JP2016206079A - Exciting coil short circuit determination method of electromagnetic flow meter - Google Patents

Exciting coil short circuit determination method of electromagnetic flow meter Download PDF

Info

Publication number
JP2016206079A
JP2016206079A JP2015089795A JP2015089795A JP2016206079A JP 2016206079 A JP2016206079 A JP 2016206079A JP 2015089795 A JP2015089795 A JP 2015089795A JP 2015089795 A JP2015089795 A JP 2015089795A JP 2016206079 A JP2016206079 A JP 2016206079A
Authority
JP
Japan
Prior art keywords
excitation
circuit
coil
short
exciting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015089795A
Other languages
Japanese (ja)
Other versions
JP5877261B1 (en
Inventor
竹田 修
Osamu Takeda
修 竹田
尚 鳥丸
Takashi Torimaru
尚 鳥丸
強 逢
Jiang Feng
強 逢
立功 陳
Ligong Chen
立功 陳
経偉 陸
Jingwei Lu
経偉 陸
迪斐 姚
Difei Yao
迪斐 姚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Keiso Co Ltd
Original Assignee
Tokyo Keiso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Keiso Co Ltd filed Critical Tokyo Keiso Co Ltd
Priority to JP2015089795A priority Critical patent/JP5877261B1/en
Application granted granted Critical
Publication of JP5877261B1 publication Critical patent/JP5877261B1/en
Publication of JP2016206079A publication Critical patent/JP2016206079A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To determine whether or not the exciting coil of an electromagnetic flow meter is short-circuited.SOLUTION: When an exciting coil is short-circuited, a smoothing process based on the exciting coil is eliminated, and an exciting current Iex repeats an output by a triangular waveform having ripples of a large virtual fluctuation by an ON/OFF process by a FET switch. The exciting current Iex is measured for each predetermined time interval for a ripple checking of the exciting current Iex, and an average value H of these exciting currents Iex for each measurement time is calculated, and a variation h of the ripple fluctuated in a plus direction and a minus direction is calculated from the average value H. A short-circuit state of the exciting coil which is an exciting load is determined by comparing the variation h showing a magnitude of this ripple and a threshold value set beforehand.SELECTED DRAWING: Figure 4

Description

本発明は、励磁コイルが短絡しているか否かを判定する電磁流量計の励磁コイル短絡判定方法に関するものである。   The present invention relates to an excitation coil short-circuit determination method for an electromagnetic flow meter that determines whether an excitation coil is short-circuited.

電磁流量計は、測定管中を流れ導電性を有する流体に、励磁コイルにより交流磁場を印加して、ファラディの法則に従い、流体方向と磁場方向に直交する方向に誘起される起電力から流体の流速を求め、流量に換算している。   An electromagnetic flowmeter applies an alternating magnetic field to a fluid that flows through a measuring tube and has electrical conductivity by means of an excitation coil, and in accordance with Faraday's law, an electromotive force induced in a direction perpendicular to the fluid direction and the direction of the magnetic field. The flow velocity is obtained and converted to a flow rate.

図5は一般的な電磁流量計の構成図を示し、検出部1と変換部2とから構成されている。検出部1は被測定流体が流れる測定管3と、測定管3の周囲に配置される励磁コイル4と、測定管3内に配置された一対の電極5a、5bとから成っている。   FIG. 5 shows a configuration diagram of a general electromagnetic flow meter, which includes a detection unit 1 and a conversion unit 2. The detection unit 1 includes a measurement tube 3 through which a fluid to be measured flows, an excitation coil 4 disposed around the measurement tube 3, and a pair of electrodes 5 a and 5 b disposed in the measurement tube 3.

変換部2には、電極5a、5bにより誘起される2つの流量信号を差動受信するバッファアンプ6が設けられ、このバッファアンプ6の出力は流量演算等を実行するCPU7、出力回路8に接続されている。一方、励磁回路9による励磁電流の出力が励磁コイル4及びCPU7に接続され、タイミング信号発生回路10の出力が励磁回路9及びCPU7に接続されている。   The conversion unit 2 is provided with a buffer amplifier 6 that differentially receives two flow rate signals induced by the electrodes 5a and 5b. The output of the buffer amplifier 6 is connected to a CPU 7 and an output circuit 8 that perform flow rate calculation and the like. Has been. On the other hand, the output of the excitation current from the excitation circuit 9 is connected to the excitation coil 4 and the CPU 7, and the output of the timing signal generation circuit 10 is connected to the excitation circuit 9 and the CPU 7.

タイミング信号発生回路10で生成される低周波周期に同期して、励磁回路9から正負の励磁電流Iexが励磁コイル4に供給されると、測定管3を流れる流体の流速に比例する流量信号として、電極5a、5b間に起電力Esが誘起される。   When a positive and negative excitation current Iex is supplied from the excitation circuit 9 to the excitation coil 4 in synchronization with the low frequency cycle generated by the timing signal generation circuit 10, the flow rate signal is proportional to the flow velocity of the fluid flowing through the measurement tube 3. The electromotive force Es is induced between the electrodes 5a and 5b.

