JP2016210357A - Hybrid vehicle and transmission - Google Patents

Hybrid vehicle and transmission Download PDF

Info

Publication number
JP2016210357A
JP2016210357A JP2015097688A JP2015097688A JP2016210357A JP 2016210357 A JP2016210357 A JP 2016210357A JP 2015097688 A JP2015097688 A JP 2015097688A JP 2015097688 A JP2015097688 A JP 2015097688A JP 2016210357 A JP2016210357 A JP 2016210357A
Authority
JP
Japan
Prior art keywords
gear
transmission
reverse
clutch
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015097688A
Other languages
Japanese (ja)
Inventor
康仁 武居
Yasuji Takei
康仁 武居
勝巳 久保
Katsumi Kubo
勝巳 久保
久幸 麻田
Hisayuki Asada
久幸 麻田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2015097688A priority Critical patent/JP2016210357A/en
Priority to CN201610225519.9A priority patent/CN106143104B/en
Publication of JP2016210357A publication Critical patent/JP2016210357A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/36Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/547Transmission for changing ratio the transmission being a stepped gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/11Stepped gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Structure Of Transmissions (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide technology for improving responsiveness when reverse travel is selected and enabling electric power generation regardless of vehicle speed.SOLUTION: A hybrid vehicle comprises first and second transmission mechanisms, first and second clutches corresponding to the respective first and second transmission mechanisms, an electric motor M connected to the first transmission mechanism, and an internal combustion engine which is connected to and disconnected from the first and second transmission mechanisms by connecting and disconnecting the first and second clutches. The second transmission mechanism 20 includes a gear stage for reverse travel which outputs rotation of the internal combustion engine via a predetermined gear stage for forward travel of the first transmission mechanism 10. The first transmission mechanism makes the predetermined gear stage for forward travel unselective, and by connecting the second clutch C2, the second transmission mechanism enables reverse stage travel of the hybrid vehicle. The hybrid vehicle comprises control means by which the first clutch is connected in a state of selecting the reverse stage travel and the first transmission mechanism transmits rotation of the internal combustion engine to the electric motor to generate electric power.SELECTED DRAWING: Figure 2

Description

本発明は、ハイブリッド車両に関する。   The present invention relates to a hybrid vehicle.

従来、ハイブリッド車両の動力伝達機構として、デュアルクラッチ式変速機を採用したものがある(特許文献1参照)。図5にハイブリッド車両に採用されるデュアルクラッチ式変速機Aの一例のスケルトン図を示す。このものにおいて、後進段走行(リバース走行)を行う際には、クラッチC1を解放状態とし、クラッチC2を接続状態とする。そして、シフタSFrにより、中間軸27と連結軸28とを接続状態とし、また、シフタSF1rにより、遊星歯車機構PGのリングギヤPGrと変速機ケース1aとを接続状態とする。すると、内燃機関Eg→クラッチC2→主軸21・ギヤGa→アイドルギヤGi→ギヤGc・中間軸27・連結軸28・駆動ギヤGr→従動ギヤGr’・主軸11・サンギヤPGs→ピニオンギヤPGp・キャリアPGc・連結軸14・駆動ギヤG3→従動ギヤG23・カウンタ軸30・出力ギヤGf→終減速装置2の経路で動力伝達が行われて、後進段が実現される。   Conventionally, as a power transmission mechanism of a hybrid vehicle, there is one that employs a dual clutch transmission (see Patent Document 1). FIG. 5 shows a skeleton diagram of an example of a dual clutch transmission A employed in a hybrid vehicle. In this case, when reverse gear traveling (reverse traveling) is performed, the clutch C1 is disengaged and the clutch C2 is engaged. Then, the intermediate shaft 27 and the connecting shaft 28 are connected by the shifter SFr, and the ring gear PGr of the planetary gear mechanism PG and the transmission case 1a are connected by the shifter SF1r. Then, the internal combustion engine Eg → clutch C2 → main shaft 21 / gear Ga → idle gear Gi → gear Gc / intermediate shaft 27 / connection shaft 28 / drive gear Gr → driven shaft Gr ′ / main shaft 11 / sun gear PGs → pinion gear PGp / carrier PGc Power transmission is performed through the path of the connecting shaft 14, the drive gear G 3 → the driven gear G 23, the counter shaft 30, the output gear Gf → the final reduction gear 2, and the reverse gear is realized.

特開2013−169830号公報JP2013-169830A

図5に示すデュアルクラッチ式変速機Aでは、ドライバーがリバース走行を行うためにシフトポジションをRにしてから、変速機内では二か所のシフタ(SFr及びSF1r)を作動させるため、リバース走行が可能になるまでの時間が長くなる場合があった。また、リバース走行時に電動機Mを用いて発電を行おうとすると、低車速時(例えば12km/h以下)に十分な発電がおこなわれない場合があった。つまり、低車速時においては、クラッチC2が半クラッチ状態となり、主軸11に接続された電動機Mの回転子Mrの回転数が低く、電動機Mの発電可能回転数にすることが困難な場合があった。   In the dual clutch transmission A shown in FIG. 5, the shift position is set to R so that the driver can perform reverse travel, and then two shifters (SFr and SF1r) are operated in the transmission, so that reverse travel is possible. In some cases, the time to become longer. In addition, if power generation is attempted using the electric motor M during reverse traveling, sufficient power generation may not be performed at low vehicle speeds (for example, 12 km / h or less). That is, at low vehicle speeds, the clutch C2 is in a half-clutch state, the rotation speed of the rotor Mr of the motor M connected to the main shaft 11 is low, and it may be difficult to make the motor M capable of generating power. It was.

従って、本発明の目的は、後進段走行が選択された際の応答性を向上させると共に、車速にかかわらず発電を可能とすることにある。   Accordingly, an object of the present invention is to improve the responsiveness when reverse gear traveling is selected and to enable power generation regardless of the vehicle speed.

本発明によれば、第1及び第2変速機構と、該第1及び第2変速機構のそれぞれに対応した第1及び第2クラッチと、前記第1変速機構に接続された電動機と、前記第1及び第2クラッチを断接することで、前記第1及び第2変速機構と断接される内燃機関とを備えたハイブリッド車両において、前記第2変速機構は、前記第1変速機構の所定の前進用ギヤ段を介して前記内燃機関の回転を出力する後進用ギヤ段を含み、前記第1変速機構が前記所定の前進用ギヤ段を非選択とし、第2クラッチを接続することで、前記第2変速機構は前記ハイブリッド車両の後進段走行を可能とし、該後進段走行を選択した状態で前記第1クラッチを接続させることで、前記第1変速機構が前記内燃機関の回転を前記電動機に伝達して発電を行う制御手段を備えたことを特徴とするハイブリッド車両が提供される。   According to the present invention, the first and second transmission mechanisms, the first and second clutches corresponding to the first and second transmission mechanisms, the electric motor connected to the first transmission mechanism, and the first In the hybrid vehicle including the internal combustion engine connected to and disconnected from the first and second transmission mechanisms by connecting and disconnecting the first and second clutches, the second transmission mechanism is a predetermined advance of the first transmission mechanism. A reverse gear stage that outputs the rotation of the internal combustion engine via a gear stage, and the first transmission mechanism deselects the predetermined forward gear stage and connects a second clutch, thereby The two speed change mechanism enables reverse travel of the hybrid vehicle, and the first speed change mechanism transmits the rotation of the internal combustion engine to the electric motor by connecting the first clutch with the reverse speed travel selected. Control means to generate electricity Hybrid vehicle is provided, wherein the was e.

この構成によれば、後進段走行を第2変速機構の後進用ギヤ段を用いると共に、第1変速機構のギヤ段を非選択とするため、操作するシフタの数を減らすことができ、後進段走行が可能になるまでの時間を短くすることができる。また、後進段走行を選択した時、第1変速機構のギヤ段を非選択となることで、駆動力の伝達経路に影響することなく、第1クラッチの接続により内燃機関の回転を電動機に伝達することができ、車速にかかわらず発電をすることができ、発電領域を拡大することができる。   According to this configuration, since the reverse gear stage uses the reverse gear stage of the second speed change mechanism and deselects the gear stage of the first speed change mechanism, the number of shifters to be operated can be reduced, and the reverse speed stage The time until traveling becomes possible can be shortened. In addition, when reverse gear travel is selected, the rotation of the internal combustion engine is transmitted to the electric motor by connecting the first clutch without affecting the transmission path of the driving force by deselecting the gear position of the first transmission mechanism. Can be generated regardless of the vehicle speed, and the power generation area can be expanded.

本発明においては、前記第1変速機構は、奇数段の前進用ギヤ段を備え、前記第2変速機構は、偶数段の前進用ギヤ段を備えたこととしてもよい。   In the present invention, the first speed change mechanism may include an odd number of forward gears, and the second speed change mechanism may include an even number of forward gears.

