JP2016208303A - Stacked antenna - Google Patents

Stacked antenna Download PDF

Info

Publication number
JP2016208303A
JP2016208303A JP2015088459A JP2015088459A JP2016208303A JP 2016208303 A JP2016208303 A JP 2016208303A JP 2015088459 A JP2015088459 A JP 2015088459A JP 2015088459 A JP2015088459 A JP 2015088459A JP 2016208303 A JP2016208303 A JP 2016208303A
Authority
JP
Japan
Prior art keywords
phase
antenna
wave
vertical separation
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015088459A
Other languages
Japanese (ja)
Other versions
JP6645745B2 (en
Inventor
雅彦 今村
Masahiko Imamura
雅彦 今村
素 目崎
Moto Mesaki
素 目崎
佳央 林
Yoshio Hayashi
佳央 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NHK Integrated Technology Inc
Original Assignee
NHK Integrated Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NHK Integrated Technology Inc filed Critical NHK Integrated Technology Inc
Priority to JP2015088459A priority Critical patent/JP6645745B2/en
Publication of JP2016208303A publication Critical patent/JP2016208303A/en
Application granted granted Critical
Publication of JP6645745B2 publication Critical patent/JP6645745B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Noise Elimination (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a technique for achieving stable reception by a stacked antenna irrespective of variations in the reception height pattern.SOLUTION: An antenna section (2) includes a pair of receiving antennas (21, 22) installed vertically. A combining section (3) includes a combiner (33) for synthesizing the outputs of the receiving antennas and a pair of feeder lines (31, 32) connecting each of the receiving antennas and the synthesizer. A composite wave is obtained by combining a direct wave arriving at the antenna section from the transmission source of the reception target radio wave and the ground reflected wave. The phase difference of the composite wave received by each of the receiving antennas is referred to as a vertical separation phase. The phase difference of the composite waves due to the line length difference between the pair of feeder lines is referred to as a feeding phase. The vertical separation distance of the pair of receiving antennas and the line length of the pair of feeder lines are set so that the sum of the vertical separation phase and the feeding phase generated at the predetermined reference frequency becomes 180°.SELECTED DRAWING: Figure 1

Description

本発明は、電波を受信する受信アンテナにおいて受信ハイトパターンの影響を抑制する技術に関する。   The present invention relates to a technique for suppressing the influence of a reception height pattern in a reception antenna that receives radio waves.

地上デジタル放送の難視対策等に使用されるテレビ共同受信施設やギャップフィラー(以下、GF)の受信点は、基本的には、送信点から電波の見通し状況が良い場所に設置される。このような受信点では、受信ハイトパターン(以下、ハイトパターン)の影響により受信レベルが変化し、受信チャンネルによっては受信不良になることがある。   The reception point of the TV joint reception facility and the gap filler (hereinafter referred to as GF) used for countermeasures for the difficulty in viewing digital terrestrial broadcasting is basically installed in a place where the radio wave visibility from the transmission point is good. At such a reception point, the reception level changes due to the influence of the reception height pattern (hereinafter referred to as height pattern), and reception may be poor depending on the reception channel.

このような状況において受信レベルを安定化させる技術として、受信アンテナを2基またはそれ以上のアンテナを用いて受信アンテナ出力を合成(スタック)するスタックアンテナが知られている(特許文献1参照)。   As a technique for stabilizing the reception level in such a situation, a stack antenna that combines (stacks) reception antenna outputs using two or more reception antennas is known (see Patent Document 1).

特開2010−68174号公報JP 2010-68174 A

ところで、ハイトパターンは、送信点から受信点に直接する到達する直接波と、地面や海面等の大地に反射して到達する大地反射波とが干渉することによって生じる。このため、降雪や潮汐等により電波を反射する反射面、ひいては大地反射波の経路が変化すると、これに伴ってハイトパターンも変化するため、季節や時間帯によって合成のさせ方やアンテナの高さを調整する必要があり、受信レベルを安定させることが難しいという問題があった。   By the way, the height pattern is caused by interference between a direct wave that reaches directly from the transmission point to the reception point and a ground reflected wave that reflects and reaches the ground such as the ground or the sea surface. For this reason, if the reflecting surface that reflects radio waves due to snowfall, tides, etc., and the path of the ground reflected wave changes, the height pattern also changes accordingly, so how to synthesize and the height of the antenna There is a problem that it is difficult to stabilize the reception level.

つまり、ハイトパターンを考慮して受信レベルが高いところで信号を受信するようにアンテナを調整しても、大地反射面が変化すると、その変化分だけハイトパターンが上下方向にシフトすることにより、ハイトパターンのヌル点付近で信号を受信するようになってしまう場合がある。   In other words, even if the antenna is adjusted to receive a signal at a high reception level in consideration of the height pattern, if the ground reflection surface changes, the height pattern shifts in the vertical direction by the change, and the height pattern The signal may be received near the null point.

本発明は、こうした問題に鑑みてなされたものであり、受信ハイトパターンの変動に関わらず、スタックアンテナによる安定した受信を実現する技術を提供することを目的とする。   The present invention has been made in view of these problems, and an object of the present invention is to provide a technique for realizing stable reception by a stack antenna regardless of fluctuations in the reception height pattern.

本発明のスタックアンテナは、アンテナ部と合成部とを備える。アンテナ部は、上下に設置された一対の受信アンテナからなる。合成部は、受信アンテナの出力を合成する合成器および一対の受信アンテナのそれぞれと合成器とを接続する一対の給電線からなる。但し、予め設定された周波数範囲内の電波を受信対象電波とし、該受信対象電波の送信源からアンテナ部に到達する直接波と大地反射波とが合成されたものを合成波とし、アンテナ部を構成する受信アンテナのそれぞれで受信される合成波間の位相差を垂直離隔位相とし、一対の給電線の線路長差による合成波の位相差を給電位相として、周波数範囲内に設定された基準周波数で生じる垂直離隔位相と給電位相の合計が180°となるように、一対の受信アンテナの配置間隔である垂直離隔距離、および一対の給電線の線路長が設定されている。   The stack antenna of the present invention includes an antenna unit and a combining unit. The antenna unit is composed of a pair of receiving antennas installed at the top and bottom. The combining unit includes a combiner that combines the outputs of the receiving antennas and a pair of feed lines that connect each of the pair of receiving antennas to the combiner. However, a radio wave within a preset frequency range is a reception target radio wave, a combination of a direct wave reaching the antenna unit from the transmission source of the reception target radio wave and a ground reflected wave is a combined wave, and the antenna unit is At the reference frequency set within the frequency range, the phase difference between the combined waves received by each of the constituting receiving antennas is the vertical separation phase, and the phase difference of the combined wave due to the line length difference between the pair of feed lines is the feed phase. The vertical separation distance that is the arrangement interval of the pair of receiving antennas and the line length of the pair of feeding lines are set so that the total of the generated vertical separation phase and the feeding phase is 180 °.

