JP2016206130A - Three-dimensional position measurement system - Google Patents

Three-dimensional position measurement system Download PDF

Info

Publication number
JP2016206130A
JP2016206130A JP2015091277A JP2015091277A JP2016206130A JP 2016206130 A JP2016206130 A JP 2016206130A JP 2015091277 A JP2015091277 A JP 2015091277A JP 2015091277 A JP2015091277 A JP 2015091277A JP 2016206130 A JP2016206130 A JP 2016206130A
Authority
JP
Japan
Prior art keywords
prism
unit
dimensional position
measurement
measuring unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015091277A
Other languages
Japanese (ja)
Other versions
JP6533691B2 (en
Inventor
信幸 西田
Nobuyuki Nishida
信幸 西田
熊谷 薫
Kaoru Kumagai
薫 熊谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topcon Corp
Original Assignee
Topcon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topcon Corp filed Critical Topcon Corp
Priority to JP2015091277A priority Critical patent/JP6533691B2/en
Publication of JP2016206130A publication Critical patent/JP2016206130A/en
Application granted granted Critical
Publication of JP6533691B2 publication Critical patent/JP6533691B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a three-dimensional position measuring system for improving the operation efficiency of a three-dimensional position measurement.SOLUTION: A three-dimensional position measuring system includes: a measuring device; and a measurement point side device 4 located near a measurement point X. The measuring device includes: a measuring device side distance measuring unit for measuring distance to a prism 3 and an angle measuring unit for measuring an angle; a prism imaging unit; and an image picking up unit for picking up surrounding scenery including the prism 3. The measurement point side device 4 includes: the prism 3; a pointer 121 indicating the measurement point; a device side distance measuring unit for measuring a distance to the measurement point; and an inclination case 5 having a pattern 41 for analyzing an inclination angle from a visual line direction. The pattern 41 is provided at a position shifted by a first fixed distance LF1 from the prism 3 positioned frontward/backward in an optical axis direction of the device side distance measuring unit on a plane perpendicular to an optical axis 123 of the device side distance measuring unit, and measures a three-dimensional position of the measurement point X from the three-dimensional position of the prism 3, the inclination angle of an inclinometer sheet, and the distance obtained by the device side distance measuring unit.SELECTED DRAWING: Figure 3

Description

本発明は、測定点の三次元位置を計測するためのシステムに関する。   The present invention relates to a system for measuring a three-dimensional position of a measurement point.

測量、計測、またはBIM(Building Information Modeling)の分野では、高反射物でないターゲットを測定点に設けて、ノンプリズム測距部を備えた測量機でターゲットを捕捉して、測定点の三次元位置を計測する手法がある。または、再帰反射型のプリズムを指示棒に既知の固定長で固定して、気泡管等を使用して指示棒の鉛直状態を確保してプリズムの三次元位置計測を行い、この計測値に対し上記の固定長分だけ鉛直下方に移動して測定点の三次元位置を計測する手法がある。後者の手法は、部屋の角など、指示棒を傾斜させなければならない場合には使用できないという作業制約があり、特許文献1では、指示棒に視線方向からの傾斜角を解析するためのパターンを有する傾斜ケースを備えることで、この問題を解消しようとしている。   In the field of surveying, measurement, or BIM (Building Information Modeling), a target that is not a highly reflective object is provided at the measurement point, the target is captured by a surveying instrument equipped with a non-prism distance measuring unit, and the three-dimensional position of the measurement point There is a method to measure. Alternatively, fix the retroreflective prism to the indicator rod with a known fixed length, and use a bubble tube or the like to secure the vertical state of the indicator rod and measure the prism's three-dimensional position. There is a method of measuring the three-dimensional position of the measurement point by moving vertically downward by the fixed length. The latter method has a work restriction that it cannot be used when the indicator bar must be tilted, such as a corner of a room. In Patent Document 1, a pattern for analyzing the tilt angle from the line-of-sight direction is provided on the indicator bar. By providing an inclined case with this, we are trying to solve this problem.

特願2015−043533Japanese Patent Application No. 2015-043533

しかし、上記のいずれの手法も、測定点を指示するための視点は測量機にある。測量機の望遠鏡視野は限られていることから、測量機の視点位置からでは測定点を狙いにくい場合があった。また、測量機から測定点に対してレーザポインタを照射することで、作業者を測定点の近くに誘導することも可能であるが、測量機から測定点が遠くなるほど、レーザが広がり、光量も減るため、正確に指示するのは困難であった。   However, in any of the above methods, the surveying instrument has a viewpoint for indicating the measurement point. Since the field of view of the telescope of the surveying instrument is limited, it may be difficult to aim at the measurement point from the viewpoint position of the surveying instrument. It is also possible to guide the operator closer to the measurement point by irradiating the laser pointer to the measurement point from the surveying instrument, but the farther the measurement point is from the surveying instrument, the more the laser spreads and the amount of light increases. Because of the decrease, it was difficult to give accurate instructions.

本発明は、前記問題を解決しようとするものであり、三次元位置計測の作業効率を向上させる三次元位置計測システムを提供することを目的とする。   The present invention is intended to solve the above-described problem, and an object thereof is to provide a three-dimensional position measurement system that improves the work efficiency of three-dimensional position measurement.

上記課題を解決するために、本発明の三次元位置計測システムは、測量機と、測定点付近にある測定点側装置と、を備え、前記測量機は、プリズムまでの測距を行う測量機側測距部および測角を行う測角部と、プリズム撮像部と、プリズムを含む周囲風景を撮影する画像撮像部と、を有し、前記測定点側装置は、前記プリズムと、前記測定点を指し示すポインタと、前記測定点までの距離を測定する装置側測距部と、視線方向からの傾斜角を解析するためのパターンを有する傾斜ケースと、を有し、前記傾斜ケースの前記パターンを、前記装置側測距部の光軸に対して垂直な面に、前記装置側測距部の光軸方向前後に前記プリズムから第1の固定距離ずれる位置に設け、前記画像撮像部にて前記パターンを撮像し、前記測量機からの視線方向に対する傾斜ケースの傾斜角を算出し、前記プリズム撮像部で得た画像でプリズムを視準して前記測量機側測距部および前記測角部で得た前記プリズムの三次元位置、前記傾斜ケースの傾斜角、および前記装置側測距部で得た距離から、前記測定点の三次元位置を計測する。   In order to solve the above problems, a three-dimensional position measurement system of the present invention includes a surveying instrument and a measurement point side device near the measurement point, and the surveying instrument measures a distance to a prism. A side distance measuring unit and an angle measuring unit that performs angle measurement, a prism imaging unit, and an image imaging unit that captures a surrounding landscape including the prism, and the measurement point side device includes the prism and the measurement point A device-side distance measuring unit that measures the distance to the measurement point, and a tilt case having a pattern for analyzing the tilt angle from the line-of-sight direction, and the pattern of the tilt case is , Provided on a surface perpendicular to the optical axis of the device-side distance measuring unit at a position deviated from the prism by a first fixed distance before and after the optical axis direction of the device-side distance measuring unit. Take a pattern and view direction from the surveying instrument The tilt angle of the tilt case is calculated, the prism is collimated with the image obtained by the prism imaging unit, the three-dimensional position of the prism obtained by the surveying instrument side distance measuring unit and the angle measuring unit, and the tilt case The three-dimensional position of the measurement point is measured from the inclination angle and the distance obtained by the device-side distance measuring unit.

上記態様において、ある態様の三次元位置計測システムは、前記プリズムのプリズム中心を前記装置側測距部の光軸上に設け、前記プリズムの三次元位置から、前記傾斜ケースの傾斜角から得た前記傾斜ケースの法線方向に、前記装置側測距部の基準点から前記プリズム中心までの第2の固定距離と前記装置側測距部で得た測定距離移動して、前記測定点の三次元位置を計測する。   In the above aspect, the three-dimensional position measurement system of one aspect is obtained from the inclination angle of the inclined case from the three-dimensional position of the prism by providing the prism center of the prism on the optical axis of the device-side distance measuring unit. In the normal direction of the inclined case, the second fixed distance from the reference point of the device-side distance measuring unit to the prism center and the measurement distance obtained by the device-side distance measuring unit are moved, and the third order of the measurement points Measure the original position.

