JP2016207607A - Transparent conductive film composition, production method of transparent conductive sheet, and transparent conductive sheet - Google Patents

Transparent conductive film composition, production method of transparent conductive sheet, and transparent conductive sheet Download PDF

Info

Publication number
JP2016207607A
JP2016207607A JP2015091438A JP2015091438A JP2016207607A JP 2016207607 A JP2016207607 A JP 2016207607A JP 2015091438 A JP2015091438 A JP 2015091438A JP 2015091438 A JP2015091438 A JP 2015091438A JP 2016207607 A JP2016207607 A JP 2016207607A
Authority
JP
Japan
Prior art keywords
transparent conductive
solvent
composition
conductive film
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015091438A
Other languages
Japanese (ja)
Other versions
JP6506608B2 (en
Inventor
水谷 拓雄
Takuo Mizutani
拓雄 水谷
務 山口
Tsutomu Yamaguchi
務 山口
健一郎 吉田
Kenichiro Yoshida
健一郎 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP2015091438A priority Critical patent/JP6506608B2/en
Publication of JP2016207607A publication Critical patent/JP2016207607A/en
Application granted granted Critical
Publication of JP6506608B2 publication Critical patent/JP6506608B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Paints Or Removers (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Laminated Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a composition for a conductive film, which is free from viscosity increase due to long term storage and from which a transparent conductive sheet having sufficient stability of surface electric resistance value is formed.SOLUTION: In one embodiment, the composition for a transparent conductive film is provided which contains a transparent conductive particle, a binder resin and a solvent, and in which: solid component concentration of the composition for a transparent conductive film is 20 to 50 wt.%; and the solvent contains a solvent A having relative evaporation rate of 1 or more when evaporation rate of butyl acetate is 1 and a solvent B having that of less than 1 and both of the solvent A and the solvent B being one kind selected from a ketone-based solvent or an ester-based solvent. In another embodiment, the composition for a transparent conductive film is provided which is identical to the composition in the above one embodiment except that a ratio of the solvent A and the solvent B is A:B=95:5 to 70:30 by weight ratio.SELECTED DRAWING: None

Description

従来、透明導電性シートを形成する透明導電膜は、例えば、スズ含有酸化インジウムなどの透明導電性薄膜をスパッタリング、蒸着などのいわゆるドライプロセスにより基材上に堆積することにより、製造されていた。このようなドライプロセス法を用いた透明導電性膜の製造は、真空条件下で行われるため、高価な製造装置を必要とし、また生産効率が低く、大量生産には適さない。そのため、上記ドライプロセス法に代わる方法として、透明導電性粒子を含む分散組成物を塗布して透明導電性膜を形成するウェットプロセスの検討が進められている。   Conventionally, a transparent conductive film forming a transparent conductive sheet has been produced by depositing a transparent conductive thin film such as tin-containing indium oxide on a substrate by a so-called dry process such as sputtering or vapor deposition. Since the production of the transparent conductive film using such a dry process method is performed under vacuum conditions, an expensive production apparatus is required, the production efficiency is low, and it is not suitable for mass production. Therefore, as a method for replacing the dry process method, a wet process in which a dispersion composition containing transparent conductive particles is applied to form a transparent conductive film is being studied.

透明導電性粒子のうち、酸化インジウムにスズを含有させたスズ含有酸化インジウム(ITO)粒子は、可視光に対する高い透光性と、高い導電性から、静電防止や電磁波遮蔽が要求されるCRT画面、LCD画面などに好適な材料として用いられてきた。   Among transparent conductive particles, tin-containing indium oxide (ITO) particles in which tin is contained in indium oxide are CRTs that are required to be prevented from static electricity and electromagnetic waves because of their high translucency for visible light and high conductivity. It has been used as a suitable material for screens, LCD screens and the like.

また、透明導電性膜のドライプロセス法で使用されてきたスズ含有酸化インジウムの他、酸化スズ、アンチモン含有酸化スズ、酸化亜鉛、フッ素含有酸化スズなどの透明導電性粒子を含む分散組成物を基材上に塗布して形成した塗布型透明導電性膜も実用化されている。
In addition to the tin-containing indium oxide that has been used in the transparent conductive film dry process method, the dispersion composition contains transparent conductive particles such as tin oxide, antimony-containing tin oxide, zinc oxide, and fluorine-containing tin oxide. A coating-type transparent conductive film formed by coating on a material has also been put into practical use.

特開2012−190713号公報JP 2012-190713 A

塗布型透明導電性膜に用いる溶媒として、特許文献1では炭化水素類、芳香族類、ケトン類、アルコール類、グリコール類、グリコールエステル類、グリコールエーテル類などが記載されている。また塗布型透明導電性膜を設けた塗布型透明導電性シートの製造方法では特許文献1で、乾燥塗膜中の残存溶媒量を乾燥膜厚に対する比率で規定し、表面電気抵抗値変化率が小さく、ヘイズが小さい塗布型透明導電性シートと、その製造方法が記載されている。   Patent Document 1 describes hydrocarbons, aromatics, ketones, alcohols, glycols, glycol esters, glycol ethers and the like as solvents used for the coating type transparent conductive film. Moreover, in the manufacturing method of the coating type transparent conductive sheet provided with the coating type transparent conductive film, Patent Document 1 specifies the amount of the residual solvent in the dry coating film as a ratio to the dry film thickness, and the rate of change in surface electrical resistance value is A coating-type transparent conductive sheet having a small haze and a production method thereof are described.

しかし一般に透明導電性粒子とバインダ樹脂と溶媒とを含む透明導電性膜用組成物において、特許文献1の実施例で記載されている溶媒系(MEK/トルエン)では組成物の安定性が不十分であり、長期の保存によって透明導電性膜用組成物の粘度上昇が生じることがあった。またこのような組成物を用いて透明導電性シートを形成した場合、表面電気抵抗値の安定性が不十分であり、経時変化で表面電気抵抗値が上昇すると言う問題があった。
However, in general, in a composition for a transparent conductive film containing transparent conductive particles, a binder resin, and a solvent, the solvent system (MEK / toluene) described in the example of Patent Document 1 has insufficient stability of the composition. In some cases, the viscosity of the transparent conductive film composition may increase due to long-term storage. Further, when a transparent conductive sheet is formed using such a composition, there is a problem that the stability of the surface electric resistance value is insufficient and the surface electric resistance value increases with time.

本発明の透明導電性シート性膜用組成物は、透明導電性粒子とバインダ樹脂と溶媒を含む透明導電性膜用組成物であって、
前記透明導電性膜用組成物の固形分濃度が20〜50重量%であり、
前記溶媒は酢酸ブチルの蒸発速度を1とした場合の相対蒸発速度が1以上の溶媒Aと、相対蒸発速度が1未満の溶媒Bを含み、前記溶媒Aと前記溶媒Bはいずれも、少なくともケトン系溶媒、エステル系溶媒から選ばれる1種を含むことを特徴とする。
The composition for transparent conductive sheet film of the present invention is a composition for transparent conductive film containing transparent conductive particles, a binder resin and a solvent,
The solid content concentration of the composition for transparent conductive film is 20 to 50% by weight,
The solvent includes a solvent A having a relative evaporation rate of 1 or more and a solvent B having a relative evaporation rate of less than 1 when the evaporation rate of butyl acetate is 1, and both the solvent A and the solvent B are at least ketones. 1 type chosen from a system solvent and an ester solvent is characterized by the above-mentioned.

更に本発明の透明導電性膜用組成物は、前記溶媒Aと前記溶媒Bの比率が重量比で、溶媒A:溶媒B=95:5〜70:30で有ることを特徴とする。   Furthermore, the composition for transparent conductive film of the present invention is characterized in that the ratio of the solvent A and the solvent B is a weight ratio, and solvent A: solvent B = 95: 5 to 70:30.

更に本発明の透明導電性膜用組成物は、前記溶媒Aの中で、ケトン系溶媒、エステル系溶媒の量は合計で90重量%以上であり、前記溶媒Bの中で、ケトン系溶媒、エステル系溶媒の量は合計で70重量%以上であることを特徴とする。   Further, in the composition for transparent conductive film of the present invention, the amount of the ketone solvent and the ester solvent in the solvent A is 90% by weight or more in total, and in the solvent B, the ketone solvent, The total amount of the ester solvent is 70% by weight or more.

また本発明の透明導電性膜用組成物を用いた透明導電性シートの製造方法は、透明基材の一主面上に前記透明導電性膜用組成物を塗布して、透明導電性塗布膜を形成する第1の工程と、
前記透明導電性塗布膜を乾燥させて透明導電性膜を形成した透明導電性シートを形成する第2の工程とを含み、
前記第2の工程において
前記透明導電性膜の厚さが0.3〜1.5μmであり、
更に前記透明導電性塗布膜を乾燥させて透明導電性膜を形成する際に、予熱期間、恒率乾燥期間、減率乾燥期間を含み、
前記予熱期間Aの時間と前記恒率乾燥期間Bの時間の合計をABti、前記減率乾燥期間Cの時間をCtiとし、
前記予熱期間Aの温度と前記恒率乾燥期間Bの温度をABte、前記減率乾燥期間Cの温度をCteとすると、式1から式4を満足することを特徴とする。
式1 0.5分<ABti
式2 1分<Cti<5分
式3 20℃<ABte<40℃
式4 70℃<Cte<120℃
Moreover, the manufacturing method of the transparent conductive sheet using the composition for transparent conductive films of this invention apply | coated the said composition for transparent conductive films on one main surface of a transparent base material, and is a transparent conductive coating film. A first step of forming
A second step of forming a transparent conductive sheet in which the transparent conductive coating film is dried to form a transparent conductive film,
In the second step, the transparent conductive film has a thickness of 0.3 to 1.5 μm,
Furthermore, when the transparent conductive coating film is dried to form a transparent conductive film, a preheating period, a constant rate drying period, a reduced rate drying period,
The sum of the time of the preheating period A and the time of the constant rate drying period B is ABti, the time of the reduced rate drying period C is Cti,
When the temperature of the preheating period A and the temperature of the constant rate drying period B is ABte, and the temperature of the decreasing rate drying period C is Cte, Expressions 1 to 4 are satisfied.
Formula 1 0.5 min <ABti
Formula 2 1 min <Cti <5 min Formula 3 20 ° C. <ABte <40 ° C.
Formula 4 70 ° C <Cte <120 ° C

更に本発明は、上記の製造方法で作製した透明導電性シートを含む。
Furthermore, this invention contains the transparent conductive sheet produced with said manufacturing method.

本発明は前記問題を解決した発明であり、透明導電性シートの初期表面電気抵抗値が低く、前記表面電気抵抗値が経時変化で上昇することを抑制し、透明性に優れた透明導電性シート用組成物と、この組成物を用いた透明導電性シートの製造方法、及びこの製造方法を用いて作製した透明導電性シートを提供する。   The present invention is an invention that solves the above-mentioned problems, and has a low initial surface electrical resistance value of the transparent conductive sheet, suppresses the surface electrical resistance value from increasing with time, and is excellent in transparency. The composition for manufacturing, the manufacturing method of the transparent conductive sheet using this composition, and the transparent conductive sheet produced using this manufacturing method are provided.

本願では、透明導電性膜用組成物を透明基材上に塗布して形成した膜を透明導電性塗布膜、前記透明導電性塗布膜を乾燥させた膜を透明導電性膜とし、前記透明基材と、前記透明基材上に形成した透明導電性膜を合わせて透明導電性シートと定義する。また透明導電性膜用組成物を単に組成物と記載することもある。   In the present application, a film formed by applying a composition for a transparent conductive film on a transparent substrate is a transparent conductive coating film, a film obtained by drying the transparent conductive coating film is a transparent conductive film, and the transparent group The material and the transparent conductive film formed on the transparent substrate are combined and defined as a transparent conductive sheet. Moreover, the composition for transparent conductive films may only be described as a composition.

[請求項1]本発明の透明導電性膜用組成物において溶媒が、酢酸ブチルの蒸発速度を1とした場合の相対蒸発速度が1以上の溶媒Aと、相対蒸発速度が1未満の溶媒Bを含むということは、酢酸ブチルの蒸発速度を基準として、相対的に乾燥しやすい溶媒Aと、乾燥しにくい溶媒Bを併用することを意味する。 [Claim 1] In the composition for transparent conductive film of the present invention, the solvent is a solvent A having a relative evaporation rate of 1 or more and a solvent B having a relative evaporation rate of less than 1 when the evaporation rate of butyl acetate is 1. The inclusion of, means that a solvent A that is relatively easy to dry and a solvent B that is difficult to dry are used in combination on the basis of the evaporation rate of butyl acetate.