この構成によれば、電動機に接続された第1変速機構が1速段を含むことで、1速段を電動機内に配置でき、変速機ユニットの小型化が達成される。   According to this configuration, since the first speed change mechanism connected to the electric motor includes the first speed stage, the first speed stage can be arranged in the electric motor, and the transmission unit can be reduced in size.

本発明においては、前記所定の前進用ギヤ段は、3速ギヤ段であることとしてもよい。   In the present invention, the predetermined forward gear stage may be a third gear stage.

この構成によれば、後進段走行時に奇数段の前進ギヤ段の中でも、1速段に次いで減速比の大きいギヤである3速段を選択することができるので、後進の発進時に必要な駆動力を確保することができる。   According to this configuration, it is possible to select the third speed, which is the gear with the largest reduction ratio after the first speed, from among the odd-numbered forward gears when traveling in the reverse speed, so that the driving force required when starting the reverse speed Can be secured.

本発明においては、前記電動機に接続された従動側電動機をさらに備え、前記電動機で発電した電力を前記従動側電動機へ供給することとしてもよい。   In this invention, it is good also as providing the driven side motor connected to the said motor, and supplying the electric power generated with the said motor to the said driven side motor.

この構成によれば、後進段走行を選択した時に発電した電力を従動側電動機を介して他の駆動力へ変換することができる。   According to this configuration, the electric power generated when reverse gear traveling is selected can be converted into another driving force via the driven motor.

本発明においては、電動機に接続された第1入力軸と、複数のギヤ段から選択された1つのギヤ段を介して前記第1入力軸の回転を駆動出力軸へ出力する第1変速機構と、第2入力軸と、複数のギヤ段から選択された1つのギヤ段を介して前記第2入力軸の回転を前記駆動出力軸へ出力する第2変速機構と、内燃機関と前記第1入力軸とを断接する第1クラッチと、前記内燃機関と前記第2入力軸とを断接する第2クラッチとを備える変速機において、前記第2変速機構は、前記第1変速機構の所定の前記ギヤ段を介して前記内燃機関の回転を前記駆動出力軸へ出力するリバース回転用のリバースギヤ段を含み、前記第1変速機構が前記所定のギヤ段を非選択とし、第2クラッチを接続することで前記第2変速機構はリバース回転を出力し、該リバース回転時、前記第1変速機構は、前記第1クラッチを接続させることで、前記内燃機関と前記第1入力軸とを接続させることとしてもよい。   In the present invention, a first input shaft connected to the electric motor, and a first speed change mechanism that outputs the rotation of the first input shaft to the drive output shaft via one gear selected from a plurality of gears. A second input shaft, a second transmission mechanism for outputting the rotation of the second input shaft to the drive output shaft through one gear selected from a plurality of gears, an internal combustion engine, and the first input A transmission comprising: a first clutch that connects and disconnects a shaft; and a second clutch that connects and disconnects the internal combustion engine and the second input shaft. The second transmission mechanism includes a predetermined gear of the first transmission mechanism. A reverse gear stage for reverse rotation that outputs the rotation of the internal combustion engine to the drive output shaft via a stage, wherein the first speed change mechanism deselects the predetermined gear stage and connects a second clutch. The second speed change mechanism outputs a reverse rotation, During the reverse rotation, the first transmission mechanism, by connecting the first clutch, it is also possible to connect the internal combustion engine and said first input shaft.

この構成によれば、リバース回転を第2変速機構のリバースギヤ段を用いると共に、第1変速機構のギヤ段を非選択とするため、操作するシフタの数を減らすことができ、リバース回転が可能になるまでの時間を短くすることができる。また、リバース回転を選択した時、第1変速機構のギヤ段を非選択となることで、リバース駆動力の伝達経路に影響することなく、第1クラッチの接続により内燃機関の回転を電動機に伝達することができ、車速にかかわらず発電をすることができ、発電領域を拡大することができる。   According to this configuration, since the reverse gear stage of the second transmission mechanism is used for reverse rotation and the gear stage of the first transmission mechanism is not selected, the number of shifters to be operated can be reduced, and reverse rotation is possible. Time to become can be shortened. In addition, when reverse rotation is selected, the gear position of the first speed change mechanism is not selected, so that the rotation of the internal combustion engine is transmitted to the motor by connecting the first clutch without affecting the transmission path of the reverse driving force. Can be generated regardless of the vehicle speed, and the power generation area can be expanded.

本発明においては、前記第2変速機構は、アイドル軸に配置され、前記リバースギヤ段と噛合するアイドルギヤをさらに備え、前記所定のギヤ段は、前記第1入力軸に相対回転可能に配置され、同期装置を介して該第1入力軸に接続可能であり、前記リバースギヤ段は、前記所定のギヤ段と相対回転不能に配置され、前記アイドルギヤを介してリバース回転され、前記所定のギヤ段を介して前記駆動出力軸にリバース回転を伝達することとしてもよい。   In the present invention, the second speed change mechanism is further provided with an idle gear that is disposed on an idle shaft and meshes with the reverse gear, and the predetermined gear is disposed so as to be relatively rotatable with respect to the first input shaft. The reverse gear stage is disposed so as not to rotate relative to the predetermined gear stage, and is reverse-rotated via the idle gear, so that the predetermined gear can be connected to the first input shaft via a synchronization device. A reverse rotation may be transmitted to the drive output shaft through a stage.

この構成によれば、リバースギヤ段が第1変速機構の所定のギヤ段と相対回転不能に配置され、所定のギヤ段と第1入力軸との係合を解除してリバース回転を実現することができるので、第1クラッチの接続により、リバース駆動力の伝達経路にはない第1入力軸を介して、内燃機関の回転を電動機に伝達して発電することができる。   According to this configuration, the reverse gear stage is disposed so as not to rotate relative to the predetermined gear stage of the first transmission mechanism, and the reverse rotation is realized by releasing the engagement between the predetermined gear stage and the first input shaft. Therefore, by connecting the first clutch, it is possible to generate electric power by transmitting the rotation of the internal combustion engine to the electric motor via the first input shaft that is not in the reverse driving force transmission path.

本発明においては、前記第1変速機構は、奇数段の前進用ギヤ段を備え、前記第2変速機構は、偶数段の前進用ギヤ段を備えたこととしてもよい。   In the present invention, the first speed change mechanism may include an odd number of forward gears, and the second speed change mechanism may include an even number of forward gears.

この構成によれば、電動機に接続された第1変速機構が1速段を含むことで、1速段を電動機内に配置でき、変速機ユニットの小型化が達成される。   According to this configuration, since the first speed change mechanism connected to the electric motor includes the first speed stage, the first speed stage can be arranged in the electric motor, and the transmission unit can be reduced in size.

本発明においては、前記所定のギヤ段は、3速ギヤ段であることとしてもよい。   In the present invention, the predetermined gear stage may be a third gear stage.

この構成によれば、リバース回転時に奇数段の前進ギヤ段の中でも、1速段に次いで減速比の大きいギヤである3速段を選択することができるので、リバース発進時に必要な駆動力を確保することができる。   According to this configuration, it is possible to select the third speed stage, which is the gear with the largest reduction ratio after the first speed stage, among the odd number of forward gear stages during the reverse rotation, so that the necessary driving force at the time of reverse start is ensured. can do.

以上述べた通り、本発明によれば、後進段走行(リバース回転)が選択された際の応答性を向上させると共に、車速にかかわらず発電を可能とする技術を提供することができる。   As described above, according to the present invention, it is possible to improve the responsiveness when reverse gear traveling (reverse rotation) is selected, and to provide a technique that enables power generation regardless of the vehicle speed.

本発明の第一実施形態に係るハイブリッド車両の概略的な接続構成図。The schematic connection block diagram of the hybrid vehicle which concerns on 1st embodiment of this invention. 図1に示す変速機のスケルトン図。The skeleton figure of the transmission shown in FIG. 本発明の第二実施形態に係るハイブリッド車両の概略的な接続構成図。The schematic connection block diagram of the hybrid vehicle which concerns on 2nd embodiment of this invention. 本発明の第三実施形態に係る変速機のスケルトン図。The skeleton figure of the transmission which concerns on 3rd embodiment of this invention. 従来の変速機のスケルトン図。The skeleton figure of the conventional transmission.