電極5a、5b間に誘起され、更にバッファアンプ6から出力される起電力Esは、次の(1)式で与えられる。
起電力Es=κ・B・v・D ・・・(1)
The electromotive force Es induced between the electrodes 5a and 5b and output from the buffer amplifier 6 is given by the following equation (1).
Electromotive force Es = κ · B · v · D (1)

なお、κは比例定数、Bは励磁コイル4による磁束密度、vは被測定流体の流速、Dは測定管3の口径である。   Here, κ is a proportional constant, B is the magnetic flux density by the exciting coil 4, v is the flow velocity of the fluid to be measured, and D is the diameter of the measuring tube 3.

磁束密度Bが励磁電流Iexに比例するとすれば、(1)式を基に流速vは次の(2)式で得られる。
v=α・Es/Iex ・・・(2)
If the magnetic flux density B is proportional to the excitation current Iex, the flow velocity v can be obtained from the following equation (2) based on the equation (1).
v = α · Es / Iex (2)

なお、αは検出部1ごとに定まる定数である。   Α is a constant determined for each detection unit 1.

電極5a、5bからの起電力Esはバッファアンプ6で受信され、更にCPU7に入力される。CPU7では、タイミング信号発生回路10の出力を基に、励磁電流Iexに同期したタイミングで同期整流をすると同時に、(2)式による励磁電流Iexとの比較演算が施され、得られた流速vが出力回路8に入力される。出力回路8では、プロセス用の所定の出力信号に変換される。   The electromotive force Es from the electrodes 5 a and 5 b is received by the buffer amplifier 6 and further input to the CPU 7. In the CPU 7, based on the output of the timing signal generation circuit 10, synchronous rectification is performed at a timing synchronized with the excitation current Iex, and at the same time, a comparison calculation with the excitation current Iex according to the equation (2) is performed, and the obtained flow velocity v is obtained. Input to the output circuit 8. In the output circuit 8, it is converted into a predetermined output signal for the process.

また、電磁流量計では定電流回路での損失を削減するため、励磁コイル4への励磁をスイッチング方式で行うことが多く、この定電流回路では負荷が変化しても、定電流の供給を継続する。異なる口径の測定管3の励磁コイル4に対しても、励磁による安定した磁場を作る等の目的で、励磁回路9により励磁コイル4に定電流である励磁電流Iexを供給している。   Moreover, in order to reduce the loss in the constant current circuit in the electromagnetic flow meter, the excitation coil 4 is often excited by a switching method, and the constant current continues to be supplied even when the load changes in this constant current circuit. To do. An exciting current Iex, which is a constant current, is supplied to the exciting coil 4 by the exciting circuit 9 for the purpose of creating a stable magnetic field by exciting the exciting coil 4 of the measuring tube 3 having a different diameter.

この励磁回路9による定電流の出力により、励磁コイル4によって流体に磁場を印加する。導電性を有する流体に対して、流体方向と磁場方向に直交方向に誘起される起電力Esに基づいて、流体の流速vを求め、更にこの流速vに測定管3の断面積を乗じて流量を求めることができる。   A magnetic field is applied to the fluid by the exciting coil 4 by the constant current output from the exciting circuit 9. For a fluid having conductivity, a flow velocity v of the fluid is obtained based on an electromotive force Es induced in a direction orthogonal to the fluid direction and the magnetic field direction, and the flow velocity v is multiplied by the cross-sectional area of the measuring tube 3 to obtain a flow rate. Can be requested.

更に電磁流量計には、プラント操業の安全化を図るための各種自己判定を実施する機能が付与されており、励磁コイルオープン、及び励磁コイル短絡によるトラブルを検出する機能を有している。   Further, the electromagnetic flow meter is provided with a function of performing various self-judgments for ensuring the safety of the plant operation, and has a function of detecting trouble due to excitation coil open and excitation coil short circuit.

特許文献1には、励磁コイルの短絡を検出する発明として、励磁回路と励磁コイルとの間に励磁コイルの短絡検出回路を設けることが開示されている。励磁コイルが短絡すると、短絡検出回路内の電圧リミッタによって電圧は閾値以下に下がらなくなり、この結果として、励磁回路からの電流が増加する。そして、励磁コイルと直列に接続された検出抵抗の両端電圧を経時的に計測することで、励磁コイルの短絡を検出することができる。   Patent Document 1 discloses that an excitation coil short-circuit detection circuit is provided between the excitation circuit and the excitation coil as an invention for detecting an excitation coil short-circuit. When the exciting coil is short-circuited, the voltage is not lowered below the threshold by the voltage limiter in the short-circuit detecting circuit, and as a result, the current from the exciting circuit increases. And the short circuit of an exciting coil is detectable by measuring the both-ends voltage of the detection resistor connected in series with the exciting coil with time.