固形分濃度が20〜50重量%の透明導電性膜用組成物、即ち溶媒が50〜80重量%含まれる本発明の透明導電性膜用組成物において、溶媒として乾燥速度の異なる混合溶媒を用いるにより、透明導電性膜用組成物を透明基材に塗布、乾燥して透明導電性膜を形成する際に、相対的に乾燥しやすい溶媒Aにより透明導電性膜中の残存溶媒量を低減する。また相対的に乾燥しにくい溶媒Bが乾燥しやすい溶媒Aに比べて徐々に乾燥する結果、透明導電性膜中の透明導電性粒子の充填性が向上し、透明導電性粒子間の接触が増えることで表面電気抵抗値が低下すると共に、表面電気抵抗値の経時変化を小さくすることができる。更にヘイズが低い透明導電性膜を形成した透明導電性シートを得ることができる。   In the composition for transparent conductive film having a solid content concentration of 20 to 50% by weight, that is, the composition for transparent conductive film of the present invention containing 50 to 80% by weight of solvent, mixed solvents having different drying speeds are used as solvents. When the transparent conductive film composition is applied to a transparent substrate and dried to form a transparent conductive film, the amount of residual solvent in the transparent conductive film is reduced by the solvent A that is relatively easy to dry. . In addition, the solvent B, which is relatively difficult to dry, is gradually dried as compared with the solvent A, which is easy to dry. As a result, the filling property of the transparent conductive particles in the transparent conductive film is improved and the contact between the transparent conductive particles is increased. As a result, the surface electrical resistance value is lowered, and the temporal change of the surface electrical resistance value can be reduced. Furthermore, a transparent conductive sheet on which a transparent conductive film having a low haze is formed can be obtained.

溶媒Aと溶媒Bはいずれも、少なくともケトン系溶媒、エステル系溶媒から選ばれる少なくとも1種を含む。従って溶媒Aと溶媒Bの両方にケトン系溶媒を用いても良いし、エステル系溶媒を用いても良いし、ケトン系溶媒、エステル系溶媒の両方を使っても良い。   Both the solvent A and the solvent B include at least one selected from a ketone solvent and an ester solvent. Therefore, a ketone solvent may be used for both the solvent A and the solvent B, an ester solvent may be used, or both a ketone solvent and an ester solvent may be used.

透明導電性膜用組成物の固形分濃度が20重量%より少ないと、透明導電性膜用組成物中の溶媒量が多くなるため、溶媒A、溶媒Bを用いても透明導電性塗布膜中から乾燥する溶媒量が多いため、溶媒の乾燥に伴い透明導電性粒子の充填性が低下して透明導電性粒子間の接触が減少するため、表面電気抵抗値を下げることができない。固形分濃度が50重量%より多いと、溶媒量が少ないため透明導電性膜用組成物の分散が不十分になり、分散安定性が低下するため表面電気抵抗値の経時変化を小さくすることができない。固形分濃度は25〜45重量%が好ましく、30〜40重量%が更に好ましい。   If the solid content concentration of the composition for transparent conductive film is less than 20% by weight, the amount of solvent in the composition for transparent conductive film increases, so even if solvent A and solvent B are used, Since the amount of the solvent to be dried is large, the filling property of the transparent conductive particles is reduced with the drying of the solvent and the contact between the transparent conductive particles is reduced, so that the surface electric resistance value cannot be lowered. When the solid content concentration is more than 50% by weight, the amount of the solvent is small, so that the dispersion of the composition for transparent conductive film becomes insufficient, and the dispersion stability is lowered. Can not. The solid concentration is preferably 25 to 45% by weight, more preferably 30 to 40% by weight.

[請求項2]更に、相対的に乾燥しやすい溶媒Aと、乾燥しにくい溶媒Bの比率を溶媒A:溶媒B=95:5〜70:30の範囲とすることで、透明導電性膜中の残存溶媒量と透明導電性粒子の充填性のバランスを取ることができ、その結果表面電気抵抗値の低下と、表面電気抵抗値の経時変化の低下を実現することができる。 [Claim 2] Furthermore, in the transparent conductive film, the ratio of the solvent A that is relatively easy to dry and the solvent B that is difficult to dry is in the range of solvent A: solvent B = 95: 5 to 70:30. The remaining solvent amount and the filling property of the transparent conductive particles can be balanced, and as a result, the surface electrical resistance value can be reduced and the surface electrical resistance value can be reduced over time.

溶媒の中に占める相対的に乾燥しやすい溶媒Aが70部より少ないと、相対的に乾燥しにくい溶媒Bが多くなるため、透明導電性膜中の残存溶媒量が増加し、表面電気抵抗値の経時変化が大きくなる。一方溶媒の中に占める相対的に乾燥しやすい溶媒Aが95部より多いと、相対的に乾燥しやすい溶媒Aが多すぎるため、急劇な乾燥により透明導電性膜中の透明導電性粒子の充填性を向上させることができず、透明導電性粒子間の接触が減少するため、表面電気抵抗値を下げることができない。   If the amount of the solvent A that is relatively easy to dry in the solvent is less than 70 parts, the amount of the solvent B that is relatively difficult to dry increases, so the amount of the residual solvent in the transparent conductive film increases, and the surface electrical resistance value The change with time increases. On the other hand, if there is more than 95 parts of solvent A that is relatively easy to dry in the solvent, there is too much solvent A that is relatively easy to dry, so the transparent conductive particles are filled in the transparent conductive film by abrupt drying. The surface electrical resistance value cannot be lowered because the contact property between the transparent conductive particles is reduced.

[請求項3]更に溶媒Aの中で、ケトン系溶媒、エステル系溶媒が占める割合を90重量%以上とする。この範囲とすることで、組成物の分散性が向上すると共に、透明導電性膜中の残存溶媒量を低減し、表面電気抵抗値の経時変化を小さくすることができる。ケトン系溶媒、エステル系溶媒が90重量%より少ないと、組成物の分散性が低下する恐れがあり、組成物の保存安定性が低下する。溶媒Aの中で、ケトン系溶媒、エステル系溶媒が占める割合は95重量%以上が好ましい。 [Claim 3] In the solvent A, the proportion of the ketone solvent and the ester solvent is 90% by weight or more. By setting it as this range, the dispersibility of the composition can be improved, the amount of residual solvent in the transparent conductive film can be reduced, and the change over time of the surface electrical resistance value can be reduced. When the amount of the ketone solvent or the ester solvent is less than 90% by weight, the dispersibility of the composition may be lowered, and the storage stability of the composition is lowered. In the solvent A, the proportion of the ketone solvent and the ester solvent is preferably 95% by weight or more.

また、溶媒Bの中で、ケトン系溶媒、エステル系溶媒が占める割合を70重量%以上とする。この範囲とすることで、組成物の分散性が向上すると共に、透明導電性粒子の充填性が向上して透明導電性粒子間の接触が増加するため、表面電気抵抗値を下げることができる。ケトン系溶媒、エステル系溶媒が70重量%より少ないと、組成物の分散性が低下する恐れがあり、組成物の保存安定性が低下する。溶媒Bの中で、ケトン系溶媒、エステル系溶媒が占める割合は80重量%以上が好ましい。   In the solvent B, the ratio of the ketone solvent and the ester solvent is 70% by weight or more. By setting it as this range, while dispersibility of a composition improves, the filling property of transparent conductive particles improves, and the contact between transparent conductive particles increases, Therefore A surface electrical resistance value can be lowered | hung. When the amount of the ketone solvent or the ester solvent is less than 70% by weight, the dispersibility of the composition may be lowered, and the storage stability of the composition is lowered. In the solvent B, the proportion of the ketone solvent and the ester solvent is preferably 80% by weight or more.

溶媒Aの中で、ケトン系溶媒、エステル系溶媒が占める割合を90重量%以上とし、溶媒Bの中で、ケトン系溶媒、エステル系溶媒が占める割合を70重量%以上とすれば、ケトン系溶媒、エステル系溶媒以外の溶媒を含んでも良い。   If the proportion of the ketone solvent and the ester solvent in the solvent A is 90% by weight or more, and the proportion of the ketone solvent and the ester solvent in the solvent B is 70% by weight or more, the ketone system Solvents other than solvents and ester solvents may be included.

[請求項4]本発明の透明導電性シートの製造方法が、透明基材の一主面上に前記透明導電性膜用組成物を塗布して、透明導電性塗布膜を形成する第1の工程と、前記透明導電性塗布膜を乾燥させて透明導電性膜を形成した透明導電性シートを形成する第2の工程とを含み、第2の工程において乾燥後の透明導電性膜の厚さが0.3〜1.5μmであり、
更に第2の工程は、前記透明導電性塗布膜を乾燥させて透明導電性膜を形成する際に予熱期間、恒率乾燥期間、減率乾燥期間を含み、前記予熱期間Aの時間と前記恒率乾燥期間Bの時間の合計をABti、前記減率乾燥期間Cの時間をCtiとし、前記予熱期間Aの温度と前記恒率乾燥期間Bの温度をABte、前記減率乾燥期間Cの温度をCteとすると、式1から式4を満足することを特徴とする、請求項1に記載の透明導電性シートの製造方法。
式1 0.5分<ABti
式2 1分<Cti<5分
式3 20℃<ABte<40℃
式4 70℃<Cte<120℃
[Claim 4] The method for producing a transparent conductive sheet of the present invention is a first method in which the transparent conductive coating film is formed by coating the transparent conductive film composition on one main surface of a transparent substrate. And a second step of forming a transparent conductive sheet in which the transparent conductive coating film is dried to form a transparent conductive film, and the thickness of the transparent conductive film after drying in the second step Is 0.3 to 1.5 μm,
Further, the second step includes a preheating period, a constant rate drying period, and a decreasing rate drying period when the transparent conductive coating film is dried to form the transparent conductive film. The total time of the rate drying period B is ABti, the time of the rate-decreasing drying period C is Cti, the temperature of the preheating period A and the temperature of the constant rate drying period B are ABte, and the temperature of the rate-decreasing drying period C is The method for producing a transparent conductive sheet according to claim 1, wherein Cte satisfies Formulas 1 to 4.
Formula 1 0.5 min <ABti
Formula 2 1 min <Cti <5 min Formula 3 20 ° C. <ABte <40 ° C.
Formula 4 70 ° C <Cte <120 ° C

式1において予熱期間Aの時間と恒率乾燥期間Bの時間の合計ABtiを0.5分より長くすることにより、透明導電性塗布膜中の溶媒が徐々に乾燥するため空隙の生成を抑制することができ、透明導電性粒子の充填性が向上して粒子間の接触が増える。その結果、透明導電性膜の表面電気抵抗値が低下すると共に、表面電気抵抗値の経時変化を小さくすることができる。ABtiが0.5分より短いと、低温での乾燥時間が短いため、透明導電性膜中での空隙の生成を抑制する効果が小さくなり、透明導電性粒子の充填性を向上させることができないため、表面電気抵抗値を低下させることができず、更に表面電気抵抗値の経時変化を小さくすることができない。ABtiの上限値は5分が好ましく、3分がより好ましい。   In Formula 1, the total ABti of the time of the preheating period A and the constant rate drying period B is set to be longer than 0.5 minutes, so that the solvent in the transparent conductive coating film is gradually dried to suppress the generation of voids. And the filling property of the transparent conductive particles is improved and the contact between the particles is increased. As a result, the surface electrical resistance value of the transparent conductive film can be reduced, and the temporal change of the surface electrical resistance value can be reduced. When ABti is shorter than 0.5 minutes, the drying time at low temperature is short, so the effect of suppressing the formation of voids in the transparent conductive film is reduced, and the filling property of the transparent conductive particles cannot be improved. For this reason, the surface electrical resistance value cannot be reduced, and further, the temporal change of the surface electrical resistance value cannot be reduced. The upper limit of ABti is preferably 5 minutes, and more preferably 3 minutes.

式2において高温の減率乾燥期間Cの時間Ctiを1分より長く5分より短くすることで、透明導電性膜中の残存溶媒量が低減すると共に、透明導電性粒子の充填性が向上し、透明導電性粒子間の接触が増えることで表面電気抵抗値が低下すると共に、表面電気抵抗値の経時変化を小さくすることができる。Ctiが5分より長いと、透明基材が高温の環境下に晒される時間が長くなりすぎるため、透明基材が変形し、透明導電性膜を形成した透明導電性シートが得られない。またCtiが1分より短いと、透明導電性膜中の残存溶媒量が多くなるため、透明導電性膜中の透明導電性粒子の充填性を向上させることができず、表面電気抵抗値が低下させることができない。更に透明導電製膜を形成後残存溶媒が透明導電製膜から徐々に蒸発するため、表面電気抵抗値の経時変化を小さくすることができない。Ctiは2分から4分が好ましい。   By shortening the time Cti of the high temperature reduction rate drying period C in Formula 2 from longer than 1 minute to shorter than 5 minutes, the amount of residual solvent in the transparent conductive film is reduced and the filling property of the transparent conductive particles is improved. Further, the contact between the transparent conductive particles increases, so that the surface electrical resistance value is lowered and the change in the surface electrical resistance value with time can be reduced. When Cti is longer than 5 minutes, the transparent substrate is exposed to a high temperature environment for a long time, so that the transparent substrate is deformed and a transparent conductive sheet having a transparent conductive film cannot be obtained. Also, if Cti is shorter than 1 minute, the amount of residual solvent in the transparent conductive film increases, so that the filling property of the transparent conductive particles in the transparent conductive film cannot be improved, and the surface electrical resistance value decreases. I can't let you. Furthermore, since the residual solvent gradually evaporates from the transparent conductive film after the formation of the transparent conductive film, the change over time in the surface electrical resistance value cannot be reduced. Cti is preferably 2 to 4 minutes.