このような構成によれば、本発明のスタックアンテナの設置点における受信電界強度のハイトパターンに周期的なヌル点が存在していても、スタックアンテナから得られる受信電界強度は、ハイトパターンのヌル点の影響(即ち、高さ依存性)が抑制されたものとなる。その結果、アンテナ部の設置高さによらず、ほぼ均一な受信電界強度が得られるため、大地反射の反射面が変化する環境であっても、スタックアンテナの調整を必要とすることなく、安定した受信状態を実現することができる。   According to such a configuration, even if a periodic null point exists in the height pattern of the received electric field strength at the installation point of the stack antenna of the present invention, the received electric field strength obtained from the stack antenna is the height pattern null. The influence of points (that is, height dependency) is suppressed. As a result, almost uniform received electric field strength can be obtained regardless of the installation height of the antenna section, so even in an environment where the reflective surface of the ground reflection changes, it is stable without requiring adjustment of the stack antenna. The received state can be realized.

なお、特許請求の範囲に記載した括弧内の符号は、一つの態様として後述する実施形態に記載の具体的手段との対応関係を示すものであって、本発明の技術的範囲を限定するものではない。   In addition, the code | symbol in the parenthesis described in the claim shows the correspondence with the specific means as described in embodiment mentioned later as one aspect, Comprising: The technical scope of this invention is limited is not.

スタックアンテナの構成を示すブロック図である。It is a block diagram which shows the structure of a stack antenna. 理論値の算出に用いた電波伝搬モデルを示す説明図である。It is explanatory drawing which shows the radio wave propagation model used for calculation of a theoretical value. (a)大地反射係数の特性、(b)は大地反射係数の位相変移の特性を例示するグラフである。(A) The characteristic of a ground reflection coefficient, (b) is a graph which illustrates the characteristic of the phase shift of a ground reflection coefficient. ハイトパターンの算出例を示すグラフであり、(a)が水平偏波の場合、(b)が垂直偏波の場合である。It is a graph which shows the example of calculation of a height pattern, (a) is a case of horizontal polarization, (b) is a case of vertical polarization. ハイトパターンと電界ベクトルの関係を示す説明図であり、(a)がハイトパターン、(b)が直接波の電界ベクトル、(c)が大地反射波の電界ベクトル、(d)が合成波の電界ベクトルである。It is explanatory drawing which shows the relationship between a height pattern and an electric field vector, (a) is a height pattern, (b) is an electric field vector of a direct wave, (c) is an electric field vector of a ground reflected wave, (d) is an electric field of a synthetic wave. Is a vector. 複素平面上での電界ベクトルの回転を示す説明図であり、(a)が電界ベクトルの回転と合成ベクトルを示し、(b)が合成ベクトルの位相変化を示したものである。It is explanatory drawing which shows rotation of the electric field vector on a complex plane, (a) shows rotation of an electric field vector and a synthetic | combination vector, (b) shows the phase change of the synthetic | combination vector. 上段アンテナおよび下段アンテナからの出力、両出力を合成した合成出力に関する説明図であり、(a)が単基アンテナ(上段および下段アンテナ)出力の電界強度、(b)が単基アンテナ出力の位相、(c)が単基アンテナ出力の電界ベクトル、(d)が上段および下段アンテナの出力を同相合成した合成出力の電界ベクトル、(e)が上段および下段アンテナの出力を移相合成した合成出力の電界ベクトルである。It is explanatory drawing regarding the synthetic | combination output which synthesize | combined the output from an upper stage antenna and a lower stage antenna, and both outputs, (a) is the electric field strength of a single base antenna (upper stage and lower stage antenna) output, (b) is the phase of a single base antenna output. (C) is the electric field vector of the single-base antenna output, (d) is the electric field vector of the combined output obtained by in-phase combining the outputs of the upper and lower antennas, and (e) is the combined output obtained by phase-shifting the outputs of the upper and lower antennas. Of the electric field vector. 給電位相を一定(90°)とし垂直離隔位相を変化させた場合の合成出力をシミュレーションで求めた結果を示すグラフである。It is a graph which shows the result of having calculated | required the synthetic | combination output at the time of making a feeding phase constant (90 degrees) and changing a vertical separation phase by simulation. 垂直離隔位相を一定(90°)とし給電位相を変化させた場合の合成出力をシミュレーションで求めた結果を示すグラフである。It is a graph which shows the result of having calculated | required the synthetic | combination output at the time of making a perpendicular | vertical separation phase constant (90 degrees) and changing a feeding phase by simulation. 垂直離隔位相と給電位相の合計を一定(180°)とし両者の割合を変化させた場合の合成出力をシミュレーションで求めた結果を示すグラフである。It is a graph which shows the result of having calculated | required the synthetic | combination output at the time of making the sum total of a perpendicular | vertical separation phase and a feeding phase constant (180 degrees), and changing the ratio of both by simulation. 垂直離隔位相と給電位相の合計を一定(180°)とした場合の垂直離隔位相と合成出力の振幅との関係をシミュレーションで求めた結果を示すグラフである。It is a graph which shows the result of having calculated | required the relationship between the vertical separation phase and the amplitude of a synthetic | combination output at the time of making the sum total of a vertical separation phase and a feeding phase constant (180 degrees). 上下段アンテナにレベル差がある場合の合成出力をシミュレーションで求めたグラフであり、(1)〜(3)はレベル差のみを変化させた場合、(4)〜(6)は垂直離隔位相および給電位相の合計が180°ではない場合である。It is the graph which calculated | required the synthetic | combination output in case there exists a level difference in an upper and lower stage antenna by simulation, (1)-(3) changes only a level difference, (4)-(6) shows a vertical separation phase and This is a case where the total feeding phase is not 180 °.

以下に本発明が適用された実施形態について、図面を用いて説明する。
[構成]
図1に示すスタックアンテナ1は、地上デジタル放送の難視対策等に使用されるテレビ共同受信施設やギャップフィラー(GF)等の受信点として構成されるものであり、アンテナ部2と合成部3とを備える。
Embodiments to which the present invention is applied will be described below with reference to the drawings.
[Constitution]
A stack antenna 1 shown in FIG. 1 is configured as a reception point of a TV joint reception facility or gap filler (GF) used for measures for difficulty in seeing digital terrestrial broadcasting, and includes an antenna unit 2 and a combining unit 3. With.

アンテナ部2は、それぞれが受信対象電波を受信する一対の受信アンテナ21,22からなり、上下方向に間隔を空けて配置されている。以下では、上側の受信アンテナを上段アンテナ21、下側の受信アンテナを下段アンテナ22、両者の間隔を垂直離隔距離δと呼ぶ。また、受信アンテナ21,22は、所定の受信対象周波数範囲(ここでは地上デジタル放送に使用する周波数帯)内の信号の一部または全部を受信可能に構成されている。以下では、上記周波数範囲の中心周波数を基準周波数、この基準周波数の波長を基準波長λという。   The antenna unit 2 includes a pair of receiving antennas 21 and 22 each receiving a reception target radio wave, and is arranged with a space in the vertical direction. Hereinafter, the upper receiving antenna is referred to as the upper antenna 21, the lower receiving antenna is referred to as the lower antenna 22, and the distance between them is referred to as a vertical separation δ. The receiving antennas 21 and 22 are configured to be able to receive a part or all of signals within a predetermined reception target frequency range (here, a frequency band used for terrestrial digital broadcasting). Hereinafter, the center frequency of the frequency range is referred to as a reference frequency, and the wavelength of the reference frequency is referred to as a reference wavelength λ.