特開2002−206956号公報JP 2002-206956 A

上述のように電磁流量計の自己判定として、励磁コイルのオープントラブルについては、励磁電流Iexが零となることから容易に検出できるが、励磁コイルの短絡については、定電流制御されているため励磁電流Iexを基に短絡を検出することが難しい。   As described above, as an electromagnetic flow meter self-determination, an excitation coil open trouble can be easily detected because the excitation current Iex becomes zero. However, the excitation coil short circuit is controlled by constant current control. It is difficult to detect a short circuit based on the current Iex.

特に、図5に示すように、測定管3の近傍で起電力Esを検出する検出部1と、励磁回路9やCPU7を備える変換部2との間に距離を有する場合においては、検出部1と変換部2間の接続ケーブルの破損等が発生し易く、図5の点線Sで示すケーブル内の個所で短絡が発生することが多々ある。   In particular, as shown in FIG. 5, when there is a distance between the detection unit 1 that detects the electromotive force Es in the vicinity of the measurement tube 3 and the conversion unit 2 that includes the excitation circuit 9 and the CPU 7, the detection unit 1. The connection cable between the converter 2 and the converter 2 is easily damaged, and a short circuit often occurs at a position in the cable indicated by a dotted line S in FIG.

そこで、従来の図6の回路構成図に示す短絡判定方法では、励磁回路9内に検出すべき励磁コイル4に対する専用の短絡判定回路Pが設けられている。この短絡判定回路Pは、励磁コイル4に励磁電流Iexを供給するタイミングで励磁コイル4の両端の電圧を測定し、励磁コイル4のコイル抵抗成分Rcと励磁コイル4に流れる励磁電流Iexとの積(Rc・Iex)を継時的に比較して励磁コイル4の短絡を判断している。   Therefore, in the conventional short circuit determination method shown in the circuit configuration diagram of FIG. 6, a dedicated short circuit determination circuit P for the excitation coil 4 to be detected is provided in the excitation circuit 9. The short circuit determination circuit P measures the voltage across the exciting coil 4 at the timing when the exciting current Iex is supplied to the exciting coil 4, and the product of the coil resistance component Rc of the exciting coil 4 and the exciting current Iex flowing through the exciting coil 4. (Rc · Iex) is compared over time to determine whether the exciting coil 4 is short-circuited.

この図6の従来方法では、専用の短絡判定回路Pが必要となる他に、励磁コイル4毎に異なるコイル抵抗成分Rcについて考慮する必要がある。   In the conventional method of FIG. 6, a dedicated short-circuit determination circuit P is required, and a coil resistance component Rc that differs for each exciting coil 4 needs to be considered.

また、特許文献1の短絡検出回路を設けた電磁流量計においても、短絡検出回路内に電圧リミッタ等を設けたり、測定管の寸法、励磁コイルのコイル抵抗成分等に基づく電圧リミッタのリミッタ値を設定する必要が生ずる等の問題がある。   Also, in the electromagnetic flow meter provided with the short circuit detection circuit of Patent Document 1, a voltage limiter or the like is provided in the short circuit detection circuit, or the limit value of the voltage limiter based on the dimensions of the measurement tube, the coil resistance component of the excitation coil, or the like. There are problems such as the need to set.

本発明の目的は、上述の課題を解決し、コイル抵抗成分を考慮することなく、スイッチング方式の励磁による励磁コイルの短絡状態を判定することができる電磁流量計の励磁コイル短絡判定方法を提供することにある。   An object of the present invention is to solve the above-described problems and provide an excitation coil short-circuit determination method for an electromagnetic flowmeter that can determine a short-circuit state of an excitation coil by switching-type excitation without considering a coil resistance component. There is.

上記目的を達成するための本発明に係る電磁流量計の励磁コイル短絡判定方法は、励磁電流の励磁のオン、オフを間欠的に繰り返すスイッチング方式によって定電流の前記励磁電流を励磁コイルに供給する電磁流量計の励磁コイル短絡判定方法において、前記励磁オン時に、所定時間間隔毎に励磁電流を測定し、これらの測定値の平均値と前記測定値との差分である変動値を算出し、該変動値と予め設定した閾値とを比較することで前記励磁コイルが短絡状態にあるか否かを判定することを特徴とする。   In order to achieve the above object, an excitation coil short-circuit determination method for an electromagnetic flow meter according to the present invention supplies the excitation current having a constant current to the excitation coil by a switching method in which excitation current excitation is intermittently turned on and off. In the excitation coil short-circuit determination method of the electromagnetic flow meter, when the excitation is turned on, an excitation current is measured every predetermined time interval, and a variation value that is a difference between an average value of these measurement values and the measurement value is calculated. It is characterized in that it is determined whether or not the exciting coil is in a short circuit state by comparing a fluctuation value with a preset threshold value.

本発明に係る電磁流量計の励磁コイル短絡判定方法によれば、基本の回路構成のみで、励磁コイルの短絡を判定でき、測定管の寸法、励磁コイルの抵抗成分、インダクタンスに関係なく、励磁コイルの短絡状態を容易に、かつ確実に判定することができる。   According to the method for determining an excitation coil short circuit of an electromagnetic flow meter according to the present invention, an excitation coil short circuit can be determined with only a basic circuit configuration, and the excitation coil is independent of the dimensions of the measurement tube, the resistance component of the excitation coil, and the inductance. It is possible to easily and reliably determine the short circuit state.