乾燥後の透明導電性膜の厚さは0.3〜1.5μmが好ましい。   The thickness of the transparent conductive film after drying is preferably 0.3 to 1.5 μm.

また式3において、予熱期間Aの温度と恒率乾燥期間Bの温度ABteは20℃〜40℃が好ましく、25℃〜35℃が好ましい。20℃より低いと透明導電性塗布膜の温度上昇が不十分になり、その後の減率乾燥期間Cの短時間の乾燥によって溶媒が急激に蒸発する為、乾燥後の透明導電性膜中の透明導電性粒子の充填性が向上せず、表面電気抵抗値の低下が見込めない。40℃より高いと乾燥工程の初期で溶媒が急激に乾燥するため、透明導電性膜中での空隙の生成を抑制することができず、透明導電性粒子の充填性を向上させることができないため、表面電気抵抗値を低下させることができない。温度ABteの下限値は25℃が好ましく、上限値は35℃が好ましい。   Moreover, in Formula 3, 20 to 40 degreeC is preferable and the temperature ABte of the preheating period A and the constant rate drying period B is 25 to 35 degreeC. When the temperature is lower than 20 ° C., the temperature of the transparent conductive coating film is not sufficiently increased, and the solvent is rapidly evaporated by drying in a short time during the subsequent reduction rate drying period C. Therefore, the transparent conductive film in the transparent conductive film after drying is transparent. The filling property of the conductive particles is not improved, and a decrease in the surface electric resistance value cannot be expected. If the temperature is higher than 40 ° C., the solvent dries rapidly at the initial stage of the drying process, so that the formation of voids in the transparent conductive film cannot be suppressed, and the filling property of the transparent conductive particles cannot be improved. The surface electrical resistance value cannot be reduced. The lower limit of temperature ABte is preferably 25 ° C, and the upper limit is preferably 35 ° C.

更に式4において減率乾燥期間Cの温度Cteが70℃より高く、120℃より低い温度とすることで、相対蒸発速度が1未満の溶剤Bを含む透明導電性塗布膜の乾燥工程において、透明導電性膜中の残存溶媒量が低減する。その結果、透明導電性膜中の透明導電性粒子の充填性が向上し、透明導電性粒子間の接触が増えることで表面電気抵抗値が低下すると共に、表面電気抵抗値の経時変化を小さくすることができる。Cteが120℃を超えると、溶媒の蒸発効果が飽和するとともに、高温の加熱により透明基材がダメージを受ける可能性がある。Cteが70より低いと乾燥が不十分となり、相対蒸発速度が1未満の溶媒Bの蒸発が進まず、透明導電性膜中の残存溶媒量が多くなり、表面電気抵抗値の経時変化が大きくなる。減率乾燥期間Cの温度Cteの下限値は80℃が好ましく、上限値は110℃が好ましい。   Furthermore, in the drying process of the transparent conductive coating film containing the solvent B having a relative evaporation rate of less than 1, the temperature Cte of the decreasing rate drying period C in Equation 4 is higher than 70 ° C. and lower than 120 ° C. The amount of residual solvent in the conductive film is reduced. As a result, the filling property of the transparent conductive particles in the transparent conductive film is improved, the contact between the transparent conductive particles is increased, the surface electrical resistance value is lowered, and the change in the surface electrical resistance value with time is reduced. be able to. When Cte exceeds 120 ° C., the evaporation effect of the solvent is saturated, and the transparent substrate may be damaged by high-temperature heating. When Cte is lower than 70, drying becomes insufficient, evaporation of the solvent B having a relative evaporation rate of less than 1 does not proceed, the amount of residual solvent in the transparent conductive film increases, and the surface electrical resistance value changes with time. . The lower limit value of the temperature Cte of the decreasing rate drying period C is preferably 80 ° C, and the upper limit value is preferably 110 ° C.

ここで、予熱期間Aとは、導電性塗布膜中の溶媒が蒸発し始める温度に達するまで上昇する期間のことである。恒率乾燥期間Bとは、透明導電性塗布膜から溶媒が蒸発することによって透明導電性塗布膜から奪われる蒸発潜熱と、透明導電性塗布膜が周囲から受け取る熱量との釣合いがほぼ取れている期間のことである。この恒率乾燥期間Bにおいて透明導電性塗布膜中の溶媒が徐々に乾燥するため空隙の生成を抑制し、透明導電性粒子の充填性が向上して透明導電性粒子間の接触が増える結果、予熱期間Aと共に主として表面電気抵抗値に影響を与える。   Here, the preheating period A is a period during which the temperature rises until reaching a temperature at which the solvent in the conductive coating film starts to evaporate. The constant rate drying period B is almost balanced with the latent heat of evaporation taken from the transparent conductive coating film by the evaporation of the solvent from the transparent conductive coating film and the amount of heat received by the transparent conductive coating film from the surroundings. It is a period. Since the solvent in the transparent conductive coating film is gradually dried in this constant rate drying period B, the formation of voids is suppressed, the filling property of the transparent conductive particles is improved, and the contact between the transparent conductive particles is increased. Along with the preheating period A, it mainly affects the surface electrical resistance value.

減率乾燥期間Cとは、透明導電性塗布膜中の溶媒がほとんどなくなった後、塗膜が固化され、塗膜の表面温度が上昇して乾燥雰囲気の温度に近づく期間のことである。この減率乾燥期間Cにおいて、恒率乾燥期間Bで蒸発しなかった溶媒、特に相対蒸発速度が1未満の溶剤Bが蒸発するため、主として残存溶媒量に影響を与える。   The decreasing rate drying period C is a period in which the coating film is solidified after the solvent in the transparent conductive coating film is almost exhausted, and the surface temperature of the coating film rises to approach the temperature of the drying atmosphere. In this decreasing rate drying period C, the solvent that did not evaporate in the constant rate drying period B, particularly the solvent B having a relative evaporation rate of less than 1, evaporates, and thus mainly affects the amount of residual solvent.

[請求項5]本願の製造方法で作製した透明導電性シートは、低い表面電気抵抗値と、表面電気抵抗値の経時変化を抑制し、更に全光線透過率が高く、ヘイズが低い透明導電性シートを提供することができる。 [Claim 5] The transparent conductive sheet produced by the production method of the present application has a low surface electrical resistance value and a change in the surface electrical resistance value over time, and further has a high total light transmittance and a low haze. Sheets can be provided.

<透明導電性シート用組成物>
コーティング組成物は、透明導電性粒子とバインダ樹脂とを溶媒に分散させて調製することにより得られる。
<Composition for transparent conductive sheet>
The coating composition can be obtained by preparing transparent conductive particles and a binder resin by dispersing them in a solvent.

<<透明導電性粒子>>
上記透明導電性粒子としては、透明性と導電性を兼ね備えた粒子であれば特に限定されず、例えば、導電性金属酸化物粒子、導電性窒化物粒子などを用いることができる。上記導電性金属酸化物粒子としては、酸化インジウム、酸化スズ、酸化亜鉛、酸化カドミウムなどの金属酸化物粒子が挙げられる。また、酸化インジウム、酸化スズ、酸化亜鉛及び酸化カドミウムからなる群から選ばれる1種類以上の金属酸化物を主成分として、さらにスズ、アンチモン、アルミニウム、ガリウムがドープされた導電性金属酸化物粒子、例えば、スズ含有酸化インジウム(ITO)粒子、アンチモン含有酸化スズ(ATO)粒子、アルミニウム含有酸化亜鉛(AZO)粒子、ガリウム含有酸化亜鉛(GZO)粒子、ITOをアルミニウム置換した導電性金属酸化物粒子なども用いることができる。中でも、透明性及び導電性に優れている点から、ITO粒子が特に好ましい。
<< Transparent conductive particles >>
The transparent conductive particles are not particularly limited as long as the particles have both transparency and conductivity. For example, conductive metal oxide particles, conductive nitride particles, and the like can be used. Examples of the conductive metal oxide particles include metal oxide particles such as indium oxide, tin oxide, zinc oxide, and cadmium oxide. In addition, conductive metal oxide particles doped with tin, antimony, aluminum, gallium, with one or more metal oxides selected from the group consisting of indium oxide, tin oxide, zinc oxide and cadmium oxide as main components, Examples include tin-containing indium oxide (ITO) particles, antimony-containing tin oxide (ATO) particles, aluminum-containing zinc oxide (AZO) particles, gallium-containing zinc oxide (GZO) particles, and conductive metal oxide particles obtained by replacing ITO with aluminum. Can also be used. Among these, ITO particles are particularly preferable from the viewpoint of excellent transparency and conductivity.

また、導電性の観点から、上記ITO粒子において、ITO全体に対してスズの添加量は酸化スズ換算で1〜20重量%が好ましい。ITOへのスズの添加により導電性が改善されるが、スズの添加量が1重量%より少ない場合は導電性の改善が乏しい傾向があり、20重量%を超えても導電性向上の効果は少ない傾向がある。   From the viewpoint of conductivity, the amount of tin added to the ITO particles is preferably 1 to 20% by weight in terms of tin oxide. The conductivity is improved by adding tin to ITO. However, when the amount of tin added is less than 1% by weight, the improvement in conductivity tends to be poor. There is a small tendency.

上記透明導電性粒子は、平均一次粒子径が10〜200nmの範囲にあることが好ましい。10nmより小さい場合、分散処理が困難になり粒子同士が凝集しやすくなるためか、曇りが大きくなり、光学特性が劣る傾向がある。また、200nmより大きい場合、粒子による可視光線の散乱によるためか、曇りが大きくなる傾向がある。ここで、平均一次粒子径は、例えば、透明基材上に形成した透明導電性膜の表面又は断面において、個々の粒子の粒子径を電子顕微鏡を用いて観察・測定した後、少なくとも100個の粒子の粒子径を平均した平均粒子径をいう。   The transparent conductive particles preferably have an average primary particle diameter in the range of 10 to 200 nm. If it is smaller than 10 nm, the dispersion treatment becomes difficult and the particles tend to aggregate, or the cloudiness increases and the optical properties tend to be inferior. On the other hand, if it is larger than 200 nm, the cloudiness tends to increase due to the scattering of visible light by the particles. Here, the average primary particle diameter is, for example, at least 100 particles after observing and measuring the particle diameter of each particle using an electron microscope on the surface or cross section of the transparent conductive film formed on the transparent substrate. The average particle diameter obtained by averaging the particle diameters of the particles.

<<バインダ樹脂>>
上記透明導電性膜用組成物に含まれる上記バインダ樹脂の含有量は、透明導電性粒子100重量部に対して5〜18重量部であることが好ましい。5重量部より少ないと塗膜強度向上の効果が乏しい傾向があり、18重量部より多いと表面電気抵抗値が上昇する傾向があり、良好な導電性が得られない可能性がある。
<< Binder resin >>
It is preferable that content of the said binder resin contained in the said composition for transparent conductive films is 5-18 weight part with respect to 100 weight part of transparent conductive particles. If the amount is less than 5 parts by weight, the effect of improving the strength of the coating film tends to be poor. If the amount is more than 18 parts by weight, the surface electrical resistance tends to increase, and good conductivity may not be obtained.

上記バインダ樹脂としては、特に限定されないが、ガラス転移温度が30〜120℃の樹脂が好ましい。上記バインダ樹脂としては、ガラス転移温度が30〜120℃である樹脂を用いることにより、透明導電性膜は適度な柔軟性を有することができる。上記バインダ樹脂としては、例えば、ガラス転移温度が30〜120℃である熱可塑性樹脂又はガラス転移温度が30〜120℃である放射線硬化性樹脂などを用いることができる。上記バインダ樹脂は、単独で用いてもよく、又は二種以上を組合せて用いてもよい。ここで、ガラス転移温度の測定は、いわゆる熱分析によるDSC法を用いて日本工業規格(JIS)K7121に準拠して行うことができる。   Although it does not specifically limit as said binder resin, Resin whose glass transition temperature is 30-120 degreeC is preferable. By using a resin having a glass transition temperature of 30 to 120 ° C. as the binder resin, the transparent conductive film can have appropriate flexibility. As the binder resin, for example, a thermoplastic resin having a glass transition temperature of 30 to 120 ° C. or a radiation curable resin having a glass transition temperature of 30 to 120 ° C. can be used. The said binder resin may be used independently or may be used in combination of 2 or more type. Here, the measurement of the glass transition temperature can be performed in accordance with Japanese Industrial Standard (JIS) K7121 using a DSC method based on so-called thermal analysis.