合成部3は、一対の給電線31,32と、合成器33とを備える。上段アンテナ21と合成器33を接続する給電線31の線路長はLに設定され、下段アンテナ22と合成器33を接続する給電線32の線路長はLに設定されている。合成器33は、給電線31,32を介して供給される受信アンテナ21,22の出力を加算合成して受信信号を生成する。 The synthesizer 3 includes a pair of feeder lines 31 and 32 and a synthesizer 33. Line length of the feed line 31 connecting the upper antenna 21 and combiner 33 is set to L 1, the line length of the feed line 32 which connects the lower antenna 22 and combiner 33 is set to L 2. The synthesizer 33 adds and synthesizes the outputs of the receiving antennas 21 and 22 supplied via the feeder lines 31 and 32 to generate a reception signal.

ここで、受信アンテナ21,22は、それぞれが受信対象電波の送信点から直接到達する直接波と地面や海面等に反射して到達する大地反射波との合成波を受信するものとする。また、上段アンテナ21が受信する上段合成波と下段アンテナ22が受信する下段合成波の位相差を垂直離隔位相θδと呼び、給電線31,32の線路長差(L−L)によって、上段合成波と下段合成波との間に生じる位相差を給電位相θと呼ぶ。 Here, it is assumed that the receiving antennas 21 and 22 each receive a combined wave of a direct wave that directly arrives from a transmission point of a reception target radio wave and a ground reflected wave that arrives after being reflected by the ground or the sea surface. Also, the phase difference between the upper combined wave received by the upper antenna 21 and the lower combined wave received by the lower antenna 22 is referred to as a vertical separation phase θ δ, and depends on the line length difference (L 1 −L 2 ) between the feeder lines 31 and 32. , I called a phase difference generated between the upper composite wave and the lower combined wave and the feed phase theta L.

そして、受信対象電波(ひいては合成波)の波長が基準波長であるものとして、受信アンテナ21,22の垂直離隔距離δは、垂直離隔位相がθδ=90°(=π/2[rad])となるように設定され、給電線31,32の線路長L,Lは、給電位相がθ=90°(=π/2[rad])となるように設定されている。但し、線路長L,Lの設定には、給電線31,32における波長短縮率が考慮されている。 Then, assuming that the wavelength of the reception target radio wave (and thus the combined wave) is the reference wavelength, the vertical separation distance δ of the receiving antennas 21 and 22 is θ δ = 90 ° (= π / 2 [rad]). The line lengths L 1 and L 2 of the feeder lines 31 and 32 are set so that the feeding phase is θ L = 90 ° (= π / 2 [rad]). However, the wavelength shortening rate in the feeder lines 31 and 32 is taken into account in setting the line lengths L 1 and L 2 .

具体的には、給電線31,32の線路長L,Lは(1)式を満たすように設定し、垂直離隔距離δは、(2)式を満たすように設定すればよい。なお、式中のd,hは、後述する電波伝搬モデルを参照のこと。 Specifically, the line lengths L 1 and L 2 of the feeder lines 31 and 32 may be set so as to satisfy the expression (1), and the vertical separation distance δ may be set so as to satisfy the expression (2). For d and h 1 in the equation, refer to the radio wave propagation model described later.

[電波伝搬モデル]
以下で説明する理論値の算出に用いた電波伝搬モデルについて説明する。
[Radio wave propagation model]
The radio wave propagation model used for calculating the theoretical value described below will be described.

図2に示すように、受信対象電波の送信源(送信アンテナ)の設置位置を送信点、上段アンテナ21の設置位置を受信点#1、下段アンテナ22の設置位置を受信点#2とし、送信点の高さ(地上からの距離)をh、送信点から受信点#1,#2までの水平距離をd、受信点#1の高さをh、受信点#2の高さをh’、受信点#1と受信点#2の垂直離隔距離をδとする。 2, the installation position of the transmission source (transmission antenna) of the reception target radio wave is the transmission point, the installation position of the upper antenna 21 is the reception point # 1, and the installation position of the lower antenna 22 is the reception point # 2. The height of the point (distance from the ground) is h 1 , the horizontal distance from the transmission point to the reception points # 1 and # 2 is d, the height of the reception point # 1 is h 2 , and the height of the reception point # 2 is h 2 ′, and the vertical separation distance between the reception point # 1 and the reception point # 2 is δ.

[ハイトパターン]
まず、本発明を理解するための前提となるハイトパターンについて説明する。
ハイトパターンは、アンテナの高さに応じて受信電界強度が周期的に変化する特性を表したものであり、電波の見通し状況が良い場所で観測される。この現象は、直接波と大地反射波とが干渉し合成されることで発生し、特に水平偏波では顕著となる。
[Height pattern]
First, a height pattern which is a premise for understanding the present invention will be described.
The height pattern represents a characteristic in which the received electric field strength changes periodically according to the height of the antenna, and is observed in a place where radio wave visibility is good. This phenomenon occurs when the direct wave and the ground reflected wave interfere and are combined, and is particularly noticeable in horizontal polarization.

ここで、送信点から受信点直下の地上点までの距離をr、受信点#1における直接波の伝搬距離をr、大地反射波の伝搬距離をrとする。距離rを基準とした直接波の伝搬路長差Δrおよび距離rを基準とした大地反射波の伝搬路長差Δrは、d>>h,h、2h>>hであるものとして、(3)(4)式で近似される。 Here, the distance from the transmission point to the ground point immediately below the reception point is r 0 , the propagation distance of the direct wave at the reception point # 1 is r 1 , and the propagation distance of the ground reflected wave is r 2 . Distance r 0 ground reflected wave propagating path length difference [Delta] r 2 of the propagation path length difference [Delta] r 1 and the distance r 0 of the direct wave as a reference relative to the can, d >> h 1, h 2 , 2h 1 >> h 2 is approximated by equations (3) and (4).

つまり、距離rを基準として考えたとき、直接波は伝搬路長差Δrだけ早く受信点#1に到達し、大地反射波は伝搬路長差Δrだけ遅れて受信点#1に到達し、これらを合成した合成波が受信点#1にて受信される。この合成波の受信電界強度(以下、単に合成波ともいう)Eは(5)式で表される。但し、θは伝搬路長差Δr,Δrによって生じる位相差であり(6)式で示される。また、Eは自由空間電界強度であり(7)式で示される。また、Eは直接波の受信電界強度(以下、単に直接波ともいう)、Eは大地反射波の受信電界強度(以下、単に大地反射波ともいう)、Rは大地反射波の反射係数(以下、大地反射係数)、βは位相定数(=2π/λ)、Pは送信点での実効放射電力である。 That is, when the distance r 0 is considered as a reference, the direct wave reaches the reception point # 1 earlier by the propagation path length difference Δr 1 , and the ground reflected wave reaches the reception point # 1 with a delay of the propagation path length difference Δr 2. Then, a synthesized wave obtained by synthesizing these is received at the reception point # 1. The received electric field strength (hereinafter also simply referred to as a synthesized wave) Er of this synthesized wave is expressed by the equation (5). Here, θ is a phase difference caused by the propagation path length differences Δr 1 and Δr 2 , and is expressed by equation (6). Further, E 0 is the free space electric field strength and is represented by the equation (7). Further, E 1 is the received electric field intensity of the direct wave (hereinafter also referred to simply as direct wave), E 2 is the received electric field intensity of the ground reflected wave (hereinafter also referred to simply as ground reflected wave), and R is the reflection coefficient of the ground reflected wave. (Hereinafter referred to as the ground reflection coefficient), β is a phase constant (= 2π / λ), and P is an effective radiation power at the transmission point.

