の熱通過率は、上記管外側の熱伝達率の低下の影響を殆ど受けない。よって、本発明の多管式反応器では、熱交換性能の低下を招くことはない。このことは、後述する実施例1の数値解析の結果からも明らかである。   However, as described above, in the multi-tubular reactor of the present invention, the reaction raw material 15 and the reaction product 17 to be circulated inside the heat transfer tube 7 are gases, and the heat transfer coefficient inside the tube is outside the tube. Since the heat transfer coefficient is smaller than the heat transfer coefficient, the heat transfer coefficient in the tube wall direction of each heat transfer tube 7 in which the heat transfer coefficient inside the tube is a rate-determining factor is a decrease in the heat transfer coefficient outside the tube. Little affected. Therefore, the multitubular reactor of the present invention does not cause a decrease in heat exchange performance. This is also clear from the results of numerical analysis of Example 1 described later.

更に、本発明の多管式反応器では、上記したように各伝熱管7には反応原料15が平均して供給される。よって、各伝熱管7内における反応原料15や反応生成物17の流速に差が生じることはないため、伝熱管7ごとに管内側の熱伝達率に差が生じることはない。   Furthermore, in the multitubular reactor of the present invention, the reaction raw material 15 is supplied to each heat transfer tube 7 on average as described above. Therefore, there is no difference in the flow rate of the reaction raw material 15 and the reaction product 17 in each heat transfer tube 7, and therefore there is no difference in the heat transfer coefficient inside the tube for each heat transfer tube 7.

一方、管群6を内周側から外周側に向けて流れる熱媒13は、半径方向の外側に行くにしたがって流路断面積が拡大するため、該熱媒13の流速は、管群6の内周部が最大で、半径方向の外側に行くにしたがって低下するようになる。そのために、管群6の半径方向の異なる位置に配置されている伝熱管7同士では、上記熱媒の流速の変化に応じて、管外側の熱伝達率に差が生じる。   On the other hand, the flow rate of the heat medium 13 of the heat transfer medium 13 flows from the inner peripheral side toward the outer peripheral side of the tube group 6 because the flow path cross-sectional area increases as it goes outward in the radial direction. The inner peripheral portion is maximum and decreases as it goes outward in the radial direction. Therefore, between the heat transfer tubes 7 arranged at different positions in the radial direction of the tube group 6, a difference occurs in the heat transfer coefficient outside the tubes according to the change in the flow rate of the heat medium.

しかし、前述したように、本発明の多管式反応器では、管内側の熱伝達率が、各伝熱管7の管壁内外方向の熱通過率に対して律速の因子となっているため、上記管群6の半径方向の異なる位置に配置されている伝熱管7同士で、管外側の熱媒13に大きな流速変化が生じていても、管壁内外方向の熱通過率は、大きな差が生じることなく、全域で安定している。このことは、後述する実施例2の数値解析の結果からも明らかである。   However, as described above, in the multi-tubular reactor of the present invention, the heat transfer coefficient inside the tube is a rate-determining factor with respect to the heat transfer rate inside and outside the tube wall of each heat transfer tube 7, Even if the heat transfer tubes 7 arranged at different positions in the radial direction of the tube group 6 have a large flow rate change in the heat medium 13 on the outside of the tube, there is a large difference in the heat passage rate in the tube wall inner / outer direction. It does not occur and is stable throughout. This is also clear from the results of numerical analysis in Example 2 described later.

よって、本発明の多管式反応器によれば、反応容器1内のすべての伝熱管7について、上記熱通過率の偏りが生じる虞を抑制することができ、このため、各伝熱管7内で、均等に触媒反応を進行させることが可能になる。   Therefore, according to the multi-tubular reactor of the present invention, it is possible to suppress the possibility that the heat transfer rate is biased with respect to all the heat transfer tubes 7 in the reaction vessel 1. Thus, the catalytic reaction can be allowed to proceed evenly.

更には、熱伝達特性のよい流体である熱媒13を、伝熱管7の管外側を直交流として流すと、該熱媒13を伝熱管7の管内側に流す場合に比して、熱伝達率の向上化を図ることができる。よって、本発明の多管式反応器は、管外触媒形式で且つ反応容器の半径方向の内外方向に反応原料を流通させる形式の多管式反応器に比して、熱通過率の大幅な向上化を図ることが可能になる。   Furthermore, when the heat medium 13, which is a fluid with good heat transfer characteristics, is flowed as a cross flow on the outside of the heat transfer tube 7, the heat transfer is compared to the case where the heat medium 13 is flowed on the inside of the heat transfer tube 7. The rate can be improved. Therefore, the multi-tubular reactor of the present invention has a heat transfer rate significantly higher than that of a multi-tubular reactor in which the reaction raw material is circulated in the radial direction of the reaction vessel in the radial direction of the reaction vessel. It becomes possible to improve.

次に、図2(a)(b)は本発明の実施の他の形態として、図1(a)(b)の実施形態の変形例を示すものである。   Next, FIGS. 2A and 2B show a modification of the embodiment of FIGS. 1A and 1B as another embodiment of the present invention.

すなわち、本実施の形態の多管式反応器は、図1(a)(b)と同様の構成において、熱媒供給管11と熱媒排出管12を入れ替えて、反応容器1内における各管板2と4同士の間にて、管群6よりも外側の外周部の空間を、上記熱媒供給管11に連通する熱媒分散領域9とし、上記管群6よりも内側の中心部の空間を、上記熱媒排出管12に連通する熱媒集合領域10としてある。   That is, the multitubular reactor according to the present embodiment has the same configuration as that of FIGS. 1A and 1B, and replaces the heat medium supply pipe 11 and the heat medium discharge pipe 12 so that each pipe in the reaction vessel 1 is replaced. Between the plates 2 and 4, the space on the outer periphery outside the tube group 6 is a heat medium dispersion region 9 communicating with the heat medium supply tube 11, and the central portion inside the tube group 6 is located in the center. The space is defined as a heat medium assembly region 10 that communicates with the heat medium discharge pipe 12.

その他の構成は図1(a)(b)に示したものと同様であり、同一のものには同一の符号が付してある。   Other configurations are the same as those shown in FIGS. 1A and 1B, and the same components are denoted by the same reference numerals.

以上の構成としてある本実施の形態の多管式反応器を使用する場合は、図1(a)(b)に示したものと同様に、外部の図示しない熱媒供給源より、伝熱管7内で触媒反応を行わせる際の反応温度条件として所望する温度に予め温度調整した状態の熱媒13を、熱媒供給管11の上流側端部へ連続的に供給する。   When the multitubular reactor according to the present embodiment having the above-described configuration is used, the heat transfer tube 7 is supplied from an external heating medium supply source (not shown) in the same manner as shown in FIGS. The heating medium 13 in a state in which the temperature is adjusted in advance to a desired temperature as a reaction temperature condition for performing the catalytic reaction is continuously supplied to the upstream end of the heating medium supply pipe 11.