上記態様において、ある態様の三次元位置計測システムは、前記装置側測距部の光軸に対して垂直な面で前記プリズムのプリズム中心と同一線上となる位置に前記画像撮像部で解析可能な解析マークを設け、前記プリズム中心と前記解析マークのマーク中心を通る直線から前記装置側測距部の前記基準点をずらして設け、前記プリズム中心を原点とする前記装置側測距部の基準点のずれ量を予め求めて、前記プリズムの三次元位置から、前記基準点のずれ量分移動して、前記傾斜ケースの傾斜角から得た前記傾斜ケースの法線方向に、前記装置側測距部で得た測定距離移動して、前記測定点の三次元位置を計測する。   In the above aspect, the three-dimensional position measurement system of one aspect can be analyzed by the image capturing unit at a position that is perpendicular to the optical axis of the device-side distance measuring unit and is collinear with the prism center of the prism. An analysis mark is provided, the reference point of the device-side distance measuring unit is shifted from a straight line passing through the center of the prism and the mark center of the analysis mark, and the reference point of the device-side distance measuring unit with the prism center as the origin In this case, the device-side distance measurement is performed in the normal direction of the tilt case obtained from the tilt angle of the tilt case by moving the reference point from the three-dimensional position of the prism by the shift amount of the reference point. The measurement distance obtained by the unit is moved, and the three-dimensional position of the measurement point is measured.

上記態様において、前記プリズムに代えて前記傾斜ケースに前記画像撮像部で解析可能なターゲットを設け、前記プリズム撮像部を任意の構成として、前記プリズム撮像部による視準で得たプリズムの三次元位置に代えて前記画像撮像部による前記ターゲットの視準で得た前記ターゲットの三次元位置を使用して前記測定点の三次元位置を計測するのも好ましい。   In the above aspect, the three-dimensional position of the prism obtained by collimation by the prism imaging unit, in which the target that can be analyzed by the image imaging unit is provided in the inclined case instead of the prism, and the prism imaging unit is an arbitrary configuration Instead of this, it is also preferable to measure the three-dimensional position of the measurement point using the three-dimensional position of the target obtained by collimating the target by the image capturing unit.

上記態様において、前記ポインタに代えて、前記装置側測距部が可視光を出射することで前記ポインタを兼ねるのも好ましい。   In the above aspect, it is preferable that the device-side distance measuring unit also serves as the pointer by emitting visible light instead of the pointer.

上記態様において、プリズムと、測定点を指し示すポインタと、前記測定点までの距離を測定する装置側測距部と、前記装置側測距部の光軸に対して垂直な面に,視線方向からの傾斜角を解析するためのパターンを有し,前記パターンを前記装置側測距部の光軸方向前後に前記プリズムから第1の固定距離ずれる位置に配置する傾斜ケースと、を有する測定点側装置が使用されるのも好ましい。   In the above aspect, the prism, the pointer pointing to the measurement point, the device-side distance measuring unit for measuring the distance to the measurement point, and the surface perpendicular to the optical axis of the device-side distance measuring unit from the line-of-sight direction And a tilting case in which the pattern is disposed at a position deviated from the prism by a first fixed distance before and after the optical axis direction of the apparatus-side distance measuring unit. It is also preferred that an apparatus is used.

本発明によれば、測定点側装置が有するポインタで測定点を指し示せば、自動で測定点が計測されるため、三次元位置計測の作業効率が向上する。   According to the present invention, when the measurement point is pointed to by the pointer of the measurement point side device, the measurement point is automatically measured, so that the work efficiency of the three-dimensional position measurement is improved.

第1の実施形態に係る三次元位置計測システムの構成例を示す斜視図The perspective view which shows the structural example of the three-dimensional position measurement system which concerns on 1st Embodiment. 図1の測量機の内部構成を示すブロック図Block diagram showing the internal configuration of the surveying instrument of FIG. 図1の測定点側装置の構成例の斜視図The perspective view of the structural example of the measuring point side apparatus of FIG. 図1の測定点側装置の内部構成を示すブロック図The block diagram which shows the internal structure of the measuring point side apparatus of FIG. 第1の実施形態に係る三次元位置計測システムの計測フロー図であり、(a)は基本形のフロー、(b)は自動追尾を行う場合のフローIt is a measurement flow figure of the three-dimensional position measurement system concerning a 1st embodiment, (a) is a flow of a basic form, (b) is a flow in the case of performing automatic tracking. 第1の実施形態に係る三次元位置を算出するフロー図The flowchart which calculates the three-dimensional position which concerns on 1st Embodiment 図6のイメージ図Image diagram of FIG. 第2の実施形態に係る測定点側装置の構成例の側面図Side view of a configuration example of a measuring point side device according to the second embodiment 第2の実施形態に係る三次元位置計測システムの計測フロー図であり、(a)は基本形のフロー、(b)は自動追を行う場合のフローIt is a measurement flow figure of the three-dimensional position measurement system concerning a 2nd embodiment, (a) is a flow of a basic form, and (b) is a flow in the case of performing automatic tracking. 第3の実施形態に係る測定点側装置の構成例の側面図The side view of the structural example of the measuring point side apparatus which concerns on 3rd Embodiment. 第3の実施形態に係る三次元位置を算出するためのイメージ図An image diagram for calculating a three-dimensional position according to the third embodiment

次に、本発明の好適な実施の形態について、図面を参照して説明する。   Next, preferred embodiments of the present invention will be described with reference to the drawings.

(第1の実施形態)
(システム全体)
図1に示すように、三次元位置計測システム1は、測量機2と、測定点側装置4とを備える。符号Xは測定点を示している。測量機2は、三脚を用いて既知の点に据え付けられる。矢印eは測量機2の視線方向を示している。測定点側装置4は、測定点Xの付近にいる作業者により携帯されている。
(First embodiment)
(Whole system)
As shown in FIG. 1, the three-dimensional position measurement system 1 includes a surveying instrument 2 and a measurement point side device 4. A symbol X indicates a measurement point. The surveying instrument 2 is installed at a known point using a tripod. An arrow e indicates the line-of-sight direction of the surveying instrument 2. The measurement point side device 4 is carried by an operator near the measurement point X.

(測量機)
測量機2は、自動追尾可能なモータドライブトータルステーションであり、図2に示すように、水平角検出器11と、鉛直角検出器12と、傾斜センサ13と、操作部14と、水平回転駆動部15と、鉛直回転駆動部16と、演算制御部17と、記憶部18と、通信部19と、測量機側測距部20と、プリズム撮像部21と、画像撮像部22と、表示部23と、走査部24と、第2の画像撮像部25を備える。
(Surveying instrument)
The surveying instrument 2 is a motor drive total station capable of automatic tracking, and as shown in FIG. 2, a horizontal angle detector 11, a vertical angle detector 12, an inclination sensor 13, an operation unit 14, and a horizontal rotation drive unit. 15, vertical rotation drive unit 16, calculation control unit 17, storage unit 18, communication unit 19, surveying instrument side distance measurement unit 20, prism imaging unit 21, image imaging unit 22, and display unit 23. And a scanning unit 24 and a second image capturing unit 25.

測量機側測距部20は、プリズム3を視準して赤外レーザ等の測距光を出射し、プリズム3までの測距を行う測距部である。走査部24は、測距光とは異なる波長の赤外レーザ等の走査光を出射してプリズム3を探索走査する。水平回転駆動部15および鉛直回転駆動部16は、測量機側測距部20を収容した筐体を水平および鉛直方向に回転駆動させるモータである。水平角検出器11および鉛直角検出器12は、ロータリーエンコーダであり、測量機側測距部20を収容した筐体の水平方向および鉛直方向の回転角度をそれぞれ求め、視準光軸の水平角および鉛直角を求める測角部である。傾斜センサ13は、測量機側測距部20の筐体の傾斜を検出し水平に整準するために使用される。   The surveying instrument-side distance measuring unit 20 is a distance measuring unit that collimates the prism 3 and emits distance measuring light such as an infrared laser to measure the distance to the prism 3. The scanning unit 24 scans the prism 3 by emitting scanning light such as an infrared laser having a wavelength different from that of the distance measuring light. The horizontal rotation drive unit 15 and the vertical rotation drive unit 16 are motors that rotate and drive the housing containing the surveying instrument side distance measuring unit 20 in the horizontal and vertical directions. The horizontal angle detector 11 and the vertical angle detector 12 are rotary encoders, which respectively determine the horizontal and vertical rotation angles of the housing that houses the surveying instrument side distance measuring unit 20, and determine the horizontal angle of the collimating optical axis. And an angle measuring unit for obtaining a vertical angle. The inclination sensor 13 is used for detecting the inclination of the housing of the surveying instrument side distance measuring unit 20 and leveling it horizontally.