上記ガラス転移温度が30〜120℃である熱可塑性樹脂としては、例えばアクリル系樹脂又はポリエステル樹脂を用いることができる。   As the thermoplastic resin having a glass transition temperature of 30 to 120 ° C., for example, an acrylic resin or a polyester resin can be used.

上記アクリル系樹脂としては、例えば、三菱レイヨン社製のダイヤナールBR−60、ダイヤナールBR−64、ダイヤナールBR−75、ダイヤナールBR−77、ダイヤナールBR−80、ダイヤナールBR−83、ダイヤナールBR−87、ダイヤナールBR−90、ダイヤナールBR−95、ダイヤナールBR−96、ダイヤナールBR−100、ダイヤナールBR−101、ダイヤナールBR−105、ダイヤナールBR−106、ダイヤナールBR−107、ダイヤナールBR−108、ダイヤナールBR−110、ダイヤナールBR−113、ダイヤナールBR−122、ダイヤナールBR−605、ダイヤナールMB−2539、ダイヤナールMB−2389、ダイヤナールMB−2487、ダイヤナールMB−2660、ダイヤナールMB−2952、ダイヤナールMB−3015、ダイヤナールMB−7033などが挙げられる。   Examples of the acrylic resin include Dianal BR-60, Dialnal BR-64, Dialnal BR-75, Dialnal BR-77, Dialnal BR-80, and Dialnal BR-83 manufactured by Mitsubishi Rayon Co., Ltd. Dialnal BR-87, dialnal BR-90, dialnal BR-95, dialnal BR-96, dialnal BR-100, dialnal BR-101, dialnal BR-105, dialnal BR-106, dialnal BR-107, Dialnal BR-108, Dialnal BR-110, Dialnal BR-113, Dialnal BR-122, Dialnal BR-605, Dialnal MB-2539, Dialnal MB-2389, Dialnal MB- 2487, Dialnal MB-2660, Iyanaru MB-2952, Dianal MB-3015, and the like DIANAL MB-7033.

上記ポリエステル樹脂としては、例えば、東洋紡積社製のバイロン200、バイロン220、バイロン226、バイロン240、バイロン245、バイロン270、バイロン280、バイロン290、バイロン296、バイロン660、バイロン885、バイロンGK110、バイロンGK250、バイロンGK360、バイロンGK640、バイロンGK880などが挙げられる。   Examples of the polyester resin include Byron 200, Byron 220, Byron 226, Byron 240, Byron 245, Byron 270, Byron 280, Byron 290, Byron 296, Byron 660, Byron 885, Byron GK110, Byron manufactured by Toyobo Co., Ltd. GK250, Byron GK360, Byron GK640, Byron GK880 and the like can be mentioned.

上記ガラス転移温度が30〜120℃である放射線硬化性樹脂としては、特に限定されないが、例えば、アクリレートモノマー、メタクリレートモノマー、エポキシアクリレート、ウレタンアクリレート、ポリエステルアクリレート、アクリルオリゴマーなどが挙げられる。具体的には、イソボルニルアクリレート、2−フェノキシエチルメタクリレート、トリプロピレングリコールジアクリレート、ジエチレングリコ−ルジアクリレート、エトキシ化ビスフェノールAジメタクリレート、トリメチロールプロパントリアクリレート、ジペンタエリスリトールペンタアクリレートなどを用いることができる。ここで、放射
線硬化性樹脂のガラス転移温度は、例えば、樹脂100重量部に対し紫外線重合開始剤、例えば2−メチル−1−[4−(メチルチオ)フェニル]−2−モルフォリノプロパン−1−オンを5重量部添加し、紫外線を500mJ/cm 2 照射して得られた放射線硬化処理後の測定値を用いることが好ましい。
Although it does not specifically limit as said radiation curable resin whose said glass transition temperature is 30-120 degreeC, For example, an acrylate monomer, a methacrylate monomer, an epoxy acrylate, a urethane acrylate, a polyester acrylate, an acrylic oligomer etc. are mentioned. Specifically, isobornyl acrylate, 2-phenoxyethyl methacrylate, tripropylene glycol diacrylate, diethylene glycol diacrylate, ethoxylated bisphenol A dimethacrylate, trimethylolpropane triacrylate, dipentaerythritol pentaacrylate, etc. may be used. it can. Here, the glass transition temperature of the radiation curable resin is, for example, an ultraviolet polymerization initiator such as 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropane-1- based on 100 parts by weight of the resin. It is preferable to use a measured value after radiation curing treatment obtained by adding 5 parts by weight of ON and irradiating with ultraviolet rays at 500 mJ / cm 2.

また、上記ガラス転移温度が30〜120℃である樹脂として、エポキシ樹脂などの熱硬化性樹脂を用いてもよい。   Moreover, you may use thermosetting resins, such as an epoxy resin, as said resin whose glass transition temperature is 30-120 degreeC.

バインダ樹脂として放射線硬化性樹脂を用いた場合、紫外線、電子線、β線などの放射線により硬化処理を行ってもよい。これらのうち紫外線を用いることが簡便であり、この場合、放射線硬化性樹脂に、さらに紫外線重合開始剤を含ませてもよい。紫外線重合開始剤としては、以下のものを用いることができる。例えば、ベンゾインイソプロピルエーテル、ベンゾフェノン、2−ヒドロキシ−2−メチルプロピオフェノン、1−ヒドロキシシクロヘキシルフェニルケトン、2,4−ジエチルチオキサントン、o−ヘンゾイル安息香酸メチル、4,4−ビスジエチルアミノベンゾフェノン、2,2−ジエトキシアセトフェン、ベンジル、2−クロロチオキサントン、ジイソプロピルチオザンソン、9,10−アントラキノン、ベンソイン、ベンソインメチルエーテル、2,2−ジメトキシ−2−フェニルアセトフェノン、2−ヒドロキシ−2−メチル−プロピオフェノン、4−イソプロピル−2−ヒドロキシ−2−メチルプロピオフェノン、α,α−ジメトキシ−α−フェニルアセトンなどを用いることができる。上記紫外線重合開始剤は、単独で用いてもよく、二種以上を組合せて用いてもよい。   When a radiation curable resin is used as the binder resin, the curing treatment may be performed by radiation such as ultraviolet rays, electron beams, and β rays. Among these, it is convenient to use ultraviolet rays. In this case, an ultraviolet polymerization initiator may be further added to the radiation curable resin. As the ultraviolet polymerization initiator, the following can be used. For example, benzoin isopropyl ether, benzophenone, 2-hydroxy-2-methylpropiophenone, 1-hydroxycyclohexyl phenyl ketone, 2,4-diethylthioxanthone, methyl o-henzoylbenzoate, 4,4-bisdiethylaminobenzophenone, 2, 2-diethoxyacetophene, benzyl, 2-chlorothioxanthone, diisopropylthioxanthone, 9,10-anthraquinone, benzoin, benzoin methyl ether, 2,2-dimethoxy-2-phenylacetophenone, 2-hydroxy-2-methyl -Propiophenone, 4-isopropyl-2-hydroxy-2-methylpropiophenone, α, α-dimethoxy-α-phenylacetone and the like can be used. The said ultraviolet polymerization initiator may be used independently and may be used in combination of 2 or more type.

上記紫外線重合開始剤は、放射線硬化性樹脂100重量部に対し、1〜20重量部の範囲で添加することが好ましい。1重量部より少ない場合、樹脂の硬化性が劣るためか、透明導電性膜の強度が劣る傾向にある。また、20重量部を超える場合、架橋が十分に進まないため、透明導電性膜の強度が劣る傾向にある。   The ultraviolet polymerization initiator is preferably added in an amount of 1 to 20 parts by weight with respect to 100 parts by weight of the radiation curable resin. When the amount is less than 1 part by weight, the curability of the resin is inferior, or the strength of the transparent conductive film tends to be inferior. Moreover, when it exceeds 20 weight part, since bridge | crosslinking does not advance fully, it exists in the tendency for the intensity | strength of a transparent conductive film to be inferior.

<<溶媒>>
溶媒としては、酢酸ブチルの蒸発速度を1とした場合の相対蒸発速度が1以上の溶媒Aと、相対蒸発速度が1未満の溶媒Bを用いる。なお相対蒸発速度とは酢酸ブチルの蒸発速度を1とした場合の相対的な蒸発速度であり、値が大きいほど蒸発しやすく、値が小さい程蒸発しにくい。
<< solvent >>
As the solvent, a solvent A having a relative evaporation rate of 1 or more when a vaporization rate of butyl acetate is 1, and a solvent B having a relative evaporation rate of less than 1 are used. The relative evaporation rate is a relative evaporation rate when the evaporation rate of butyl acetate is 1, and the higher the value, the easier the evaporation, and the smaller the value, the less evaporation.

溶媒Aと溶媒Bはいずれも、少なくともケトン系溶媒、エステル系溶媒から選ばれる少なくとも1種を含む。従って溶媒Aと溶媒Bの両方にケトン系溶媒を用いても良いし、エステル系溶媒を用いても良いし、ケトン系溶媒、エステル系溶媒の両方を使っても良い。
相対蒸発速度が1以上の溶媒Aのケトン系溶媒として、アセトン、メチルエチルケトン(MEK)、メチルイソブチルケトン(MIBK)を用いることができる。
Both the solvent A and the solvent B include at least one selected from a ketone solvent and an ester solvent. Therefore, a ketone solvent may be used for both the solvent A and the solvent B, an ester solvent may be used, or both a ketone solvent and an ester solvent may be used.
As the ketone solvent of the solvent A having a relative evaporation rate of 1 or more, acetone, methyl ethyl ketone (MEK), or methyl isobutyl ketone (MIBK) can be used.

相対蒸発速度が1以上の溶媒Aのエステル系溶媒として、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸イソプロピル、酢酸イソブチル、酢酸ブチルを用いることができる。   As the ester solvent of the solvent A having a relative evaporation rate of 1 or more, methyl acetate, ethyl acetate, propyl acetate, isopropyl acetate, isobutyl acetate, butyl acetate can be used.

相対蒸発速度が1未満の溶媒Bのケトン系溶媒として、シクロペンタノン、シクロヘキサノン、シクロヘプタノンを用いることができる。   Cyclopentanone, cyclohexanone, and cycloheptanone can be used as the ketone solvent of the solvent B having a relative evaporation rate of less than 1.

相対蒸発速度が1未満の溶媒Bのエステル系溶媒として、酢酸アミル、酢酸メチルアミル、乳酸メチル、乳酸エチルを用いることができる。   As the ester solvent of the solvent B having a relative evaporation rate of less than 1, amyl acetate, methyl amyl acetate, methyl lactate, and ethyl lactate can be used.

相対蒸発速度が1以上の溶媒Aのエステル系溶媒、相対蒸発速度が1未満の溶媒Bのエステル系溶媒はいずれも、グリコール構造を有さないエステル系溶媒が好ましい。ケトン系溶媒とエステル系溶媒、特にグリコール構造を有さないエステル系溶媒は、金属酸化物の分散性(ぬれ性)が良く、組成物としての安定性にすぐれるため好ましい。   Both the ester solvent of the solvent A having a relative evaporation rate of 1 or more and the ester solvent of the solvent B having a relative evaporation rate of less than 1 are preferably ester solvents having no glycol structure. A ketone-based solvent and an ester-based solvent, particularly an ester-based solvent having no glycol structure are preferable because the dispersibility (wetting property) of the metal oxide is good and the composition is stable.

<<その他の添加剤>>
透明導電性シート用組成物には透明導電性粒子、バインダ樹脂以外に分散剤や可塑剤、耐電防止剤等を含んでも良い。
<< Other additives >>
The composition for transparent conductive sheet may contain a dispersant, a plasticizer, an antistatic agent and the like in addition to the transparent conductive particles and the binder resin.