スイッチング方式の励磁定電流回路の回路図である。It is a circuit diagram of a switching-type excitation constant current circuit. 正常動作時の励磁タイミング、デューティサイクル信号及び励磁電流の波形図である。FIG. 6 is a waveform diagram of excitation timing, duty cycle signal, and excitation current during normal operation. 励磁コイルの短絡時の励磁定電流回路の回路図である。It is a circuit diagram of the excitation constant current circuit at the time of a short circuit of an exciting coil. 励磁コイルの短絡時の励磁タイミング、デューティサイクル信号及び励磁電流の波形図である。It is a waveform diagram of the excitation timing, duty cycle signal, and excitation current when the excitation coil is short-circuited. 一般的な電磁流量計の回路構成図である。It is a circuit block diagram of a general electromagnetic flowmeter. 従来の励磁コイル短絡判定方法で使用する励磁定電流回路の回路図である。It is a circuit diagram of the excitation constant current circuit used with the conventional excitation coil short circuit determination method.

本発明を図1〜図4に図示の実施例に基づいて詳細に説明する。
図1はスイッチング方式の励磁定電流回路の構成図を示している。なお、図6に示す従来例と比較して、従来の短絡判定回路Pが削除されている。
The present invention will be described in detail based on the embodiment shown in FIGS.
FIG. 1 shows a configuration diagram of a switching-type excitation constant current circuit. In addition, the conventional short circuit determination circuit P is deleted compared with the conventional example shown in FIG.

図1において、励磁回路9には直流電圧を印加する励磁電源と、定電流を得るためオン/オフを行うFETスイッチ11と、インダクタンスL1及びコンデンサCから成るLCフィルタ12を有しており、このLCフィルタ12によってFETスイッチ11でスイッチングされた電圧の平滑化を行っている。   In FIG. 1, an excitation circuit 9 has an excitation power source that applies a DC voltage, an FET switch 11 that is turned on / off to obtain a constant current, and an LC filter 12 that includes an inductance L1 and a capacitor C. The voltage switched by the FET switch 11 by the LC filter 12 is smoothed.

更に励磁回路9には、電流検出抵抗Rと定電流制御部13とが設けられており、この電流検出抵抗Rを励磁定電流回路に直列に配置することで、励磁コイル4を流れる励磁電流Iexを検出することができる。   Further, the excitation circuit 9 is provided with a current detection resistor R and a constant current control unit 13. By arranging the current detection resistor R in series with the excitation constant current circuit, an excitation current Iex flowing through the excitation coil 4 is provided. Can be detected.

また、定電流制御部13は、偏差アンプ14とデューティサイクル変換器15とを有しており、偏差アンプ14には、電流検出抵抗Rに励磁電流Iexが流れたときの電圧(R・Iex)を入力し、励磁電流Iexの大きさを決める一定の基準電圧Vrefが印加されている。   The constant current control unit 13 includes a deviation amplifier 14 and a duty cycle converter 15. The deviation amplifier 14 has a voltage (R · Iex) when the excitation current Iex flows through the current detection resistor R. And a constant reference voltage Vref that determines the magnitude of the excitation current Iex is applied.

そして、偏差アンプ14により増幅した電圧(R・Iex)と基準電圧Vrefとの偏差値がデューティサイクル変換器15に入力される。デューティサイクル変換器15で算出されたデューティ比はFETスイッチ11にフィードバックされ、オン/オフ制御を行う。   The deviation value between the voltage (R · Iex) amplified by the deviation amplifier 14 and the reference voltage Vref is input to the duty cycle converter 15. The duty ratio calculated by the duty cycle converter 15 is fed back to the FET switch 11 to perform on / off control.

FETスイッチ11によってオン/オフすることで印加された電圧は、LCフィルタ12により平滑されて、図1に図示する電圧Vexとなる。この電圧Vexによって励磁コイル4に励磁電流Iexが流れる。   The voltage applied by turning on / off the FET switch 11 is smoothed by the LC filter 12 and becomes the voltage Vex shown in FIG. The excitation current Iex flows through the excitation coil 4 by this voltage Vex.

デューティサイクル変換器15における電圧(R・Iex)と基準電圧Vrefの処理については、電圧(R・Iex)が基準電圧Vrefよりも小さいときには、デューティサイクル変換器15の出力のデューティ比は増加し、このデューティ比に基づくFETスイッチ11のオン/オフ制御を行う。デューティ比の増加により、電圧Vexは大きくなり、この電圧Vexの増加に伴い励磁電流Iexが増加する。   Regarding the processing of the voltage (R · Iex) and the reference voltage Vref in the duty cycle converter 15, when the voltage (R · Iex) is smaller than the reference voltage Vref, the duty ratio of the output of the duty cycle converter 15 increases. On / off control of the FET switch 11 based on this duty ratio is performed. The voltage Vex increases as the duty ratio increases, and the excitation current Iex increases as the voltage Vex increases.