記憶部18には、測距測角を行う為のプログラム、操作部14から入力される信号に基づき水平回転駆動部15および鉛直回転駆動部16を駆動する為のプログラム、通信を制御する為のプログラム、プリズム3の自動視準,自動追尾を行う為のプログラム、後述する画像処理プログラム、後述する測定点Xの三次元位置を算出するための演算プログラム等の各種プログラムが格納されている。操作部14からは、上記プログラムに要する各種操作が行える。演算制御部17は、上記プログラムらを実行し、各種演算および各種制御を行う。通信部19は、測定点側装置4および外部無線機等からの信号を受信する。演算制御部17は、外部無線機から指示された場合、測定点の方向に測量機側測距部20を回転駆動させ、自動追尾の開始/停止等も行う。表示部23は、各種表示や計測値等を表示する。   The storage unit 18 includes a program for performing ranging and angle measurement, a program for driving the horizontal rotation driving unit 15 and the vertical rotation driving unit 16 based on a signal input from the operation unit 14, and a program for controlling communication. Various programs such as a program, a program for automatically collimating and tracking the prism 3, an image processing program to be described later, and an arithmetic program for calculating a three-dimensional position of the measurement point X to be described later are stored. Various operations required for the program can be performed from the operation unit 14. The arithmetic control unit 17 executes the above programs and performs various calculations and various controls. The communication unit 19 receives signals from the measurement point side device 4 and an external wireless device. When instructed by an external wireless device, the arithmetic control unit 17 rotates and drives the surveying instrument side distance measuring unit 20 in the direction of the measurement point, and also starts / stops automatic tracking. The display unit 23 displays various displays and measurement values.

プリズム撮像部21および画像撮像部22は、画像信号を出力するイメージセンサであり、例えばCCDやCMOSセンサ等、画素(ピクセル)の集合体で構成されている。画像撮像部22は、プリズム3の周囲風景(プリズム3も含めた風景)を撮影する。プリズム撮像部21は、走査光の波長のみを通すフィルタが設けられており、プリズム3によって反射された走査部24からの走査光を受光することで、プリズム3のみを好適に撮影するように構成されている。第2の画像撮像部25は、任意の構成要素であり、画像撮像部22よりも広角に撮影する場合に使用される。なお、上記は測量機2の構成の一例であり、当業者の知識に基づく改変がなされてよい。   The prism imaging unit 21 and the image imaging unit 22 are image sensors that output image signals, and are configured by an aggregate of pixels (pixels) such as a CCD or a CMOS sensor. The image capturing unit 22 captures the scenery around the prism 3 (landscape including the prism 3). The prism imaging unit 21 is provided with a filter that passes only the wavelength of the scanning light, and is configured to receive the scanning light from the scanning unit 24 reflected by the prism 3 so that only the prism 3 is suitably photographed. Has been. The second image capturing unit 25 is an arbitrary component and is used when shooting at a wider angle than the image capturing unit 22. The above is an example of the configuration of the surveying instrument 2, and modifications based on the knowledge of those skilled in the art may be made.

(測定点側装置)
測定点側装置4は、図3に示すように、装置筐体の外部に、プリズム3と、傾斜ケース5を有する。測定点側装置4は、図4に示すように、装置筐体の内部に、演算制御部117と、記憶部118と、通信部119と、装置側測距部120と、レーザポインタ121を備える。なお、図3では説明のために傾斜ケース5に収容されているプリズム3を実線で示している。
(Measurement point side device)
As shown in FIG. 3, the measurement point side device 4 includes a prism 3 and an inclined case 5 outside the device housing. As shown in FIG. 4, the measurement point side device 4 includes a calculation control unit 117, a storage unit 118, a communication unit 119, a device side distance measuring unit 120, and a laser pointer 121 inside the apparatus housing. . In FIG. 3, the prism 3 accommodated in the inclined case 5 is indicated by a solid line for the sake of explanation.

装置側測距部120は、レーザ光をパルス発振し、このレーザ光を受光するまでの時間差と光速により、測定点までの距離を測定するノンプリズム測距部であり、基準点(測定距離が0となる点)122から測定点Xまでの距離LMが得られる。通信部119は、測量機2へ、上記のノンプリズム測距で得た距離値の信号を送信する。レーザポインタ121は、例えば可視赤色レーザ光を直線的に発生する。レーザポインタ121の光軸は、装置側測距部120の光軸123と一致するように構成されている。記憶部118には、ノンプリズム測距を行う為のプログラム、通信を行う為のプログラムが格納されている。演算制御部117は、上記プログラムらを実行する。   The apparatus-side distance measuring unit 120 is a non-prism distance measuring unit that measures the distance to a measurement point based on the time difference until the laser beam is received and the speed of light, and oscillates the laser beam. A distance LM from 122 to the measurement point X is obtained. The communication unit 119 transmits the distance value signal obtained by the non-prism distance measurement to the surveying instrument 2. For example, the laser pointer 121 linearly generates visible red laser light. The optical axis of the laser pointer 121 is configured to coincide with the optical axis 123 of the apparatus-side distance measuring unit 120. The storage unit 118 stores a program for performing non-prism distance measurement and a program for performing communication. The arithmetic control unit 117 executes the above programs.

プリズム3は、小型化および反射光量の観点から一素子プリズムが好適であるが、入射光に対して平行な反射光を出射可能で、プリズム撮像部21によりターゲット中心が画像解析可能なものであれば採用でき、再帰性の反射シート等も使用できる。   The prism 3 is preferably a one-element prism from the viewpoint of miniaturization and the amount of reflected light. However, the prism 3 can emit reflected light parallel to incident light, and the prism imaging unit 21 can perform image analysis of the target center. Can be used, and a reflexive reflective sheet can also be used.

プリズム3は、装置側測距部120の光軸123方向と逆の外側面に固定されている。プリズム3のプリズム中心Pc(光学的な中心点)は光軸123上となるように配置されている。装置側測距部120の基準点122とプリズム中心Pc間の固定距離(以下、第2の固定距離LF2とする)は予め計測され、測量機2の記憶部18に登録される。   The prism 3 is fixed to the outer surface opposite to the direction of the optical axis 123 of the device-side distance measuring unit 120. The prism center Pc (optical center point) of the prism 3 is disposed on the optical axis 123. A fixed distance between the reference point 122 of the apparatus-side distance measuring unit 120 and the prism center Pc (hereinafter referred to as a second fixed distance LF2) is measured in advance and registered in the storage unit 18 of the surveying instrument 2.

傾斜ケース5は、解析のための解析パターン41と、解析パターン41を支持するケース42とを備える。解析パターン41は、装置側測距部120の光軸123に対して垂直な面に設けられ、光軸123上にプリズム中心Pcから既知の距離(以下、第1の固定距離LF1とする)だけ前にずれる位置に固定されている。前後方向の記述に関しては、光軸123において測定点X側を後方としている。解析パターン41は、本形態では所要のパターン幅を有する正円として形成されている。ただし、解析パターン41は、画像解析により解析パターン41の中心(パターン中心Kc)が求まる形状であればどのような形状であってもよい。ケース42は、前方に開口部43を有し、前面に解析パターン41が形成された円柱状の中空体であり、プリズム3を中に収容する。ケース42は、プリズム3と同じ側面に固定されている。ただし、ケース42は、解析パターン41をプリズム3の前後に固定できるものであれば、任意の構成でよい。   The inclined case 5 includes an analysis pattern 41 for analysis and a case 42 that supports the analysis pattern 41. The analysis pattern 41 is provided on a surface perpendicular to the optical axis 123 of the apparatus-side distance measuring unit 120, and is a known distance (hereinafter referred to as a first fixed distance LF1) from the prism center Pc on the optical axis 123. It is fixed at a position that shifts forward. Regarding the description in the front-rear direction, the measurement point X side in the optical axis 123 is the rear. In this embodiment, the analysis pattern 41 is formed as a perfect circle having a required pattern width. However, the analysis pattern 41 may have any shape as long as the center of the analysis pattern 41 (pattern center Kc) is obtained by image analysis. The case 42 is a cylindrical hollow body having an opening 43 in the front and an analysis pattern 41 formed on the front surface, and accommodates the prism 3 therein. The case 42 is fixed to the same side as the prism 3. However, the case 42 may have any configuration as long as the analysis pattern 41 can be fixed before and after the prism 3.