なお、大地反射波の反射係数Rは、図3に示すように、送信偏波や反射面の媒質、大地面への入射角(接地角)によって異なり、反射係数Rに応じて反射波の振幅や位相は変化するが、通常、水平偏波の大地反射係数はR=−1で扱われる。これに従い、(5)式にR=−1を代入することで(8)式が得られ、この(8)式を変形すると(9)式が得られる。なお、図3のグラフは、周波数600MHzとし、フレネル反射公式を用いて求めたものである。 As shown in FIG. 3, the reflection coefficient R of the ground reflected wave varies depending on the transmission polarization, the medium of the reflecting surface, and the incident angle (grounding angle) to the ground, and the amplitude of the reflected wave depends on the reflection coefficient R. Although the phase changes, the ground reflection coefficient of the horizontally polarized wave is usually treated as R = -1. Accordingly, by substituting R = −1 into the equation (5), the equation (8) is obtained. When the equation (8) is modified, the equation (9) is obtained. Note that the graph of FIG. 3 is obtained using a Fresnel reflection formula with a frequency of 600 MHz.

ハイトパターンは、受信点の高さhを変化させた時に得られる受信電界強度Eのパターンである。従って(9)式から、ハイトパターンは、送受信点間の水平距離dや使用電波の波長λ、送信点の高さhによって決まることがわかる。(9)式に従って求めた水平偏波のハイトパターンの例を図4(a)に示す。参考までに、垂直偏波の場合、R=−1と見なすことができないためフレネル反射公式により(5)式を用いてハイトパターンを求めることができる。この場合、直接波と大地反射波の受信電界強度は異なり、完全に打ち消しあうことがないため、図4(b)に示すように、水平偏波と比較して、ヌル点でも比較的大きな受信電界強度が得られる。 Height pattern is a pattern of the received electric field intensity E r obtained when changing the height h 2 of the reception point. Therefore, it can be seen from equation (9) that the height pattern is determined by the horizontal distance d between the transmission and reception points, the wavelength λ of the used radio wave, and the height h 1 of the transmission point. An example of the height pattern of the horizontal polarization obtained according to the equation (9) is shown in FIG. For reference, in the case of vertical polarization, since it cannot be regarded as R = −1, the height pattern can be obtained by using the formula (5) by the Fresnel reflection formula. In this case, since the received electric field strengths of the direct wave and the ground reflected wave are different and do not completely cancel each other, as shown in FIG. 4B, reception is relatively large even at the null point as compared with the horizontally polarized wave. Electric field strength is obtained.

ここで、直接波E、大地反射波E、合成波Eの各電界ベクトルとハイトパターンの関係を、図5、図6を用いて説明する。ハイトパターンは、受信点の高さによって直接波Eと大地反射波Eの干渉状態が変化することで現れる。具体的には、(8)式からわかるように、直接波Eの電界ベクトルと大地反射波Eの電界ベクトルとは反対方向にベクトル回転し、これにより打ち消しあったり強めあったりする(図5(b)(c)、図6(a)参照)。そして、直接波Eおよび大地反射波Eの電界ベクトルを合成することで得られる合成波Eの電界ベクトルは、±90°の位相を交互に繰り返すことになる(図5(d)、図6(b)参照)。また、受信電界強度Eの振幅値は、(9)式に示すようにsin振動し、−2E〜2Eの間で変化する。このとき、振幅値の絶対値の山(極大点)または谷(極小点)が出現する周期をハイトピッチという。なお、受信点の高さがハイトピッチだけ移動すると、受信点に誘起される受信波(合成波)の位相は半周期(π[rad]=180°)分だけずれる。以下では、受信波の周波数によらず一般的な取り扱いができるように、受信点の高さを、受信波の位相θで表す。 Here, the relationship between the electric field vectors of the direct wave E 1 , the ground reflected wave E 2 , and the combined wave Er and the height pattern will be described with reference to FIGS. 5 and 6. The height pattern appears when the interference state between the direct wave E 1 and the ground reflected wave E 2 changes depending on the height of the reception point. Specifically, as can be seen from equation (8), the electric field vector of the direct wave E 1 and the electric field vector of the ground reflected wave E 2 are rotated in the opposite direction, thereby canceling or strengthening (see FIG. 5 (b) (c), see FIG. 6 (a)). Then, the electric field vector of the synthesized wave Er obtained by synthesizing the electric field vectors of the direct wave E 1 and the ground reflected wave E 2 alternately repeats ± 90 ° phases (FIG. 5 (d), (Refer FIG.6 (b)). Further, the amplitude value of the received electric field strength Er sine-oscillates as shown in the equation (9) and changes between −2E 0 to 2E 0 . At this time, a period in which a peak (maximum point) or valley (minimum point) of the absolute value of the amplitude value appears is called a height pitch. When the height of the reception point moves by a height pitch, the phase of the reception wave (synthetic wave) induced at the reception point is shifted by a half period (π [rad] = 180 °). In the following, the height of the reception point is represented by the phase θ of the reception wave so that general handling can be performed regardless of the frequency of the reception wave.

そして、例えば、θ=2πに相当する受信点の高さをh=h、θ=πに相当する受信点の高さをh=hとすると、これらの関係を(6)式に代入して変形することで高さh,hを求めることができ、更に、その求めた高さh,hを用いて、ハイトピッチPTは(10)式で示される。 Then, for example, theta = height h 2 = h a reception point corresponding to 2 [pi, the height of the reception points corresponding to theta = [pi When h 2 = h b, these relations (6) The heights h a and h b can be obtained by substituting into and transformed, and the height pitch PT is expressed by equation (10) using the obtained heights h a and h b .

つまり、垂直離隔位相をθδ=90°とするには、垂直離隔距離をδ=PT/2とする必要があることを考慮すると、この(10)式から(2)式が導出される。 That is, in order to set the vertical separation phase to θ δ = 90 °, considering that the vertical separation distance needs to be δ = PT / 2, Equation (2) is derived from Equation (10).

[受信アンテナの高さの違いによる受信電界強度]
上段アンテナ21の設置高さをh、下段アンテナ22の設置高さをh’とすると、両者は(11)式に示す関係を有する。
[Receiving electric field strength depending on the height of the receiving antenna]
Assuming that the installation height of the upper antenna 21 is h 2 and the installation height of the lower antenna 22 is h 2 ′, both have the relationship shown in the equation (11).

上段アンテナ21および下段アンテナ22のそれぞれに誘起される合成波の位相(直接波Eと大地反射波Eの位相差)θ,θは、(12)(13)式で示される。 The phase of the combined wave (phase difference between the direct wave E 1 and the ground reflected wave E 2 ) θ 1 and θ 2 induced in each of the upper antenna 21 and the lower antenna 22 is expressed by equations (12) and (13).

従って、上段アンテナ21および下段アンテナ22のそれぞれに誘起される合成波の受信電界強度Er1,Er2は、(14)(15)式で示される。 Therefore, the received electric field strengths E r1 and E r2 of the combined wave induced in each of the upper antenna 21 and the lower antenna 22 are expressed by the equations (14) and (15).