分散剤としては、少なくともアニオン系官能基を含む分散剤を用いることが好ましく、アニオン系官能基を含むポリエステル系樹脂、アニオン系官能基を含むアクリル系樹脂を用いることがより好ましい。例えば、カルボン酸含有アクリル系樹脂、酸含有ポリエステル系樹脂、酸及び塩基含有ポリエステル系樹脂などを用いることができる。具体的には、三菱レイヨン社製のダイヤナールMR−2539、ダイヤナールMB−2389、ダイヤナールMB−2660、ダイヤナールMB−3015、ダイヤナールBR−60、ダイヤナールBR−64、ダイヤナールBR−77、ダイヤナールBR−84、ダイヤナールBR−83 、ダイヤナールBR−87、ダイヤナールBR−106、ダイヤナールBR−113など、又はアビシア社製のソルスパーズ3000、ソルスパーズ21000、ソルスパーズ26000、ソルスパーズ32000、ソルスパーズ36000、ソルスパーズ41000、ソルスパーズ43000、ソルスパーズ44000、ソルスパーズ45000、ソルスパーズ56000などの市販のものを用いることができる。   As the dispersant, it is preferable to use a dispersant containing at least an anionic functional group, and it is more preferable to use a polyester resin containing an anionic functional group or an acrylic resin containing an anionic functional group. For example, carboxylic acid-containing acrylic resins, acid-containing polyester resins, acid and base-containing polyester resins, and the like can be used. Specifically, dialnal MR-2539, dialnal MB-2389, dialnal MB-2660, dialnal MB-3015, dialnal BR-60, dialnal BR-64, dialnal BR- manufactured by Mitsubishi Rayon Co., Ltd. 77, Dialnal BR-84, Dialnal BR-83, Dialnal BR-87, Dialnal BR-106, Dialnal BR-113, etc., or Solspirs 3000, Solspurs 21000, Solspurs 26000, Solspurs 32000, manufactured by Abyssia Commercially available products such as Solspurs 36000, Solspers 41000, Solspers 43000, Solspers 44000, Solspers 45000, Solspers 56000, and the like can be used.

<透明基材>
透明基材としては、透明な透光性を有する材料で形成されていれば特に限定されない。例えば、ポリエチレンテレフタレート、ポリエチレンナフタレートなどのポリエステル系樹脂、ポリオレフィン類、セルローストリアセテートなどのセルロース系樹脂、ナイロン、アラミドなどのアミド系樹脂、ポリフェニレンエーテル、ポリスルホンエーテルなどのポリエーテル系樹脂、ポリカーボネート系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、ポリアミドイミド系樹脂、芳香族ポリアミド系樹脂などの材料からなる、フィルム又はシートを用いることができる。また、ガラス、セラミックスなどを用いてもよい。透明基材の厚さは、通常3〜300μmが好ましく、25〜200μmがより好ましい。
<Transparent substrate>
The transparent substrate is not particularly limited as long as it is formed of a transparent material. For example, polyester resins such as polyethylene terephthalate and polyethylene naphthalate, polyolefins, cellulose resins such as cellulose triacetate, amide resins such as nylon and aramid, polyether resins such as polyphenylene ether and polysulfone ether, polycarbonate resins, A film or sheet made of a material such as polyamide resin, polyimide resin, polyamideimide resin, or aromatic polyamide resin can be used. Further, glass, ceramics or the like may be used. The thickness of the transparent substrate is usually preferably from 3 to 300 μm, more preferably from 25 to 200 μm.

また、本発明で透明とは、JIS K7161:1997に準拠して測定した全光線透過率が75%以上であることをいう。   In the present invention, the term “transparent” means that the total light transmittance measured in accordance with JIS K7161: 1997 is 75% or more.

透明基材には、酸化防止剤、難燃剤、耐熱防止剤、紫外線吸収剤、易滑剤、帯電防止剤などの添加剤が添加されてもよい。さらに、透明基材上に形成される透明導電性膜との密着性を向上させるために、基材表面に易接着剤層(例えば、プライマー層)を設けたり、コロナ処理、プラズマ処理などの表面処理を行ったりすることができる。   Additives such as antioxidants, flame retardants, heat resistance inhibitors, ultraviolet absorbers, lubricants and antistatic agents may be added to the transparent substrate. Furthermore, in order to improve the adhesion to the transparent conductive film formed on the transparent substrate, an easy-adhesive layer (for example, a primer layer) is provided on the surface of the substrate, or a surface such as corona treatment or plasma treatment. Processing.

<透明導電性シート>
本願の透明導電性シートは全光線透過率が75%以上が好ましく、85%以上がより好ましい。またヘイズは2%以下が好ましく、1%以下がより好ましい。このような範囲に設定することで、例えばタッチパネルや調光フィルム用の電極、透明面発熱体、ディスプレイの帯電防止フィルム、電磁波シールド材用の透明導電シートに好適に用いることができる。
<Transparent conductive sheet>
The transparent conductive sheet of the present application has a total light transmittance of preferably 75% or more, and more preferably 85% or more. The haze is preferably 2% or less, more preferably 1% or less. By setting to such a range, for example, it can be suitably used for electrodes for touch panels and light control films, transparent surface heating elements, antistatic films for displays, and transparent conductive sheets for electromagnetic wave shielding materials.

<透明導電性膜用組成物の調製方法>
透明導電性膜用組成物の調製方法は、透明導電性粒子とバインダ樹脂とを溶媒中に分散できればよく、その分散方法はそれぞれ特に限定されない。例えば、サンドグラインドミルなどのビーズミル、超音波分散機、3本ロールミルなどによる分散処理が挙げられるが、より分散性が優れるという点から、ビーズミルによる分散処理が好ましい。
<Method for preparing composition for transparent conductive film>
The preparation method of the composition for transparent conductive films should just disperse | distribute transparent conductive particles and binder resin in a solvent, and the dispersion method is not specifically limited, respectively. For example, a dispersion process using a bead mill such as a sand grind mill, an ultrasonic disperser, a three roll mill, or the like can be mentioned, but a dispersion process using a bead mill is preferable from the viewpoint of better dispersibility.

<透明導電性膜の形成>
透明基材への透明導電性膜用組成物を塗布して透明導電性塗布膜を形成する方法としては、平滑な塗膜を形成しうる塗布方法であればよく、特に限定されない。例えば、グラビアロール法、マイクログラビアロール法、スプレイ法、スピン法、ナイフ法、キス法、スクイズ法、リバースロール法、ディップ法、バーコート法などの塗布方法を用いることができる。
<Formation of transparent conductive film>
The method for forming the transparent conductive coating film by coating the transparent conductive film composition on the transparent substrate is not particularly limited as long as it is a coating method capable of forming a smooth coating film. For example, a coating method such as a gravure roll method, a micro gravure roll method, a spray method, a spin method, a knife method, a kiss method, a squeeze method, a reverse roll method, a dip method, and a bar coat method can be used.

塗膜の乾燥方法としては、熱風を透明導電性塗布膜側から、あるいは透明基材側からあててもよい。また透明基材側に熱源を直接接触させても良い。また、赤外線ヒーター、遠赤外線ヒーターなどを用いて、熱源と非接触の方法で透明導電性塗布膜を乾燥させても良い。温度、湿度管理された空間にて自然乾燥させてもよい   As a method for drying the coating film, hot air may be applied from the transparent conductive coating film side or from the transparent substrate side. Moreover, you may make a heat source contact the transparent base material side directly. Moreover, you may dry a transparent conductive coating film by a non-contact method with a heat source using an infrared heater, a far-infrared heater, etc. It may be naturally dried in a temperature and humidity controlled space

<実施例>
以下、実施例に基づいて本発明を詳細に説明する。但し、本発明は以下の実施例に限定されるものではない。また、特に指摘がない場合、下記において、「部」は「重量部」を意味する。
<Example>
Hereinafter, the present invention will be described in detail based on examples. However, the present invention is not limited to the following examples. Further, unless otherwise indicated, in the following, “part” means “part by weight”.

<透明導電性膜用組成物Aの調整>

Figure 2016207607
まず、以下の組成の混合物を、分散メディアとして直径0.1mmのジルコニアビーズを用い、ペイントコンディショナーを用いて分散処理した。 <Preparation of composition A for transparent conductive film>
Figure 2016207607
First, a mixture having the following composition was dispersed using a paint conditioner using zirconia beads having a diameter of 0.1 mm as a dispersion medium.

上記にて得られた分散溶液100部に以下の成分の混合物を加え、30分撹拌を行った後フィルター(日本ミリポア社製のグラスファイバーフィルター“AP−25)を通して「透明導電性膜用組成物A」を得た。

Figure 2016207607
A mixture of the following components was added to 100 parts of the dispersion obtained above, stirred for 30 minutes, and then passed through a filter (glass fiber filter “AP-25 manufactured by Nihon Millipore)” A "was obtained.
Figure 2016207607

<透明導電性膜用組成物Bの調整>
まず、以下の組成の混合物を、分散メディアとして直径0.1mmのジルコニアビーズを用い、ペイントコンディショナーを用いて分散処理した。

Figure 2016207607
<Preparation of composition B for transparent conductive film>
First, a mixture having the following composition was dispersed using a paint conditioner using zirconia beads having a diameter of 0.1 mm as a dispersion medium.
Figure 2016207607

上記にて得られた分散溶液100部に以下の成分の混合物を加え、30分撹拌を行った後フィルター(日本ミリポア社製のグラスファイバーフィルター“AP−25)を通して「透明導電性膜用組成物B」を得た。

Figure 2016207607
A mixture of the following components was added to 100 parts of the dispersion obtained above, stirred for 30 minutes, and then passed through a filter (glass fiber filter “AP-25 manufactured by Nihon Millipore)” B "was obtained.
Figure 2016207607

<透明導電性膜用組成物Cの調整>
まず、以下の組成の混合物を、分散メディアとして直径0.1mmのジルコニアビーズを用い、ペイントコンディショナーを用いて分散処理した。

Figure 2016207607
<Preparation of transparent conductive film composition C>
First, a mixture having the following composition was dispersed using a paint conditioner using zirconia beads having a diameter of 0.1 mm as a dispersion medium.
Figure 2016207607

上記にて得られた分散溶液100部に以下の成分の混合物を加え、30分撹拌を行った後フィルター(日本ミリポア社製のグラスファイバーフィルター“AP−25)を通して「透明導電性膜用組成物C」を得た。

Figure 2016207607
A mixture of the following components was added to 100 parts of the dispersion obtained above, stirred for 30 minutes, and then passed through a filter (glass fiber filter “AP-25 manufactured by Nihon Millipore)” C "was obtained.
Figure 2016207607

<透明導電性膜用組成物Dの調整>
まず、以下の組成の混合物を、分散メディアとして直径0.1mmのジルコニアビーズを用い、ペイントコンディショナーを用いて分散処理した。

Figure 2016207607
<Preparation of composition D for transparent conductive film>
First, a mixture having the following composition was dispersed using a paint conditioner using zirconia beads having a diameter of 0.1 mm as a dispersion medium.
Figure 2016207607

上記にて得られた分散溶液100部に以下の成分の混合物を加え、30分撹拌を行った後フィルター(日本ミリポア社製のグラスファイバーフィルター“AP−25)を通して「透明導電性膜用組成物D」を得た。

Figure 2016207607
A mixture of the following components was added to 100 parts of the dispersion obtained above, stirred for 30 minutes, and then passed through a filter (glass fiber filter “AP-25 manufactured by Nihon Millipore)” D "was obtained.
Figure 2016207607

<透明導電性膜用組成物Eの調整>
まず、以下の組成の混合物を、分散メディアとして直径0.1mmのジルコニアビーズを用い、ペイントコンディショナーを用いて分散処理した。

Figure 2016207607
<Preparation of composition E for transparent conductive film>
First, a mixture having the following composition was dispersed using a paint conditioner using zirconia beads having a diameter of 0.1 mm as a dispersion medium.
Figure 2016207607

上記にて得られた分散溶液100部に以下の成分の混合物を加え、30分撹拌を行った後フィルター(日本ミリポア社製のグラスファイバーフィルター“AP−25)を通して「透明導電性膜用組成物E」を得た。

Figure 2016207607
A mixture of the following components was added to 100 parts of the dispersion obtained above, stirred for 30 minutes, and then passed through a filter (glass fiber filter “AP-25 manufactured by Nihon Millipore)” E "was obtained.
Figure 2016207607

<透明導電性膜用組成物Fの調整>
まず、以下の組成の混合物を、分散メディアとして直径0.1mmのジルコニアビーズを用い、ペイントコンディショナーを用いて分散処理した。

Figure 2016207607
<Preparation of transparent conductive film composition F>
First, a mixture having the following composition was dispersed using a paint conditioner using zirconia beads having a diameter of 0.1 mm as a dispersion medium.
Figure 2016207607

上記にて得られた分散溶液100部に以下の成分の混合物を加え、30分撹拌を行った後フィルター(日本ミリポア社製のグラスファイバーフィルター“AP−25)を通して「透明導電性膜用組成物F」を得た。

Figure 2016207607
A mixture of the following components was added to 100 parts of the dispersion obtained above, stirred for 30 minutes, and then passed through a filter (glass fiber filter “AP-25 manufactured by Nihon Millipore)” F "was obtained.
Figure 2016207607