傾斜ケース5では、測量機2の視線方向eが装置側測距部120の光軸123と一致している場合は、解析パターン41のパターン中心Kcにプリズム3が位置して見える。一方、視線方向eが光軸123と一致していない場合は、プリズム3はパターン中心Kcに一致せず、視線の移動方向と反対方向に移動して見える。このため、傾斜ケース5は、視線方向eとの傾斜角に応じて、パターン中心Kcに対してプリズム3(プリズム中心Pc)の位置が変化する。よって、解析パターン41を撮影して画像解析することにより、視線方向に対する傾斜ケース5の位置方向がわかる。これにより、次の手法から測定点Xの三次元位置を計測することができる。   In the inclined case 5, the prism 3 appears to be located at the pattern center Kc of the analysis pattern 41 when the line-of-sight direction e of the surveying instrument 2 coincides with the optical axis 123 of the apparatus-side distance measuring unit 120. On the other hand, when the line-of-sight direction e does not coincide with the optical axis 123, the prism 3 does not coincide with the pattern center Kc and appears to move in the direction opposite to the line-of-sight movement direction. For this reason, in the tilt case 5, the position of the prism 3 (prism center Pc) changes with respect to the pattern center Kc in accordance with the tilt angle with the line-of-sight direction e. Therefore, by photographing the analysis pattern 41 and analyzing the image, the position direction of the inclined case 5 with respect to the line-of-sight direction can be determined. Thereby, the three-dimensional position of the measurement point X can be measured from the following method.

(計測手法)
まず、図5を参照して、計測の概要から説明する。以下の処理は、特段の記載が無いものは測量機2の演算制御部17にて行われる。基本は(a)に示すように、まずステップS10で、測定点側装置4のレーザポインタ121で測定点Xを指す。次に、ステップS11で、走査部24でプリズム3を探索走査する。次に、ステップS12で、プリズム撮像部21を用いてプリズム3のみが撮影された画像から、プリズム3が自動視準できたか判断する。視準できていない場合は、ステップS11に戻る。視準できた場合は、ステップS13に移行し、プリズム3を測距測角し、プリズム3の三次元位置を計測する。次に、ステップS14に移行し、画像撮像部22で傾斜ケース5を撮影する。ステップS13とS14は同時に行われてもよい。次に、ステップS15に移行し、プリズム3の三次元位置、傾斜ケース5の傾斜角、および装置側測距部120の計測した距離に基づき、測定点Xの三次元位置を計算する。次に、ステップS16に移行し、表示部23に測定点Xを表示して終了する。自動追尾を行う場合は、(b)に示すように、まずステップS20で測定点側装置4のレーザポインタ121で測定点Xを指し、ステップS21でプリズム3を探索走査し、ステップS22でプリズム撮像部21を用いてプリズム3のみが撮影された画像から、プリズム3がロック(自動視準)できたか判断し、以降ステップS23〜S26はステップS13〜S16と同じである。ステップS27で、自動追尾の停止が指示された場合は、ステップS28に進み追尾を停止する。停止の指示がない場合は、ステップS22に戻り、追尾を続ける。
(Measurement method)
First, the outline of measurement will be described with reference to FIG. The following processing is performed by the arithmetic control unit 17 of the surveying instrument 2 unless otherwise specified. Basically, as shown in (a), first, in step S10, the measurement point X is pointed by the laser pointer 121 of the measurement point side device 4. Next, in step S11, the scanning unit 24 searches and scans the prism 3. Next, in step S12, it is determined whether the prism 3 has been automatically collimated from an image in which only the prism 3 is captured using the prism imaging unit 21. If collimation is not possible, the process returns to step S11. If collimation is possible, the process proceeds to step S13, and the prism 3 is distance-measured and the three-dimensional position of the prism 3 is measured. Next, the process proceeds to step S <b> 14, and the inclined case 5 is photographed by the image capturing unit 22. Steps S13 and S14 may be performed simultaneously. Next, the process proceeds to step S15, and the three-dimensional position of the measurement point X is calculated based on the three-dimensional position of the prism 3, the inclination angle of the inclined case 5, and the distance measured by the apparatus-side distance measuring unit 120. Next, the process proceeds to step S16, the measurement point X is displayed on the display unit 23, and the process ends. When performing automatic tracking, as shown in (b), first, the measurement point X is pointed by the laser pointer 121 of the measurement point side device 4 in step S20, the prism 3 is searched and scanned in step S21, and prism imaging is performed in step S22. Whether or not the prism 3 can be locked (automatic collimation) is determined from an image in which only the prism 3 is photographed using the unit 21, and the subsequent steps S23 to S26 are the same as steps S13 to S16. If the stop of automatic tracking is instructed in step S27, the process proceeds to step S28 to stop tracking. If there is no stop instruction, the process returns to step S22 to continue tracking.

(三次元位置の計算手法)
第1の実施形態における、図5のステップS15またはS25における、三次元位置計算手法について、図6、図7を参照して説明する。まず、ステップS111で、画像撮像部22で撮影したビジュアル画像から、解析パターン41のパターン中心Kcを画像解析する(図7参照)。次に、ステップS112で、測量機側測距部20で得たプリズム3の測距値および水平角検出器11および鉛直角検出器12で得たプリズム3の測角値を記憶部18から読み出す。次に、ステップS113で、画像撮像部22の画像でプリズム中心Pcの位置とパターン中心Kcの水平方向ずれ量および鉛直方向ずれ量を求める。なお、プリズム3は、プリズム撮像部21では撮影されるが画像撮像部22の性能次第では映らない場合がある。ただし、プリズム中心Pcの三次元位置は明確に分かるので、予めプリズム3が視準されたときプリズム中心Pcは画像撮像部22の画像上でどの点に位置するかを記憶部18に登録しておけばよい。そして、水平方向ずれ量および鉛直方向ずれ量から、傾斜ケース5(パターン中心Kc)の位置方向ベクトル(方向ベクトルB)を求める(図7参照)。なお、方向ベクトルとは、大きさを持たない向き情報のみを有するベクトルである。次に、ステップS114で、プリズム中心Pcを中心に第1の固定距離LF1を半径とする球Sを演算し、球Sと方向ベクトルBの交点を求める。この交点の位置情報がパターン中心Kcの三次元位置である。そして、パターン中心Kc(三次元位置)とプリズム中心Pc(三次元位置)を通る直線(方向ベクトルA)を求める(図7参照)。方向ベクトルAが、傾斜ケース5の傾斜方向である。次に、ステップS115で、測定点側装置4の装置側測距部120でノンプリズム測距を行い、装置側測距部120の基準点122から測定点Xまでの測定距離LMを得る。なお、このステップS115は、図5のステップS11〜S15またはS21〜S25のどのタイミングで行われてもよい。次に、ステップS116で、測定点側装置4から測定距離LMを通信により取得する。次に、ステップS117で、プリズム中心Pcの位置(三次元位置)から、方向ベクトルAの方向に、測定距離LMに、装置側測距部120の基準点122からプリズム中心Pcまでの第2の固定距離LF2加えた分移動させて、測定点Xの三次元位置を求める。
(Three-dimensional position calculation method)
The three-dimensional position calculation method in step S15 or S25 of FIG. 5 in the first embodiment will be described with reference to FIGS. First, in step S111, the pattern center Kc of the analysis pattern 41 is image-analyzed from the visual image captured by the image capturing unit 22 (see FIG. 7). Next, in step S112, the distance measurement value of the prism 3 obtained by the surveying instrument side distance measurement unit 20 and the angle measurement value of the prism 3 obtained by the horizontal angle detector 11 and the vertical angle detector 12 are read from the storage unit 18. . Next, in step S113, the horizontal direction displacement amount and the vertical direction displacement amount of the position of the prism center Pc and the pattern center Kc are obtained from the image of the image capturing unit 22. The prism 3 is photographed by the prism imaging unit 21, but may not be captured depending on the performance of the image imaging unit 22. However, since the three-dimensional position of the prism center Pc can be clearly understood, when the prism 3 is collimated in advance, the prism center Pc is registered in the storage unit 18 at which point on the image of the image capturing unit 22 is located. Just keep it. Then, a position direction vector (direction vector B) of the inclined case 5 (pattern center Kc) is obtained from the horizontal direction deviation amount and the vertical direction deviation amount (see FIG. 7). The direction vector is a vector having only direction information having no size. Next, in step S114, the sphere S having the radius of the first fixed distance LF1 around the prism center Pc is calculated, and the intersection of the sphere S and the direction vector B is obtained. The position information of this intersection is the three-dimensional position of the pattern center Kc. Then, a straight line (direction vector A) passing through the pattern center Kc (three-dimensional position) and the prism center Pc (three-dimensional position) is obtained (see FIG. 7). The direction vector A is the tilt direction of the tilt case 5. Next, in step S115, the device-side distance measuring unit 120 of the measurement point side device 4 performs non-prism distance measurement to obtain a measurement distance LM from the reference point 122 to the measurement point X of the device side distance measuring unit 120. This step S115 may be performed at any timing of steps S11 to S15 or S21 to S25 in FIG. Next, in step S116, the measurement distance LM is acquired from the measurement point side device 4 by communication. Next, in step S117, a second distance from the reference point 122 of the apparatus-side distance measuring unit 120 to the prism center Pc is measured in the direction of the direction vector A from the position (three-dimensional position) of the prism center Pc to the measurement distance LM. The three-dimensional position of the measurement point X is obtained by moving the fixed distance LF2 plus.