ここで、垂直離隔距離δを、(10)式に示すハイトピッチPTの半分(δ=PT/2)とし、これを(13)式に代入して整理すると、下段アンテナ22の合成波の位相θは(16)式で示される。この場合、下段アンテナ22の合成波の受信電界強度Er2は、(17)式で示される。 Here, when the vertical separation distance δ is half of the height pitch PT shown in the equation (10) (δ = PT / 2) and this is substituted into the equation (13) and rearranged, the phase of the composite wave of the lower antenna 22 is calculated. θ 2 is expressed by equation (16). In this case, the received electric field strength E r2 of the combined wave of the lower antenna 22 is expressed by equation (17).

[上段および下段アンテナ出力の合成]
次に、上段アンテナ21の出力Er1と下段アンテナ22の出力Er2を同相合成した場合の受信電界強度Era、上段アンテナ21の出力Er1の位相をπ/2(=90°)進めて移相合成(上段進相合成)した場合の受信電界強度Erb、上段アンテナ21の出力Er1の位相をπ/2(=90°)遅らせて移相合成(上段遅相合成)した場合の受信電界強度Erc、下段アンテナ22の出力Er2の位相をπ/2(=90°)進めて移相合成(下段進相合成)した場合の受信電界強度Erd、下段アンテナ22の出力Er2の位相をπ/2(=90°)遅らせて移相合成(下段遅相合成)した場合の受信電界強度Ereは、(18)〜(22)式で示される。なお、位相をπ/2進めるとは、数式的には+jを乗じること、物理的には給電線の線路長を他方よりλ/4短くすることに相当する。また、位相をπ/2遅らせるとは、数式的には−jを乗じること、物理的には給電線の線路長を他方よりλ/4長くすることに相当する。
[Combination of upper and lower antenna outputs]
Next, the reception field intensity when the output E r2 output E r1 and the lower antenna 22 of the upper antenna 21 phase combining E ra, the phase of the output E r1 of the upper antenna 21 π / 2 (= 90 ° ) advanced reception electric field strength in the case where the phase synthesized (top fast synthesis) E rb, phases π / 2 (= 90 °) delayed in phase synthetic output E r1 of the upper antenna 21 (the upper slow synthesis) and if the reception field strength E rc, the phase of the output E r2 of the lower antenna 22 π / 2 (= 90 ° ) advanced reception field strength E rd in the case of phase synthesis (lower fast synthesis), the output E of the lower antenna 22 The received electric field intensity E re when the phase of r2 is delayed by π / 2 (= 90 °) and phase-shifted (lower-stage delayed synthesis) is expressed by equations (18) to (22). Note that to advance the phase by π / 2 mathematically corresponds to multiplication by + j, and physically to make the length of the feeder line shorter by λ / 4 than the other. Further, delaying the phase by π / 2 mathematically corresponds to multiplying by −j, and physically making the line length of the feeder line λ / 4 longer than the other.

合成器の挿入損失を無視して考えると、合成器33により加算合成された受信電界強度Era〜Ereにおいて、Eraのピーク時の値は、単基アンテナのハイトパターン(図5(a)参照)と比較して3dB上昇する。Erb〜Ereの値は、単基アンテナのハイトパターン(図5(a)参照)のピーク時と同じになる。 When ignoring the insertion loss of the combiner, in the received electric field strengths E ra to E re added and combined by the combiner 33, the peak value of E ra is the height pattern of the single antenna (FIG. 5 (a ) See 3). The values of E rb to E re are the same as at the peak of the height pattern of the single antenna (see FIG. 5A).

同相合成した場合の受信電界強度Eraは、(18)式に示すように、sin項の存在により振幅が振動的に変化してヌル点が生じる。但し、ヌル点は、単基アンテナのハイトパターンと比較して45°(=π/4[rad])シフトした位置に発生する。一方、移相合成した場合の受信電界強度Erb〜Ereは、(19)〜(22)式に示すように、振幅を変化させる項が存在しないため、受信点hの高さによらず一定の振幅が得られる。 As shown in the equation (18), the received electric field strength E ra in the case of the in-phase synthesis has an amplitude that vibrates due to the presence of the sin term, resulting in a null point. However, the null point occurs at a position shifted by 45 ° (= π / 4 [rad]) as compared with the height pattern of the single-base antenna. On the other hand, the reception field strength E rb to E re in the case of phase synthesis (19) as shown in - (22), since no term for varying the amplitude, depending on the height of the receiving point h 2 A constant amplitude can be obtained.

図7は、上述の内容を、電界ベクトルを用いて視覚的に示したものである。即ち、単基アンテナ(上段アンテナ21および下段アンテナ22)の出力Er1,Er2を複素平面上で表現した電界ベクトルは±90°の方向に存在し、且つ両者の垂直離隔位相は90°ずれたものとなる(図7(b)(c)参照)。出力Er1,Er2を同相合成した合成出力Eraの電界ベクトルは、図中同一横ラインで上段アンテナの電界ベクトルと下段アンテナの電界ベクトルを単純に合成することで得られる(図7(d)参照)。出力Er1,Er2を移相合成した合成出力Erb〜Ereの電界ベクトルは、出力Er1,Er2のうち一方の電界ベクトルを、+90°回転(+jを乗じる)または−90°回転(−jを乗じる)して他方の電界ベクトルと合成することで得られる(図7(e)参照)。同相合成では、受信点の高さに応じて振幅(電界ベクトルの大きさ)が変化し、移相合成では、受信点の高さに応じて位相(電界ベクトルの向き)は回転するが、振幅(電界ベクトルの大きさ)は一定であることがわかる。 FIG. 7 visually shows the above-described content using electric field vectors. That is, the electric field vector expressing the outputs E r1 and E r2 of the single base antenna (upper antenna 21 and lower antenna 22) on the complex plane exists in the direction of ± 90 °, and the vertical separation phase of both is 90 ° shifted. (See FIGS. 7B and 7C). The electric field vector of the combined output E ra obtained by combining the outputs E r1 and E r2 in phase is obtained by simply synthesizing the electric field vector of the upper antenna and the electric field vector of the lower antenna on the same horizontal line in FIG. )reference). Electric field vector of the output E r1, E r2 and phase synthesized composite output E rb to E re is one of the electric field vector of the output E r1, E r2, (multiplied by + j) + 90 ° rotation or -90 ° rotation (Multiply by -j) and combine with the other electric field vector (see FIG. 7 (e)). In the in-phase synthesis, the amplitude (the magnitude of the electric field vector) changes according to the height of the reception point. In the phase-shifting synthesis, the phase (the direction of the electric field vector) rotates according to the height of the reception point, but the amplitude It can be seen that (the magnitude of the electric field vector) is constant.

なお、図7において、グラフの縦軸は上段アンテナ21の高さを示す。また、下段アンテナ22の受信電界強度および位相は、上段アンテナ21の高さにシフトして表示している(以下図8〜図10、図12も同様)。   In FIG. 7, the vertical axis of the graph indicates the height of the upper antenna 21. Further, the received electric field intensity and phase of the lower antenna 22 are shifted and displayed at the height of the upper antenna 21 (the same applies to FIGS. 8 to 10 and 12 below).