<透明導電性膜用組成物Gの調整>
まず、以下の組成の混合物を、分散メディアとして直径0.1mmのジルコニアビーズを用い、ペイントコンディショナーを用いて分散処理した。

Figure 2016207607
<Preparation of transparent conductive film composition G>
First, a mixture having the following composition was dispersed using a paint conditioner using zirconia beads having a diameter of 0.1 mm as a dispersion medium.
Figure 2016207607

上記にて得られた分散溶液100部に以下の成分の混合物を加え、30分撹拌を行った後フィルター(日本ミリポア社製のグラスファイバーフィルター“AP−25)を通して「透明導電性膜用組成物G」を得た。

Figure 2016207607
A mixture of the following components was added to 100 parts of the dispersion obtained above, stirred for 30 minutes, and then passed through a filter (glass fiber filter “AP-25 manufactured by Nihon Millipore)” G "was obtained.
Figure 2016207607

<透明導電性膜用組成物Hの調整>
まず、以下の組成の混合物を、分散メディアとして直径0.1mmのジルコニアビーズを用い、ペイントコンディショナーを用いて分散処理した。

Figure 2016207607
<Preparation of transparent conductive film composition H>
First, a mixture having the following composition was dispersed using a paint conditioner using zirconia beads having a diameter of 0.1 mm as a dispersion medium.
Figure 2016207607

上記にて得られた分散溶液100部に以下の成分の混合物を加え、30分撹拌を行った後フィルター(日本ミリポア社製のグラスファイバーフィルター“AP−25)を通して「透明導電性膜用組成物H」を得た。

Figure 2016207607
A mixture of the following components was added to 100 parts of the dispersion obtained above, stirred for 30 minutes, and then passed through a filter (glass fiber filter “AP-25 manufactured by Nihon Millipore)” H "was obtained.
Figure 2016207607

<透明導電性膜用組成物Iの調整>
まず、以下の組成の混合物を、分散メディアとして直径0.1mmのジルコニアビーズを用い、ペイントコンディショナーを用いて分散処理した。

Figure 2016207607
<Preparation of transparent conductive film composition I>
First, a mixture having the following composition was dispersed using a paint conditioner using zirconia beads having a diameter of 0.1 mm as a dispersion medium.
Figure 2016207607

上記にて得られた分散溶液100部に以下の成分の混合物を加え、30分撹拌を行った後フィルター(日本ミリポア社製のグラスファイバーフィルター“AP−25)を通して「透明導電性膜用組成物I」を得た。

Figure 2016207607
A mixture of the following components was added to 100 parts of the dispersion obtained above, stirred for 30 minutes, and then passed through a filter (glass fiber filter “AP-25 manufactured by Nihon Millipore)” I "was obtained.
Figure 2016207607

<透明導電性膜用組成物Jの調整>
まず、以下の組成の混合物を、分散メディアとして直径0.1mmのジルコニアビーズを用い、ペイントコンディショナーを用いて分散処理した。

Figure 2016207607
<Preparation of transparent conductive film composition J>
First, a mixture having the following composition was dispersed using a paint conditioner using zirconia beads having a diameter of 0.1 mm as a dispersion medium.
Figure 2016207607

上記にて得られた分散溶液100部に以下の成分の混合物を加え、30分撹拌を行った後フィルター(日本ミリポア社製のグラスファイバーフィルター“AP−25)を通して「透明導電性膜用組成物J」を得た。

Figure 2016207607
A mixture of the following components was added to 100 parts of the dispersion obtained above, stirred for 30 minutes, and then passed through a filter (glass fiber filter “AP-25 manufactured by Nihon Millipore)” J ".
Figure 2016207607

<透明導電性膜用組成物Kの調整>
まず、以下の組成の混合物を、分散メディアとして直径0.1mmのジルコニアビーズを用い、ペイントコンディショナーを用いて分散処理した。

Figure 2016207607
<Preparation of transparent conductive film composition K>
First, a mixture having the following composition was dispersed using a paint conditioner using zirconia beads having a diameter of 0.1 mm as a dispersion medium.
Figure 2016207607

上記にて得られた分散溶液100部に以下の成分の混合物を加え、30分撹拌を行った後フィルター(日本ミリポア社製のグラスファイバーフィルター“AP−25)を通して「透明導電性膜用組成物K」を得た。

Figure 2016207607
A mixture of the following components was added to 100 parts of the dispersion obtained above, stirred for 30 minutes, and then passed through a filter (glass fiber filter “AP-25 manufactured by Nihon Millipore)” K "was obtained.
Figure 2016207607

透明導電性膜用組成物Aから透明導電性膜用組成物Kの組成を表1〜表3に纏めた。   The compositions of the transparent conductive film composition A to the transparent conductive film composition K are summarized in Tables 1 to 3.

<透明導電性シートの作製>
実施例1〜実施例13
バーコータを用いて、「透明導電性膜用組成物A」を透明基材(帝人デュポン社製のポリエステルフィルム“KEL86W、厚み:125μm)に、乾燥後の膜厚が0.7μmになるよう塗布して透明導電性塗布膜を形成し、次いで乾燥して透明導電性膜を形成した透明導電性シートを形成した。この時の温度を予熱期間Aの温度と恒率乾燥期間Bの温度ABteとし、時間をABtiとした。続いて防爆型乾燥機を用いて乾燥を行う時の温度を減率乾燥期間Cの温度Cteとし、時間をCtiとした。ABte、ABti、Cte、Ctiを表4、表5に記載の条件に設定し、実施例1〜実施例13の透明導電性シートを得た。
<Preparation of transparent conductive sheet>
Examples 1 to 13
Using a bar coater, apply “Transparent conductive film composition A” to a transparent substrate (polyester film “KEL86W manufactured by Teijin DuPont, thickness: 125 μm) so that the film thickness after drying is 0.7 μm. A transparent conductive coating film was then formed, and then dried to form a transparent conductive sheet having a transparent conductive film formed thereon, and the temperature at this time was defined as the temperature of the preheating period A and the temperature ABte of the constant rate drying period B, The time when drying was performed using an explosion-proof dryer was defined as the temperature Cte of the reduced rate drying period C, and the time was defined as Cti. ABte, ABti, Cte, and Cti are shown in Table 4 The transparent conductive sheets of Examples 1 to 13 were obtained.

実施例14
バーコータを用いて、「透明導電性膜用組成物B」を透明基材(帝人デュポン社製のポリエステルフィルム“KEL86W、厚み:125μm)に、バーコータを用いて塗布して透明導電性塗布膜を形成し、次いで乾燥して膜厚が0.7μmの透明導電性膜を形成した透明導電性シートを形成した。この時の温度を予熱期間Aの温度と恒率乾燥期間Bの温度ABteとし、時間をABtiとした。続いて防爆型乾燥機を用いて乾燥を行う時の温度を減率乾燥期間Cの温度Cteとし、時間をCtiとした。ABte、ABti、Cte、Ctiは各々表5に記載の条件に設定し、実施例14の透明導電性シートを得た。
Example 14
Using a bar coater, “Transparent conductive film composition B” is applied to a transparent base material (polyester film “KEL86W, thickness: 125 μm, manufactured by Teijin DuPont) using a bar coater to form a transparent conductive coating film. Then, a transparent conductive sheet was formed by drying to form a transparent conductive film having a film thickness of 0.7 μm, with the temperature at this time as the temperature of the preheating period A and the temperature ABte of the constant rate drying period B. Then, the temperature when drying using an explosion-proof dryer was defined as the temperature Cte of the decreasing rate drying period C, and the time was defined as Cti. ABte, ABti, Cte, and Cti are described in Table 5, respectively. The transparent conductive sheet of Example 14 was obtained.

実施例15
バーコータを用いて、「透明導電性膜用組成物C」を透明基材(帝人デュポン社製のポリエステルフィルム“KEL86W、厚み:125μm)に、バーコータを用いて塗布して透明導電性塗布膜を形成し、次いで乾燥して膜厚が0.7μmの透明導電性膜を形成した透明導電性シートを形成した。この時の温度を予熱期間Aの温度と恒率乾燥期間Bの温度ABteとし、時間をABtiとした。続いて防爆型乾燥機を用いて乾燥を行う時の温度を減率乾燥期間Cの温度Cteとし、時間をCtiとした。ABte、ABti、Cte、Ctiは各々表5に記載の条件に設定し、実施例15の透明導電性シートを得た。
Example 15
Using a bar coater, “Transparent conductive film composition C” is applied to a transparent substrate (polyester film “KEL86W manufactured by Teijin DuPont, thickness: 125 μm) using a bar coater to form a transparent conductive coating film. Then, a transparent conductive sheet was formed by drying to form a transparent conductive film having a film thickness of 0.7 μm, with the temperature at this time as the temperature of the preheating period A and the temperature ABte of the constant rate drying period B. Then, the temperature when drying using an explosion-proof dryer was defined as the temperature Cte of the decreasing rate drying period C, and the time was defined as Cti. ABte, ABti, Cte, and Cti are described in Table 5, respectively. The transparent conductive sheet of Example 15 was obtained.

実施例16
バーコータを用いて、「透明導電性膜用組成物D」を透明基材(帝人デュポン社製のポリエステルフィルム“KEL86W、厚み:125μm)に、バーコータを用いて塗布して透明導電性塗布膜を形成し、次いで乾燥して膜厚が0.7μmの透明導電性膜を形成した透明導電性シートを形成した。この時の温度を予熱期間Aの温度と恒率乾燥期間Bの温度ABteとし、時間をABtiとした。続いて防爆型乾燥機を用いて乾燥を行う時の温度を減率乾燥期間Cの温度Cteとし、時間をCtiとした。ABte、ABti、Cte、Ctiは各々表5に記載の条件に設定し、実施例16の透明導電性シートを得た。
Example 16
Using a bar coater, “Transparent conductive film composition D” is applied to a transparent substrate (polyester film “KEL86W, thickness: 125 μm, manufactured by Teijin DuPont” using a bar coater to form a transparent conductive coating film. Then, a transparent conductive sheet was formed by drying to form a transparent conductive film having a film thickness of 0.7 μm, with the temperature at this time as the temperature of the preheating period A and the temperature ABte of the constant rate drying period B. Then, the temperature when drying using an explosion-proof dryer was defined as the temperature Cte of the decreasing rate drying period C, and the time was defined as Cti. ABte, ABti, Cte, and Cti are described in Table 5, respectively. The transparent conductive sheet of Example 16 was obtained.

実施例17
バーコータを用いて、「透明導電性膜用組成物E」を透明基材(帝人デュポン社製のポリエステルフィルム“KEL86W、厚み:125μm)に、バーコータを用いて塗布して透明導電性塗布膜を形成し、次いで乾燥して膜厚が0.7μmの透明導電性膜を形成した透明導電性シートを形成した。この時の温度を予熱期間Aの温度と恒率乾燥期間Bの温度ABteとし、時間をABtiとした。続いて防爆型乾燥機を用いて乾燥を行う時の温度を減率乾燥期間Cの温度Cteとし、時間をCtiとした。ABte、ABti、Cte、Ctiは各々表6に記載の条件に設定し、実施例17の透明導電性シートを得た。
Example 17
Using a bar coater, “Transparent conductive film composition E” is applied to a transparent substrate (polyester film “KEL86W, thickness: 125 μm, manufactured by Teijin DuPont) using a bar coater to form a transparent conductive coating film. Then, a transparent conductive sheet was formed by drying to form a transparent conductive film having a film thickness of 0.7 μm, with the temperature at this time as the temperature of the preheating period A and the temperature ABte of the constant rate drying period B. Subsequently, the temperature when drying using an explosion-proof dryer was defined as the temperature Cte of the decreasing rate drying period C, and the time was defined as Cti. ABte, ABti, Cte, and Cti are listed in Table 6, respectively. The transparent conductive sheet of Example 17 was obtained.

実施例18
バーコータを用いて、「透明導電性膜用組成物F」を透明基材(帝人デュポン社製のポリエステルフィルム“KEL86W、厚み:125μm)に、バーコータを用いて塗布して透明導電性塗布膜を形成し、次いで乾燥して膜厚が0.7μmの透明導電性膜を形成した透明導電性シートを形成した。この時の温度を予熱期間Aの温度と恒率乾燥期間Bの温度ABteとし、時間をABtiとした。続いて防爆型乾燥機を用いて乾燥を行う時の温度を減率乾燥期間Cの温度Cteとし、時間をCtiとした。ABte、ABti、Cte、Ctiは各々表6に記載の条件に設定し、実施例18の透明導電性シートを得た。
Example 18
Using a bar coater, “Transparent conductive film composition F” is applied to a transparent substrate (polyester film “KEL86W, thickness: 125 μm, manufactured by Teijin DuPont) using a bar coater to form a transparent conductive coating film. Then, a transparent conductive sheet was formed by drying to form a transparent conductive film having a film thickness of 0.7 μm, with the temperature at this time as the temperature of the preheating period A and the temperature ABte of the constant rate drying period B. Subsequently, the temperature when drying using an explosion-proof dryer was defined as the temperature Cte of the decreasing rate drying period C, and the time was defined as Cti. ABte, ABti, Cte, and Cti are listed in Table 6, respectively. The transparent conductive sheet of Example 18 was obtained.