図1は、本発明の一実施形態に係るハイブリッド車両HVの駆動系の一部概略的な接続構成図である。本発明に係るハイブリッド車両HVに搭載される制御装置は、例えば、車両全体を制御する電子制御ユニット(ECU:Electronic Control Unit)により実現される。ハイブリッド車両HVは、少なくとも内燃機関エンジンEgと、電動機(モータジェネレータ)Mと、蓄電器BTと、変速機1と、終減速装置2と、駆動軸3とを介して接続された左右の駆動輪DWと、を備える。内燃機関Egと電動機Mの回転駆動力は、変速機1、終減速装置2、駆動軸3を介して左右の駆動輪DWに伝達される。内燃機関Egは、燃料を空気と混合して燃焼することにより車両HVを走行させるための駆動力を発生する内燃機関エンジンである。   FIG. 1 is a partially schematic connection configuration diagram of a drive system of a hybrid vehicle HV according to an embodiment of the present invention. The control device mounted on the hybrid vehicle HV according to the present invention is realized by, for example, an electronic control unit (ECU) that controls the entire vehicle. The hybrid vehicle HV includes at least left and right drive wheels DW connected via an internal combustion engine Eg, an electric motor (motor generator) M, a battery BT, a transmission 1, a final reduction gear 2, and a drive shaft 3. And comprising. The rotational driving force of the internal combustion engine Eg and the electric motor M is transmitted to the left and right drive wheels DW via the transmission 1, the final reduction gear 2, and the drive shaft 3. The internal combustion engine Eg is an internal combustion engine that generates a driving force for running the vehicle HV by mixing fuel with air and burning it.

なお、電子制御ユニットECUは、1つのユニットとして構成されるだけでなく、例えば、内燃機関Egを制御するためのエンジンECU、電動機Mを制御するためのモータジェネレータECU、蓄電器BTを制御するためのバッテリECU、変速機1を制御するためのATECUなど複数のECUから構成されてもよい。以下の実施形態では、電子制御ユニットECUは、内燃機関Egを制御するとともに、変速機1、蓄電器BT、電動機Mを制御するものとして説明する。   The electronic control unit ECU is not only configured as a single unit, but also, for example, an engine ECU for controlling the internal combustion engine Eg, a motor generator ECU for controlling the electric motor M, and a capacitor BT. You may comprise from several ECUs, such as battery ECU and AT ECU for controlling the transmission 1. FIG. In the following embodiments, the electronic control unit ECU will be described as controlling the internal combustion engine Eg and controlling the transmission 1, the battery BT, and the motor M.

電子制御ユニットECUは、本実施形態に関連する制御として、「リバース走行時に内燃機関と電動機とを接続して発電を行う制御」を行う。また、電子制御ユニットECUは、その各種の運転条件に応じて、電動機Mのみを動力源とするモータ単独走行(EV走行)、内燃機関Egのみを動力源とするエンジン単独走行、内燃機関Egと電動機Mの両方を動力源として併用する協働走行等をするように制御するなど、種々の制御を行うことができる。また、電子制御ユニットECUは、図示しないアクセルペダル開度検出器で検出されるアクセルペダル開度及びその他の公知の各種の運転パラメータに従って変速制御を行い、また、その他の各種の運転に必要な制御を行う。   The electronic control unit ECU performs “control for generating power by connecting an internal combustion engine and an electric motor during reverse traveling” as control related to the present embodiment. In addition, the electronic control unit ECU performs motor independent traveling (EV traveling) using only the electric motor M as a power source, engine independent traveling using only the internal combustion engine Eg, and the internal combustion engine Eg according to the various operating conditions. Various controls can be performed, for example, control is performed so as to perform cooperative traveling or the like using both of the motors M as power sources. Further, the electronic control unit ECU performs shift control according to an accelerator pedal opening detected by an accelerator pedal opening detector (not shown) and various other known operation parameters, and controls necessary for other various operations. I do.

また、ハイブリッド車両HVにおいて通常知られているように、内燃機関Egと電動機Mとの協働走行や、電動機MのみのEV走行の際には、蓄電器BTの電気エネルギーを利用して車両HVを走行させるための駆動力を発生するモータとして該電動機Mを機能させることもできる。また、車両HVの減速時には電動機Mの回生により電力を発電する発電機としても機能する。この電動機Mの回生時には、蓄電器BTは、電動機Mにより発電された電力(回生エネルギー)により充電される。   Further, as is generally known in a hybrid vehicle HV, when the internal combustion engine Eg and the electric motor M are traveling together or when only the electric motor M is traveling, the electric energy of the battery BT is used to drive the vehicle HV. The electric motor M can be made to function as a motor that generates a driving force for running. Moreover, it functions also as a generator which generates electric power by regeneration of the electric motor M at the time of deceleration of the vehicle HV. During regeneration of the electric motor M, the battery BT is charged with electric power (regenerative energy) generated by the electric motor M.

<第一実施形態>
図2は、図1に示す変速機1のスケルトン図と変速機1周辺の構成とを示している。概説すると、内燃機関Eg或いは電動機Mから出力される駆動力は、変速機1、終減速装置2を介して駆動軸3に伝達され、駆動輪DWを回転してハイブリッド車両の推進力を得て該車両を加速させる。また、電動機Mによる減速回生やブレーキ装置4によりハイブリッド車両の制動力を得て該車両を減速させる。
<First embodiment>
FIG. 2 shows a skeleton diagram of the transmission 1 shown in FIG. 1 and a configuration around the transmission 1. In general, the driving force output from the internal combustion engine Eg or the electric motor M is transmitted to the driving shaft 3 via the transmission 1 and the final reduction gear 2, and the driving wheel DW is rotated to obtain the driving force of the hybrid vehicle. The vehicle is accelerated. Further, the braking force of the hybrid vehicle is obtained by the deceleration regeneration by the electric motor M and the brake device 4 to decelerate the vehicle.

内燃機関Egは例えばガソリンエンジンであり、その出力軸(クランク軸)には発進デバイスとしてクラッチC1、C2が接続されている。クラッチC1は変速機1の第1変速機構10、特に主軸11と内燃機関Egとを断接し、クラッチC2は変速機1の第2変速機構20、特に主軸21と内燃機関Egとを断接する。クラッチC1及びC2は例えば乾式摩擦ディスククラッチを採用するが、他の形式の摩擦クラッチも採用可能である。   The internal combustion engine Eg is, for example, a gasoline engine, and clutches C1 and C2 are connected to its output shaft (crankshaft) as starting devices. The clutch C1 connects and disconnects the first transmission mechanism 10 of the transmission 1, particularly the main shaft 11 and the internal combustion engine Eg, and the clutch C2 connects and disconnects the second transmission mechanism 20 of the transmission 1, particularly the main shaft 21 and the internal combustion engine Eg. The clutches C1 and C2 employ, for example, dry friction disk clutches, but other types of friction clutches can also be employed.

電動機Mは、例えば、3相ブラシレスモータであり、回転子Mrと固定子Msとを備える。電動機Mは、図1では不図示のインバータITを介して蓄電器BTに蓄電された電力の供給を受けて駆動力を出力し(力行)、また、発電機として機能してインバータITを介して蓄電器BTに電力を蓄電する(回生)。回生時の回転子Mrに生じる回転抵抗を利用して制動力を得ることができる。蓄電器BTは例えば二次電池である。   The electric motor M is, for example, a three-phase brushless motor, and includes a rotor Mr and a stator Ms. The electric motor M receives the supply of electric power stored in the battery BT via an inverter IT (not shown in FIG. 1) and outputs a driving force (power running). Also, the electric motor M functions as a generator and stores the battery via the inverter IT. Electric power is stored in BT (regeneration). A braking force can be obtained by using the rotational resistance generated in the rotor Mr during regeneration. The battery BT is a secondary battery, for example.

本実施形態の場合、電動機Mは第1変速機構10に接続されている。詳細には、電動機Mは第1変速機構10の主軸11(第1入力軸)と同軸上に配置され、電動機Mの回転子Mrが第1変速機構10の主軸11の端部に固定されており、回転子Mrが主軸11と同軸上で回転する。このため、主軸11の回転力は常時回転子Mrに伝達される。本実施形態では、主軸11と回転子Mrとを固定する構成としたが、主軸11の回転力が電動機Mに常時伝達される任意の構成を採用可能である。   In the case of this embodiment, the electric motor M is connected to the first transmission mechanism 10. Specifically, the electric motor M is disposed coaxially with the main shaft 11 (first input shaft) of the first transmission mechanism 10, and the rotor Mr of the electric motor M is fixed to the end of the main shaft 11 of the first transmission mechanism 10. The rotor Mr rotates on the same axis as the main shaft 11. For this reason, the rotational force of the main shaft 11 is always transmitted to the rotor Mr. In the present embodiment, the main shaft 11 and the rotor Mr are fixed. However, any configuration in which the rotational force of the main shaft 11 is constantly transmitted to the electric motor M can be employed.

終減速装置2は駆動軸3、3と接続された差動機構を備え、変速機1の出力ギヤGfを介して変速機1との間で動力伝達する。ブレーキ装置4は、摩擦式のブレーキ装置であり、図1の例では車体側のキャリパと、駆動輪DWないし駆動軸3側のブレーキディスクと、を備えたディスクブレーキを想定している。しかし、ドラムブレーキ等の他の摩擦式のブレーキ装置も採用可能である。   The final reduction gear 2 includes a differential mechanism connected to the drive shafts 3 and 3, and transmits power to and from the transmission 1 via the output gear Gf of the transmission 1. The brake device 4 is a friction-type brake device. In the example of FIG. 1, a disc brake provided with a caliper on the vehicle body side and a brake disc on the drive wheel DW or the drive shaft 3 side is assumed. However, other friction brake devices such as a drum brake can also be used.

<変速機の構成>
変速機1は、前進7段、後進1段の変速段を有する変速機であり、前進用ギヤ段の奇数段を実現する第1変速機構10及びクラッチC1と、前進用ギヤ段の偶数段及び後進段を実現する第2変速機構20及びクラッチC2と、を主要な構成としたデュアルクラッチ式変速機である。
<Configuration of transmission>
The transmission 1 is a transmission having seven forward speeds and one reverse speed, and includes a first transmission mechanism 10 and a clutch C1 that realize an odd number of forward gears, an even number of forward gears, and This is a dual clutch transmission that mainly includes a second speed change mechanism 20 and a clutch C2 that realize a reverse speed.

第1変速機構10は、一方端部がクラッチC1に、他方端部が電動機Mの回転子Mrに、それぞれ固定された主軸11を備える。   The first speed change mechanism 10 includes a main shaft 11 having one end fixed to the clutch C1 and the other end fixed to the rotor Mr of the electric motor M.

主軸11の他方端部には、また、遊星歯車機構PGのサンギヤPGsが固定されている。遊星歯車機構PGは主軸11と同軸上に配置され、サンギヤPGs、リングギヤPGr、サンギヤPGs及びリングギヤPGrに噛合するピニオンギヤPGp、及び、ピニオンギヤPGpを回転自在に支持すると共に主軸11回りに回転自在なキャリアPGc、を備える。   A sun gear PGs of the planetary gear mechanism PG is also fixed to the other end portion of the main shaft 11. The planetary gear mechanism PG is disposed coaxially with the main shaft 11 and supports the sun gear PGs, the ring gear PGr, the sun gear PGs, the pinion gear PGp meshing with the ring gear PGr, and the pinion gear PGp rotatably, and a carrier rotatable around the main shaft 11. PGc.

キャリアPGcは、主軸11と同軸の筒体であって、主軸11と同軸上で回転自在に支持された連結軸14により支持されている。連結軸14には5速用の駆動ギヤG5が固定されており、連結軸14、キャリアPGc及びピニオンギヤPGp、並びに、駆動ギヤG3は、主軸11と同軸上で一体的に回転自在となっている。   The carrier PGc is a cylindrical body that is coaxial with the main shaft 11 and is supported by a connecting shaft 14 that is rotatably supported coaxially with the main shaft 11. A driving gear G5 for fifth speed is fixed to the connecting shaft 14, and the connecting shaft 14, the carrier PGc, the pinion gear PGp, and the driving gear G3 are coaxially rotatable with the main shaft 11 in an integrated manner. .

連結軸12、13は、主軸11と同軸の筒体であって、主軸11と同軸上で相対回転可能に支持されている。連結軸12には3速用の駆動ギヤ(3速ギヤ段)G3が、連結軸13には7速用の駆動ギヤG7が、それぞれ固定されており、連結軸12と駆動ギヤG3、連結軸13と駆動ギヤG7は、それぞれ、主軸11と同軸上で一体的に回転自在となっている。駆動ギヤG3には後進段用の駆動ギヤGr(後進用ギヤ段、リバース回転用のリバースギヤ段)と常時噛み合う従動ギヤGr’が相対回転不能に固定されている。   The connecting shafts 12 and 13 are cylindrical bodies coaxial with the main shaft 11 and are supported coaxially with the main shaft 11 so as to be relatively rotatable. A driving gear (3rd gear stage) G3 for the third speed is fixed to the connecting shaft 12, and a driving gear G7 for the seventh speed is fixed to the connecting shaft 13, respectively. The connecting shaft 12, the driving gear G3, and the connecting shaft are fixed. 13 and the drive gear G7 are respectively rotatable on the same axis as the main shaft 11 so as to be integrally rotatable. A driven gear Gr 'that is always meshed with the reverse drive gear Gr (reverse gear, reverse rotation reverse gear) is fixed to the drive gear G3 so as not to be relatively rotatable.

1速段用のシフタSF1は、遊星歯車機構PGのリングギヤPGrと変速機ケース1aとの接続・解放を行う。5速及び7速用のシフタSF57は、主軸11と連結軸14(駆動ギヤG5)との接続・解放、及び、主軸11と連結軸13(駆動ギヤG7)の接続・解放を行う。3速用のシフタSF3は、主軸11と連結軸12(駆動ギヤG3)の接続・解放を行う。これらのシフタは同期装置を備えたドグクラッチまたはブレーキ等の係合機構である。   The first-speed shifter SF1 connects / releases the ring gear PGr of the planetary gear mechanism PG and the transmission case 1a. The fifth and seventh speed shifters SF57 connect / release the main shaft 11 and the connecting shaft 14 (drive gear G5), and connect / release the main shaft 11 and the connecting shaft 13 (drive gear G7). The third-speed shifter SF3 connects / releases the main shaft 11 and the connecting shaft 12 (drive gear G3). These shifters are engaging mechanisms such as a dog clutch or a brake having a synchronizer.

第2変速機構20は、主軸11と同軸の筒体であって、主軸11と同軸上で回転自在に支持された主軸21(第2入力軸)を備える。主軸21の一方端部にはクラッチC2が、他方端部にはギヤGaが、それぞれ固定されている。   The second speed change mechanism 20 is a cylindrical body that is coaxial with the main shaft 11, and includes a main shaft 21 (second input shaft) that is rotatably supported coaxially with the main shaft 11. A clutch C2 is fixed to one end of the main shaft 21, and a gear Ga is fixed to the other end.

第2変速機構20は、また、主軸11と平行に、回転自在に設けられたアイドル軸26、中間軸22を備える。アイドル軸26にはギヤGaと常時噛み合うアイドルギヤGiが固定されている。中間軸22にはアイドルギヤGiと常時噛み合うギヤGbが固定されている。   The second transmission mechanism 20 also includes an idle shaft 26 and an intermediate shaft 22 that are rotatably provided in parallel with the main shaft 11. An idle gear Gi that always meshes with the gear Ga is fixed to the idle shaft 26. A gear Gb that always meshes with the idle gear Gi is fixed to the intermediate shaft 22.

連結軸23乃至25は、中間軸22と同軸の筒体であって、中間軸22と同軸上で回転自在に支持されている。連結軸23には2速用の駆動ギヤG2及びパーキングロック機構を構成するパーキングギヤGpが、連結軸24には6速用の駆動ギヤG6が、連結軸25には4速用の駆動ギヤG4が、それぞれ固定され、これらは、それぞれ中間軸22と同軸上で一体的に回転自在となっている。   The connecting shafts 23 to 25 are cylindrical bodies coaxial with the intermediate shaft 22, and are rotatably supported coaxially with the intermediate shaft 22. The connecting shaft 23 has a driving gear G2 for second speed and a parking gear Gp constituting a parking lock mechanism, the connecting shaft 24 has a driving gear G6 for sixth speed, and the connecting shaft 25 has a driving gear G4 for fourth speed. Are fixed to each other, and are respectively rotatable coaxially with the intermediate shaft 22.

4速及び6速用のシフタSF46は、中間軸22と連結軸25(駆動ギヤG4)との接続・解放、及び、中間軸22と連結軸24(駆動ギヤG6)の接続・解放を行う。2速用のシフタSF2は、中間軸22と連結軸23(駆動ギヤG2)の接続・解放を行う。これらのシフタは同期装置を備えたドグクラッチ等の係合機構である。   The shift gear SF46 for 4th and 6th speeds connects / releases the intermediate shaft 22 and the connecting shaft 25 (drive gear G4), and connects / releases the intermediate shaft 22 and the connecting shaft 24 (drive gear G6). The shifter SF2 for the second speed connects / releases the intermediate shaft 22 and the connecting shaft 23 (drive gear G2). These shifters are engaging mechanisms such as a dog clutch provided with a synchronization device.

第2変速機構20は、また、主軸11と平行に、回転自在に設けられた中間軸27を備える。中間軸27には逆回転用のギヤGiと常時噛み合うギヤGcが固定されている。連結軸28は、中間軸27と同軸の筒体であって、中間軸27と同軸上で回転自在に支持されている。連結軸28には駆動ギヤGr(後進用ギヤ段、リバース回転用のリバースギヤ段)が固定されている。後進段用のシフタSFrは、中間軸27と連結軸28(駆動ギヤGr)との接続・解放を行う。このシフタSFrはドグクラッチ等の係合機構である。   The second transmission mechanism 20 also includes an intermediate shaft 27 that is rotatably provided in parallel with the main shaft 11. A gear Gc that always meshes with the reverse rotation gear Gi is fixed to the intermediate shaft 27. The connecting shaft 28 is a cylindrical body that is coaxial with the intermediate shaft 27 and is rotatably supported on the same axis as the intermediate shaft 27. A driving gear Gr (reverse gear stage, reverse rotation reverse gear stage) is fixed to the connecting shaft 28. The reverse shifter SFr connects / releases the intermediate shaft 27 and the connecting shaft 28 (drive gear Gr). This shifter SFr is an engagement mechanism such as a dog clutch.

変速機1は、主軸11と平行に、回転自在に設けられたカウンタ軸(駆動出力軸)30を備える。カウンタ軸30には、終減速装置2の差動機構と常時噛み合う出力ギヤGfと、4速・5速用の従動ギヤG45と、6速・7速用の従動ギヤG67と、2速・3速用の従動ギヤG23と、が固定されている。   The transmission 1 includes a counter shaft (drive output shaft) 30 that is rotatably provided in parallel with the main shaft 11. The counter shaft 30 includes an output gear Gf that always meshes with the differential mechanism of the final reduction gear 2, a driven gear G45 for 4th and 5th speed, a driven gear G67 for 6th and 7th speed, and a second speed and 3rd speed. The driven gear G23 for speed is fixed.

従動ギヤG45は、駆動ギヤG4及びG5と常時噛み合っている。従動ギヤG67は、駆動ギヤG6及びG7と常時噛み合っている。従動ギヤ23は、駆動ギヤG2及びG3と常時噛み合っている。   The driven gear G45 always meshes with the drive gears G4 and G5. The driven gear G67 is always meshed with the drive gears G6 and G7. The driven gear 23 is always meshed with the drive gears G2 and G3.

係る構成からなる変速機1の、内燃機関Egを駆動源とした場合の各変速段選択時の態様について説明する。まず、1速、3速、5速、7速の場合について説明する。これらの変速段を選択する場合は、クラッチC1を接続状態とし、クラッチC2を解放状態とする。   The aspect at the time of each gear stage selection of the transmission 1 having such a configuration when the internal combustion engine Eg is used as a drive source will be described. First, the case of the first speed, the third speed, the fifth speed, and the seventh speed will be described. When selecting these shift speeds, the clutch C1 is in the engaged state and the clutch C2 is in the released state.

1速の場合、シフタSF1により遊星歯車機構PGのリングギヤPGrと変速機ケース1aとを接続状態とする。すると、内燃機関Eg→クラッチC1→主軸11・サンギヤPGs→ピニオンギヤPGp・キャリアPGc・連結軸14・駆動ギヤG5→従動ギヤG45・カウンタ軸30・出力ギヤGf→終減速装置2の経路で動力伝達が行われて、1速が実現される。   In the case of the first speed, the ring gear PGr of the planetary gear mechanism PG and the transmission case 1a are connected by the shifter SF1. Then, the power is transmitted through the path of the internal combustion engine Eg → clutch C → main shaft 11 / sun gear PGs → pinion gear PGp / carrier PGc / connection shaft 14 / drive gear G5 → driven gear G45 / counter shaft 30 / output gear Gf → final reduction gear 2. And 1st speed is realized.

3速の場合、シフタSF3により、主軸11と連結軸12とを接続状態とする。すると、内燃機関Eg→クラッチC1→主軸11・連結軸12・駆動ギヤG3→従動ギヤG23・カウンタ軸30・出力ギヤGf→終減速装置2の経路で動力伝達が行われて、3速が実現される。   In the case of the third speed, the main shaft 11 and the connecting shaft 12 are connected by the shifter SF3. Then, power transmission is performed through the path of the internal combustion engine Eg → clutch C1 → main shaft 11 / connection shaft 12 / drive gear G3 → driven gear G23 / counter shaft 30 / output gear Gf → final reduction gear 2 to realize the third speed. Is done.

5速の場合、シフタSF57により、主軸11と連結軸14とを接続状態とする。すると、内燃機関Eg→クラッチC1→主軸11・連結軸14・駆動ギヤG5→従動ギヤG45・カウンタ軸30・出力ギヤGf→終減速装置2の経路で動力伝達が行われて、5速が実現される。   In the case of the fifth speed, the main shaft 11 and the connecting shaft 14 are connected by the shifter SF57. Then, power transmission is performed through the path of the internal combustion engine Eg → clutch C1 → main shaft 11 / connection shaft 14 / drive gear G5 → driven gear G45 / counter shaft 30 / output gear Gf → final reduction gear 2 to achieve the fifth speed. Is done.

7速の場合、シフタSF57により、主軸11と連結軸13とを接続状態とする。すると、内燃機関Eg→クラッチC1→主軸11・連結軸13・駆動ギヤG7→従動ギヤG67・カウンタ軸30・出力ギヤGf→終減速装置2の経路で動力伝達が行われて、7速が実現される。   In the case of the seventh speed, the main shaft 11 and the connecting shaft 13 are connected by the shifter SF57. Then, the power is transmitted through the path of the internal combustion engine Eg → clutch C1 → main shaft 11 / connection shaft 13 / drive gear G7 → driven gear G67 / counter shaft 30 / output gear Gf → final reduction gear 2 to realize the seventh speed. Is done.

2速、4速、6速の変速段を選択する場合は、クラッチC1を解放状態とし、クラッチC2を接続状態とする。   When selecting the second speed, fourth speed, and sixth speed, the clutch C1 is disengaged and the clutch C2 is engaged.

2速の場合、シフタSF2により、中間軸22と連結軸23とを接続状態とする。すると、内燃機関Eg→クラッチC2→主軸21・ギヤGa→アイドルギヤGi→ギヤGb・中間軸22・連結軸23・駆動ギヤG2→従動ギヤG23・カウンタ軸30・出力ギヤGf→終減速装置2の経路で動力伝達が行われて、2速が実現される。   In the case of the second speed, the intermediate shaft 22 and the connecting shaft 23 are connected by the shifter SF2. Then, internal combustion engine Eg → clutch C → main shaft 21 / gear Ga → idle gear Gi → gear Gb / intermediate shaft 22 / connection shaft 23 / drive gear G2 → driven gear G23 / counter shaft 30 / output gear Gf → final reduction gear 2 The power transmission is performed through the path No. 2 to achieve the second speed.

4速の場合、シフタSF46により、中間軸22と連結軸25とを接続状態とする。すると、内燃機関Eg→クラッチC2→主軸21・ギヤGa→アイドルギヤGi→ギヤGb・中間軸22・連結軸25・駆動ギヤG4→従動ギヤG45・カウンタ軸30・出力ギヤGf→終減速装置2の経路で動力伝達が行われて、4速が実現される。   In the case of the fourth speed, the intermediate shaft 22 and the connecting shaft 25 are connected by the shifter SF46. Then, the internal combustion engine Eg → clutch C2 → main shaft 21 / gear Ga → idle gear Gi → gear Gb / intermediate shaft 22 / connection shaft 25 / drive gear G4 → driven gear G45 / counter shaft 30 / output gear Gf → final reduction gear 2 Power transmission is performed through the path of No. 4, and the fourth speed is realized.

6速の場合、シフタSF46により、中間軸22と連結軸24とを接続状態とする。すると、内燃機関Eg→クラッチC2→主軸21・ギヤGa→アイドルギヤGi→ギヤGb・中間軸22・連結軸24・駆動ギヤG6→従動ギヤG67・カウンタ軸30・出力ギヤGf→終減速装置2の経路で動力伝達が行われて、6速が実現される。   In the case of the sixth speed, the intermediate shaft 22 and the connecting shaft 24 are connected by the shifter SF46. Then, the internal combustion engine Eg → clutch C2 → main shaft 21 / gear Ga → idle gear Gi → gear Gb / intermediate shaft 22 / connection shaft 24 / drive gear G6 → driven gear G67 / counter shaft 30 / output gear Gf → final reduction gear 2 Power transmission is performed in the path of No. 6, and the sixth speed is realized.

以上により1速から7速までが実現できる。変速段を1段ずつシフトアップする場合やシフトダウンする場合は、クラッチC1、C2の接続・解放の切り替え前に、シフタによる次段の切り替えを行って待機することができるので、変速時間を短縮できる。   From the above, 1st to 7th gears can be realized. When shifting up and down one gear step, shift time can be shortened by switching to the next step using the shifter before switching the clutch C1, C2 between connection and release. it can.

<後進段>
後進段を選択する場合は、クラッチC1を解放状態とし、クラッチC2を接続状態とする。そして、シフタSFrにより、中間軸27と連結軸28とを接続状態とする。すると、内燃機関Eg→クラッチC2→主軸21・ギヤGa→アイドルギヤGi→ギヤGc・中間軸27・連結軸28・駆動ギヤGr→従動ギヤGr’・駆動ギヤG3→従動ギヤG23・カウンタ軸30・出力ギヤGf→終減速装置2の経路で動力伝達が行われて、後進段が実現される。つまり、3速ギヤ(所定の前進用ギヤ段)を非選択としたまま、駆動ギヤGr(後進用ギヤ段、リバース回転用のリバースギヤ段)がカウンタ軸30と係合し、後進段走行(リバース走行、リバース回転)が達成される。したがって、ドライバが後進段走行を選択した際に、操作するシフタの数が一つとなり、リバース走行が可能になるまでの時間を短くすることができる。
<Reverse gear>
When selecting the reverse gear, the clutch C1 is disengaged and the clutch C2 is engaged. Then, the intermediate shaft 27 and the connecting shaft 28 are connected by the shifter SFr. Then, internal combustion engine Eg → clutch C → main shaft 21 / gear Ga → idle gear Gi → gear Gc / intermediate shaft 27 / connection shaft 28 / drive gear Gr → driven gear Gr ′ / drive gear G3 → driven gear G23 / counter shaft 30 -Power transmission is performed along the path of the output gear Gf → the final reduction gear 2 to realize the reverse gear. That is, the drive gear Gr (reverse gear stage, reverse reverse gear stage) is engaged with the counter shaft 30 while the third gear (predetermined forward gear stage) is not selected, and the reverse gear ( Reverse running, reverse rotation) is achieved. Therefore, when the driver selects reverse travel, the number of shifters to be operated becomes one, and the time until reverse travel becomes possible can be shortened.

<後進段走行時の発電の制御>
上記後進段走行時、内燃機関Egの回転を電動機Mに伝達して発電行う場合について説明する。発電を行う場合、電子制御ユニットECUは、変速機1を上記後進段の状態としたまま、クラッチC1と接続状態とする。すると、内燃機関Eg→クラッチC1→主軸11・サンギヤPGs→回転子Mrの経路で動力伝達が行われて、固定子Msと回転子Mrとが相対回転することで発電が実現される。このとき、実際に後進段走行が行われているか否かによらず、例えば、車速0km/hにおいても電動機Mは発電を行うことができる。
<Control of power generation during reverse gear travel>
A description will be given of a case where the rotation of the internal combustion engine Eg is transmitted to the electric motor M to generate electric power during the reverse travel. When power generation is performed, the electronic control unit ECU places the transmission 1 in the connected state with the clutch C1 while keeping the transmission 1 in the above-described reverse gear state. Then, power transmission is performed through the path of the internal combustion engine Eg → clutch C1 → main shaft 11 / sun gear PGs → rotor Mr, and the stator Ms and the rotor Mr rotate relative to each other to realize power generation. At this time, the electric motor M can generate electric power even at a vehicle speed of 0 km / h, for example, regardless of whether or not the reverse gear traveling is actually performed.

なお、第1変速機構10の駆動ギヤG3(所定の前進用ギヤ段)は、主軸11に対して相対回転可能となっているため、後進段走行時の駆動力が主軸11に影響することがない。したがって、リバース走行時、第1変速機構10のギヤ段を非選択とすることで、リバース駆動力の伝達経路に影響することなく、クラッチC1(第1クラッチ)の接続により内燃機関Egの回転を電動機Mに伝達することができ、車速にかかわらず発電をすることができ、発電領域を拡大することができる。   Note that the drive gear G3 (predetermined forward gear stage) of the first transmission mechanism 10 can rotate relative to the main shaft 11, so that the driving force during reverse gear travel can affect the main shaft 11. Absent. Therefore, by deselecting the gear stage of the first transmission mechanism 10 during reverse travel, the internal combustion engine Eg can be rotated by connecting the clutch C1 (first clutch) without affecting the transmission path of the reverse driving force. The electric power can be transmitted to the electric motor M, the electric power can be generated regardless of the vehicle speed, and the power generation area can be expanded.

<第二実施形態>
図3に、第二実施形態として示すモーターアシスト式四輪駆動システムを備えたハイブリッド車両HV’を示す。図3に示すハイブリッド車両HV’は、少なくとも内燃機関エンジンEgと、第1電動機(モータジェネレータ)M1と、第2電動機(従動側電動機、モータジェネレータ)M2と、蓄電器BTと、変速機1と、終減速装置2及び駆動軸3を介して変速機1と接続された左右の前輪FWと、終減速装置2及び駆動軸3を介して第2電動機M2と接続された後輪RWと、を備える。なお、第1電動機M1及び第1電動機M1と変速機1との接続は、上記第一実施形態で説明した電動機Mと変速機1と同様である。したがって、後進段走行時、変速機1内のクラッチC1を接続状態とすることで、内燃機関Egの回転が第1電動機M1に伝達され、第1電動機M1は発電を行うことができる。
<Second embodiment>
FIG. 3 shows a hybrid vehicle HV ′ equipped with a motor-assisted four-wheel drive system shown as the second embodiment. A hybrid vehicle HV ′ shown in FIG. 3 includes at least an internal combustion engine Eg, a first electric motor (motor generator) M1, a second electric motor (driven electric motor, motor generator) M2, a battery BT, a transmission 1, Left and right front wheels FW connected to the transmission 1 via the final reduction gear 2 and the drive shaft 3, and rear wheels RW connected to the second electric motor M <b> 2 via the final reduction gear 2 and the drive shaft 3. . The first motor M1 and the connection between the first motor M1 and the transmission 1 are the same as those of the motor M and the transmission 1 described in the first embodiment. Therefore, when the vehicle travels in the reverse speed, by setting the clutch C1 in the transmission 1 to the connected state, the rotation of the internal combustion engine Eg is transmitted to the first electric motor M1, and the first electric motor M1 can generate electric power.

本実施形態移おいては、後進段走行時、第1電動機M1で発電された電力を第2電動機M2へと供給することで、第2電動機M2を駆動させ、後輪RWを駆動させることができる。したがって、低車速の後進段走行においても、後輪RWを駆動させることができ、後進段走行時の車速にかかわらず、4輪全てを駆動させることができる。   In the present embodiment, when the vehicle travels in reverse, the second motor M2 can be driven and the rear wheels RW can be driven by supplying the power generated by the first motor M1 to the second motor M2. it can. Therefore, the rear wheel RW can be driven even in the reverse speed traveling at a low vehicle speed, and all four wheels can be driven regardless of the vehicle speed during the reverse speed traveling.

なお、本実施形態においてハイブリッド車両HV’は、前輪FWに変速機1が接続され、後輪RWに第2電動機M2が接続された形態を例示したが、これに限定されず、前輪FWに第2電動機M2、後輪RWに変速機1が接続された形態とすることもできる。   In the present embodiment, the hybrid vehicle HV ′ has exemplified the form in which the transmission 1 is connected to the front wheel FW and the second electric motor M2 is connected to the rear wheel RW. However, the present invention is not limited to this, and the first vehicle is connected to the front wheel FW. It can also be set as the form with which the transmission 1 was connected to 2 electric motor M2 and the rear-wheel RW.

<第三実施形態>
また、変速段数も変速機1のものに限られない。図4は本発明の第三実施形態に係るハイブリッド車両の概略を示す図である。図4の変速機1’は前進5段、後進1段の変速段を有する変速機であるが、図1の変速機1と基本的な構成は共通している。よって、変速機1の構成に対応する構成については同じ符号を付して説明を割愛し、異なる構成についてのみ説明する。
<Third embodiment>
Further, the number of gears is not limited to that of the transmission 1. FIG. 4 is a diagram showing an outline of a hybrid vehicle according to the third embodiment of the present invention. The transmission 1 ′ in FIG. 4 is a transmission having five forward speeds and one reverse speed, but the basic configuration is the same as that of the transmission 1 in FIG. Therefore, the configuration corresponding to the configuration of the transmission 1 is denoted by the same reference numeral, description thereof is omitted, and only different configurations are described.

変速機1’では、変速機1の駆動ギヤG6、G7、従動ギヤG67、シフタSF57、SF3、SF2、SF46、連結軸13、24が無い。逆に、変速機1’は、3速及び5速用のシフタSF35、2速及び4速用のSF24を備える。シフタSF35は、主軸11と連結軸14(駆動ギヤG5)との接続・解放、及び、主軸11と連結軸12(駆動ギヤG3)の接続・解放を行う。シフタSF24は、中間軸22と連結軸25(駆動ギヤG4)との接続・解放、及び、中間軸22と連結軸23(駆動ギヤG2)の接続・解放を行う。   The transmission 1 'does not include the drive gears G6 and G7, the driven gear G67, the shifters SF57, SF3, SF2, and SF46, and the connecting shafts 13 and 24 of the transmission 1. Conversely, the transmission 1 'includes a shifter SF35 for the third speed and the fifth speed, and an SF24 for the second speed and the fourth speed. The shifter SF35 connects / releases the main shaft 11 and the connecting shaft 14 (drive gear G5), and connects / releases the main shaft 11 and the connecting shaft 12 (drive gear G3). The shifter SF24 connects / releases the intermediate shaft 22 and the connecting shaft 25 (drive gear G4), and connects / releases the intermediate shaft 22 and the connecting shaft 23 (drive gear G2).

続いて、内燃機関Egを駆動源とした場合の各変速段選択時の態様について説明する。まず、1速、3速、5速の場合について説明する。これらの変速段を選択する場合は、クラッチC1を接続状態とし、クラッチC2を解放状態とする。   Next, a description will be given of an aspect at the time of selecting each gear position when the internal combustion engine Eg is used as a drive source. First, the case of the first speed, the third speed, and the fifth speed will be described. When selecting these shift speeds, the clutch C1 is in the engaged state and the clutch C2 is in the released state.

1速の場合、シフタSF1により遊星歯車機構PGのリングギヤPGrと変速機ケース1aとを接続状態とする。すると、内燃機関Eg→クラッチC1→主軸11・サンギヤPGs→ピニオンギヤPGp・キャリアPGc・連結軸14・駆動ギヤG5→従動ギヤG45・カウンタ軸30・出力ギヤGf→終減速装置2の経路で動力伝達が行われて、1速が実現される。   In the case of the first speed, the ring gear PGr of the planetary gear mechanism PG and the transmission case 1a are connected by the shifter SF1. Then, the power is transmitted through the path of the internal combustion engine Eg → clutch C → main shaft 11 / sun gear PGs → pinion gear PGp / carrier PGc / connection shaft 14 / drive gear G5 → driven gear G45 / counter shaft 30 / output gear Gf → final reduction gear 2. And 1st speed is realized.

3速の場合、シフタSF35により、主軸11と連結軸12とを接続状態とする。すると、内燃機関Eg→クラッチC1→主軸11・連結軸12・駆動ギヤG3→従動ギヤG23・カウンタ軸30・出力ギヤGf→終減速装置2の経路で動力伝達が行われて、3速が実現される。   In the case of the third speed, the main shaft 11 and the connecting shaft 12 are connected by the shifter SF35. Then, power transmission is performed through the path of the internal combustion engine Eg → clutch C1 → main shaft 11 / connection shaft 12 / drive gear G3 → driven gear G23 / counter shaft 30 / output gear Gf → final reduction gear 2 to realize the third speed. Is done.

5速の場合、シフタSF35により、主軸11と連結軸14とを接続状態とする。すると、内燃機関Eg→クラッチC1→主軸11・連結軸14・駆動ギヤG5→従動ギヤG45・カウンタ軸30・出力ギヤGf→終減速装置2の経路で動力伝達が行われて、5速が実現される。   In the case of the fifth speed, the main shaft 11 and the connecting shaft 14 are connected by the shifter SF35. Then, power transmission is performed through the path of the internal combustion engine Eg → clutch C1 → main shaft 11 / connection shaft 14 / drive gear G5 → driven gear G45 / counter shaft 30 / output gear Gf → final reduction gear 2 to achieve the fifth speed. Is done.

2速、4速、6速の変速段を選択する場合は、クラッチC1を解放状態とし、クラッチC2を接続状態とする。   When selecting the second speed, fourth speed, and sixth speed, the clutch C1 is disengaged and the clutch C2 is engaged.

2速の場合、シフタSF24により、中間軸22と連結軸23とを接続状態とする。すると、内燃機関Eg→クラッチC2→主軸21・ギヤGa→アイドルギヤGi→ギヤGb・中間軸22・連結軸23・駆動ギヤG2→従動ギヤG23・カウンタ軸30・出力ギヤGf→終減速装置2の経路で動力伝達が行われて、2速が実現される。   In the case of the second speed, the intermediate shaft 22 and the connecting shaft 23 are connected by the shifter SF24. Then, internal combustion engine Eg → clutch C → main shaft 21 / gear Ga → idle gear Gi → gear Gb / intermediate shaft 22 / connection shaft 23 / drive gear G2 → driven gear G23 / counter shaft 30 / output gear Gf → final reduction gear 2 The power transmission is performed through the path No. 2 to achieve the second speed.

4速の場合、シフタSF24により、中間軸22と連結軸25とを接続状態とする。すると、内燃機関Eg→クラッチC2→主軸21・ギヤGa→アイドルギヤGi→ギヤGb・中間軸22・連結軸25・駆動ギヤG4→従動ギヤG45・カウンタ軸30・出力ギヤGf→終減速装置2の経路で動力伝達が行われて、4速が実現される。   In the case of the fourth speed, the intermediate shaft 22 and the connecting shaft 25 are connected by the shifter SF24. Then, the internal combustion engine Eg → clutch C2 → main shaft 21 / gear Ga → idle gear Gi → gear Gb / intermediate shaft 22 / connection shaft 25 / drive gear G4 → driven gear G45 / counter shaft 30 / output gear Gf → final reduction gear 2 Power transmission is performed through the path of No. 4, and the fourth speed is realized.

後進段を選択する場合は、クラッチC1を解放状態とし、クラッチC2を接続状態とする。そして、シフタSFrにより、中間軸27と連結軸28とを接続状態とする。すると、内燃機関Eg→クラッチC2→主軸21・ギヤGa→アイドルギヤGi→ギヤGc・中間軸27・連結軸28・駆動ギヤGr→従動ギヤGr’・駆動ギヤG3→従動ギヤG23・カウンタ軸30・出力ギヤGf→終減速装置2の経路で動力伝達が行われて、後進段が実現される。   When selecting the reverse gear, the clutch C1 is disengaged and the clutch C2 is engaged. Then, the intermediate shaft 27 and the connecting shaft 28 are connected by the shifter SFr. Then, internal combustion engine Eg → clutch C → main shaft 21 / gear Ga → idle gear Gi → gear Gc / intermediate shaft 27 / connection shaft 28 / drive gear Gr → driven gear Gr ′ / drive gear G3 → driven gear G23 / counter shaft 30 -Power transmission is performed along the path of the output gear Gf → the final reduction gear 2 to realize the reverse gear.

このように変速機1’は変速機1に比べて、6速、7速が無いが、この点を除いて変速機1を用いた上記第一実施形態と同様の制御を行うことができる。後進段走行時、内燃機関Egの回転を電動機Mに伝達して発電行う場合、電子制御ユニットECUは、変速機1’を上記後進段の状態としたまま、クラッチC1と接続状態とする。すると、内燃機関Eg→クラッチC1→主軸11・サンギヤPGs→回転子Mrの経路で動力伝達が行われて、固定子Msと回転子Mrとが相対回転することで発電が実現される。本実施形態においても上記第一実施形態と同様の作用及び効果を奏することができる。   As described above, the transmission 1 ′ does not have the sixth speed and the seventh speed compared to the transmission 1. Except for this point, the same control as in the first embodiment using the transmission 1 can be performed. When traveling backward, when the rotation of the internal combustion engine Eg is transmitted to the electric motor M to generate electric power, the electronic control unit ECU keeps the transmission 1 'in the above-mentioned reverse gear and keeps it connected to the clutch C1. Then, power is transmitted through the path of the internal combustion engine Eg → clutch C1 → main shaft 11 / sun gear PGs → rotor Mr, and the stator Ms and the rotor Mr rotate relative to each other, thereby realizing power generation. In this embodiment, the same operation and effect as the first embodiment can be obtained.

上記実施形態においては、クラッチC1、C2が直列に配置され、変速機1で主軸11と、主軸21とを同軸の多重構造としたデュアルクラッチ式変速機を例示したがこれに限定されず、例えば、クラッチC1、C2を並列に配置し、二つの変速機の主軸をそれぞれ平行に配置した構成等も採用可能である。   In the above embodiment, the clutches C1 and C2 are arranged in series and the dual clutch type transmission in which the main shaft 11 and the main shaft 21 are coaxial in the transmission 1 is illustrated as an example. A configuration in which the clutches C1 and C2 are arranged in parallel and the main shafts of the two transmissions are arranged in parallel can also be employed.

10 第1変速機構、20 第2変速機構、C1 第1クラッチ、C2 第二クラッチ、 Eg 内燃機関、M 電動機 DESCRIPTION OF SYMBOLS 10 1st transmission mechanism, 20 2nd transmission mechanism, C1 1st clutch, C2 2nd clutch, Eg Internal combustion engine, M Electric motor

Claims (8)

第1及び第2変速機構と、
該第1及び第2変速機構のそれぞれに対応した第1及び第2クラッチと、
前記第1変速機構に接続された電動機と、
前記第1及び第2クラッチを断接することで、前記第1及び第2変速機構と断接される内燃機関と、
を備えたハイブリッド車両において、
前記第2変速機構は、前記第1変速機構の所定の前進用ギヤ段を介して前記内燃機関の回転を出力する後進用ギヤ段を含み、
前記第1変速機構が前記所定の前進用ギヤ段を非選択とし、第2クラッチを接続することで、前記第2変速機構は前記ハイブリッド車両の後進段走行を可能とし、
該後進段走行を選択した状態で前記第1クラッチを接続させることで、前記第1変速機構が前記内燃機関の回転を前記電動機に伝達して発電を行う制御手段を備えたことを特徴とするハイブリッド車両。
First and second transmission mechanisms;
First and second clutches respectively corresponding to the first and second transmission mechanisms;
An electric motor connected to the first transmission mechanism;
An internal combustion engine connected to and disconnected from the first and second transmission mechanisms by connecting and disconnecting the first and second clutches;
In a hybrid vehicle equipped with
The second transmission mechanism includes a reverse gear stage that outputs the rotation of the internal combustion engine via a predetermined forward gear stage of the first transmission mechanism,
The first speed change mechanism deselects the predetermined forward gear stage and connects a second clutch, whereby the second speed change mechanism enables the reverse travel of the hybrid vehicle;
The first transmission mechanism includes control means for transmitting the rotation of the internal combustion engine to the electric motor to generate electric power by connecting the first clutch with the reverse gear traveling selected. Hybrid vehicle.
前記第1変速機構は、奇数段の前進用ギヤ段を備え、
前記第2変速機構は、偶数段の前進用ギヤ段を備えたことを特徴とする請求項1に記載のハイブリッド車両。
The first speed change mechanism includes an odd number of forward gears,
The hybrid vehicle according to claim 1, wherein the second speed change mechanism includes an even number of forward gears.
前記所定の前進用ギヤ段は、3速ギヤ段であることを特徴とする請求項2に記載のハイブリッド車両。   The hybrid vehicle according to claim 2, wherein the predetermined forward gear is a third gear. 前記電動機に接続された従動側電動機をさらに備え、
前記電動機で発電した電力を前記従動側電動機へ供給することを特徴とする請求項1に記載のハイブリッド車両。
Further comprising a driven motor connected to the motor;
The hybrid vehicle according to claim 1, wherein electric power generated by the electric motor is supplied to the driven electric motor.
電動機に接続された第1入力軸と、複数のギヤ段から選択された1つのギヤ段を介して前記第1入力軸の回転を駆動出力軸へ出力する第1変速機構と、
第2入力軸と、複数のギヤ段から選択された1つのギヤ段を介して前記第2入力軸の回転を前記駆動出力軸へ出力する第2変速機構と、
内燃機関と前記第1入力軸とを断接する第1クラッチと、
前記内燃機関と前記第2入力軸とを断接する第2クラッチと、
を備える変速機において、
前記第2変速機構は、前記第1変速機構の所定の前記ギヤ段を介して前記内燃機関の回転を前記駆動出力軸へ出力するリバース回転用のリバースギヤ段を含み、
前記第1変速機構が前記所定のギヤ段を非選択とし、第2クラッチを接続することで前記第2変速機構はリバース回転を出力し、
該リバース回転時、前記第1変速機構は、前記第1クラッチを接続させることで、前記内燃機関と前記第1入力軸とを接続させることを特徴とする変速機。
A first input shaft connected to the electric motor, and a first speed change mechanism for outputting rotation of the first input shaft to the drive output shaft via one gear selected from a plurality of gears;
A second speed change mechanism that outputs rotation of the second input shaft to the drive output shaft via one gear selected from a plurality of gears;
A first clutch that connects and disconnects the internal combustion engine and the first input shaft;
A second clutch that connects and disconnects the internal combustion engine and the second input shaft;
In a transmission comprising:
The second speed change mechanism includes a reverse gear stage for reverse rotation that outputs the rotation of the internal combustion engine to the drive output shaft via the predetermined gear speed of the first speed change mechanism,
The first speed change mechanism deselects the predetermined gear stage, and the second speed change mechanism outputs reverse rotation by connecting a second clutch.
In the reverse rotation, the first transmission mechanism connects the internal combustion engine and the first input shaft by connecting the first clutch.
前記第2変速機構は、アイドル軸に配置され、前記リバースギヤ段と噛合するアイドルギヤをさらに備え、
前記所定のギヤ段は、前記第1入力軸に相対回転可能に配置され、同期装置を介して該第1入力軸に接続可能であり、
前記リバースギヤ段は、前記所定のギヤ段と相対回転不能に配置され、前記アイドルギヤを介してリバース回転され、前記所定のギヤ段を介して前記駆動出力軸にリバース回転を伝達することを特徴とする請求項5に記載の変速機。
The second speed change mechanism further includes an idle gear disposed on the idle shaft and meshing with the reverse gear stage,
The predetermined gear stage is disposed so as to be rotatable relative to the first input shaft, and is connectable to the first input shaft via a synchronization device;
The reverse gear stage is disposed so as not to rotate relative to the predetermined gear stage, is reverse-rotated via the idle gear, and transmits reverse rotation to the drive output shaft via the predetermined gear stage. The transmission according to claim 5.
前記第1変速機構は、奇数段の前進用ギヤ段を備え、
前記第2変速機構は、偶数段の前進用ギヤ段を備えたことを特徴とする請求項6に記載の変速機。
The first speed change mechanism includes an odd number of forward gears,
The transmission according to claim 6, wherein the second speed change mechanism includes an even number of forward gears.
前記所定のギヤ段は、3速ギヤ段であることを特徴とする請求項7に記載の変速機。   The transmission according to claim 7, wherein the predetermined gear stage is a third gear stage.
JP2015097688A 2015-05-12 2015-05-12 Hybrid vehicle and transmission Pending JP2016210357A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015097688A JP2016210357A (en) 2015-05-12 2015-05-12 Hybrid vehicle and transmission
CN201610225519.9A CN106143104B (en) 2015-05-12 2016-04-12 Hybrid vehicle and speed changer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015097688A JP2016210357A (en) 2015-05-12 2015-05-12 Hybrid vehicle and transmission

Publications (1)

Publication Number Publication Date
JP2016210357A true JP2016210357A (en) 2016-12-15

Family

ID=57353632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015097688A Pending JP2016210357A (en) 2015-05-12 2015-05-12 Hybrid vehicle and transmission

Country Status (2)

Country Link
JP (1) JP2016210357A (en)
CN (1) CN106143104B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11391353B2 (en) * 2019-05-14 2022-07-19 Deere & Company Power shift transmission for agricultural machines

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112096805A (en) * 2020-08-12 2020-12-18 宁波上中下自动变速器有限公司 Multi-gear double-clutch transmission and vehicle

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10165096B3 (en) * 2000-07-18 2015-08-13 Schaeffler Technologies AG & Co. KG transmission
DE10325647A1 (en) * 2003-06-06 2004-02-05 Daimlerchrysler Ag Dual clutch transmission, comprising components all positioned in order to achieve unit of compact size
JP4822891B2 (en) * 2006-03-23 2011-11-24 アイシン・エーアイ株式会社 Gear transmission
JP4942212B2 (en) * 2008-04-21 2012-05-30 アイシン・エーアイ株式会社 Hybrid power unit
CN102821990B (en) * 2010-03-31 2016-01-06 本田技研工业株式会社 Vehicle driving apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11391353B2 (en) * 2019-05-14 2022-07-19 Deere & Company Power shift transmission for agricultural machines

Also Published As

Publication number Publication date
CN106143104A (en) 2016-11-23
CN106143104B (en) 2018-09-21

Similar Documents

Publication Publication Date Title
JP4293268B2 (en) Power output apparatus and hybrid vehicle equipped with the same
JP4007403B1 (en) Power output device and hybrid vehicle
JP4229156B2 (en) Power output device and hybrid vehicle
JP5892180B2 (en) Hybrid vehicle drive device
KR100852044B1 (en) Dual clutch transmission for hev
JP4240091B2 (en) Power output device and hybrid vehicle
KR101294089B1 (en) Power transmission apparatus for vehicle
JP2008105495A (en) Power output device and hybrid automobile
JP5141802B2 (en) Hybrid drive device
JP2008149908A (en) Hybrid driving device
US8974338B2 (en) Two-mode electrically-variable transmission with offset motor and two planetary gear sets
JP2010006139A (en) Hybrid driving device
JP6743617B2 (en) Power transmission device
JP6263889B2 (en) Hybrid vehicle drive device
JP5309000B2 (en) Hybrid vehicle
KR20200022238A (en) Power transmission system of hybrid electric vehicle
JP2008256075A (en) Power transmission device
KR101294090B1 (en) Power transmission apparatus for vehicle
JP2013154682A (en) Driving device of hybrid vehicle
JP4306659B2 (en) Hybrid vehicle drive system
JP2017193320A (en) Driving device for vehicle
JP2017197107A (en) Automobile driving device
JP2019142296A (en) transmission
JP2012056510A (en) Drive device of hybrid vehicle
JP2016210357A (en) Hybrid vehicle and transmission