[効果]
以上説明したように、スタックアンテナ1では、垂直離隔位相がθδ=90°となるように垂直離隔距離δを設定すると共に、給電位相がθ=90°となるように線路長L,Lを設定している。これにより、スタックアンテナ1の設置点における受信電界強度のハイトパターンに周期的なヌル点が存在していても、合成器33から出力される受信信号の電界強度は、ハイトパターンのヌル点の影響が抑制されたもの、即ち、受信点の高さ依存性が抑制されたものとなる。その結果、アンテナ部2の設置高さによらず、ほぼ均一な受信電界強度が得られるため、大地反射面の高さが変化する環境であっても、スタックアンテナ1の調整を必要とすることなく、安定した受信状態を実現することができる。
[effect]
As described above, in the stack antenna 1, the vertical separation distance δ is set so that the vertical separation phase becomes θ δ = 90 °, and the line length L 1 , so that the feeding phase becomes θ L = 90 °. It has set the L 2. As a result, even if a periodic null point exists in the height pattern of the received electric field strength at the installation point of the stack antenna 1, the electric field strength of the received signal output from the combiner 33 is affected by the height pattern null point. Is suppressed, that is, the reception point height dependency is suppressed. As a result, a substantially uniform received electric field strength can be obtained regardless of the installation height of the antenna unit 2, so that adjustment of the stack antenna 1 is required even in an environment where the height of the ground reflecting surface changes. And a stable reception state can be realized.

[他の実施形態]
以上、本発明の実施形態について説明したが、本発明は、上記実施形態に限定されることなく、種々の形態を採り得る。
[Other Embodiments]
As mentioned above, although embodiment of this invention was described, this invention can take a various form, without being limited to the said embodiment.

(1)上記実施形態では、垂直離隔距離δおよび線路長L,Lが、垂直離隔位相がθδ=90°、給電位相がθ=90°となるように設定されているが、これに限るものではなく、両位相とも、30°〜150°の範囲にあり、かつ、合計180°になるように設定されていればよい。以下、その根拠について説明する。 (1) In the above embodiment, the vertical separation distance δ and the line lengths L 1 and L 2 are set so that the vertical separation phase is θ δ = 90 ° and the feeding phase is θ L = 90 °. However, the present invention is not limited to this, and both phases may be set in a range of 30 ° to 150 ° and 180 ° in total. The basis for this will be described below.

給電位相をθ=90°に固定し、垂直離隔位相θδを変化させた場合、図8に示すように、垂直離隔位相がθδ=90°の時に、合成出力の受信電界強度は受信点の高さに依存せず一定となり、垂直離隔位相θδが90°から離れるほど、合成出力の受信電界強度の変動幅(P−P値)が大きく(ハイトパターンのリップルが深く)なる。そして、垂直離隔位相がθδ=180°の時に、上段アンテナ21の出力と下段アンテナ22の出力は逆相となり、ヌル点の影響を抑圧する効果が得られなくなる。なお、図中における合成出力の受信電界強度は、自由空間電界強度Eを基準とした相対レベルで表している(以下、図9〜図12でも同様)。 When the feeding phase is fixed at θ L = 90 ° and the vertical separation phase θ δ is changed, as shown in FIG. 8, when the vertical separation phase is θ δ = 90 °, the received electric field strength of the combined output is received. The fluctuation width (PP value) of the received electric field intensity of the combined output becomes larger (the ripple of the height pattern becomes deeper) as the vertical separation phase θ δ becomes farther from 90 °. When the vertical separation phase is θ δ = 180 °, the output of the upper antenna 21 and the output of the lower antenna 22 are in opposite phases, and the effect of suppressing the influence of the null point cannot be obtained. Note that the received electric field strength of the combined output in the figure is represented by a relative level based on the free space electric field strength E 0 (hereinafter, the same applies to FIGS. 9 to 12).

垂直離隔位相をθδ=90°に固定し、給電位相θを変化させた場合、図9に示すように、給電位相がθ=90°の時に、合成出力の受信電界強度は受信点の高さに依存せず一定となり、給電位相θが90°から離れるほど、合成出力の受信電界強度の変動幅が大きく(ハイトパターンのリップルが深く)なる。そして、給電位相θが180°の時に、ヌル点の影響を抑圧する効果が得られなくなる。 When the vertical separation phase is fixed at θ δ = 90 ° and the feeding phase θ L is changed, as shown in FIG. 9, when the feeding phase is θ L = 90 °, the received electric field strength of the combined output is the receiving point. As the power feeding phase θ L is further away from 90 °, the fluctuation range of the received electric field strength of the combined output becomes larger (the ripple of the height pattern becomes deeper). Then, when the feeding phase theta L is 180 °, it can not be obtained the effect of suppressing the influence of the null point.

これら図8,図9からわかるように、垂直離隔位相θδおよび給電位相θの90°からのずれ量が、合成出力の受信電界強度の変動幅に与える影響はどちらも同じである。
垂直離隔位相θδと給電位相θの合計を180°として、両位相の割合だけを変化させた場合、図10に示すように、いずれの割合でも合成出力の受信電界強度は高さ依存せず一定となる。但し、垂直離隔位相θδと給電位相θがいずれも90°の時に、合成出力の受信電界強度は最大となり、両位相の差が大きくなるほど、合成出力の受信電界強度は低下する。そして、図11に示すように、合成出力の受信電界強度は、垂直離隔位相θδが30°〜150°の範囲では、自由空間電界強度E(相対合成レベル0dB)以上の大きさとなる。
As can be seen from FIGS. 8 and 9, the effects of the deviation of the vertical separation phase θ δ and the feeding phase θ L from 90 ° on the fluctuation range of the received electric field strength of the combined output are the same.
When the sum of the vertical separation phase θ δ and the feeding phase θ L is 180 ° and only the ratio of both phases is changed, the received electric field strength of the combined output does not depend on the height at any ratio as shown in FIG. It becomes constant. However, when the vertical separation phase θ δ and the feeding phase θ L are both 90 °, the received electric field strength of the combined output becomes maximum, and the received electric field strength of the combined output decreases as the difference between the two phases increases. As shown in FIG. 11, the received electric field strength of the combined output is greater than or equal to the free space electric field strength E 0 (relative combined level 0 dB) when the vertical separation phase θ δ is in the range of 30 ° to 150 °.

このように、垂直離隔位相θδおよび給電位相θがいずれも30°〜150°の範囲で合計180°となるように設定されていれば、ハイトパターンのヌル点の影響を十分に抑制することができる。 Thus, if the vertical separation phase θ δ and the feeding phase θ L are both set to a total of 180 ° in the range of 30 ° to 150 °, the influence of the null point of the height pattern is sufficiently suppressed. be able to.

但し、上段アンテナ21の出力と下段アンテナ22の出力との間にレベル差がある場合、図12に示すように、そのレベル差分だけ、合成出力の受信電界強度の変動幅(P−P値)が大きくなるため、このレベル差を考慮した設計を行うか、レベル差がなくなるよう両出力レベルを調整してから合成するように設計することが望ましい。   However, if there is a level difference between the output of the upper antenna 21 and the output of the lower antenna 22, as shown in FIG. 12, the fluctuation range (P-P value) of the received field strength of the combined output by that level difference. Therefore, it is desirable to design in consideration of this level difference, or to design after combining both output levels so as to eliminate the level difference.

(2)上記実施形態では、垂直離隔位相θδおよび給電位相θを求める際に使用する基準周波数として、受信対象周波数範囲の中心周波数を採用しているが、これに限るものではなく、中心周波数からずれていてもよい。 (2) In the above embodiment, the center frequency of the reception target frequency range is adopted as the reference frequency used when obtaining the vertical separation phase θ δ and the feeding phase θ L , but the present invention is not limited to this. It may deviate from the frequency.

(3)上記実施形態では、大地反射係数をR=−1として扱っているが、送信点の近くや送信点の高さと受信点の高さの差が大きい場合など、大地反射波が大地面に入射する角度である接地角が大きくなる状況では、大地反射係数の絶対値が1より小さくなる。このため、垂直離隔位相θδや給電位相θを求める際に、図3を参照して、状況に応じた大地反射係数を用いることが望ましい。 (3) In the above embodiment, the ground reflection coefficient is treated as R = −1. However, when the difference between the height of the transmission point and the reception point is large near the transmission point, the ground reflection wave is grounded. The absolute value of the ground reflection coefficient is smaller than 1 in the situation where the ground contact angle that is the angle of incidence on the ground becomes large. For this reason, when obtaining the vertical separation phase θ δ and the feeding phase θ L , it is desirable to use a ground reflection coefficient corresponding to the situation with reference to FIG.

(4)上記実施形態では、基準パスに対する直接波の伝搬路長差Δrと基準パスに対する大地反射波の伝搬路長差Δrを近似的に等しいものとして扱っているが、送信点の高さhと受信点の高さhの差が小さい場合や送受信点間距離dが短い場合は、伝搬路長差Δr,Δrを近似せずに扱うことが望ましい。なお、近似しない場合、Δr<Δrであり、大地反射波の方が位相の変化量が大きくなる。 (4) In the above embodiment, the propagation path length difference Δr 1 of the direct wave with respect to the reference path and the propagation path length difference Δr 2 of the ground reflected wave with respect to the reference path are treated as approximately equal. When the difference between the height h 1 and the height h 2 of the reception point is small or the distance d between the transmission and reception points is short, it is desirable to handle the propagation path length differences Δr 1 and Δr 2 without approximation. If not approximated, Δr 1 <Δr 2 , and the ground reflection wave has a larger phase change amount.

(5)上記実施形態では、送受信点の高さh,hは、大地が平面であるものとして大地面からの高さを用いているが、送受信点間距離dが長い場合など、地球の丸みを無視できない場合は、大地反射波の反射点に接する平面に対する実効的な高さ(大地面からの高さより低い)を用いることが望ましい。更に、この実効的な高さの算出には、電波の伝搬が地球表面の大気の屈折率の影響を受けることを考慮して求めた地球の等価半径を用いることが望ましい。 (5) In the above embodiment, the heights h 1 and h 2 of the transmission / reception points are the heights from the ground plane assuming that the ground is a flat surface. When the roundness of the ground cannot be ignored, it is desirable to use an effective height (lower than the height from the ground) with respect to the plane in contact with the reflection point of the ground reflected wave. Furthermore, it is desirable to use the equivalent radius of the earth calculated in consideration of the fact that the propagation of radio waves is affected by the refractive index of the atmosphere on the earth surface.

(6)上記実施形態では、主として受信対象電波が水平偏波である場合について説明したが、受信対象電波は垂直偏波であってもよい。垂直偏波は、図4に示した通り、水平偏波と比較して、ハイトパターンの影響は少ないもののリップルは生じる。そして、例えば、将来、8Kスーパーハイビジョンの実用化等で検討されている偏波MIMO技術では、水平偏波および垂直偏波のいずれについてもハイトパターンの影響を抑制する必要があるため、本発明の技術は極めて有効に寄与するものと考えられる。   (6) In the above embodiment, the case where the reception target radio wave is mainly horizontally polarized has been described, but the reception target radio wave may be vertical polarization. As shown in FIG. 4, the vertical polarization causes a ripple although the influence of the height pattern is small compared to the horizontal polarization. For example, in the polarization MIMO technology that is being studied in the future for practical application of 8K Super Hi-Vision, it is necessary to suppress the influence of the height pattern for both horizontal polarization and vertical polarization. Technology is considered to contribute extremely effectively.

(7)上記実施形態における一つの構成要素が有する機能を複数の構成要素に分散させたり、複数の構成要素が有する機能を一つの構成要素に統合させたりしてもよい。また、上記実施形態の構成の少なくとも一部を、同様の機能を有する公知の構成に置き換えてもよい。また、上記実施形態の構成の一部を省略してもよい。また、上記実施形態の構成の少なくとも一部を、他の上記実施形態の構成に対して付加または置換等してもよい。なお、特許請求の範囲に記載した文言のみによって特定される技術思想に含まれるあらゆる態様が本発明の実施形態である。   (7) The functions of one component in the above embodiment may be distributed to a plurality of components, or the functions of a plurality of components may be integrated into one component. Further, at least a part of the configuration of the above embodiment may be replaced with a known configuration having the same function. Moreover, you may abbreviate | omit a part of structure of the said embodiment. Further, at least a part of the configuration of the above embodiment may be added to or replaced with the configuration of the other embodiment. In addition, all the aspects included in the technical idea specified only by the wording described in the claim are embodiment of this invention.

(8)本発明は上述したスタックアンテナの他、当該スタックアンテナを構成要素とするシステムなどの形態で実現することもできる。   (8) In addition to the stack antenna described above, the present invention can also be realized in the form of a system having the stack antenna as a component.

1…スタックアンテナ 2…アンテナ部 3…合成部 21,22…受信アンテナ 31,32…給電線 33…合成器   DESCRIPTION OF SYMBOLS 1 ... Stack antenna 2 ... Antenna part 3 ... Synthesis | combination part 21,22 ... Reception antenna 31, 32 ... Feed line 33 ... Synthesizer

Claims (6)