これにより、上記熱媒13は、反応容器1内で、熱媒供給管11を経て、管群6の外周に設けてある上記熱媒分散領域9に流入する。その後、該熱媒分散領域9に流入した上記熱媒13は、該熱媒分散領域9の内側に配置されている上記管群6の各伝熱管7の間を通って上記熱媒集合領域10へ向けて反応容器1の半径方向に沿う内向きに流れるようになる。この際、上記熱媒13の流れでは、上記管群6を形成している各伝熱管7が抵抗になって圧力損失が生じることに伴い、該熱媒13の流れは、周方向に一様に分散された状態で、該各伝熱管7の間を通って内周側へ向かうようになる。   Thereby, the heat medium 13 flows into the heat medium dispersion region 9 provided on the outer periphery of the tube group 6 through the heat medium supply pipe 11 in the reaction vessel 1. Thereafter, the heat medium 13 that has flowed into the heat medium dispersion region 9 passes between the heat transfer tubes 7 of the tube group 6 disposed inside the heat medium dispersion region 9, and thus the heat medium assembly region 10. It flows inwardly along the radial direction of the reaction vessel 1 toward. At this time, the flow of the heat medium 13 is uniform in the circumferential direction as the heat transfer tubes 7 forming the tube group 6 become resistance and pressure loss occurs. In the state of being dispersed to each other, it passes between the heat transfer tubes 7 toward the inner peripheral side.

これにより、上記管群6の各伝熱管7では、その外面側で、上記熱媒13との熱交換が行われるようになる。   Thereby, in each heat exchanger tube 7 of the said tube group 6, heat exchange with the said heat medium 13 comes to be performed in the outer surface side.

その後、上記各伝熱管7との熱交換に供された後の熱媒13は、上記管群6の内側の熱媒集合領域10で集合させられた後に、熱媒排出管12を経て外部に排出されるようになる。   Thereafter, the heat medium 13 after being subjected to heat exchange with each heat transfer tube 7 is assembled in the heat medium assembly region 10 inside the tube group 6 and then passed through the heat medium discharge tube 12 to the outside. It will be discharged.

したがって、本実施の形態によっても、上記各伝熱管7の内面やその内側の触媒8は、該各伝熱管7と、その外側を流通する熱媒13との熱交換に伴って、上記所定の反応温度条件に常に保持することができるようになる。   Therefore, also in the present embodiment, the inner surface of each heat transfer tube 7 and the catalyst 8 inside the heat transfer tube 7 are subjected to heat exchange between the heat transfer tube 7 and the heat medium 13 flowing outside the heat transfer tube 7. The reaction temperature condition can always be maintained.

よって、本実施の形態によっても、図1(a)(b)の実施の形態と同様に、各伝熱管7内では、触媒8の存在下で、上記所定の反応温度条件の下で、供給される反応原料15より反応生成物17を生成する触媒反応を実施させることができると共に、図1(a)(b)の実施の形態と同様の効果を得ることができる。   Therefore, also in the present embodiment, as in the embodiment of FIGS. 1 (a) and 1 (b), the supply is performed in the heat transfer tubes 7 in the presence of the catalyst 8 under the predetermined reaction temperature condition. The catalytic reaction for generating the reaction product 17 from the reaction raw material 15 to be performed can be performed, and the same effects as those in the embodiment of FIGS. 1A and 1B can be obtained.

次いで、図3(a)(b)は本発明の実施の更に他の形態として、図1の実施の形態の応用例を示すものである。   Next, FIGS. 3A and 3B show an application example of the embodiment of FIG. 1 as still another embodiment of the present invention.

すなわち、本実施の形態の多管式反応器は、図1(a)(b)に示したと同様の構成において、各管板2と4の間における管群6の内側(反応容器1の中央寄り)となる個所に、反応容器1の軸心方向に延びる筒状の熱媒分散板としての内周部熱媒分散板18を、熱媒供給管11に連通する熱媒分散領域9と、上記管群6の設置個所とを仕切るよう配置して設けた構成としてある。図3(a)(b)では、上記内周部熱媒分散板18を、熱媒供給管11と同径のものとして、該熱媒供給管11の軸心方向に連なる位置に設けた構成が示してある。   That is, the multi-tubular reactor according to the present embodiment has a configuration similar to that shown in FIGS. 1A and 1B, inside the tube group 6 between the tube plates 2 and 4 (the center of the reaction vessel 1). A heat medium dispersion region 9 communicating with the heat medium supply pipe 11, an inner peripheral heat medium dispersion plate 18 as a cylindrical heat medium dispersion plate extending in the axial direction of the reaction vessel 1, The tube group 6 is arranged so as to be separated from the installation location of the tube group 6. 3 (a) and 3 (b), the inner peripheral heat medium dispersion plate 18 has the same diameter as the heat medium supply pipe 11, and is provided at a position continuous in the axial direction of the heat medium supply pipe 11. Is shown.

上記内周部熱媒分散板18は、熱媒13を円筒状の周壁の内外方向に通過させることができ、且つ熱媒13が上記周壁を通過するときに或る程度の圧力損失を生じさせて、上記熱媒分散領域9より管群6の設置個所へ流入させる熱媒13の周方向及び各伝熱管7の長手方向への分散を促進させることができるようにしてある。なお、該内周部熱媒分散板18は、上記のような熱媒13の分散機能を備えていれば、たとえば、周壁に図示しないスリットや開口を設けてなる構成、あるいは、周壁をメッシュやパンチングメタルにより形成した構成等、任意の構成のものを採用してよい。   The inner peripheral heat medium dispersion plate 18 allows the heat medium 13 to pass in and out of the cylindrical peripheral wall, and causes some pressure loss when the heat medium 13 passes through the peripheral wall. Thus, it is possible to promote the dispersion of the heat medium 13 flowing from the heat medium dispersion region 9 into the installation location of the tube group 6 in the circumferential direction and the longitudinal direction of each heat transfer tube 7. In addition, if this inner periphery part heat-medium dispersion | distribution board 18 is equipped with the dispersion | distribution function of the heat medium 13 as mentioned above, for example, the structure which provided the slit and opening which are not shown in a surrounding wall, or a surrounding wall is a mesh, Arbitrary configurations such as a configuration formed of a punching metal may be adopted.

更に、本実施の形態では、各管板2と4の間における管群6の外側(反応容器1の外周寄り)となる個所に、反応容器1の軸心方向に延びる筒状の熱媒分散板としての外周部熱媒分散板19を、熱媒排出管12に連通する熱媒集合領域10と、上記管群6の設置個所とを仕切るよう配置して設けた構成としてある。   Further, in the present embodiment, a cylindrical heat medium dispersion extending in the axial direction of the reaction vessel 1 is located outside the tube group 6 between the tube plates 2 and 4 (near the outer periphery of the reaction vessel 1). The outer peripheral heat medium dispersion plate 19 as a plate is provided so as to partition the heat medium collecting region 10 communicating with the heat medium discharge pipe 12 and the installation location of the tube group 6.

上記外周部熱媒分散板19は、上記内周部熱媒分散板18と同様の熱媒13の周方向及び各伝熱管7の長手方向への分散を促す構成の周壁を備えるようにしてある。   The outer peripheral heat medium dispersion plate 19 includes a peripheral wall configured to promote dispersion in the circumferential direction of the heat medium 13 and the longitudinal direction of each heat transfer tube 7 similar to the inner peripheral heat medium dispersion plate 18. .

その他の構成は、図1(a)(b)に示したものと同様であり、同一のものには同一の符号が付してある。   Other configurations are the same as those shown in FIGS. 1A and 1B, and the same components are denoted by the same reference numerals.