電圧(R・Iex)が基準電圧Vrefよりも大きいときには、デューティサイクル変換器15の出力のデューティ比が減少し、電圧Vexは小さくなり、併せて励磁電流Iexも減少する。   When the voltage (R · Iex) is larger than the reference voltage Vref, the duty ratio of the output of the duty cycle converter 15 decreases, the voltage Vex decreases, and the excitation current Iex also decreases.

このようなフィードバック制御によって、電圧R・Iexは基準電圧Vrefと同値になるように補正されるので、励磁電流Iexは基準電圧Vrefによって決まる一定電流値に保持されることになる。   By such feedback control, the voltage R · Iex is corrected to have the same value as the reference voltage Vref, so that the excitation current Iex is held at a constant current value determined by the reference voltage Vref.

図2は励磁回路9で所定値の励磁電流Iexが出力され、励磁コイル4が接続した正常な励磁が行われている場合における波形図である。(a)は励磁のオン、オフのタイミング信号、(b)は定電流制御するためのデューティサイクル変換器15の出力であるデューティサイクル信号、(c)はデューティサイクル変換器15の入力である励磁電流Iexを示している。   FIG. 2 is a waveform diagram when the excitation circuit 9 outputs a predetermined value of the excitation current Iex and normal excitation is performed with the excitation coil 4 connected. (A) is an excitation on / off timing signal, (b) is a duty cycle signal that is an output of the duty cycle converter 15 for constant current control, and (c) is an excitation that is an input of the duty cycle converter 15. Current Iex is shown.

なお、励磁電流Iexによる励磁は、(a)に示すように周期的にオン、オフをタイミング信号発生回路10により制御しているが、本発明では詳細なオン、オフのタイミング制御の説明については省略している。この励磁電流Iexのオン、オフ制御は、常時励磁に比べ省電力化を図ることができ、この励磁オン時に励磁コイル4が短絡状態にあるか否かを判定する。   The excitation by the excitation current Iex is periodically turned on and off by the timing signal generation circuit 10 as shown in FIG. 4A. In the present invention, detailed explanation of the on and off timing control is provided. Omitted. The on / off control of the excitation current Iex can save power compared to the normal excitation, and it is determined whether or not the excitation coil 4 is in a short circuit state when the excitation is on.

(a)の励磁オンの区間では、励磁電流IexはFETスイッチ11でスイッチングされた電圧をLCフィルタ12で平滑しているが、多少のリップルを含んでいる。励磁コイル4を流れる励磁電流Iexは、励磁コイル4のコイル抵抗成分Rc、インダクタンス成分Lcによって更に平滑され、図3(c)に示すようにリップルは小さくなる。   In the excitation-on period of (a), the excitation current Iex smooths the voltage switched by the FET switch 11 by the LC filter 12, but includes some ripple. The exciting current Iex flowing through the exciting coil 4 is further smoothed by the coil resistance component Rc and the inductance component Lc of the exciting coil 4, and the ripple becomes small as shown in FIG.

更に、(b)のデューティサイクル信号の周期を、励磁コイル4の時定数τ=Lc/Rcに比べて十分に小さくすることで、励磁電流Iexの波形は平滑化され、リップル成分はほぼ無視できることになる。   Furthermore, by making the cycle of the duty cycle signal of (b) sufficiently smaller than the time constant τ = Lc / Rc of the exciting coil 4, the waveform of the exciting current Iex can be smoothed and the ripple component can be almost ignored. become.

図3は励磁コイル4が短絡したときの励磁定電流回路の回路図である。図4は波形図であり、(d)は励磁のオン、オフのタイミング信号、(e)はデューティサイクル信号、(f)は励磁電流Iexの出力信号である。   FIG. 3 is a circuit diagram of an excitation constant current circuit when the excitation coil 4 is short-circuited. FIG. 4 is a waveform diagram, in which (d) is an excitation on / off timing signal, (e) is a duty cycle signal, and (f) is an output signal of an excitation current Iex.

図3に示すように励磁コイル4が短絡すると、励磁コイル4に励磁電流Iexが流れずに、励磁回路9の負荷は電流検出抵抗Rのみとなる。従って、上述の励磁コイル4に基づく平滑化処理がなくなり、コンデンサCの両端電圧の上昇に比例して、(f)に示すように励磁電流Iexは急激に増加する。   When the exciting coil 4 is short-circuited as shown in FIG. 3, the exciting current Iex does not flow through the exciting coil 4, and the load of the exciting circuit 9 is only the current detection resistor R. Accordingly, the smoothing process based on the excitation coil 4 described above is eliminated, and the excitation current Iex increases rapidly as shown in (f) in proportion to the increase in the voltage across the capacitor C.