上下に設置された一対の受信アンテナ(21,22)からなるアンテナ部(2)と、
前記受信アンテナの出力を合成する合成器(33)および前記一対の受信アンテナのそれぞれと前記合成器とを接続する一対の給電線(31,32)からなる合成部(3)と、
を備え、
予め設定された周波数範囲内の電波を受信対象電波とし、該受信対象電波の送信源から前記アンテナ部に到達する直接波と大地反射波とが合成されたものを合成波とし、前記アンテナ部を構成する受信アンテナのそれぞれで受信される前記合成波の位相差を垂直離隔位相とし、前記一対の給電線の線路長差による前記合成波の位相差を給電位相として、前記周波数範囲内に設定された基準周波数で生じる前記垂直離隔位相と前記給電位相の合計が180°となるように、前記一対の受信アンテナの配置間隔である垂直離隔距離、および前記一対の給電線の線路長が設定されていることを特徴とするスタックアンテナ。
An antenna section (2) composed of a pair of receiving antennas (21, 22) installed at the top and bottom;
A synthesizer (33) for synthesizing the outputs of the receiving antennas, and a synthesizer (3) comprising a pair of feed lines (31, 32) for connecting each of the pair of receiving antennas and the synthesizer;
With
A radio wave within a preset frequency range is a reception target radio wave, a combination of a direct wave reaching the antenna unit from the transmission source of the reception target radio wave and a ground reflected wave is a combined wave, and the antenna unit is The phase difference of the combined wave received by each of the constituting receiving antennas is set as the vertical separation phase, and the phase difference of the combined wave due to the line length difference of the pair of feed lines is set as the feed phase, and is set within the frequency range. The vertical separation distance, which is the arrangement interval of the pair of receiving antennas, and the line length of the pair of feeder lines are set so that the sum of the vertical separation phase and the feeding phase generated at the reference frequency is 180 °. A stack antenna.
前記受信アンテナは、水平偏波を受信することを特徴とする請求項1に記載のスタックアンテナ。   The stack antenna according to claim 1, wherein the reception antenna receives horizontally polarized waves. 前記基準周波数は、前記周波数範囲の中心周波数であることを特徴とする請求項1または請求項2に記載のスタックアンテナ。   The stack antenna according to claim 1, wherein the reference frequency is a center frequency of the frequency range. 前記垂直離隔位相および前記給電位相は、いずれも90°であることを特徴とする請求項1ないし請求項3のいずれか1項に記載のスタックアンテナ。   4. The stack antenna according to claim 1, wherein each of the vertical separation phase and the feeding phase is 90 °. 5. 前記垂直離隔位相および前記給電位相は、いずれも30°以上150°以下の範囲内であることを特徴とする請求項1ないし請求項3のいずれか1項に記載のスタックアンテナ。   4. The stack antenna according to claim 1, wherein the vertical separation phase and the feeding phase are both in a range of 30 ° or more and 150 ° or less. 5. 前記送信源の設置高さをh、前記基準周波数の電波の波長をλ、前記送信源から前記アンテナ部までの距離をdとして、前記垂直離隔距離δは、次式に従って設定されていることを特徴とする請求項1ないし請求項3のいずれか1項に記載のスタックアンテナ。
δ=λ×d/(4×h
The vertical separation distance δ is set according to the following equation, where h 1 is the installation height of the transmission source, λ is the wavelength of the reference frequency radio wave, and d is the distance from the transmission source to the antenna unit. The stack antenna according to any one of claims 1 to 3, wherein:
δ = λ × d / (4 × h 1 )
JP2015088459A 2015-04-23 2015-04-23 Stack antenna Active JP6645745B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015088459A JP6645745B2 (en) 2015-04-23 2015-04-23 Stack antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015088459A JP6645745B2 (en) 2015-04-23 2015-04-23 Stack antenna

Publications (2)

Publication Number Publication Date
JP2016208303A true JP2016208303A (en) 2016-12-08
JP6645745B2 JP6645745B2 (en) 2020-02-14

Family

ID=57490138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015088459A Active JP6645745B2 (en) 2015-04-23 2015-04-23 Stack antenna

Country Status (1)

Country Link
JP (1) JP6645745B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7065249B1 (en) 2021-12-22 2022-05-11 株式会社Nhkテクノロジーズ Spatial diversity antenna and spatial diversity method
WO2023054569A1 (en) * 2021-09-30 2023-04-06 ソフトバンク株式会社 Antenna device, system, communication device, and program
JP7257564B1 (en) 2022-02-04 2023-04-13 ソフトバンク株式会社 Antenna device, system, communication device, and program
JP7257477B1 (en) 2021-09-30 2023-04-13 ソフトバンク株式会社 Antenna device, system, communication device, and program

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001298317A (en) * 2000-04-14 2001-10-26 Hitachi Ltd Electronic device
JP2005072782A (en) * 2003-08-21 2005-03-17 Sony Corp Antenna and receiver using the same
JP2006067633A (en) * 2005-11-04 2006-03-09 Fukami Nuiko Reflection wave preventive antenna and direction adjusting method thereof
JP2006270534A (en) * 2005-03-24 2006-10-05 Fujitsu Ltd Radio communications equipment
JP2010068174A (en) * 2008-09-10 2010-03-25 Chugoku Electric Power Co Inc:The Radio reception device and radio communication system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001298317A (en) * 2000-04-14 2001-10-26 Hitachi Ltd Electronic device
JP2005072782A (en) * 2003-08-21 2005-03-17 Sony Corp Antenna and receiver using the same
JP2006270534A (en) * 2005-03-24 2006-10-05 Fujitsu Ltd Radio communications equipment
JP2006067633A (en) * 2005-11-04 2006-03-09 Fukami Nuiko Reflection wave preventive antenna and direction adjusting method thereof
JP2010068174A (en) * 2008-09-10 2010-03-25 Chugoku Electric Power Co Inc:The Radio reception device and radio communication system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023054569A1 (en) * 2021-09-30 2023-04-06 ソフトバンク株式会社 Antenna device, system, communication device, and program
JP7257477B1 (en) 2021-09-30 2023-04-13 ソフトバンク株式会社 Antenna device, system, communication device, and program
JP2023057184A (en) * 2021-09-30 2023-04-21 ソフトバンク株式会社 Antenna device, system, communication device, and program
JP7065249B1 (en) 2021-12-22 2022-05-11 株式会社Nhkテクノロジーズ Spatial diversity antenna and spatial diversity method
JP2023093160A (en) * 2021-12-22 2023-07-04 株式会社Nhkテクノロジーズ Spatial diversity antenna and spatial diversity method
JP7257564B1 (en) 2022-02-04 2023-04-13 ソフトバンク株式会社 Antenna device, system, communication device, and program
JP2023114175A (en) * 2022-02-04 2023-08-17 ソフトバンク株式会社 Antenna device, system, communication device, and program

Also Published As

Publication number Publication date
JP6645745B2 (en) 2020-02-14

Similar Documents

Publication Publication Date Title
JP2016208303A (en) Stacked antenna
US20100123618A1 (en) Closed loop phase control between distant points
JP2011064584A (en) Array antenna device and radar device
US20110006966A1 (en) Antenna device, feed circuit, and radio-wave transmission/reception method
JPS6335131B2 (en)
JP2011142514A (en) Triplate-type planar antenna
US8340619B1 (en) Phase synchronization of phased array or multiple receiver/transmitter systems
JP2016208304A (en) Stacked antenna
JP6218990B1 (en) Reflector antenna device
JP5700571B2 (en) Tracking antenna device and initial phase difference compensation method
JP2012156969A (en) Antenna
JP2002185237A (en) System of varying polarized waves, polarized wave diversity system, and system of modulating polarized waves
JP6305948B2 (en) Array antenna design apparatus, design method, and design program
KR101137285B1 (en) Micro antenna feeder for wide band
JP6338427B2 (en) Radar power supply circuit
JP7292800B2 (en) Planar array antenna for both transmission and reception
Zalawadia et al. Study and design narrow band phase shift beamformer
Haupt et al. Pulse dispersion in phased arrays
JP2012028968A (en) Antenna device
CN104882681A (en) Circularly polarized antenna and manufacture method thereof
WO2018198970A1 (en) Antenna device
JP7311078B1 (en) antenna device
Mofrad et al. Comparison of antenna beam broadening methods for phased array radar applications
Shigehalli et al. Synthesis of highly directive endfire arrays using modified Chebyshev polynomials
JP2018137563A (en) Planar antenna device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190212

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190820

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191118

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20191125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200109

R150 Certificate of patent or registration of utility model

Ref document number: 6645745

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250