以上の構成としてある本実施の形態の多管式反応器によれば、図1(a)(b)に示したものと同様に使用して、同様の効果を得ることができることに加えて、上記内周部熱媒分散板18と外周部熱媒分散板19により、熱媒分散領域9と熱媒集合領域10での熱媒13の流れを円滑に行わせることができると共に、熱媒13の流れの周方向及び伝熱管7の長手方向に関する分散性を向上させることができる。このため、本実施の形態の多管式反応器は、管群6の各伝熱管7に対して、より均等に熱媒13を接触させることができるようになるため、熱交換性能の更なる改善、及び、各伝熱管7内での触媒反応の更なる均一化を図ることができる。なお、上記反応容器1が小さいこと等に伴って上記管群6の半径方向に配列される伝熱管7の本数が少ない場合や、上記管群6における伝熱管7の管ピッチと管径の比(管ピッチ/管径)が大きい場合には、上記熱媒13の管群直交流の流動抵抗が小さくなることが考えられるが、この場合は、上記内周部熱媒分散板18及び外周部熱媒分散板19にて熱媒13が通過する際の抵抗を大きく設定することで、熱媒13の流れの周方向及び伝熱管7の長手方向に関する分散性を保持することができる。   According to the multi-tubular reactor of the present embodiment having the above-described configuration, in addition to being able to obtain the same effect by using the same as shown in FIGS. 1 (a) and 1 (b), The inner peripheral heat medium dispersion plate 18 and the outer peripheral heat medium dispersion plate 19 can smoothly flow the heat medium 13 in the heat medium dispersion region 9 and the heat medium assembly region 10, and the heat medium 13. Dispersibility in the circumferential direction of the flow and the longitudinal direction of the heat transfer tube 7 can be improved. For this reason, since the multi-tubular reactor of the present embodiment can contact the heat transfer medium 13 more evenly with respect to the heat transfer tubes 7 of the tube group 6, the heat exchange performance is further improved. The improvement and further uniformization of the catalytic reaction in each heat transfer tube 7 can be achieved. In addition, when the number of the heat transfer tubes 7 arranged in the radial direction of the tube group 6 is small due to the fact that the reaction vessel 1 is small, or the ratio of the tube pitch and the tube diameter of the heat transfer tubes 7 in the tube group 6 When (pipe pitch / tube diameter) is large, the flow resistance of the tube group cross-flow of the heat medium 13 is considered to be small. In this case, the inner peripheral heat medium dispersion plate 18 and the outer peripheral part are considered. Dispersibility in the circumferential direction of the flow of the heat medium 13 and the longitudinal direction of the heat transfer tube 7 can be maintained by setting a large resistance when the heat medium 13 passes through the heat medium dispersion plate 19.

なお、本発明は上記実施の形態のみに限定されるものではなく、図3(a)(b)の実施の形態と同様の構成において、図2(a)(b)に示したと同様に、熱媒供給管11と熱媒排出管12を入れ替えて、反応容器1内における各管板2と4同士の間にて、外周部熱媒分散板19よりも外側の空間を、上記熱媒供給管11に連通する熱媒分散領域9とし、内周部熱媒分散板18よりも内側の空間を、上記熱媒排出管12に連通する熱媒集合領域10とした構成としてもよい。かかる構成の多管式反応器によっても、図3(a)(b)の実施の形態と同様の効果を得ることができる。   In addition, this invention is not limited only to the said embodiment, In the structure similar to embodiment of Fig.3 (a) (b), as shown to Fig.2 (a) (b), By replacing the heat medium supply pipe 11 and the heat medium discharge pipe 12, the space outside the outer peripheral heat medium dispersion plate 19 is provided between the tube plates 2 and 4 in the reaction vessel 1. The heat medium dispersion region 9 that communicates with the tube 11 may be used, and the space inside the inner periphery heat medium dispersion plate 18 may be the heat medium assembly region 10 that communicates with the heat medium discharge tube 12. Even with such a multi-tubular reactor, the same effects as those of the embodiment of FIGS. 3A and 3B can be obtained.

上記各実施の形態では、反応容器1の一端側の管板2により仕切られた空間を、反応原料入口14に連通する反応原料分配ヘッダ3とし、且つ反応容器1の他端側の管板4により仕切られた空間を、反応生成物出口16に連通する反応生成物集合ヘッダ5とした構成を示したが、上記反応原料入口14と反応生成物出口16とを入れ替えて、反応容器1の他端側に上記反応原料入口14に連通する反応原料分配ヘッダ3を備え、且つ反応容器1の一端側に上記反応生成物出口16に連通する反応生成物集合ヘッダ5を備えた構成としてもよい。この場合は、上記各実施の形態に対して反応原料15及び反応生成物17の流れ方向は逆になるが、上記各実施の形態と同様の効果を得ることができる。   In each of the above embodiments, the space partitioned by the tube plate 2 on one end side of the reaction vessel 1 is used as the reaction raw material distribution header 3 communicating with the reaction raw material inlet 14, and the tube plate 4 on the other end side of the reaction vessel 1. Although the configuration in which the space partitioned by the reaction product outlet header 5 communicating with the reaction product outlet 16 is shown, the reaction raw material inlet 14 and the reaction product outlet 16 are replaced with each other, The reaction raw material distribution header 3 communicating with the reaction raw material inlet 14 may be provided on the end side, and the reaction product assembly header 5 communicating with the reaction product outlet 16 may be provided on one end side of the reaction vessel 1. In this case, the flow directions of the reaction raw material 15 and the reaction product 17 are opposite to those in the above embodiments, but the same effects as those in the above embodiments can be obtained.

管群6における各伝熱管7は、該管群6を半径方向の外向き又は内向きに通過する熱媒13の流れに対して圧力損失を生じさせることができて、該熱媒13の周方向及び各伝熱管7の長手方向への分散を促すことができるようにしてあれば、正方配列やその他、図示した以外の任意の配列を採用してもよく、又、各伝熱管7の径や本数、配列ピッチも適宜変更してよい。   Each heat transfer tube 7 in the tube group 6 can cause a pressure loss with respect to the flow of the heat medium 13 that passes through the tube group 6 radially outward or inward. As long as it is possible to promote dispersion in the direction and the longitudinal direction of each heat transfer tube 7, a square arrangement or any other arrangement other than those shown in the figure may be adopted, and the diameter of each heat transfer pipe 7 may be adopted. The number and the arrangement pitch may be changed as appropriate.

反応容器1の軸心方向寸法と径寸法との比、反応容器1内における各管板2と4の設置位置、反応原料分配ヘッダ3と反応生成物集合ヘッダ5の容積、各管板2と4同士の間隔、熱媒分散領域9と熱媒集合領域10の容積(反応容器1の径方向の寸法)、熱媒供給管11と熱媒排出管12と反応原料入口14と反応生成物出口16のサイズや配置は、実施する触媒反応に所望される条件に応じて、図示したものから適宜変更してもよい。   The ratio between the axial dimension and the diameter dimension of the reaction vessel 1, the installation position of each tube plate 2 and 4 in the reaction vessel 1, the volume of the reaction raw material distribution header 3 and the reaction product assembly header 5, and each tube plate 2 4, the volume of the heat medium dispersion region 9 and the heat medium assembly region 10 (the dimension in the radial direction of the reaction vessel 1), the heat medium supply pipe 11, the heat medium discharge pipe 12, the reaction raw material inlet 14, and the reaction product outlet. The size and arrangement of 16 may be appropriately changed from those shown in accordance with conditions desired for the catalytic reaction to be performed.

上記反応原料15及び反応生成物17は、ガス以外の液体であってもよい。なお、この場合にも、該反応原料15及び反応生成物17の伝熱管7の内面との熱伝達率、すなわち、管内側の熱伝達率が、管外側の熱伝達率よりも小さくなるようにしてあるものとする。   The reaction raw material 15 and the reaction product 17 may be liquids other than gas. Also in this case, the heat transfer coefficient between the reaction raw material 15 and the reaction product 17 with the inner surface of the heat transfer tube 7, that is, the heat transfer coefficient inside the tube is made smaller than the heat transfer coefficient outside the tube. It shall be.