このとき、電圧(R・Iex)が基準電圧Vrefよりも直線的に急激に大きくなるので、励磁電流Iexも併せて上昇する。電圧(R・Iex)が基準電圧Vrefを超えると、定電流制御部13のデューティサイクル変換器15は直ちにデューティ比を減少する。つまり、FETスイッチ11をオフにする制御を行うが、制御ループの遅れのために、直ちにはFETスイッチ11をオフにできず、制御ループの遅れの間は励磁電流Iexは増加を続ける。   At this time, the voltage (R · Iex) increases linearly more rapidly than the reference voltage Vref, so that the excitation current Iex also increases. When the voltage (R · Iex) exceeds the reference voltage Vref, the duty cycle converter 15 of the constant current control unit 13 immediately decreases the duty ratio. That is, the FET switch 11 is controlled to be turned off, but the FET switch 11 cannot be turned off immediately due to the delay of the control loop, and the excitation current Iex continues to increase during the delay of the control loop.

また、FETスイッチ11がオフになると、励磁電流Iexは逆に急激に低下することになる。励磁電流Iexの上昇時と同様に制御ループの遅れが生ずるので、励磁電流Iexは(f)に示すように大きな上下変動のリップルに相当する三角波形又は台形波による出力を繰り返すことになる。このときの三角波あるいは台形波となるデューティサイクル信号の周期は、上述の制御ループの遅れ等により図2の(b)で示す正常動作時のデューティサイクル信号の周期より大きな周期となる。   On the other hand, when the FET switch 11 is turned off, the exciting current Iex is suddenly decreased. Since the control loop is delayed in the same manner as when the exciting current Iex increases, the exciting current Iex repeats output by a triangular waveform or a trapezoidal wave corresponding to a large up-and-down fluctuation ripple as shown in (f). At this time, the period of the duty cycle signal that becomes a triangular wave or a trapezoidal wave is larger than the period of the duty cycle signal during normal operation shown in FIG.

励磁回路9の定電流制御部13は、励磁電流Iexのリップルチェックのための所定時間間隔毎に励磁電流Iexを測定し、デューティ比を演算してFETスイッチ11の制御を行っている。同時に、励磁回路9は短絡判定処理部を兼ねるCPU7に励磁電流Iexの測定値の出力を行う。   The constant current control unit 13 of the excitation circuit 9 measures the excitation current Iex at predetermined time intervals for ripple check of the excitation current Iex, calculates the duty ratio, and controls the FET switch 11. At the same time, the excitation circuit 9 outputs a measured value of the excitation current Iex to the CPU 7 that also serves as a short-circuit determination processing unit.

励磁電流Iexの測定値を入力したCPU7は、励磁がオン時において、蓄積した複数の励磁電流Iexの測定値から平均値Hを算出する。次に、各測定値に対して、平均値Hからプラス方向、マイナス方向に変動した変動値h、つまり平均値Hと測定値との差分を求めてリップルの大きさを算出する。そして、測定毎の変動値hと予め設定した閾値とを比較して、励磁負荷である励磁コイル4の短絡状態を判定する。   The CPU 7 having input the measured value of the excitation current Iex calculates the average value H from the accumulated measured values of the plurality of excitation currents Iex when the excitation is on. Next, for each measured value, a fluctuation value h that fluctuates in the positive and negative directions from the average value H, that is, the difference between the average value H and the measured value is obtained to calculate the magnitude of the ripple. And the fluctuation value h for every measurement is compared with the preset threshold value, and the short circuit state of the exciting coil 4 which is an exciting load is determined.

または、励磁オン直後の時間帯を除く励磁オン時において、測定した励磁電流Iexの最小値と最大値の差分である変動値h’を算出し、この変動値h’と予め設定した閾値を比較して、励磁コイル4の短絡状態を判定するようにしてもよい。この場合は、上述の平均値Hを算出する必要はない。   Or, when the excitation is turned on excluding the time zone immediately after the excitation is turned on, a fluctuation value h ′ that is a difference between the minimum value and the maximum value of the measured excitation current Iex is calculated, and the fluctuation value h ′ is compared with a preset threshold value. Then, the short-circuit state of the exciting coil 4 may be determined. In this case, it is not necessary to calculate the above average value H.

大きなリップルの発生、つまり変動値hが閾値を超えたことを励磁回路9に接続したCPU7が検出することにより、励磁コイル4が短絡状態であると判定する。この判定は、所定時間間隔毎の前記変動値hのうち、1つ以上の変動値hが閾値より大きい場合に、励磁コイルは短絡状態であると判定する。また、一定時間内で複数の変動値h、例えば2つ以上の変動値hが閾値より大きい場合に、短絡していると判定するようにしてもよい。   When the CPU 7 connected to the excitation circuit 9 detects the occurrence of a large ripple, that is, the fluctuation value h exceeds the threshold value, it is determined that the excitation coil 4 is in a short-circuit state. This determination determines that the excitation coil is in a short-circuited state when one or more of the fluctuation values h are greater than a threshold value among the fluctuation values h at predetermined time intervals. Further, when a plurality of fluctuation values h, for example, two or more fluctuation values h are larger than a threshold value within a certain time, it may be determined that a short circuit has occurred.