(第2の実施形態)
本形態は、第1の実施形態の変形であり、プリズム3を必須構成としない場合の形態である。第1の実施形態と同様の構成については、同一の符号を用いて説明を省略する。
(Second Embodiment)
This embodiment is a modification of the first embodiment, and is a case where the prism 3 is not an essential component. About the structure similar to 1st Embodiment, description is abbreviate | omitted using the same code | symbol.

本形態の測定点側装置4は、図8に示すように、プリズム3の位置に、プリズム3に代えて、画像撮像部22で画像解析可能なターゲットTが形成されている。なお、図8では説明のために傾斜ケース5に収容されているターゲットTを実線で示している。ターゲットTは、例えば白黒パターン等コントラストの大きい素材で形成するのが好ましい。ターゲットTのターゲット中心Tcは、光軸123上にとなるように配置されている。装置側測距部120の基準点122とターゲット中心Tcの固定距離(第2の固定距離LF2)は予め計測され、測量機2の記憶部18に登録される。傾斜ケース5の解析パターン41は、光軸123に垂直な面に、光軸123上にターゲットTから既知の距離(第1の固定距離LF1)だけずれる位置に固定されている。筐体内部の構成は図4と同様である。   As shown in FIG. 8, in the measurement point side device 4 of this embodiment, a target T that can be analyzed by the image capturing unit 22 is formed at the position of the prism 3 instead of the prism 3. In addition, in FIG. 8, the target T accommodated in the inclination case 5 is shown as the continuous line for description. The target T is preferably formed of a material having a high contrast such as a black and white pattern. The target center Tc of the target T is disposed on the optical axis 123. A fixed distance (second fixed distance LF2) between the reference point 122 of the apparatus-side distance measuring unit 120 and the target center Tc (second fixed distance LF2) is measured in advance and registered in the storage unit 18 of the surveying instrument 2. The analysis pattern 41 of the tilted case 5 is fixed on a surface perpendicular to the optical axis 123 at a position shifted from the target T by a known distance (first fixed distance LF1) on the optical axis 123. The configuration inside the housing is the same as that shown in FIG.

本形態の測量機2は、プリズムをターゲットとしないため、図2の測量機側測距部20に代えてまたは追加して、ノンプリズム測距を行う第2の測量機側測距部20´を備える。また、図2のプリズム撮像部21およびプリズム3を探索するための走査部24の有無は任意となる。その他の構成は図2と同様である。これにより、次の手法から測定点Xの三次元位置を計測することができる。   Since the surveying instrument 2 of the present embodiment does not target the prism, the second surveying instrument side ranging unit 20 ′ that performs non-prism ranging instead of or in addition to the surveying instrument side ranging unit 20 of FIG. Is provided. Further, the presence or absence of the scanning unit 24 for searching the prism imaging unit 21 and the prism 3 in FIG. 2 is arbitrary. Other configurations are the same as those in FIG. Thereby, the three-dimensional position of the measurement point X can be measured from the following method.

(計測手法)
図9を参照して、第2の実施形態に係る計測の概要を説明する。以下の処理は、特段の記載が無いものは測量機2の演算制御部17にて行われる。基本は(a)に示すように、まずステップS30で、測定点側装置4のレーザポインタ121で測定点Xを指す。ステップS31で、画像撮像部22で傾斜ケース5を撮影する。次に、ステップS32で、画像撮像部22を用いて撮影された画像から、パターン中心Kcを画像解析し、ターゲットTを自動視準できたか判断する。視準できていない場合は、ステップS31に戻る。視準できた場合は、ステップS33に移行し、ターゲット中心Tcを測距測角し、ターゲット中心Tcの三次元位置を計測する。次に、ステップS34に移行し、測定点Xの三次元位置を計算する。次に、ステップS35に移行し、表示部23に測定点Xを表示して終了する。自動追尾を行う場合は、(b)に示すように、まずステップS20で測定点側装置4のレーザポインタ121で測定点Xを指し、ステップS41で、画像撮像部22で傾斜ケース5を撮影する。次に、ステップS42で、ターゲット中心Tcをロック(自動視準)できたか判断し、できた場合は、ステップS43に移行しターゲット中心Tcを測距測角する。その他のステップS44〜47は、図5のステップS25〜S28と同じである。
(Measurement method)
With reference to FIG. 9, an outline of measurement according to the second embodiment will be described. The following processing is performed by the arithmetic control unit 17 of the surveying instrument 2 unless otherwise specified. Basically, as shown in (a), first, in step S30, the measurement point X is pointed by the laser pointer 121 of the measurement point side device 4. In step S <b> 31, the inclined case 5 is photographed by the image capturing unit 22. Next, in step S32, the pattern center Kc is image-analyzed from the image photographed using the image capturing unit 22, and it is determined whether the target T has been automatically collimated. If collimation is not possible, the process returns to step S31. If collimation has been achieved, the process proceeds to step S33, where the target center Tc is measured for distance measurement, and the three-dimensional position of the target center Tc is measured. Next, the process proceeds to step S34, and the three-dimensional position of the measurement point X is calculated. Next, it transfers to step S35, displays the measurement point X on the display part 23, and complete | finishes. When performing automatic tracking, as shown in (b), first, the measurement point X is pointed by the laser pointer 121 of the measurement point side device 4 in step S20, and the tilted case 5 is photographed by the image capturing unit 22 in step S41. . Next, in step S42, it is determined whether the target center Tc has been locked (automatic collimation). If so, the process proceeds to step S43, and the target center Tc is measured for distance measurement. The other steps S44 to 47 are the same as steps S25 to S28 in FIG.

(三次元位置の計算手法)
第2の実施形態における、図9のステップS34またはS44における、三次元位置計算手法は、第1の実施形態の「三次元位置の計測手法」の読み替えにより実施できる。プリズム3をターゲットTと読み替え、プリズム中心PcをターゲットTのターゲット中心Tcと読み替えれば、第1の実施形態(図6のフロー)と同様に計測することができる。
(Three-dimensional position calculation method)
The three-dimensional position calculation method in step S34 or S44 of FIG. 9 in the second embodiment can be implemented by replacing the “three-dimensional position measurement method” in the first embodiment. If the prism 3 is read as the target T and the prism center Pc is read as the target center Tc of the target T, measurement can be performed in the same manner as in the first embodiment (flow in FIG. 6).

(第3の実施形態)
本形態は、第1の実施形態の変形であり、プリズム3のプリズム中心Pcが装置側測距部120の光軸123上になくてもよい場合の形態である。第1の実施形態と同様の構成については、同一の符号を用いて説明を省略する。
(Third embodiment)
This embodiment is a modification of the first embodiment and is a case where the prism center Pc of the prism 3 does not have to be on the optical axis 123 of the apparatus-side distance measuring unit 120. About the structure similar to 1st Embodiment, description is abbreviate | omitted using the same code | symbol.

本形態の測定点側装置4では、図10に示すように、傾斜ケース5をプリズム3からずらし、傾斜ケース5に画像解析可能な解析マークQを収容する。解析パターン41は、光軸123に対して垂直な面で光軸123と平行する方向に前方に解析マークQから第1の固定距離LF1ずれる位置に形成する。解析マークQのマーク中心Qcは、光軸123に対して垂直な面にプリズム中心Pcと同一線上となるように配置する。その上で、装置側測距部120の基準点122は、Qc-Pcを結ぶ方向を軸y´と設定した場合に、プリズム中心Pcから、−y´方向へ固定長Dy´ずらして配置されている(図10)。   In the measurement point side device 4 of this embodiment, as shown in FIG. 10, the tilt case 5 is shifted from the prism 3, and the analysis mark Q capable of image analysis is accommodated in the tilt case 5. The analysis pattern 41 is formed at a position shifted from the analysis mark Q to the first fixed distance LF1 forward in a direction parallel to the optical axis 123 on a plane perpendicular to the optical axis 123. The mark center Qc of the analysis mark Q is arranged on the plane perpendicular to the optical axis 123 so as to be collinear with the prism center Pc. In addition, the reference point 122 of the apparatus-side distance measuring unit 120 is arranged with a fixed length Dy ′ shifted from the prism center Pc in the −y ′ direction when the direction connecting Qc-Pc is set as the axis y ′. (FIG. 10).

(三次元位置の計算手法)
第3の実施形態における三次元位置計算手法について、図11を参照して説明する。まず、画像撮像部22で撮影したビジュアル画像から、解析マークQのマーク中心Qcを画像解析する。次に、プリズム3の三次元位置(プリズム中心Pcの測距値および測角値)を記憶部18から読み出す。次に、画像撮像部22の画像でプリズム中心Pcの位置とマーク中心Qcの水平方向ずれ量および鉛直方向ずれ量を求め、プリズム中心Pc、マーク中心Qcおよび測量機2の視点Eから、この三点を含む第1の平面Aを求める(図11参照)。次に、画像撮像部22で撮影した画像から、解析パターン41のパターン中心Kcを画像解析する。次に、画像撮像部22の画像上でのマーク中心Qcとパターン中心Kcの水平方向ずれ量および鉛直方向ずれ量を求め、パターン中心Kcからマーク中心Kmまでのマーク半径を求める。次に、解析パターン41の長辺半径を画像解析する。次に、測量機2の視線方向から見た傾斜ケース5の水平方向傾斜角θxおよび鉛直方向傾斜角θyを求める。傾斜ケース5は、視線方向との傾斜角に応じて、解析パターン41に対しての解析マークQの位置が変化するため、視線方向との傾斜角の変化が、長辺半径とマーク半径で関係付けできる。この関数の一例は、日本特許公開公報2014−102246号にある。次に、傾斜角θxおよびθyより、測量機2の視線方向から見た傾斜ケース5の法線方向(方向ベクトルA)を求め、マーク中心Qcにおいて方向ベクトルAを法線とする第2の平面Bを求める(図11参照)次に、平面Aと平面Bの交線からQc-Pc方向ベクトルIを求める。次に、装置側測距部120で測定距離LMを得る。次に、プリズム中心Pcの位置(三次元位置)から、Qc-Pc方向ベクトルIの方向へ、−Dy´移動し、さらに方向ベクトルAの方向に、測定距離LM移動させて、測定点Xの三次元位置を求める。
(Three-dimensional position calculation method)
A three-dimensional position calculation method according to the third embodiment will be described with reference to FIG. First, the image analysis is performed on the mark center Qc of the analysis mark Q from the visual image captured by the image capturing unit 22. Next, the three-dimensional position of the prism 3 (the distance measurement value and the angle measurement value of the prism center Pc) is read from the storage unit 18. Next, the horizontal displacement amount and the vertical displacement amount between the position of the prism center Pc and the mark center Qc are obtained from the image of the image pickup unit 22, and the three directions are obtained from the prism center Pc, the mark center Qc, and the viewpoint E of the surveying instrument 2. A first plane A including a point is obtained (see FIG. 11). Next, the image analysis is performed on the pattern center Kc of the analysis pattern 41 from the image captured by the image capturing unit 22. Next, the horizontal deviation amount and the vertical deviation amount between the mark center Qc and the pattern center Kc on the image of the image pickup unit 22 are obtained, and the mark radius from the pattern center Kc to the mark center Km is obtained. Next, the long side radius of the analysis pattern 41 is image-analyzed. Next, the horizontal direction inclination angle θx and the vertical direction inclination angle θy of the inclined case 5 viewed from the line-of-sight direction of the surveying instrument 2 are obtained. In the tilted case 5, the position of the analysis mark Q with respect to the analysis pattern 41 changes according to the tilt angle with the line-of-sight direction, and therefore the change in the tilt angle with the line-of-sight direction is related to the long side radius and the mark radius. Can be attached. An example of this function is in Japanese Patent Publication No. 2014-102246. Next, the normal direction (direction vector A) of the inclined case 5 viewed from the line-of-sight direction of the surveying instrument 2 is obtained from the inclination angles θx and θy, and the second plane having the direction vector A as the normal line at the mark center Qc. B is obtained (see FIG. 11). Next, a Qc-Pc direction vector I is obtained from the intersection line of the plane A and the plane B. Next, the apparatus-side distance measuring unit 120 obtains a measurement distance LM. Next, from the position of the prism center Pc (three-dimensional position), it moves -Dy 'in the direction of the Qc-Pc direction vector I, and further moves the measurement distance LM in the direction of the direction vector A, Find the 3D position.

なお、上記は、装置側測距部120の基準点122をQc-Pc方向ベクトルI(軸y´)方向にDy´ずらした場合で説明したが、図11に示す軸x´方向にDx´ずらした場合も、軸z´方向にDz´ずらした場合も、同様に求められる。すなわち、装置側測距部120の基準点122が、プリズム中心Pcを原点にして、測定点側装置4の座標系x´,y´,z´にて、既知のずれ量D´(Dx´, Dy´, Dz´)の位置に配置されていれば、装置側測距部120を任意の位置に配置しても測定点Xを求められる。このため、測定点側装置4の設計自由度が増す。   In the above description, the reference point 122 of the apparatus-side distance measuring unit 120 has been described as being shifted by Dy ′ in the direction of the Qc-Pc direction vector I (axis y ′), but Dx ′ in the axis x ′ direction shown in FIG. In the case where the position is shifted, the case where the position is shifted by Dz ′ in the direction of the axis z ′ is similarly obtained. That is, the reference point 122 of the apparatus-side distance measuring unit 120 has a known deviation amount D ′ (Dx ′) in the coordinate system x ′, y ′, z ′ of the measurement point-side apparatus 4 with the prism center Pc as the origin. , Dy ′, Dz ′), the measurement point X can be obtained even if the apparatus-side distance measuring unit 120 is arranged at an arbitrary position. For this reason, the design freedom of the measuring point side apparatus 4 increases.

(効果)
以上、第1、第2、および第3の実施形態によれば、測定点側装置4が有するレーザポインタ121で測定点を指し示せば、自動で測定点Xの三次元位置が計測されるので、三次元位置計測の作業効率が向上する。例えば、測量機2の望遠鏡視野では測定点Xが狙いにくい場合であっても、障害物等により測量機2から測定点Xが見えない場合であっても、測定点側装置4側の視点から測定点Xを狙えるため、容易に計測することができる。また、従来技術のように測定点Xに指示棒を接触させる必要がないため、指示棒が測定点に置けない,置きにくい場合であっても、容易に計測することができる。
(effect)
As described above, according to the first, second, and third embodiments, if the measurement point is indicated by the laser pointer 121 included in the measurement point side device 4, the three-dimensional position of the measurement point X is automatically measured. The work efficiency of 3D position measurement is improved. For example, even if it is difficult to aim at the measurement point X in the telescope field of the surveying instrument 2, even if the measurement point X is not visible from the surveying instrument 2 due to an obstacle or the like, from the viewpoint on the measurement point side device 4 side. Since the measurement point X can be aimed, it can be easily measured. Further, since there is no need to bring the indicator bar into contact with the measurement point X as in the prior art, even if the indicator bar cannot be placed at the measurement point and is difficult to place, it can be easily measured.

また、測量機2の視点からではなく、測定点側装置4側の視点から測定点Xを狙うことができるので、測定精度も向上する。   Further, since the measurement point X can be aimed not from the viewpoint of the surveying instrument 2 but from the viewpoint on the measurement point side device 4 side, the measurement accuracy is also improved.

また、傾斜ケース5は、解析パターン41とこれを指示するケース42から簡易に形成できるため、非常に安価である。また、第1の固定距離LF1の距離を長くすれば、その分プリズム3の移動量が大きく見えるため、容易に感度設計が行える。   In addition, the inclined case 5 can be easily formed from the analysis pattern 41 and the case 42 instructing the analysis pattern 41, and is therefore very inexpensive. Further, if the distance of the first fixed distance LF1 is made longer, the amount of movement of the prism 3 appears to be larger correspondingly, so that sensitivity design can be easily performed.

また、図5または図9の(b)に示す自動追尾機能で連続計測することで、測定点の計測の軌跡を測定することもできる。また、その軌跡(測定点X)はデータとしてリアルタイムで記録されているため、演算制御部17にて、軌跡の描かれた速度等の情報も取得することができる。   Moreover, the measurement trajectory of the measurement point can also be measured by continuously measuring with the automatic tracking function shown in FIG. Further, since the locus (measurement point X) is recorded as data in real time, the arithmetic control unit 17 can also acquire information such as the speed at which the locus is drawn.

(変形例)
次に、第1〜第3の実施形態の好適な変形例について示す。
(Modification)
Next, preferred modifications of the first to third embodiments will be described.

第1〜第3の実施形態において、測定点側装置4は、レーザポインタ121に代えて、装置側測距部120に可視光をパルス発振するものを使用するのも好ましい。これにより、装置側測距部120に可視光がレーザポインタを兼ねるため、光軸123も一致し、可視光で測定点Xを狙ったまま計測することが可能となる。   In the first to third embodiments, instead of the laser pointer 121, the measurement point side device 4 preferably uses a device that oscillates visible light in the device side distance measuring unit 120. As a result, since visible light also serves as a laser pointer on the apparatus-side distance measuring unit 120, the optical axis 123 also coincides, and measurement can be performed while aiming at the measurement point X with visible light.

第1〜第3の実施形態において、傾斜ケース5の解析パターン41は、光軸123の方向にプリズム3から第1の固定距離LF1だけ後ろにずれる位置に固定されていても、計測の手法は同様である。   In the first to third embodiments, even if the analysis pattern 41 of the inclined case 5 is fixed at a position shifted backward from the prism 3 by the first fixed distance LF1 in the direction of the optical axis 123, the measurement method is not limited. It is the same.

第1〜第3の実施形態において、傾斜ケース5の背面に照明装置8を設けるのも好ましい。これにより、暗い場所であっても解析パターン41、ターゲットT、マークQが撮影できるようになるため、夜間等の計測時に有効である。   In the first to third embodiments, it is also preferable to provide the lighting device 8 on the back surface of the inclined case 5. As a result, the analysis pattern 41, the target T, and the mark Q can be photographed even in a dark place, which is effective during measurement at night or the like.

以上、本発明の好ましい三次元位置計測システム1について、実施の形態および変形例を述べたが、これら以外にも、各形態および各変形を当業者の知識に基づいて組み合わせることが可能であり、そのような形態も本発明の範囲に含まれる。   As described above, the preferred embodiment and the modified examples of the preferred three-dimensional position measurement system 1 according to the present invention have been described. Such forms are also included in the scope of the present invention.

1 三次元位置計測システム
2 測量機
3 プリズム
4 測定点側装置
5 傾斜ケース
11 水平角検出器(測角部)
12 鉛直角検出器(測角部)
17 演算制御部
20, 20´ 測量機側測距部
21 プリズム撮像部
22 画像撮像部
41 パターン
120 装置側測距部
121 レーザポインタ
122 基準点
123 光軸
Kc パターン中心
Pc プリズム中心
T ターゲット
Tc ターゲット中心
Q 解析マーク
Qc マーク中心
LM 測定距離
LF1 第1の固定距離
LF2 第2の固定距離
DESCRIPTION OF SYMBOLS 1 Three-dimensional position measurement system 2 Surveying instrument 3 Prism 4 Measuring point side apparatus 5 Inclined case 11 Horizontal angle detector (angle measuring part)
12 Vertical angle detector (angle measuring section)
17 Arithmetic control unit 20, 20 'Surveying instrument side ranging unit 21 Prism imaging unit 22 Image imaging unit 41 Pattern 120 Apparatus side ranging unit 121 Laser pointer 122 Reference point 123 Optical axis Kc Pattern center Pc Prism center T Target Tc Target center Q Analysis mark Qc Mark center LM Measurement distance LF1 First fixed distance LF2 Second fixed distance

Claims (6)

測量機と、測定点付近にある測定点側装置と、を備え、
前記測量機は、プリズムまでの測距を行う測量機側測距部および測角を行う測角部と、プリズム撮像部と、プリズムを含む周囲風景を撮影する画像撮像部と、を有し、
前記測定点側装置は、前記プリズムと、前記測定点を指し示すポインタと、前記測定点までの距離を測定する装置側測距部と、視線方向からの傾斜角を解析するためのパターンを有する傾斜ケースと、を有し、
前記傾斜ケースの前記パターンを、前記装置側測距部の光軸に対して垂直な面に、前記装置側測距部の光軸方向前後に前記プリズムから第1の固定距離ずれる位置に設け、
前記画像撮像部にて前記パターンを撮像し、前記測量機からの視線方向に対する傾斜ケースの傾斜角を算出し、
前記プリズム撮像部で得た画像でプリズムを視準して前記測量機側測距部および前記測角部で得た前記プリズムの三次元位置、前記傾斜ケースの傾斜角、および前記装置側測距部で得た距離から、前記測定点の三次元位置を計測することを特徴とする三次元位置計測システム。
A surveying instrument and a measuring point side device in the vicinity of the measuring point,
The surveying instrument has a surveying instrument-side ranging unit that measures a distance to the prism, a measuring unit that performs angle measurement, a prism imaging unit, and an image imaging unit that captures the surrounding landscape including the prism,
The measurement point side device includes the prism, a pointer that points to the measurement point, a device side distance measuring unit that measures a distance to the measurement point, and an inclination having a pattern for analyzing an inclination angle from the line-of-sight direction. A case, and
The pattern of the inclined case is provided on a surface perpendicular to the optical axis of the device-side distance measuring unit at a position deviated from the prism by a first fixed distance before and after the optical axis direction of the device-side distance measuring unit,
The image capturing unit captures the pattern, calculates the tilt angle of the tilt case with respect to the line-of-sight direction from the surveying instrument,
Three-dimensional position of the prism obtained by the surveying instrument side ranging unit and the angle measuring unit by collimating the prism with the image obtained by the prism imaging unit, the inclination angle of the inclined case, and the apparatus side ranging A three-dimensional position measurement system for measuring a three-dimensional position of the measurement point from a distance obtained by the unit.
前記プリズムのプリズム中心を前記装置側測距部の光軸上に設け、前記プリズムの三次元位置から、前記傾斜ケースの傾斜角から得た前記傾斜ケースの法線方向に、前記装置側測距部の基準点から前記プリズム中心までの第2の固定距離と前記装置側測距部で得た測定距離移動して、前記測定点の三次元位置を計測することを特徴とする請求項1に記載の三次元位置計測システム。
The prism center of the prism is provided on the optical axis of the device-side distance measuring unit, and the device-side distance measurement is performed from the three-dimensional position of the prism in the normal direction of the inclined case obtained from the inclination angle of the inclined case. The three-dimensional position of the measurement point is measured by moving the second fixed distance from the reference point of the unit to the prism center and the measurement distance obtained by the device-side distance measurement unit. The described three-dimensional position measurement system.
前記装置側測距部の光軸に対して垂直な面で前記プリズムのプリズム中心と同一線上となる位置に前記画像撮像部で解析可能な解析マークを設け、
前記プリズム中心と前記解析マークのマーク中心を通る直線から前記装置側測距部の前記基準点をずらして設け、前記プリズム中心を原点とする前記装置側測距部の基準点のずれ量を予め求めて、
前記プリズムの三次元位置から、前記基準点のずれ量分移動して、前記傾斜ケースの傾斜角から得た前記傾斜ケースの法線方向に、前記装置側測距部で得た測定距離移動して、前記測定点の三次元位置を計測することを特徴とする請求項1に記載の三次元位置計測システム。
An analysis mark that can be analyzed by the image capturing unit is provided at a position that is perpendicular to the optical axis of the device-side distance measuring unit and is collinear with the prism center of the prism;
The reference point of the device-side distance measuring unit is shifted from a straight line passing through the center of the prism and the mark center of the analysis mark, and a deviation amount of the reference point of the device-side distance measuring unit with the prism center as an origin is set in advance. In search of
The measurement distance obtained by the device-side distance measuring unit is moved from the three-dimensional position of the prism by the amount of deviation of the reference point and in the normal direction of the tilt case obtained from the tilt angle of the tilt case. The three-dimensional position measurement system according to claim 1, wherein the three-dimensional position of the measurement point is measured.
前記プリズムに代えて前記傾斜ケースに前記画像撮像部で解析可能なターゲットを設け、前記プリズム撮像部を任意の構成として、前記プリズム撮像部による視準で得たプリズムの三次元位置に代えて前記画像撮像部による前記ターゲットの視準で得た前記ターゲットの三次元位置を使用して前記測定点の三次元位置を計測することを特徴とする請求項1〜3のいずれかに記載の三次元位置計測システム。
In place of the prism, a target that can be analyzed by the image pickup unit is provided in the inclined case, and the prism image pickup unit is arbitrarily configured, and the prism image obtained by collimation by the prism image pickup unit is replaced with the three-dimensional position of the prism. The three-dimensional position according to any one of claims 1 to 3, wherein a three-dimensional position of the measurement point is measured using a three-dimensional position of the target obtained by collimating the target by an image capturing unit. Position measurement system.
前記ポインタに代えて、前記装置側測距部が可視光を出射することで前記ポインタを兼ねることを特徴とする請求項1〜4のいずれかに記載の三次元位置計測システム。
5. The three-dimensional position measurement system according to claim 1, wherein instead of the pointer, the apparatus-side distance measuring unit also serves as the pointer by emitting visible light.
プリズムと、測定点を指し示すポインタと、前記測定点までの距離を測定する装置側測距部と、前記装置側測距部の光軸に対して垂直な面に,視線方向からの傾斜角を解析するためのパターンを有し,前記パターンを前記装置側測距部の光軸方向前後に前記プリズムから第1の固定距離ずれる位置に配置する傾斜ケースと、を有することを特徴とする請求項1〜5のいずれかの三次元位置計測システムに使用される測定点側装置。   A prism, a pointer pointing to the measurement point, a device-side distance measuring unit for measuring the distance to the measurement point, and a tilt angle from the line-of-sight direction on a plane perpendicular to the optical axis of the device-side distance measuring unit. An inclined case having a pattern for analysis, and arranging the pattern at a position deviated from the prism by a first fixed distance before and after the optical axis direction of the apparatus-side distance measuring unit. The measuring point side apparatus used for the three-dimensional position measuring system in any one of 1-5.
JP2015091277A 2015-04-28 2015-04-28 Three-dimensional position measurement system Active JP6533691B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015091277A JP6533691B2 (en) 2015-04-28 2015-04-28 Three-dimensional position measurement system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015091277A JP6533691B2 (en) 2015-04-28 2015-04-28 Three-dimensional position measurement system

Publications (2)

Publication Number Publication Date
JP2016206130A true JP2016206130A (en) 2016-12-08
JP6533691B2 JP6533691B2 (en) 2019-06-19

Family

ID=57489707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015091277A Active JP6533691B2 (en) 2015-04-28 2015-04-28 Three-dimensional position measurement system

Country Status (1)

Country Link
JP (1) JP6533691B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020020672A (en) * 2018-08-01 2020-02-06 株式会社トプコン Surveying system, measurement module, and surveying method
JP2020056746A (en) * 2018-10-04 2020-04-09 株式会社トプコン Angle detection system
JP2021021608A (en) * 2019-07-26 2021-02-18 株式会社トプコン Surveying system

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH116710A (en) * 1997-06-17 1999-01-12 Nec Corp Distance measuring apparatus
JPH1163952A (en) * 1997-08-21 1999-03-05 Nippon Steel Corp Three-dimensional shape measuring target and method for measuring inclination of collimation face
JP2001174261A (en) * 1999-12-15 2001-06-29 Toshiyasu Kato Measuring apparatus for internal corner or the like by using reflecting prism or the like
JP2002039748A (en) * 2000-07-24 2002-02-06 Topcon Corp Portable range finder
JP2014102246A (en) * 2012-10-24 2014-06-05 National Institute Of Advanced Industrial & Technology Position attitude detection system
JP2014514563A (en) * 2011-04-15 2014-06-19 ファロ テクノロジーズ インコーポレーテッド 6 DOF laser tracker working with remote line scanner
JP2014527630A (en) * 2011-08-12 2014-10-16 ライカ ジオシステムズ アクチエンゲゼルシャフトLeica Geosystems AG Measuring device for determining the spatial posture of a measuring aid
JP2015506460A (en) * 2011-12-20 2015-03-02 ライカ ジオシステムズ アクチエンゲゼルシャフトLeica Geosystems AG Laser-based coordinate measuring device with fixed and free bearing devices
JP2016145791A (en) * 2015-01-28 2016-08-12 株式会社トプコン Three-dimensional position measurement system

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH116710A (en) * 1997-06-17 1999-01-12 Nec Corp Distance measuring apparatus
JPH1163952A (en) * 1997-08-21 1999-03-05 Nippon Steel Corp Three-dimensional shape measuring target and method for measuring inclination of collimation face
JP2001174261A (en) * 1999-12-15 2001-06-29 Toshiyasu Kato Measuring apparatus for internal corner or the like by using reflecting prism or the like
JP2002039748A (en) * 2000-07-24 2002-02-06 Topcon Corp Portable range finder
JP2014514563A (en) * 2011-04-15 2014-06-19 ファロ テクノロジーズ インコーポレーテッド 6 DOF laser tracker working with remote line scanner
JP2014527630A (en) * 2011-08-12 2014-10-16 ライカ ジオシステムズ アクチエンゲゼルシャフトLeica Geosystems AG Measuring device for determining the spatial posture of a measuring aid
JP2015506460A (en) * 2011-12-20 2015-03-02 ライカ ジオシステムズ アクチエンゲゼルシャフトLeica Geosystems AG Laser-based coordinate measuring device with fixed and free bearing devices
JP2014102246A (en) * 2012-10-24 2014-06-05 National Institute Of Advanced Industrial & Technology Position attitude detection system
JP2016145791A (en) * 2015-01-28 2016-08-12 株式会社トプコン Three-dimensional position measurement system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020020672A (en) * 2018-08-01 2020-02-06 株式会社トプコン Surveying system, measurement module, and surveying method
JP7139184B2 (en) 2018-08-01 2022-09-20 株式会社トプコン Survey Systems, Measurement Modules, and Survey Methods
JP2020056746A (en) * 2018-10-04 2020-04-09 株式会社トプコン Angle detection system
JP7118845B2 (en) 2018-10-04 2022-08-16 株式会社トプコン Angle detection system
JP2021021608A (en) * 2019-07-26 2021-02-18 株式会社トプコン Surveying system
JP7289239B2 (en) 2019-07-26 2023-06-09 株式会社トプコン surveying system

Also Published As

Publication number Publication date
JP6533691B2 (en) 2019-06-19

Similar Documents

Publication Publication Date Title
US11822351B2 (en) Three-dimensional information processing unit, apparatus having three-dimensional information processing unit, unmanned aerial vehicle, informing device, method and program for controlling mobile body using three-dimensional information processing unit
EP2503284B1 (en) Survey system with survey apparatus, survey pole and mobile wireless transceiver system
US9581442B2 (en) Surveying instrument
JP5688876B2 (en) Calibration method for laser scanner measurement system
US10895632B2 (en) Surveying system
JP2019039795A (en) Surveying system
CN105823471B (en) Three-dimensional position measuring system
JP2009156772A (en) Surveying system
CN104380137A (en) Method and handheld distance measurement device for indirect distance measurement by means of image-assisted angle determination function
JP6823482B2 (en) 3D position measurement system, 3D position measurement method, and measurement module
JP2017090244A (en) Survey system
JP6433342B2 (en) 3D position measurement system
JP2018132328A (en) Measuring instrument
US11500096B2 (en) Surveying instrument
JP6433343B2 (en) 3D position measurement system
JP2021021678A (en) Surveying device, surveying method, and program for survey
US10809379B2 (en) Three-dimensional position measuring system, three-dimensional position measuring method, and measuring module
JP6533691B2 (en) Three-dimensional position measurement system
CN111308485A (en) Measuring device and photographic measuring method
US20220308183A1 (en) Surveying system
JP6533690B2 (en) Three-dimensional position measurement system
JP2021067615A (en) Scanner system and scan method
CN105823470B (en) Three-dimensional position measuring system
JP2019015602A (en) Survey system
JP6954830B2 (en) Target device, surveying method, surveying device and surveying program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190521

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190527

R150 Certificate of patent or registration of utility model

Ref document number: 6533691

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250