実施例19
バーコータを用いて、「透明導電性膜用組成物G」を透明基材(帝人デュポン社製のポリエステルフィルム“KEL86W、厚み:125μm)に、バーコータを用いて塗布して透明導電性塗布膜を形成し、次いで乾燥して膜厚が0.7μmの透明導電性膜を形成した透明導電性シートを形成した。この時の温度を予熱期間Aの温度と恒率乾燥期間Bの温度ABteとし、時間をABtiとした。続いて防爆型乾燥機を用いて乾燥を行う時の温度を減率乾燥期間Cの温度Cteとし、時間をCtiとした。ABte、ABti、Cte、Ctiは各々表6に記載の条件に設定し、実施例19の透明導電性シートを得た。
Example 19
Using a bar coater, “Transparent conductive film composition G” is applied to a transparent substrate (polyester film “KEL86W manufactured by Teijin DuPont, thickness: 125 μm) using a bar coater to form a transparent conductive coating film. Then, a transparent conductive sheet was formed by drying to form a transparent conductive film having a film thickness of 0.7 μm, with the temperature at this time as the temperature of the preheating period A and the temperature ABte of the constant rate drying period B. Subsequently, the temperature when drying using an explosion-proof dryer was defined as the temperature Cte of the decreasing rate drying period C, and the time was defined as Cti. ABte, ABti, Cte, and Cti are listed in Table 6, respectively. The transparent conductive sheet of Example 19 was obtained.

実施例20
バーコータを用いて、「透明導電性膜用組成物H」を透明基材(帝人デュポン社製のポリエステルフィルム“KEL86W、厚み:125μm)に、バーコータを用いて塗布して透明導電性塗布膜を形成し、次いで乾燥して膜厚が0.7μmの透明導電性膜を形成した透明導電性シートを形成した。この時の温度を予熱期間Aの温度と恒率乾燥期間Bの温度ABteとし、時間をABtiとした。続いて防爆型乾燥機を用いて乾燥を行う時の温度を減率乾燥期間Cの温度Cteとし、時間をCtiとした。ABte、ABti、Cte、Ctiは各々表6に記載の条件に設定し、実施例20の透明導電性シートを得た。
Example 20
Using a bar coater, “Transparent conductive film composition H” is applied to a transparent substrate (polyester film “KEL86W, thickness: 125 μm, manufactured by Teijin DuPont) using a bar coater to form a transparent conductive coating film. Then, a transparent conductive sheet was formed by drying to form a transparent conductive film having a film thickness of 0.7 μm, with the temperature at this time as the temperature of the preheating period A and the temperature ABte of the constant rate drying period B. Subsequently, the temperature when drying using an explosion-proof dryer was defined as the temperature Cte of the decreasing rate drying period C, and the time was defined as Cti. ABte, ABti, Cte, and Cti are listed in Table 6, respectively. The transparent conductive sheet of Example 20 was obtained.

実施例21
バーコータを用いて、「透明導電性膜用組成物I」を透明基材(帝人デュポン社製のポリエステルフィルム“KEL86W、厚み:125μm)に、バーコータを用いて塗布して透明導電性塗布膜を形成し、次いで乾燥して膜厚が0.7μmの透明導電性膜を形成した透明導電性シートを形成した。この時の温度を予熱期間Aの温度と恒率乾燥期間Bの温度ABteとし、時間をABtiとした。続いて防爆型乾燥機を用いて乾燥を行う時の温度を減率乾燥期間Cの温度Cteとし、時間をCtiとした。ABte、ABti、Cte、Ctiは各々表6に記載の条件に設定し、実施例21の透明導電性シートを得た。
Example 21
Using a bar coater, “Transparent conductive film composition I” is applied to a transparent base material (polyester film “KEL86W, thickness: 125 μm, manufactured by Teijin DuPont” using a bar coater to form a transparent conductive coating film. Then, a transparent conductive sheet was formed by drying to form a transparent conductive film having a film thickness of 0.7 μm, with the temperature at this time as the temperature of the preheating period A and the temperature ABte of the constant rate drying period B. Subsequently, the temperature when drying using an explosion-proof dryer was defined as the temperature Cte of the decreasing rate drying period C, and the time was defined as Cti. ABte, ABti, Cte, and Cti are listed in Table 6, respectively. The transparent conductive sheet of Example 21 was obtained.

比較例1
バーコータを用いて、溶媒Aにケトン系溶媒或いはエステル系溶媒を含まない「透明導電性膜用組成物Jを透明基材(帝人デュポン社製のポリエステルフィルム“KEL86W、厚み:125μm)に、バーコータを用いて塗布して透明導電性塗布膜を形成し、次いで乾燥して膜厚が0.7μmの透明導電性膜を形成した透明導電性シートを形成した。この時の温度を予熱期間Aの温度と恒率乾燥期間Bの温度ABteとし、時間をABtiとした。続いて防爆型乾燥機を用いて乾燥を行う時の温度を減率乾燥期間Cの温度Cteとし、時間をCtiとした。ABte、ABti、Cte、Ctiを表6に記載の条件に設定し、比較例1の透明導電性シートを得た。
Comparative Example 1
Using a bar coater, the solvent A does not contain a ketone solvent or an ester solvent. “The transparent conductive film composition J is applied to a transparent substrate (polyester film“ KEL86W, thickness: 125 μm, manufactured by Teijin DuPont ”). A transparent conductive coating film was formed by coating, and then dried to form a transparent conductive sheet having a thickness of 0.7 μm. The temperature at this time was defined as the temperature during the preheating period A and the temperature ABte during the constant rate drying period B, and the time as ABti. Subsequently, the temperature when drying using an explosion-proof dryer was set as the temperature Cte of the decreasing rate drying period C, and the time was set as Cti. ABte, ABti, Cte, and Cti were set to the conditions shown in Table 6 to obtain a transparent conductive sheet of Comparative Example 1.

比較例2
バーコータを用いて、溶媒Bがケトン系溶媒或いはエステル系溶媒を含まない「透明導電性膜用組成物Kを透明基材(帝人デュポン社製のポリエステルフィルム“KEL86W、厚み:125μm)に、バーコータを用いて塗布して透明導電性塗布膜を形成し、次いで乾燥して膜厚が0.7μmの透明導電性膜を形成した透明導電性シートを形成した。この時の温度を予熱期間Aの温度と恒率乾燥期間Bの温度ABteとし、時間をABtiとした。続いて防爆型乾燥機を用いて乾燥を行う時の温度を減率乾燥期間Cの温度Cteとし、時間をCtiとして透明導電性シートを得た。ABte、ABti、Cte、Ctiを表6に記載の条件に変更し比較例6の組成物を塗布、乾燥して透明導電性シートを得た。
Comparative Example 2
Using a bar coater, the solvent B does not contain a ketone solvent or an ester solvent. “The transparent conductive film composition K is applied to a transparent substrate (polyester film“ KEL86W, thickness: 125 μm, manufactured by Teijin DuPont ”) A transparent conductive coating film was formed by coating, and then dried to form a transparent conductive sheet having a thickness of 0.7 μm. The temperature at this time was defined as the temperature during the preheating period A and the temperature ABte during the constant rate drying period B, and the time as ABti. Then, the temperature when drying using an explosion-proof dryer was set to the temperature Cte of the decreasing rate drying period C, and time was set to Cti, and the transparent conductive sheet was obtained. ABte, ABti, Cte, and Cti were changed to the conditions shown in Table 6, and the composition of Comparative Example 6 was applied and dried to obtain a transparent conductive sheet.

<初期表面電気抵抗値>
透明導電性膜用組成物を分散処理後、24時間以内に塗布、乾燥して得た膜厚が0.7μmの透明導電性膜を形成した透明導電性シートから、長さ75mm、幅75mmのサンプルを切り出し、塗布面の中心部を抵抗率計(“ロレスタMCP−T610三菱化学アナリテック社製)を用いて、透明導電性膜側の初期表面電気抵抗値を測定した。表面電気抵抗値が10000Ω/□未満のものを○、10000〜15000Ω/□のものを△、15000Ω/□以上のものを×とした。
<Initial surface electrical resistance value>
From a transparent conductive sheet having a transparent conductive film having a thickness of 0.7 μm obtained by applying and drying the composition for transparent conductive film within 24 hours after the dispersion treatment, a length of 75 mm and a width of 75 mm The sample was cut out, and the initial surface electrical resistance value on the transparent conductive film side was measured using a resistivity meter (“Loresta MCP-T610 manufactured by Mitsubishi Chemical Analytech Co., Ltd.) at the center of the coated surface. Those with less than 10,000 Ω / □ were evaluated as “◯”, those with 10,000-15000 Ω / □ as “Δ”, and those with 15000 Ω / □ or more as “×”.

<ヘイズ>
光学特性は、ヘイズ(曇り)を測定することにより評価した。ヘイズの値が低いほど、光学特性が優れることになる。測定資料は透明導電性膜用組成物を分散処理後、24時間以内に塗布、乾燥して得た、膜厚0.7μmの透明導電性膜を形成した透明導電性シートを用いた。ヘイズの測定はヘイズメーター(“NDH2000日本電色社製)を用いてJISK7361に準拠した方法(モード:ホウホウ1)にて透明基材を含めたヘイズを評価した。ヘイズが1.0%未満のものを○、1.0〜2.0%のものを△、2.0%以上のものを×とした。
<Haze>
The optical properties were evaluated by measuring haze. The lower the haze value, the better the optical properties. The measurement material used the transparent conductive sheet which formed the transparent conductive film with a film thickness of 0.7 micrometer obtained by apply | coating and drying within 24 hours after the dispersion process for the composition for transparent conductive films. The haze was measured by using a haze meter ("NDH2000 Nippon Denshoku Co., Ltd.") in accordance with JIS K 7361 (mode: Hohou 1) to evaluate the haze including the transparent substrate. The haze was less than 1.0%. The thing was made into (circle), the thing of 1.0-2.0% was set to (triangle | delta), and the thing 2.0% or more was made into x.

<組成物の保存安定性>
透明導電性膜用組成物を分散処理後、25℃環境下で7日間保存した。この組成物を塗布、乾燥して得た膜厚が0.7μmの透明導電性膜を形成した透明導電性シートから、長さ75mm、幅75mmのサンプルを切り出し、塗布面の中心部を抵抗率計(“ロレスタMCP−T610三菱化学アナリテック社製)を用いて、透明導電性膜側の表面電気抵抗値を測定した。この値と、上記で測定した初期表面電気抵抗値から下記の式を用いて計算した値が、5%未満のものを透明導電性膜用組成物の保存安定性が○、5%以上10%未満のものを保存安定性が△、10%以上であるものを保存安定性が×とした。
(透明導電性膜用組成物保存後表面電気抵抗値−初期表面電気抵抗値)/初期表面電気抵抗値×100
<Storage stability of composition>
The composition for transparent conductive film was dispersed and then stored for 7 days in a 25 ° C. environment. A sample having a length of 75 mm and a width of 75 mm was cut out from a transparent conductive sheet on which a transparent conductive film having a thickness of 0.7 μm was formed by applying and drying this composition. The surface electrical resistance value on the transparent conductive film side was measured using a meter (“Loresta MCP-T610 manufactured by Mitsubishi Chemical Analytech Co., Ltd.). From this value and the initial surface electrical resistance value measured above, the following equation was obtained. When the calculated value is less than 5%, the storage stability of the composition for transparent conductive film is ◯, 5% or more and less than 10% is stored and the storage stability is △ 10% or more. Stability was set as x.
(Surface electrical resistance value after storage of composition for transparent conductive film−initial surface electrical resistance value) / initial surface electrical resistance value × 100

<透明導電性シートの表面電気抵抗値経時変化>
透明導電性膜用組成物を分散処理後、24時間以内に塗布、乾燥して、乾燥膜厚が0.7μmの透明導電性膜を形成した透明導電性シートを得た。この透明導電性シートを23℃相対湿度50%の暗室に24時間静置した後、長さ75mm、幅75mmのサンプルを切り出し、塗布面の中心部を抵抗率計(“ロレスタMCP−T610三菱化学アナリテック社製)を用いて、透明導電性膜側の透明導電性シート保存後表面電気抵抗値を測定した。この値と、上記で測定した初期表面電気抵抗値から、下記の式を用いて計算した透明導電性膜シートの表面電気抵抗値経時変化の値が、5%未満のものをシートの保存安定性が○、5%以上10%未満のものをシートの保存安定性が△、10%以上であるものをシートの保存安定性が×とした。
(透明導電性シート保存後表面電気抵抗値−初期表面電気抵抗値)/初期表面電気抵抗値 ×100
<Surface electrical resistance value change with time of transparent conductive sheet>
After the dispersion treatment, the transparent conductive film composition was applied and dried within 24 hours to obtain a transparent conductive sheet on which a transparent conductive film having a dry film thickness of 0.7 μm was formed. This transparent conductive sheet was allowed to stand in a dark room at 23 ° C. and 50% relative humidity for 24 hours, and then a sample having a length of 75 mm and a width of 75 mm was cut out and a resistivity meter (“Loresta MCP-T610 Mitsubishi Chemical) was applied to the center of the coated surface. The surface electrical resistance value after storage of the transparent conductive sheet on the side of the transparent conductive film was measured using the following formula from this value and the initial surface electrical resistance value measured above. When the calculated value of the surface resistance of the transparent conductive film sheet over time is less than 5%, the storage stability of the sheet is good. When the value is 5% or more and less than 10%, the storage stability of the sheet is Δ10. The sheet having a storage stability of% or more was evaluated as x.
(Surface electrical resistance value after storage of transparent conductive sheet−initial surface electrical resistance value) / initial surface electrical resistance value × 100

各実施例で作製した透明導電膜用組成物A〜Kの組成を表1〜表3に纏めた。また、各実施例、比較例で作製した透明導電性シートの測定結果を表4〜6に纏めた。   The compositions of the transparent conductive film compositions A to K produced in each example are summarized in Tables 1 to 3. Moreover, the measurement result of the transparent conductive sheet produced by each Example and the comparative example was put together in Tables 4-6.

Figure 2016207607
Figure 2016207607

Figure 2016207607
Figure 2016207607

Figure 2016207607
Figure 2016207607

Figure 2016207607
Figure 2016207607

Figure 2016207607
Figure 2016207607

Figure 2016207607
Figure 2016207607

実施例1〜実施例13より、本発明の透明導電性膜用組成物を透明基材に塗布した透明導電性塗布膜を乾燥して透明導電性膜を形成する際に、相対的に乾燥しやすい溶媒Aにより透明導電性膜中の残存溶媒量を低減できる。また相対的に乾燥しにくい溶媒Bが乾燥しやすい溶媒Aに比べて徐々に乾燥する結果、透明導電性膜用組成物の保存安定性が向上し、初期表面電気抵抗値が低下すると共に、表面電気抵抗値経時変化を小さくすることができた。更にヘイズ値が低い透明導電性シートを得ることができた。   From Example 1 to Example 13, when the transparent conductive film formed by applying the composition for transparent conductive film of the present invention to a transparent substrate was dried to form a transparent conductive film, the film was relatively dried. The amount of residual solvent in the transparent conductive film can be reduced by the easy solvent A. In addition, the solvent B, which is relatively difficult to dry, is gradually dried as compared with the solvent A, which is easy to dry. As a result, the storage stability of the transparent conductive film composition is improved, the initial surface electric resistance value is decreased, and the surface The electrical resistance value change with time could be reduced. Furthermore, a transparent conductive sheet having a low haze value could be obtained.

比較例1では相対的に乾燥しやすい溶媒Aにトルエンを使用し、ケトン系溶媒、エステル系溶媒から選ばれる少なくとも1種を用いていないため、分散性が低下し、透明導電性膜用組成物の保存安定性が低下すると共に、初期表面電気抵抗値、ヘイズ値が上昇した。
比較例2では相対的に乾燥しにくい溶媒Bにプロピレングリコールモノメチルエーテルを使用し、ケトン系溶媒、エステル系溶媒から選ばれる少なくとも1種を用いていないため、分散性が低下し、透明導電性膜用組成物の保存安定性が低下した。
In Comparative Example 1, toluene is used as solvent A, which is relatively easy to dry, and at least one selected from ketone solvents and ester solvents is not used. As the storage stability of the resin deteriorated, the initial surface electrical resistance value and haze value increased.
In Comparative Example 2, propylene glycol monomethyl ether is used for solvent B, which is relatively difficult to dry, and at least one selected from ketone solvents and ester solvents is not used. The storage stability of the composition for use decreased.

Claims (5)

透明導電性粒子とバインダ樹脂と溶媒を含む透明導電性膜用組成物であって、
前記透明導電性膜用組成物の固形分濃度が20〜50重量%であり、
前記溶媒は酢酸ブチルの蒸発速度を1とした場合の相対蒸発速度が1以上の溶媒Aと、相対蒸発速度が1未満の溶媒Bを含み、
前記溶媒Aと前記溶媒Bはいずれも、少なくともケトン系溶媒、エステル系溶媒から選ばれる1種を含むことを特徴とする、透明導電性膜用組成物。
A composition for transparent conductive film comprising transparent conductive particles, a binder resin and a solvent,
The solid content concentration of the composition for transparent conductive film is 20 to 50% by weight,
The solvent includes a solvent A having a relative evaporation rate of 1 or more when the evaporation rate of butyl acetate is 1, and a solvent B having a relative evaporation rate of less than 1.
Both the solvent A and the solvent B contain at least one selected from a ketone solvent and an ester solvent, the composition for transparent conductive films.
請求項1に記載の透明導電性膜用組成物であって、
前記溶媒Aと前記溶媒Bの比率が重量比で、溶媒A:溶媒B=95:5〜70:30で有ることを特徴とする、透明導電性膜用組成物。
It is a composition for transparent conductive films of Claim 1, Comprising:
A composition for a transparent conductive film, wherein a ratio of the solvent A and the solvent B is a weight ratio of solvent A: solvent B = 95: 5 to 70:30.
請求項1または2に記載の透明導電性膜用組成物であって、
前記溶媒Aの中で、ケトン系溶媒、エステル系溶媒の量は合計で90重量%以上であり、
前記溶媒Bの中で、ケトン系溶媒、エステル系溶媒の量は合計で70重量%以上であることを特徴とする、透明導電性膜用組成物。
It is a composition for transparent conductive films of Claim 1 or 2, Comprising:
In the solvent A, the amount of the ketone solvent and the ester solvent is 90% by weight or more in total,
In the solvent B, the amount of the ketone solvent and the ester solvent is 70% by weight or more in total.
請求項1乃至請求項3に記載の透明導電性膜用組成物を用いた透明導電性シートの製造方法であって、
透明基材の一主面上に前記透明導電性膜用組成物を塗布して、透明導電性塗布膜を形成する第1の工程と、
前記透明導電性塗布膜を乾燥させて透明導電性膜を形成した透明導電性シートを形成する第2の工程とを含み、
前記第2の工程において
前記透明導電性膜の厚さが0.3〜1.5μmであり、
更に前記透明導電性塗布膜を乾燥させて透明導電性膜を形成する際に予熱期間、恒率乾燥期間、減率乾燥期間を含み、
前記予熱期間Aの時間と前記恒率乾燥期間Bの時間の合計をABti、前記減率乾燥期間Cの時間をCtiとし、
前記予熱期間Aの温度と前記恒率乾燥期間Bの温度をABte、前記減率乾燥期間Cの温度をCteとすると、式1から式4を満足することを特徴とする、請求項1に記載の透明導電性シートの製造方法。
式1 0.5分<ABti
式2 1分<Cti<5分
式3 20℃<ABte<40℃
式4 70℃<Cte<120℃
A method for producing a transparent conductive sheet using the composition for transparent conductive film according to claim 1,
A first step of coating the transparent conductive film composition on one main surface of the transparent substrate to form a transparent conductive coating film;
A second step of forming a transparent conductive sheet in which the transparent conductive coating film is dried to form a transparent conductive film,
In the second step, the transparent conductive film has a thickness of 0.3 to 1.5 μm,
Furthermore, when the transparent conductive coating film is dried to form a transparent conductive film, a preheating period, a constant rate drying period, a reduced rate drying period,
The sum of the time of the preheating period A and the time of the constant rate drying period B is ABti, the time of the reduced rate drying period C is Cti,
The equation (1) to (4) are satisfied, where the temperature of the preheating period A and the temperature of the constant rate drying period B is ABte, and the temperature of the decreasing rate drying period C is Cte. Method for producing a transparent conductive sheet.
Formula 1 0.5 min <ABti
Formula 2 1 min <Cti <5 min Formula 3 20 ° C. <ABte <40 ° C.
Formula 4 70 ° C <Cte <120 ° C
請求項4の製造方法で製造された透明導電性シート。   The transparent conductive sheet manufactured with the manufacturing method of Claim 4.
JP2015091438A 2015-04-28 2015-04-28 Transparent conductive film composition, method for producing transparent conductive sheet, and transparent conductive sheet Active JP6506608B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015091438A JP6506608B2 (en) 2015-04-28 2015-04-28 Transparent conductive film composition, method for producing transparent conductive sheet, and transparent conductive sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015091438A JP6506608B2 (en) 2015-04-28 2015-04-28 Transparent conductive film composition, method for producing transparent conductive sheet, and transparent conductive sheet

Publications (2)

Publication Number Publication Date
JP2016207607A true JP2016207607A (en) 2016-12-08
JP6506608B2 JP6506608B2 (en) 2019-04-24

Family

ID=57490187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015091438A Active JP6506608B2 (en) 2015-04-28 2015-04-28 Transparent conductive film composition, method for producing transparent conductive sheet, and transparent conductive sheet

Country Status (1)

Country Link
JP (1) JP6506608B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017169603A1 (en) * 2016-03-30 2017-10-05 日立マクセル株式会社 Composition for forming transparent conductive film, and transparent conductive substrate

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS624761A (en) * 1985-07-01 1987-01-10 Takiron Co Ltd Coating composition
JP2006127929A (en) * 2004-10-29 2006-05-18 Mitsubishi Chemicals Corp Substrate with transparent conductive film, coating liquid and its manufacturing method
JP2012190713A (en) * 2011-03-11 2012-10-04 Hitachi Maxell Ltd Method for producing transparent conductive sheet
JP2013141746A (en) * 2012-01-06 2013-07-22 Hitachi Maxell Ltd Transparent electroconductive sheet

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS624761A (en) * 1985-07-01 1987-01-10 Takiron Co Ltd Coating composition
JP2006127929A (en) * 2004-10-29 2006-05-18 Mitsubishi Chemicals Corp Substrate with transparent conductive film, coating liquid and its manufacturing method
JP2012190713A (en) * 2011-03-11 2012-10-04 Hitachi Maxell Ltd Method for producing transparent conductive sheet
JP2013141746A (en) * 2012-01-06 2013-07-22 Hitachi Maxell Ltd Transparent electroconductive sheet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017169603A1 (en) * 2016-03-30 2017-10-05 日立マクセル株式会社 Composition for forming transparent conductive film, and transparent conductive substrate

Also Published As

Publication number Publication date
JP6506608B2 (en) 2019-04-24

Similar Documents

Publication Publication Date Title
JP5732786B2 (en) Method for producing optical polyester film
KR20120106603A (en) Transparent conductive film and touch panel
JP6858503B2 (en) Transparent conductive film
TWI421316B (en) Transparent conductive film forming composition, transparent conductive film, and display
TWI680874B (en) Laminated film and its manufacturing method
JP2009086138A (en) Optical easy-adhesive film and optical laminated film
TW201716517A (en) Conductive transparent coating for rigid and flexible substrates
CN114479152B (en) High-hardness anti-dazzle film
JP2010199016A (en) Transparent conductive sheet and method of manufacturing the same
WO2006109419A1 (en) Optical multilayer body
JP5674514B2 (en) Method for producing transparent conductive sheet
JP6506608B2 (en) Transparent conductive film composition, method for producing transparent conductive sheet, and transparent conductive sheet
JP5837292B2 (en) Composition for forming transparent conductive film, transparent conductive film, and antireflection film
JP2011192401A (en) Transparent conductive paste composition
TWI383894B (en) Optical laminate
JP4710269B2 (en) Antireflection laminated film and display medium using the same
JP5789163B2 (en) Transparent conductive sheet
JP6210851B2 (en) Transparent conductive sheet
JP2010277927A (en) Transparent conductive sheet, and method of manufacturing the same
WO2017169603A1 (en) Composition for forming transparent conductive film, and transparent conductive substrate
JP6515445B2 (en) Polyester film roll for surface protection film and conductive film laminate
JP5443092B2 (en) Transparent conductive sheet and method for producing the same
JP5908287B2 (en) Composition for forming transparent conductive film and transparent conductive film
JP2011086582A (en) Method of manufacturing transparent conductive sheet
JP2010186642A (en) Transparent conductive sheet and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190326

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190329

R150 Certificate of patent or registration of utility model

Ref document number: 6506608

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250