また、突発的なノイズ等による短絡状態の誤検出を防止するために、所定時間間隔毎の変動値hのうち、複数回連続して励磁電流Iexの変動値hが閾値よりも大きい場合に、短絡していると判定するようにしてもよい。   Further, in order to prevent erroneous detection of a short-circuit state due to sudden noise or the like, when the fluctuation value h of the excitation current Iex is larger than the threshold value among the fluctuation values h for each predetermined time interval, You may make it determine with having short-circuited.

このように、正常時においては励磁電流Iexの変動値hは極めて小さい値を示すのに対して、短絡時においては変動値hが極端に大きい値となるので、励磁オン時のリップルに相当する変動値hを監視することで、容易にかつ確実に励磁コイル4の短絡状態を検出できる。   As described above, the fluctuation value h of the excitation current Iex is extremely small during normal operation, whereas the fluctuation value h is extremely large during short-circuiting, which corresponds to a ripple when excitation is on. By monitoring the fluctuation value h, the short-circuit state of the exciting coil 4 can be detected easily and reliably.

4 励磁コイル
9 励磁回路
11 FETスイッチ
12 LCフィルタ
13 定電流制御部
14 偏差アンプ
15 デューティサイクル変換器
4 Excitation coil 9 Excitation circuit 11 FET switch 12 LC filter 13 Constant current controller 14 Deviation amplifier 15 Duty cycle converter

上記目的を達成するための本発明に係る電磁流量計の励磁コイル短絡判定方法は、スイッチング方式によって定電流の励磁電流を励磁コイルに供給し、前記励磁電流による励磁を周期的にオン、オフ制御する電磁流量計の励磁コイル短絡判定方法において、前記励磁オン時に、所定時間間隔毎に励磁電流を測定し、蓄積した複数の前記励磁電流の測定値から平均値を算出し、前記励磁電流と前記平均値との差分から励磁電流の波形のリップルの大きさである変動値を算出し、該変動値と予め設定した閾値とを比較することで前記励磁コイルが短絡状態にあるか否かを判定することを特徴とする。
また、本発明に係る電磁流量計の励磁コイル短絡判定方法は、スイッチング方式によって定電流の励磁電流を励磁コイルに供給し、前記励磁電流による励磁を周期的にオン、オフ制御する電磁流量計の励磁コイル短絡判定方法において、前記励磁オン直後の時間帯を除く励磁オン時に所定時間間隔毎に励磁電流を測定し、測定した励磁電流の最小値と最大値の差分である変動値を算出し、該変動値と予め設定した閾値とを比較することで前記励磁コイルが短絡状態にあるか否かを判定することを特徴とする。
In order to achieve the above object, an exciting coil short-circuit determination method for an electromagnetic flow meter according to the present invention supplies a constant-current exciting current to an exciting coil by a switching method, and periodically turns on and off excitation by the exciting current. In the method for determining an excitation coil short circuit of an electromagnetic flow meter, when the excitation is turned on, an excitation current is measured at predetermined time intervals, an average value is calculated from a plurality of accumulated measurement values of the excitation current, and the excitation current and the The fluctuation value, which is the magnitude of the ripple of the excitation current waveform, is calculated from the difference from the average value, and it is determined whether the excitation coil is in a short-circuited state by comparing the fluctuation value with a preset threshold value. It is characterized by doing.
Also, the excitation coil short-circuit determination method of the electromagnetic flow meter according to the present invention is a method of supplying an excitation current of constant current to the excitation coil by a switching method, and periodically turning on and off the excitation by the excitation current. In the excitation coil short-circuit determination method, the excitation current is measured at every predetermined time interval when excitation is turned on excluding the time zone immediately after the excitation is turned on, and a fluctuation value that is a difference between the minimum value and the maximum value of the measured excitation current is calculated. It is characterized in that it is determined whether or not the exciting coil is in a short circuit state by comparing the fluctuation value with a preset threshold value.

(a)の励磁オンの区間では、励磁電流IexはFETスイッチ11でスイッチングされた電圧をLCフィルタ12で平滑しているが、多少のリップルを含んでいる。励磁コイル4を流れる励磁電流Iexは、励磁コイル4のコイル抵抗成分Rc、インダクタンス成分Lcによって更に平滑され、図(c)に示すようにリップルは小さくなる。 In the excitation-on period of (a), the excitation current Iex smooths the voltage switched by the FET switch 11 by the LC filter 12, but includes some ripple. Excitation current Iex flowing the exciting coil 4, the coil resistance component Rc of the excitation coil 4, further smoothed by the inductance component Lc, ripples as shown in FIG. 2 (c) is reduced.