本発明の多管式反応器は、アクリル酸製造用途以外に、エチレン酸、メタクリル酸や、その他の各種化学物質の製造プロセスにおける触媒反応や、その他の触媒反応を実施させる場合に適用してもよい。   The multi-tubular reactor of the present invention can be applied to the case where the catalytic reaction in the production process of ethylene acid, methacrylic acid and other various chemical substances and other catalytic reactions are carried out in addition to the acrylic acid production application. Good.

本発明の多管式反応器は、反応容器1の軸心方向を、上下方向以外のいかなる方向に向けた姿勢で用いるようにしてもよい。   The multitubular reactor of the present invention may be used in a posture in which the axial direction of the reaction vessel 1 is oriented in any direction other than the vertical direction.

各伝熱管7について、長手方向の途中位置で振れ止めのための支持が必要な場合は、ワイヤやロッドを格子状に組み合わせたロッドバッフル等の管支持材で支持するようにすればよい。   If each heat transfer tube 7 needs to be supported for steadying at an intermediate position in the longitudinal direction, it may be supported by a tube support material such as a rod baffle in which wires and rods are combined in a lattice shape.

その他本発明の要旨を逸脱しない範囲内で種々変更を加え得ることは勿論である。   Of course, various modifications can be made without departing from the scope of the present invention.

図1(a)(b)に示した構成の本発明の多管式反応器について、伝熱管7と該伝熱管7内を流通させるガスである反応原料15(及び反応生成物17)との間の熱伝達率(管内側の熱伝達率)h、及び、伝熱管7と該伝熱管7の外側を流通させる液体の熱媒13との間の熱伝達率(管外側の熱伝達率)hと、上記熱媒13から反応原料15(及び反応生成物17)までの伝熱管7の管壁を介した熱通過率Kと、反応原料15(及び反応生成物17)側の圧力損失、及び、熱媒13側の圧力損失について数値解析した。 About the multitubular reactor of the present invention having the configuration shown in FIGS. 1 (a) and 1 (b), the heat transfer tube 7 and the reaction raw material 15 (and the reaction product 17), which is a gas flowing through the heat transfer tube 7, are used. heat transfer coefficient between (heat transfer coefficient of the tube side) h i, and the heat transfer rate (heat transfer coefficient of the abluminal between the heating medium 13 of the liquid circulating outside the heat transfer tube 7 and the heat transfer tubes 7 ) h o and, the heat transfer coefficient K through the tube wall of the heat transfer tube 7 from the heating medium 13 to the reaction material 15 (and reaction products 17), the pressure in the reaction feed 15 (and reaction products 17) side Numerical analysis was performed on the loss and the pressure loss on the heat medium 13 side.

なお、熱通過率Kの算出は、以下の式に基づいて行った。   The calculation of the heat transmission rate K was performed based on the following formula.

Figure 2014147925
Figure 2014147925

その解析結果を、以下の表1に示す。   The analysis results are shown in Table 1 below.

表1における比較例1は、従来の管内触媒式で且つ管群直交流形式の多管式反応器であって、熱媒流通領域に、伝熱管7の長手方向の3個所に熱媒13の流れ方向を変更するためのドーナツ状のバッフル2枚とディスク状のバッフル1枚を設けてなる4段流路構成としたものである。この比較例1の構成について、上記と同様に、反応原料15側の熱伝達率(管内側の熱伝達率)hと、熱媒13側の熱伝達率(管外側の熱伝達率)hと、熱通過率Kと、反応原料15の圧力損失と、熱媒13側の圧力損失について数値解析したものである。 Comparative Example 1 in Table 1 is a conventional multi-tubular reactor of a tube-in-tube type and a tube group cross-flow type, in which the heat medium 13 is placed in three places in the longitudinal direction of the heat transfer tube 7 in the heat medium flow region. A four-stage flow path configuration is provided by providing two donut-shaped baffles and one disk-shaped baffle for changing the flow direction. The configuration of the comparative example 1, in the same manner as described above, the heat transfer rate of the reaction material 15 side (the heat transfer coefficient of the tube side) h i and the heat transfer rate of the heat medium 13 side (the heat transfer coefficient of the abluminal) h This is a numerical analysis of o , the heat transfer rate K, the pressure loss of the reaction raw material 15, and the pressure loss on the heat medium 13 side.

この場合、上記比較例1の多管式反応器の構成は、伝熱管7の径、管ピッチ、本数、伝熱管7内の触媒8の充填条件、反応原料15の流量、熱媒13の流量、反応容器1の高さを、上記本発明の多管式反応器と同様に設定した。又、本発明及び比較例1のいずれにおいても、熱媒13の流速について、反応容器1の外周部の流速が、中心部での流速の1/4倍になるように条件を設定した。   In this case, the configuration of the multi-tube reactor of Comparative Example 1 is as follows. The diameter, tube pitch and number of the heat transfer tubes 7, the filling conditions of the catalyst 8 in the heat transfer tube 7, the flow rate of the reaction raw material 15, and the flow rate of the heat medium 13 The height of the reaction vessel 1 was set in the same manner as in the multitubular reactor of the present invention. Further, in both the present invention and Comparative Example 1, conditions were set so that the flow rate of the heat medium 13 was 1/4 times the flow rate at the outer peripheral portion of the reaction vessel 1.

又、以下の表1では、熱伝達率h及びhと熱通過率Kについては、本発明と比較例1に共通している管内触媒形式の構成に基づく反応原料15側の熱伝達率(管内側の熱伝達率)hの解析結果の値を基準となる1.0とおいて、本発明と上記比較例1の上記各項目の解析結果を規格化(無次元化)している。圧力損失についても同様に、本発明と比較例1に共通している管内触媒形式の構成に基づく上記反応原料15側の圧力損失の解析結果の値を基準となる1.0とおいて、本発明と上記比較例1の上記各項目の解析結果を規格化している。なお、上記比較例1の熱媒13側の圧力損失値(表1の※印)については、各伝熱管7とバッフルとの間の隙間がない条件(隙間リークなし)での値である。実際には各伝熱管7とバッフルの間には微小の隙間を設けている場合が多いので、※印の値はあくまでも参考データとして扱う必要がある。なお、通常は、熱媒13の全流量に対する隙間リーク流量の割合は50%以下に設定することが多いので、隙間リークがある場合であっても、熱媒13側の圧力損失は、表1に示した値4.4に対してオーダーが変わることはない。したがって、熱媒13側の圧力損失は、本発明の多管式反応器の方が、比較例1に比べて十分に小さくなる。 In Table 1 below, the heat transfer coefficients h i and ho and the heat transfer coefficient K are the heat transfer coefficients on the reaction raw material 15 side based on the configuration of the in-tube catalyst type common to the present invention and Comparative Example 1. (The heat transfer coefficient inside the tube) h i is set to 1.0 as a reference, and the analysis results of the above items of the present invention and Comparative Example 1 are normalized (non-dimensional). . Similarly, regarding the pressure loss, the value of the analysis result of the pressure loss on the reaction raw material 15 side based on the configuration of the in-pipe catalyst type common to the present invention and Comparative Example 1 is set to 1.0 as a reference, and The analysis results of the above items of Comparative Example 1 are normalized. In addition, the pressure loss value (marked with * in Table 1) on the heat medium 13 side in Comparative Example 1 is a value under a condition where there is no gap between each heat transfer tube 7 and the baffle (no gap leak). Actually, there are many cases where a minute gap is provided between each heat transfer tube 7 and the baffle. Therefore, the value of * must be treated as reference data. Normally, the ratio of the gap leak flow rate to the total flow rate of the heat medium 13 is often set to 50% or less, so even if there is a gap leak, the pressure loss on the heat medium 13 side is shown in Table 1. The order does not change for the value 4.4 shown in. Therefore, the pressure loss on the heat medium 13 side is sufficiently smaller in the multitubular reactor of the present invention than in Comparative Example 1.

Figure 2014147925
Figure 2014147925

以上の結果から明らかなように、本発明の多管式反応器は、比較例1のバッフルを備えた管内触媒式で且つ管群直交流形式の多管式反応器に比して、伝熱管7と熱媒13側の熱伝達率hは低下するものの、熱通過率Kに関して律速の因子となる伝熱管7と反応原料15側の熱伝達率hは変化しないため、本発明の熱通過率Kは0.92となり、比較例1の熱通過率Kの0.97という値に比して熱交換性能は殆ど低下していない。 As is clear from the above results, the multitubular reactor of the present invention is a heat transfer tube as compared to the multitubular reactor of the in-pipe catalyst type and the tube group cross flow type equipped with the baffle of Comparative Example 1. 7 and the heat transfer rate h o on the heat transfer medium 13 side are reduced, but the heat transfer rate h i on the heat transfer tube 7 and the reaction raw material 15 side which is a rate-determining factor with respect to the heat transfer rate K does not change. The passage rate K is 0.92, and the heat exchange performance is hardly lowered as compared with the value 0.97 of the heat passage rate K of Comparative Example 1.

しかも、本発明では、熱媒13側の圧力損失は0.1となっており、比較例1の熱媒13側の圧力損失の4.4という値に比して、大幅に低減させることができることが判明した。よって、本発明の多管式反応器では、熱媒13用のポンプ動力の削減化を図ることが可能になる。   Moreover, in the present invention, the pressure loss on the heat medium 13 side is 0.1, which can be greatly reduced as compared with the value 4.4 of the pressure loss on the heat medium 13 side in Comparative Example 1. It turns out that you can. Therefore, in the multitubular reactor of the present invention, it is possible to reduce the pump power for the heat medium 13.

図1(a)(b)に示した構成の本発明の多管式反応器について、上記実施例1と同様の反応原料15側の熱伝達率(管内側の熱伝達率)hと、熱媒13側の熱伝達率(管外側の熱伝達率)hと、熱通過率Kについて、反応容器1の中心部と周辺部のそれぞれの伝熱管7と、それらの平均について数値解析し、その解析結果を、比較例2と比較した。 For-tube reactor of the present invention having the structure shown in FIG. 1 (a) (b), the heat transfer rate of the Example 1 and the same reaction material 15 side (tube side heat transfer coefficient) and h i, heat transfer coefficient of the heat medium 13 side and (heat transfer coefficient of the abluminal) h o, the overall heat transfer coefficient K, and each of the heat transfer tubes 7 of the central portion and the peripheral portion of the reaction vessel 1, and numerical analysis for their average The analysis result was compared with Comparative Example 2.

上記比較例2は、伝熱管内に熱媒を流通させるようにし、該伝熱管の外側に触媒を充填する管外触媒形式の多管式反応器であり、且つ上記触媒の層に半径方向の内向きに反応原料(及び反応生成物)を流通させる形式の多管式反応器の構成について数値解析したものである。   Comparative Example 2 is a multi-tubular reactor of an external catalyst type in which a heat medium is circulated in a heat transfer tube and a catalyst is filled outside the heat transfer tube, and a radial direction is formed in the catalyst layer. This is a numerical analysis of the configuration of a multitubular reactor of a type in which reaction raw materials (and reaction products) flow inward.

以下の表2は、本発明の多管式反応器について、反応原料15側の熱伝達率(管内側の熱伝達率)hと、熱媒13側の熱伝達率(管外側の熱伝達率)hと、熱通過率Kについて、反応容器1の中心部と周辺部の伝熱管7と、それらの平均の解析結果を示すものである。 Table 2 below, the multi-tube reactor of the present invention, (the heat transfer coefficient of the tube side) heat transfer rate of the reaction material 15 side h i and the heat transfer rate of the heat medium 13 side (heat transfer abluminal For the rate) ho and the heat transfer rate K, the central and peripheral heat transfer tubes 7 of the reaction vessel 1 and their average analysis results are shown.

又、以下の表3は、上記比較例2について、反応原料側の熱伝達率である管外側の熱伝達率hと、熱媒側の熱伝達率である管内側の熱伝達率hと、熱通過率Kについて、反応容器1の中心部と周辺部の伝熱管と、それらの平均の解析結果を示すものである。 Further, Table 3 below, for the comparative example 2, and the heat transfer coefficient h o of the abluminal a heat transfer rate of the reaction raw material side, the heat transfer coefficient of the tube side is a heat transfer coefficient of the heat medium side h i And about the heat transfer rate K, the center part of the reaction container 1, the heat exchanger tube of a peripheral part, and those average analysis results are shown.

なお、表2及び表3は、いずれも、反応原料15側の熱伝達率(本発明では管内側、比較例2では管外側の熱伝達率)についての上記平均の値を、基準となる1.0とおいて、本発明と上記比較例2の上記各項目の解析結果を規格化している。   Tables 2 and 3 are based on the above average values for the heat transfer coefficient on the reaction raw material 15 side (in the present invention, the heat transfer coefficient inside the pipe, and in the comparative example 2 on the outside of the pipe). 0.0, the analysis results of the above items of the present invention and Comparative Example 2 are normalized.

表4は、本発明と、比較例2について、管内側の熱伝達率と、管外側の熱伝達率と、熱通過率Kについての上記平均の値同士を比較した結果を示すものである。なお、表4では、本発明の管内側の熱伝達率(反応原料15側の熱伝達率h)の解析結果の値を基準となる1.0とおいて、本発明と上記比較例2における上記各項目の解析結果を規格化している。 Table 4 shows the results of comparing the above average values for the heat transfer coefficient inside the tube, the heat transfer coefficient outside the tube, and the heat transfer rate K for the present invention and Comparative Example 2. In Table 4, the value of the analysis result of the heat transfer coefficient (the heat transfer coefficient h i on the reaction raw material 15 side) inside the pipe of the present invention is set to 1.0 as a reference, and the present invention and the comparative example 2 described above are used. The analysis results for each item above are standardized.

Figure 2014147925
Figure 2014147925

Figure 2014147925
Figure 2014147925

Figure 2014147925
Figure 2014147925

表2から明らかなように、本発明では、反応容器1の中心部と周辺部の伝熱管7では、内外方向の流路断面積の変化により熱媒13の流速が変化することに伴い、熱媒13側の熱伝達率については、中心部は18.3、周辺部は8.0となり、半径方向の内外で大きな差が生じる。しかし、管内側の反応原料15側の熱伝達率hは、中心部から周辺部まで一定であるため、この反応原料15の熱伝達率hが律速因子となる熱通過率Kに関しては、反応容器1の中心部が0.95、周辺部が0.89となり、該熱通過率Kの平均の値0.92に対するばらつきは、−3.8%〜+2.7%と狭い範囲に納まっている。したがって、本発明では、反応容器1内の半径方向の異なる位置に配置されている伝熱管7同士であっても、上記熱通過率Kに大きな差が生じないことが判明した。よって、本発明の多管式反応器では、反応容器1内のすべての伝熱管7について、上記熱通過率Kの偏りが生じる虞を抑制することができるため、各伝熱管7内で、均等に触媒反応を進行させることが可能になる。 As is apparent from Table 2, in the present invention, in the heat transfer tubes 7 in the central portion and the peripheral portion of the reaction vessel 1, the heat flow rate of the heat medium 13 changes due to the change in the channel cross-sectional area in the inner and outer directions. Regarding the heat transfer coefficient on the medium 13 side, the central portion is 18.3 and the peripheral portion is 8.0, and a large difference occurs in the radial direction inside and outside. However, the heat transfer coefficient h i of the reaction material 15 side of the tube side are the constant from the center to the periphery, with respect to the heat transfer coefficient K of the heat transfer coefficient h i of the reaction material 15 is rate-limiting factor, The central portion of the reaction vessel 1 is 0.95 and the peripheral portion is 0.89, and the variation of the heat transfer rate K with respect to the average value 0.92 is within a narrow range of −3.8% to + 2.7%. ing. Therefore, in the present invention, it has been found that even the heat transfer tubes 7 arranged at different positions in the radial direction in the reaction container 1 do not cause a large difference in the heat transfer rate K. Therefore, in the multitubular reactor of the present invention, the possibility that the heat transfer rate K is biased can be suppressed for all the heat transfer tubes 7 in the reaction vessel 1. It is possible to allow the catalytic reaction to proceed.

一方、表3から明らかなように、上記比較例2では、熱媒側の熱伝達率である管内側の熱伝達率hは、反応容器の中心部から周辺部までの伝熱管で一定である。これに対し、反応容器1の中心部と周辺部の伝熱管では、内外方向の流路断面積の変化に応じて反応原料の流速が変化することに伴い、該反応原料側の熱伝達率である管外側の熱伝達率hについては、中心部では1.25、周辺部では0.79となり、半径方向の内外の伝熱管の存在位置に応じて差が生じる。このため、該反応原料側の熱伝達率が律速因子となる熱通過率Kに関しては、反応容器1の中心部では1.13、周辺部では0.74となり、該熱通過率Kの平均の値0.92に対して、−19.5%〜+22.6%と、ずれが大きくなっている。したがって、上記比較例2の場合は、反応容器内の半径方向の異なる位置に配置されている伝熱管同士で、熱通過率Kが平均値に対して±20%と大きなばらつきを生じることが判明した。よって、比較例2では、反応容器内の半径方向の異なる位置では上記熱通過率Kの偏りに起因して、均等な触媒反応を実施させることは難しい。 On the other hand, as is apparent from Table 3, in Comparative Example 2, the heat transfer coefficient h i inside the tube, which is the heat transfer coefficient on the heat medium side, is constant in the heat transfer tube from the center to the periphery of the reaction vessel. is there. On the other hand, in the heat transfer tubes in the central part and the peripheral part of the reaction vessel 1, the flow rate of the reaction raw material changes in accordance with the change in the channel cross-sectional area in the inner and outer directions. for some pipe outside the heat transfer coefficient h o, at the center 1.25, 0.79 at the periphery, a difference depending on the presence position in the radial direction of the inner and outer heat transfer tube occur. For this reason, the heat transfer rate K, which is the rate-determining factor of the heat transfer coefficient on the reaction raw material side, is 1.13 at the center of the reaction vessel 1 and 0.74 at the periphery, which is an average of the heat transfer rate K. With respect to the value of 0.92, the deviation is large, from −19.5% to + 22.6%. Therefore, in the case of the comparative example 2, it has been found that the heat transfer rate K is a large variation of ± 20% with respect to the average value between the heat transfer tubes arranged at different radial positions in the reaction vessel. did. Therefore, in Comparative Example 2, it is difficult to perform an even catalytic reaction at different positions in the radial direction in the reaction vessel due to the bias of the heat transfer rate K.

更に、表4から明らかなように、本発明の反応原料15側の熱伝達率hを1.0とおいた場合、比較例2の反応原料側の熱伝達率である管外側の熱伝達率は、0.26となっている。以上のことから、本発明の多管式反応器では、伝熱管7の内外方向の熱通過率Kに関する律速因子となる反応原料15の熱伝達率hを、上記比較例2における反応原料側の熱伝達率に比して向上させることができることが判明した。これにより、本発明の多管式反応器は、上記比較例2のような管外触媒形式の多管式反応器に比して、熱通過率Kの大幅な向上化を図ることが可能になる。 Further, as apparent from Table 4, the reaction material 15 when placed 1.0 heat transfer coefficient h i of the side, the heat transfer coefficient of the tube outer is the heat transfer coefficient of the reactant side of the Comparative Example 2 of the present invention Is 0.26. From the above, in the multi-tubular reactor of the present invention, the heat transfer coefficient h i of the reactants 15 to be rate-limiting factor for the inner and outer direction of the heat transfer coefficient K of the heat transfer tube 7, the reaction feed side in the Comparative Example 2 It was found that the heat transfer coefficient can be improved as compared with the heat transfer coefficient. As a result, the multitubular reactor of the present invention can significantly improve the heat transfer rate K as compared with the extratubular catalyst type multitubular reactor as in Comparative Example 2 above. Become.

図2(a)(b)に示した構成の本発明の多管式反応器について、図4(a)に示した如き管路網の解析モデルを設定して、熱媒13側の圧力分布について管路網の解析手法による流動解析を行った。   For the multitubular reactor of the present invention having the configuration shown in FIGS. 2 (a) and 2 (b), an analysis model of the pipeline network as shown in FIG. 4 (a) is set, and the pressure distribution on the heat medium 13 side is set. The flow analysis was conducted by the analysis method of the pipeline network.

図4(b)は、比較例として、上記実施例1における比較例1と同様の従来の管内触媒式で且つ管群直交流形式の多管式反応器について設定した管路網の解析モデルであり、これについても上記と同様の手法で熱媒13側の圧力分布についての流動解析を行った。   FIG. 4B is an analysis model of a pipe network set as a comparative example, which is a conventional pipe-catalyzed multi-tubular reactor of the pipe group cross flow type similar to Comparative Example 1 in Example 1 above. There was also a flow analysis on the pressure distribution on the heat medium 13 side by the same method as described above.

なお、図4(a)(b)は、いずれも、左端が反応容器1(図2参照)の軸心位置を示し、右端側が反応容器1の外周部となっている。   4A and 4B, the left end indicates the axial center position of the reaction vessel 1 (see FIG. 2), and the right end is the outer peripheral portion of the reaction vessel 1.

又、図4(a)において、符号9は熱媒分散領域、符号10は熱媒集合領域である。   In FIG. 4A, reference numeral 9 denotes a heat medium dispersion region, and reference numeral 10 denotes a heat medium assembly region.

一方、図4(b)において、符号St1〜St4は、熱媒流通領域の上部と下部に設けられた2枚のドーナツ状のバッフルb1,b3とその間の1枚のディスク状のバッフルb2により仕切られて形成された1段目から4段目の流路を示している。又、符号20は、1段目の流路St1の外周部に設けられた熱媒分散領域となる下部ヘッダ、符号21は、4段目の流路St4の外周部に設けられた熱媒集合領域となる上部ヘッダである。   On the other hand, in FIG. 4B, symbols St1 to St4 are divided by two donut-shaped baffles b1 and b3 provided at the upper and lower portions of the heat medium flow area and one disk-shaped baffle b2 therebetween. The flow paths in the first to fourth stages formed in this way are shown. Reference numeral 20 denotes a lower header serving as a heat medium dispersion region provided in the outer periphery of the first-stage flow path St1, and reference numeral 21 denotes a heat-medium assembly provided in the outer periphery of the fourth-stage flow path St4. This is the upper header that is the area.

更に、図4(a)(b)において、図中の破線は管群6(図2参照)の設置領域を示している。又、図中の丸付きの数字は、圧力の観測位置となる節点の番号を示している。図4(a)(b)の図中の数字は、各節点間の流路番号を示している。なお、図4(b)において、流路42〜49、流路50〜57、流路58〜65は、上記管群6の伝熱管7(図2参照)とバッフルb1、バッフルb2、バッフルb3の間に設けられた微小の隙間を通した隙間リークによる流路を示している。   Furthermore, in FIG. 4 (a) (b), the broken line in a figure has shown the installation area | region of the pipe group 6 (refer FIG. 2). In addition, the numbers with circles in the figure indicate the numbers of the nodes that become the pressure observation positions. The numbers in the diagrams of FIGS. 4A and 4B indicate the channel numbers between the nodes. In FIG. 4B, the flow paths 42 to 49, the flow paths 50 to 57, and the flow paths 58 to 65 are the heat transfer pipe 7 (see FIG. 2) of the tube group 6, the baffle b1, the baffle b2, and the baffle b3. The flow path by the clearance leak through the micro clearance gap provided between these is shown.

その解析結果を、図5(a)(b)に示す。   The analysis results are shown in FIGS. 5 (a) and 5 (b).

図5(a)(b)における「●」は、図4(a)に示した本発明の多管式反応器の解析モデルによる熱媒13側の圧力分布の解析結果を示すものである。   “●” in FIGS. 5A and 5B indicate the analysis result of the pressure distribution on the heat medium 13 side by the analysis model of the multitubular reactor of the present invention shown in FIG. 4A.

一方、図5(a)における「○」と「△」は、図4(b)に示した比較例の解析モデルによる熱媒13側の圧力分布の解析結果を示すものである。なお、「○」は、上記実施例1の比較例1と同様に、上記流路42〜49、流路50〜57、流路58〜65による隙間リークがないとした条件による結果であり、「△」は、上記流路42〜49、流路50〜57、流路58〜65による隙間リークがあるという条件による結果である。   On the other hand, “◯” and “Δ” in FIG. 5A indicate the analysis results of the pressure distribution on the heat medium 13 side by the analysis model of the comparative example shown in FIG. In addition, “◯” is the result under the condition that there is no gap leak due to the flow paths 42 to 49, the flow paths 50 to 57, and the flow paths 58 to 65, as in the first comparative example of the first embodiment. “Δ” is the result under the condition that there is a gap leak through the flow paths 42 to 49, the flow paths 50 to 57, and the flow paths 58 to 65.

なお、上記図5(a)(b)のグラフの縦軸は、熱媒13側の圧力の値であり、熱媒13の流路出口側(「○」と「△」は図4(b)の節点41、「●」は図4(a)の節点11)の圧力値を基準値(=0)としてある。更に、上記「○」で示した実施例1の比較例1に対応する上記隙間リークなしの条件による圧力損失(=入口圧−出口圧)の結果が、上記実施例1の場合と同様の4.4の値を取るように規格化してある。又、横軸は、上記管群6の設置領域を半径方向の0.25〜1.0の範囲となるように設定して無次元化した値である。図5(a)(b)に示した各圧力分布は、熱媒13の流路入口側(「○」と「△」は図4(b)の節点2、「●」は図4(a)の節点2)で最大値をとり、その圧力値は管群6の設置領域(図4(a)(b)の破線内)における圧力損失値を意味する。   5A and 5B, the vertical axis represents the pressure value on the heat medium 13 side, and the flow path outlet side (“◯” and “Δ”) of the heat medium 13 represents those in FIG. ) Node 41, “●” has the pressure value of node 11) in FIG. 4A as a reference value (= 0). Furthermore, the result of pressure loss (= inlet pressure−outlet pressure) under the condition of no gap leak corresponding to Comparative Example 1 of Example 1 indicated by “◯” is the same as in Example 1 above. Normalized to take a value of .4. Further, the horizontal axis is a value obtained by making the installation region of the tube group 6 dimensionless by setting it in a range of 0.25 to 1.0 in the radial direction. Each of the pressure distributions shown in FIGS. 5 (a) and 5 (b) indicates that the inlet side of the heat medium 13 (“◯” and “Δ” is the node 2 in FIG. 4B, and “●” is in FIG. ) Takes the maximum value, and the pressure value means the pressure loss value in the installation region of the tube group 6 (within the broken lines in FIGS. 4A and 4B).

図5(a)(b)の「●」の結果から、図2(a)(b)に示した構成の本発明の多管式反応器では、熱媒13側の圧力損失が0.1程度であることが分かる。この結果は、上記表1に示した実施例1による熱媒13側の圧力損失の解析結果ともよく一致している。なお、上記実施例1は、図1(a)(b)に示した本発明の多管式反応器の構成に対応するものであるため、前述の流動解析に用いた図4(a)の解析モデルとは、熱媒13の流動方向が、半径方向の外向きと内向きで逆になっている。したがって、上記実施例1の場合は、図示は省略したが、熱媒13側の圧力分布についての流動解析を行って解析結果を図5(a)(b)と同様にプロットすると、半径が大きくなるにしたがって熱媒13の圧力は低下し、下に凸の傾向を示すことが容易にわかる。更に、上記実施例1の場合は、最大圧力値と最小圧力値との差、すなわち圧力損失の値は、図5(b)に示したものと同様になる。   From the results of “●” in FIGS. 5A and 5B, in the multitubular reactor of the present invention having the configuration shown in FIGS. 2A and 2B, the pressure loss on the heat medium 13 side is 0.1. It turns out that it is a grade. This result is in good agreement with the analysis result of the pressure loss on the heat medium 13 side according to Example 1 shown in Table 1 above. In addition, since the said Example 1 respond | corresponds to the structure of the multi-tubular reactor of this invention shown to FIG. 1 (a) (b), it is shown in FIG. 4 (a) used for the above-mentioned flow analysis. In the analysis model, the flow direction of the heating medium 13 is reversed in the radial direction outward and inward. Therefore, although not shown in the case of Example 1 above, if a flow analysis is performed on the pressure distribution on the heat medium 13 side and the analysis result is plotted in the same manner as in FIGS. 5A and 5B, the radius is large. It is easy to see that the pressure of the heat medium 13 decreases as it becomes, and shows a downward tendency. Furthermore, in the case of Example 1, the difference between the maximum pressure value and the minimum pressure value, that is, the pressure loss value is the same as that shown in FIG.

更に、図5(a)における「●」と「△」の結果の比較により、図2(a)(b)に示した構成の本発明の多管式反応器は、上記図4(b)に示した比較例にて流路42〜49、流路50〜57、流路58〜65による隙間リークがあるという条件の場合の熱媒13の圧力損失の約1.8という値に対しても、熱媒13側の圧力損失を大幅に低減できることが判明した。   Further, by comparing the results of “●” and “Δ” in FIG. 5 (a), the multi-tubular reactor of the present invention having the configuration shown in FIGS. 2 (a) and 2 (b) is shown in FIG. 4 (b). In the comparative example shown in FIG. 5, the pressure loss of the heat medium 13 is about 1.8 when the gaps are leaked by the flow paths 42 to 49, the flow paths 50 to 57, and the flow paths 58 to 65. It was also found that the pressure loss on the heat medium 13 side can be greatly reduced.

1 反応容器、2 管板、3 反応原料分配ヘッダ、4 管板、5 反応生成物集合ヘッダ、6 管群、7 伝熱管、9 熱媒分散領域、10 熱媒集合領域、11 熱媒供給管、12 熱媒排出管、14 反応原料入口、16 反応生成物出口、18 内周部熱媒分散板、19 外周部熱媒分散板 1 reaction vessel, 2 tube plate, 3 reaction material distribution header, 4 tube plate, 5 reaction product assembly header, 6 tube group, 7 heat transfer tube, 9 heat medium dispersion region, 10 heat medium assembly region, 11 heat medium supply tube , 12 Heat medium discharge pipe, 14 Reaction raw material inlet, 16 Reaction product outlet, 18 Inner peripheral heat medium dispersion plate, 19 Outer peripheral heat medium dispersion plate

Claims (3)

円筒状の反応容器内の軸心方向一端部に管板により仕切って形成した反応原料分配ヘッダと、
上記反応容器内の軸心方向他端部に別の管板により仕切って形成した反応生成物集合ヘッダと、
上記反応容器内の上記各管板の間の空間における中央部と外周部を除く環状の領域に配置した該反応容器の軸心方向に平行な複数の伝熱管からなり、且つ該各伝熱管の両端部を上記反応原料分配ヘッダと反応生成物集合ヘッダにそれぞれ連通接続させてなる管群と、 各伝熱管に充填された触媒とを備え、
且つ上記反応容器内の上記各管板同士の間にて、上記管群よりも内側の中心部の空間と、上記管群よりも外側の外周部の空間のいずれか一方の空間を熱媒分散領域、他方の空間を熱媒集合領域とし、
更に、上記熱媒分散領域に連通させた熱媒供給管と、上記熱媒集合領域に連通させた熱媒排出管と、上記反応原料分配ヘッダに連通させた反応原料入口と、上記反応生成物集合ヘッダに連通させた反応生成物出口とを設けてなる構成
を有することを特徴とする多管式反応器。
A reaction material distribution header formed by partitioning with a tube plate at one axial end in a cylindrical reaction vessel;
A reaction product assembly header formed by partitioning with another tube plate at the other axial end in the reaction vessel;
It consists of a plurality of heat transfer tubes parallel to the axial direction of the reaction vessel disposed in an annular region excluding the central portion and the outer peripheral portion in the space between the tube plates in the reaction vessel, and both end portions of the heat transfer tubes A tube group formed by communicating with the reaction raw material distribution header and the reaction product assembly header, and a catalyst filled in each heat transfer tube,
In addition, between the tube plates in the reaction vessel, a heat medium is dispersed in one of the central space inside the tube group and the outer peripheral space outside the tube group. Region, the other space as the heat medium assembly region,
Furthermore, a heat medium supply pipe communicated with the heat medium dispersion area, a heat medium discharge pipe communicated with the heat medium assembly area, a reaction raw material inlet communicated with the reaction raw material distribution header, and the reaction product A multitubular reactor having a structure in which a reaction product outlet communicated with an assembly header is provided.
管板同士の間における管群の内周側と外周側位置に、内周部熱媒分散板と外周部熱媒分散板を、該管群と熱媒分散領域や熱媒集合領域とを仕切る配置で設けるようにした請求項1記載の多管式反応器。   The inner peripheral heat medium dispersion plate and the outer peripheral heat medium dispersion plate are partitioned at the inner peripheral side and outer peripheral side positions of the tube group between the tube plates, and the tube group is divided from the heat medium dispersion region and the heat medium collection region. The multi-tubular reactor according to claim 1, wherein the multi-tubular reactor is provided in an arrangement. 熱媒供給管を、反応生成物集合ヘッダの内側を通して配置して、各伝熱管を通過した後に反応生成物集合ヘッダに流れる反応生成物の流れと、上記熱媒供給管を流れる熱媒の流れが対向流となるようにした請求項1又は2記載の多管式反応器。   The heat medium supply pipe is arranged through the inside of the reaction product assembly header, and after passing through each heat transfer tube, the flow of the reaction product flowing to the reaction product assembly header and the flow of the heat medium flowing through the heat medium supply tube The multitubular reactor according to claim 1 or 2, wherein the counter flow is counterflow.
JP2013262333A 2013-01-11 2013-12-19 Multitubular reactor Pending JP2014147925A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013262333A JP2014147925A (en) 2013-01-11 2013-12-19 Multitubular reactor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013003734 2013-01-11
JP2013003734 2013-01-11
JP2013262333A JP2014147925A (en) 2013-01-11 2013-12-19 Multitubular reactor

Publications (2)

Publication Number Publication Date
JP2014147925A true JP2014147925A (en) 2014-08-21
JP2014147925A5 JP2014147925A5 (en) 2014-11-06

Family

ID=51571380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013262333A Pending JP2014147925A (en) 2013-01-11 2013-12-19 Multitubular reactor

Country Status (1)

Country Link
JP (1) JP2014147925A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104162388A (en) * 2014-08-26 2014-11-26 河南省科学院化学研究所有限公司 Continuous ultralow temperature reaction device
CN114136125A (en) * 2021-11-29 2022-03-04 无锡齐为金属科技有限公司 Double-tube heat exchange tube
WO2023286722A1 (en) 2021-07-12 2023-01-19 積水化学工業株式会社 Reaction vessel, gas production device, gas production system, and gas production method
JP7467192B2 (en) 2020-03-25 2024-04-15 三菱重工業株式会社 Apparatus for obtaining a gaseous product and method for obtaining a gaseous product

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104162388A (en) * 2014-08-26 2014-11-26 河南省科学院化学研究所有限公司 Continuous ultralow temperature reaction device
JP7467192B2 (en) 2020-03-25 2024-04-15 三菱重工業株式会社 Apparatus for obtaining a gaseous product and method for obtaining a gaseous product
WO2023286722A1 (en) 2021-07-12 2023-01-19 積水化学工業株式会社 Reaction vessel, gas production device, gas production system, and gas production method
CN114136125A (en) * 2021-11-29 2022-03-04 无锡齐为金属科技有限公司 Double-tube heat exchange tube

Similar Documents

Publication Publication Date Title
US7695695B2 (en) Reactor or heat exchanger with improved heat transfer performance
US8492587B2 (en) Reactor and process for preparing phosgene
JP5373110B2 (en) Reactor and process for preparing phosgene
JP2014147925A (en) Multitubular reactor
CN101970095B (en) Catalytic reactor
RU2403084C2 (en) Isothermal chemical reactor
US4991648A (en) Multi-tube type heat transfer apparatus
CN101375125A (en) Reactor with improved heat transfer performance
JP6311302B2 (en) Multi-tube heat exchanger
US20170028373A1 (en) Isothermal tubular catalytic reactor
JP2003106780A (en) Multitube heat exchanger, and manufacturing method of (metha)acrylic acid using same heat exchanger
RU2482909C2 (en) Isothermal chemical reactor with plate heat exchanger
US9675950B2 (en) Combination reactor system
JP2019105418A (en) Multitubular heat exchanger and heat exchange system
JP2013154310A (en) Multitubular reactor
CN105797653A (en) Green synthetic reaction device and technology for preparing epoxypropane through direct oxidation method
JP7080041B2 (en) Heat remover tubes, heat exchangers, and reactors
CN101829533B (en) Polymer reactor with novel structure
JP6805805B2 (en) Multi-tube heat exchanger and heat exchange system
JP2019105417A (en) Multitubular heat exchanger and heat exchange system
JP2012016670A (en) Multitube reactor and method for setting position where baffle is installed in the multitube reactor
JP6344097B2 (en) Multi-tube reactor
RU2785973C2 (en) Heat exchange device
RU2716797C2 (en) Catalytic reactor
RU2371243C1 (en) Catalytic reactor

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140917