Claims (4)

スイッチング方式によって定電流の励磁電流を励磁コイルに供給し、前記励磁電流による励磁を周期的にオン、オフ制御する電磁流量計の励磁コイル短絡判定方法において、
前記励磁オン時に、所定時間間隔毎に励磁電流を測定し、こららの測定値に基づいて励磁電流の変動値を算出し、該変動値と予め設定した閾値とを比較することで前記励磁コイルが短絡状態にあるか否かを判定することを特徴とする電磁流量計の励磁コイル短絡判定方法。
In the excitation coil short-circuit determination method of the electromagnetic flowmeter that supplies a constant current excitation current to the excitation coil by a switching method and periodically controls on / off excitation by the excitation current.
When the excitation is turned on, the excitation current is measured at predetermined time intervals, the fluctuation value of the excitation current is calculated based on these measurement values, and the fluctuation value is compared with a preset threshold value to thereby calculate the excitation coil. A method for determining an excitation coil short circuit in an electromagnetic flow meter, wherein:
前記所定時間間隔毎に励磁電流を測定した測定値から平均値を算出し、該平均値と前記測定値との差分から前記変動値を算出することを特徴とする請求項1に記載の電磁流量計の励磁コイル短絡判定方法。   2. The electromagnetic flow rate according to claim 1, wherein an average value is calculated from a measured value obtained by measuring an excitation current at each predetermined time interval, and the fluctuation value is calculated from a difference between the average value and the measured value. Method for determining the excitation coil short circuit of the meter. 前記所定時間間隔毎の前記変動値のうち、1つ以上の前記変動値が前記閾値より大きい場合に、前記励磁コイルは短絡状態であると判定することを特徴とする請求項2に記載の電磁流量計の励磁コイル短絡判定方法。   3. The electromagnetic wave according to claim 2, wherein the excitation coil is determined to be in a short-circuited state when one or more of the fluctuation values among the fluctuation values at the predetermined time intervals are larger than the threshold value. Flow meter excitation coil short-circuit judgment method. 前記所定時間間隔毎の前記変動値のうち、複数回連続して前記変動値が前記閾値より大きい場合に、前記励磁コイルは短絡状態であると判定することを特徴とする請求項2に記載の電磁流量計の励磁コイル短絡判定方法。   The said exciting coil determines with the said excitation coil being a short circuit state, when the said fluctuation value is larger than the said threshold value in multiple times among the said fluctuation values for every said predetermined time interval. How to determine the excitation coil short circuit of an electromagnetic flow meter.
JP2015089795A 2015-04-24 2015-04-24 Electromagnetic flow meter excitation coil short-circuit judgment method Expired - Fee Related JP5877261B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015089795A JP5877261B1 (en) 2015-04-24 2015-04-24 Electromagnetic flow meter excitation coil short-circuit judgment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015089795A JP5877261B1 (en) 2015-04-24 2015-04-24 Electromagnetic flow meter excitation coil short-circuit judgment method

Publications (2)

Publication Number Publication Date
JP5877261B1 JP5877261B1 (en) 2016-03-02
JP2016206079A true JP2016206079A (en) 2016-12-08

Family

ID=55434765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015089795A Expired - Fee Related JP5877261B1 (en) 2015-04-24 2015-04-24 Electromagnetic flow meter excitation coil short-circuit judgment method

Country Status (1)

Country Link
JP (1) JP5877261B1 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09325058A (en) * 1996-06-04 1997-12-16 Yokogawa Electric Corp Electromagnetic flowmeter

Also Published As

Publication number Publication date
JP5877261B1 (en) 2016-03-02

Similar Documents

Publication Publication Date Title
KR101047609B1 (en) Control device of polyphase motor
JP5691816B2 (en) Abnormality detection device for solar panel
JP6305639B2 (en) Current detector
JP2020162223A (en) Power supply device and medical system
JP5877261B1 (en) Electromagnetic flow meter excitation coil short-circuit judgment method
US9148053B2 (en) Flux saturation controller
JP2014147224A (en) Switching regulator
US11573250B2 (en) Electric circuit arrangement and a method for a galvanically insulated, AC/DC sensitive differential-current measurement having high resolution
JP6489653B2 (en) Current detection device and semiconductor device using the same
JP2016005313A (en) Non-contact power feeding system
JP5282576B2 (en) Power converter
JP2009038854A (en) Switching power supply
US20160154418A1 (en) Power supply with a switch converter
US9667181B2 (en) Motor control circuit and method of monitoring a motor
JP2014150598A (en) Electric power conversion system and determination method for bias magnetism of transformer
JP7126051B2 (en) arc welder
JP6338420B2 (en) Control method and control apparatus for resistance welding machine
JP2011232093A (en) Current sensor device
US11077514B2 (en) Systems and methods to reduce magnetic flux in a transformer in a switched mode power supply
WO2019146247A1 (en) Power supply device and power supply device for welding
KR101594520B1 (en) Resonant inverter driver circuit with abnormal power detector for detecting fluctuation of power rehabilitation
WO2018062292A1 (en) Device for determining energization state
JP2014216144A (en) Relay control device
JP6529232B2 (en) Welding current measuring device, resistance welding monitoring device and resistance welding control device
KR20150086173A (en) Switch control circuit and power supply devicecomprising the same

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151216

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20151216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160125

R150 Certificate of patent or registration of utility model

Ref document number: 5877261

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees