JP2014150598A - Electric power conversion system and determination method for bias magnetism of transformer - Google Patents

Electric power conversion system and determination method for bias magnetism of transformer Download PDF

Info

Publication number
JP2014150598A
JP2014150598A JP2013016330A JP2013016330A JP2014150598A JP 2014150598 A JP2014150598 A JP 2014150598A JP 2013016330 A JP2013016330 A JP 2013016330A JP 2013016330 A JP2013016330 A JP 2013016330A JP 2014150598 A JP2014150598 A JP 2014150598A
Authority
JP
Japan
Prior art keywords
current
transformer
component
alternating current
power conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013016330A
Other languages
Japanese (ja)
Inventor
Jun Narushima
じゅん 鳴島
Hiroyuki Fujita
裕幸 藤田
Yoshio Eguchi
吉雄 江口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2013016330A priority Critical patent/JP2014150598A/en
Publication of JP2014150598A publication Critical patent/JP2014150598A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inverter Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electric power conversion system, interconnected with a system through a transformer, capable of well suppressing DC bias magnetism of the transformer.SOLUTION: The electric power conversion system includes: AC CTs on the AC system side (hereinafter referred to as "primary side") and power converter side (hereinafter referred to as "secondary side") of a transformer connected with an AC system; means for detecting a difference current of each of the AC CTs; and a function for determining bias magnetism of a transformer core from the difference current.

Description

本発明は,電力変換装置及び変圧器の偏磁判定方法に係り、特に、変圧器を介して交流電力系統に連系され,交流電力系統から電力を授受し、さらに、変圧器の直流偏磁を抑制するのに好適な電力変換装置及び変圧器の偏磁判定方法に関する。 The present invention relates to a power conversion device and a method for determining the demagnetization of a transformer. In particular, the present invention is connected to an AC power system via a transformer, receives and receives power from the AC power system, and further includes a DC demagnetization of the transformer. The present invention relates to a power conversion apparatus and a method for determining a magnetic bias of a transformer suitable for suppressing noise.

通常,交流系統に接続される電力変換装置は,電力変換器を変圧器を介して接続する。電力変換器は,変圧器の鉄心(以後,単に変圧器鉄心と称す)が周知の直流偏磁で飽和しないよう,直流電圧・直流電流は出力しないよう制御される。しかし,主に電圧センサ(以後,単にVT(Voltage Transformer)と称す)・電流センサ(以後,単にCT(Current Transformer)と称す)のオフセット誤差により,電力変換器は意図しない直流電圧・直流電流を出力する。その結果,直流偏磁により変圧器鉄心が飽和することで,変圧器鉄心を通らない漏洩磁束が増加し,周囲のボルトなどを過熱させ,機械的強度を弱めてしまう可能性がある。また,変圧器鉄心が飽和すると,変圧器の励磁電流が増大し,励磁電流の一部が電力変換器にも流れ,電力変換器の許容電流値を超過する可能性がある。また,変圧器鉄心が飽和すると変圧器が発生する騒音も増加する。   Usually, a power converter connected to an AC system connects a power converter via a transformer. The power converter is controlled so that no DC voltage or DC current is output so that the transformer core (hereinafter simply referred to as a transformer core) is not saturated by a well-known DC bias. However, due to the offset error of voltage sensors (hereinafter simply referred to as VT (Voltage Transformer)) and current sensors (hereinafter simply referred to as CT (Current Transformer)), the power converter generates unintended DC voltage and DC current. Output. As a result, the saturation of the transformer core due to direct current bias increases the leakage flux that does not pass through the transformer core, overheating the surrounding bolts, etc., possibly weakening the mechanical strength. In addition, when the transformer core is saturated, the exciting current of the transformer increases, and part of the exciting current also flows to the power converter, which may exceed the allowable current value of the power converter. In addition, when the transformer core is saturated, the noise generated by the transformer also increases.

このように変圧器鉄心が飽和すると種々問題が生じるので、変圧器鉄心の偏磁状況を判定することが望まれている。そのため、例えば,変圧器の一次側と変圧器の二次側各々に変流器を設置して、これら変流器からのに基づいて変圧器鉄心の偏磁状況を判定する技術が知られている。このような技術は、例えば、特開平11−162769号公報に記載されている。   Since various problems arise when the transformer core is saturated in this way, it is desired to determine the state of magnetic bias of the transformer core. Therefore, for example, a technique is known in which a current transformer is installed on each of the primary side of the transformer and the secondary side of the transformer, and the demagnetization state of the transformer core is determined based on the current from the current transformer. Yes. Such a technique is described, for example, in JP-A-11-162769.

特開平11−162769号公報JP-A-11-162769

上記従来技術における変流器には、変圧器の直流偏磁に係る信号のみならず、他に、変圧器に流れる負荷電流に係る信号が含まれており、特に、この信号において直流成分が含まれるのが問題となり、しかも、直流偏磁によって流れる変圧器の励磁電流の成分は,変圧器に流れる負荷電流の大きさに比べ非常に小さいので,例えばAD変換等を介して取り込んでデジタル処理により偏磁検出・抑制制御を行ったのでは、偏磁検出・抑制制御の判定が不正確になるという問題があった。また,変圧器鉄心の直流偏磁によって発生する成分と,交流系統および電力変換器から発生する成分とを区別することができず,誤った判定となる可能性があった。   The current transformer in the above-described prior art includes not only a signal related to the DC bias magnetism of the transformer but also a signal related to the load current flowing through the transformer, and in particular, this signal includes a DC component. In addition, the component of the exciting current flowing through the transformer due to DC bias is very small compared to the magnitude of the load current flowing through the transformer. When the demagnetization detection / suppression control is performed, there is a problem that the determination of the demagnetization detection / suppression control becomes inaccurate. In addition, it was impossible to distinguish between the components generated by the DC bias of the transformer core and the components generated from the AC system and the power converter, which could lead to erroneous determination.

そこで,本発明は,変圧器鉄心の直流偏磁を精度良く正確に検出することが可能な電力変換装置、及び変圧器の偏磁判定方法を提供することを目的とする。   SUMMARY OF THE INVENTION An object of the present invention is to provide a power converter that can accurately and accurately detect DC bias of a transformer core and a method for determining the bias of a transformer.

上記目的を達成するために、本発明では、インバータ装置から変圧器へ流れる電流に応じて第1の交流電流を出力し、前記変圧器から電力系統へ流れる電流に応じて第2の交流電流を出力し、前記第1の交流電流と前記第2の交流電流との差分である差分電流を形成し、前記インバータ装置から変圧器へ流れる電流に含まれる直流成分が抑制されるようになっており、前記差分電流から前記変圧器の励磁電流の交流成分を検出し、前記励磁電流の交流成分から前記変圧器の鉄心の偏磁を判定するように構成した。   In order to achieve the above object, in the present invention, a first alternating current is output according to a current flowing from the inverter device to the transformer, and a second alternating current is generated according to the current flowing from the transformer to the power system. Outputs a differential current that is a difference between the first alternating current and the second alternating current, and a direct current component contained in the current flowing from the inverter device to the transformer is suppressed. The alternating current component of the exciting current of the transformer is detected from the differential current, and the magnetic bias of the iron core of the transformer is determined from the alternating current component of the exciting current.

本発明によれば,変圧器の負荷電流の影響を除去することができ,直流偏磁の誤判定の可能性を低減することができる。   According to the present invention, it is possible to eliminate the influence of the load current of the transformer and reduce the possibility of erroneous determination of DC bias.

本発明の第一の実施例形態である電力変換装置の構成を示す。The structure of the power converter device which is the 1st Example form of this invention is shown. 本発明の第一の実施例形態である電力変換装置の制御装置の構成を示すThe structure of the control apparatus of the power converter device which is the 1st Example form of this invention is shown. 変圧器が正側に偏磁しているときの変圧器の励磁電流波形の一例を示す。An example of the excitation current waveform of a transformer when the transformer is demagnetized to the positive side is shown. 変圧器が正側に偏磁しているときの変圧器の励磁電流の一例を,直流成分,基本波成分,二次調波成分に分離した各成分の波形を示す。An example of the transformer excitation current when the transformer is biased to the positive side shows the waveforms of each component separated into a DC component, fundamental component, and second harmonic component. 本発明の第二の実施形態である電力変換装置の制御装置の構成を示す。The structure of the control apparatus of the power converter device which is 2nd embodiment of this invention is shown.

以下,本発明の実施例について,図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

第1図に本発明の第一の実施形態である電力変換装置を示す。   FIG. 1 shows a power converter according to a first embodiment of the present invention.

まず,本発明の第一の実施形態である電力変換装置の構成について説明する。   First, the structure of the power converter device which is 1st embodiment of this invention is demonstrated.

本実施例の電力変換装置1は,直流コンデンサとIGBTやGCTなどの自己消弧形素子を有する電圧形インバータ装置(以後,単にインバータ装置と称す)4と,
インバータ装置4の直流電圧Vdcを検出する直流電圧センサ5と,
インバータ装置4の出力電圧を制御するための出力電圧指令値Vc_refを出力する制御装置2と,
制御装置2から与えられる出力電圧指令Vc_refに応じてインバータ装置4の自己消弧形素子のオン,オフを制御するためのゲートパルスGate_Pulseを生成するPWM回路3と,
インバータ装置4と交流系統9を連系する変圧器6と,
変圧器6の交流系統9側(以後,単に一次側と称す)に設置され,電力変換装置2から交流系統9へ出力する電流Is1を検出する出力電流センサ7 と,
交流系統9の系統電圧Vsを検出する交流電圧センサ8と,
変圧器6の一次側に設置され,例えば周知の巻線形変流器のように,電流Is1を検出し,前記電流Is1の交流成分をIs2に変流する一次側交流CT11(或いは第2の交流電流センサとも称する)と,
変圧器6のインバータ装置4側(以後,単に二次側と称す)に設置され,例えば周知の巻線形変流器のように,インバータ装置4の出力する電流Ic1を検出し,前記電流Ic1の交流成分をIc2に変流する二次側交流CT10(或いは第1の交流電流センサとも称する)と,
一次側交流CT11と二次側交流CT10の各出力端子に並列に接続される負担抵抗12と,
負担抵抗12に流れる電流Ic2とIs2の差電流Imagを検出する電流検出手段13
とを備えて構成される。
The power conversion device 1 of the present embodiment includes a voltage source inverter device (hereinafter simply referred to as an inverter device) 4 having a DC capacitor and a self-extinguishing element such as IGBT or GCT,
A DC voltage sensor 5 for detecting the DC voltage Vdc of the inverter device 4;
A control device 2 that outputs an output voltage command value Vc_ref for controlling the output voltage of the inverter device 4;
A PWM circuit 3 for generating a gate pulse Gate_Pulse for controlling on / off of the self-extinguishing element of the inverter device 4 in accordance with an output voltage command Vc_ref given from the control device 2,
A transformer 6 interconnecting the inverter device 4 and the AC system 9,
An output current sensor 7 which is installed on the AC system 9 side of the transformer 6 (hereinafter simply referred to as the primary side) and detects the current Is1 output from the power converter 2 to the AC system 9;
AC voltage sensor 8 for detecting system voltage Vs of AC system 9,
Primary AC CT11 (or second AC) that is installed on the primary side of transformer 6 and detects current Is1 and transforms the alternating current component of current Is1 to Is2, such as a well-known wire-wound current transformer. (Also called current sensor)
Installed on the inverter device 4 side of the transformer 6 (hereinafter simply referred to as the secondary side), for example, detects a current Ic1 output from the inverter device 4 like a well-known winding current transformer, and detects the current Ic1 Secondary AC CT10 (also referred to as a first AC current sensor) that transforms the AC component into Ic2,
A burden resistor 12 connected in parallel to each output terminal of the primary AC CT11 and the secondary ACCT10;
Current detection means 13 for detecting the difference current Imag between the currents Ic2 and Is2 flowing through the load resistor 12
And is configured.

ここで、一次側交流CT11と二次側交流CT10は、いずれも、交流電流センサとして動作し、電磁誘導の法則から前記各CTの一次側に流れる電流によって発生する磁束の時間変化分によって発生する交流誘起電圧により前記各CTの二次側には交流電流が流れる。すなわち、一次側交流CT11と二次側交流CT10は、時間的に変化がない直流分をカットして、交流成分のみを出力する。このように、一次側交流CT11と二次側交流CT10は、交流成分のみを検出して,電流を出力する交流電流センサとして用いられ、例えば、巻線形変流器,ロゴスキーコイル,ピアソンCTなどが利用される。   Here, the primary side AC CT11 and the secondary side AC CT10 both operate as an AC current sensor and are generated by the time change of the magnetic flux generated by the current flowing to the primary side of each CT from the law of electromagnetic induction. An AC current flows on the secondary side of each CT due to the AC induced voltage. That is, the primary AC CT11 and the secondary AC CT10 cut the DC component that does not change with time and output only the AC component. As described above, the primary AC CT11 and the secondary AC CT10 are used as an AC current sensor that detects only an AC component and outputs a current, such as a wound current transformer, Rogowski coil, Pearson CT, etc. Is used.

なお,本実施例では出力電流センサ7は変圧器6の一次側に設置してあるが,変圧器6の二次側に設置してもよい。   Although the output current sensor 7 is installed on the primary side of the transformer 6 in this embodiment, it may be installed on the secondary side of the transformer 6.

また,負担抵抗12に流れる差電流Imagが,直流成分を除いた変圧器6の励磁電流の変流比換算倍となるよう,一次側交流CT11と二次側交流CT10の変流比の逆比を,変圧器6の一次巻線と二次巻線の巻数比と大略等しくする。   In addition, the inverse ratio of the current ratio of the primary AC CT11 and the secondary AC CT10 is set so that the differential current Imag flowing through the load resistor 12 becomes the current ratio converted multiple of the excitation current of the transformer 6 excluding the DC component. Is approximately equal to the turns ratio of the primary winding and the secondary winding of the transformer 6.

また,変圧器6が直流偏磁していないときには,差電流Imagは電流Ic2とIs2に比べ数十分の1から数百分の1以下の大きさであるため,通常交流CTを用いるときのように交流CT10および11にそれぞれ負担抵抗12を接続してから差電流Imagを算出するときに比べ,交流CT10および11は飽和しづらくなる。そのため,負担抵抗12を大きくして高感度に検出することができる。   Also, when the transformer 6 is not dc-biased, the difference current Imag is 1/10 to 1 / hundredth of the magnitude of the currents Ic2 and Is2. Thus, the AC CTs 10 and 11 are less likely to be saturated than when the differential current Imag is calculated after connecting the burden resistor 12 to the AC CTs 10 and 11, respectively. Therefore, the burden resistance 12 can be increased and detected with high sensitivity.

また,本実施例では説明を簡単にするために変圧器6は単相変圧器としているが,変圧器6の鉄心の各脚に巻かれている一次巻線と二次巻線に流れる電流の差分をとることで励磁電流の交流成分を検出することを特徴としており,変圧器6を三相変圧器としても同様に差電流Imagを検出できる。   In this embodiment, the transformer 6 is a single-phase transformer to simplify the explanation, but the current flowing in the primary winding and the secondary winding wound around each leg of the iron core of the transformer 6 It is characterized by detecting the AC component of the excitation current by taking the difference, and the difference current Imag can be detected in the same manner even if the transformer 6 is a three-phase transformer.

また,変圧器鉄心に三巻線以上巻かれているような変圧器においても,変圧器の鉄心の同じ脚に巻かれた一次巻線から各巻線に流れる電流の差分をとることで変圧器の励磁電流の交流成分を検出することができる。   Also, even in a transformer that has three or more windings wound around the transformer core, the difference between the currents flowing from the primary winding wound around the same leg of the transformer core to each winding can be obtained. The AC component of the excitation current can be detected.

次に,本発明の第一の実施形態である電力変換装置1の動作について説明する。   Next, the operation of the power conversion device 1 according to the first embodiment of the present invention will be described.

制御装置2は,インバータ装置4の直流コンデンサ電圧Vdcと,交流系統9の系統電圧Vsと,電力変換装置1の出力電流Is1,差電流Imagを入力とし,インバータ装置4の出力電圧指令値Vc_refを出力する。   The control device 2 receives the DC capacitor voltage Vdc of the inverter device 4, the system voltage Vs of the AC system 9, the output current Is1 and the difference current Imag of the power converter 1, and the output voltage command value Vc_ref of the inverter device 4 is obtained. Output.

PWM回路3は,出力電圧指令値Vc_refと三角波などのキャリアとの大小関係に基づき,インバータ装置4の自己消弧形素子のオン,オフを制御するためのゲートパルスを出力する。   The PWM circuit 3 outputs a gate pulse for controlling on / off of the self-extinguishing element of the inverter device 4 based on the magnitude relationship between the output voltage command value Vc_ref and a carrier such as a triangular wave.

インバータ装置4は,PWM回路3の出力するゲートパルスに基づきインバータ装置4の出力電圧Vcを変圧器6へ出力することで,交流系統との間で電力を変換する。   The inverter device 4 converts the power with the AC system by outputting the output voltage Vc of the inverter device 4 to the transformer 6 based on the gate pulse output from the PWM circuit 3.

次に,制御装置2の構成と動作について述べる。図2は,図1で示した制御装置2の制御ブロックの概略を示した図である。   Next, the configuration and operation of the control device 2 will be described. FIG. 2 is a diagram showing an outline of the control block of the control device 2 shown in FIG.

制御装置2は,
直流電圧Vdc,系統電圧Vs,出力電流Is1を入力とし,インバータ装置4の出力すべき電圧指令値Vc_ref0を演算する電圧指令演算器21と,
交流電圧Vsと差電流Imagを入力とし,例えば周知の離散フーリエ変換(Discrete Fourier Transform :以後,単にDFTと称す)を行い交流電圧Vsの位相を基準とする差電流Imagの交流電圧Vsと同じ周波数成分(以後,基本波成分と称す)の位相θ1を演算する基本波位相演算器22と,
交流電圧Vsと差電流Imagを入力とし,例えば周知のDFTを行い差電流Imagの交流電圧Vsの2倍の周波数成分(以後,二次調波成分と称す)の振幅I2および,交流電圧Vsの位相を基準とする差電流の二次調波成分の位相θ2を演算する二次調波振幅・位相演算器23と,
各位相θ1,θ2を入力とし,式(1)の論理に基づいて変圧器6の偏磁極性を判定する偏磁極性判定演算器24と,
差電流Imagの二次調波成分の指令値I2_ref(通常,直流偏磁を抑制するためには0とする)と,二次調波成分の振幅I2との偏差と,偏磁極性判定演算24の出力を入力とし,例えば周知の比例積分演算を行い変圧器6の偏磁を抑制するため偏磁極性と逆の極性の直流補償電圧Vhosを算出する偏磁制御演算器25とを備え,
電圧指令値演算器21の出力電圧指令値Vc_ref0と偏磁制御演算器25の出力である補償電圧Vhosの和をインバータ装置4の新たな出力電圧指令値Vc_refとする。
The control device 2
A voltage command calculator 21 that receives the DC voltage Vdc, the system voltage Vs, and the output current Is1, and calculates a voltage command value Vc_ref0 to be output from the inverter device 4,
The AC voltage Vs and the difference current Imag are input, for example, a known discrete Fourier transform (hereinafter simply referred to as DFT) is performed, and the same frequency as the AC voltage Vs of the difference current Imag based on the phase of the AC voltage Vs. A fundamental phase calculator 22 for computing the phase θ1 of the component (hereinafter referred to as fundamental component);
The AC voltage Vs and the difference current Imag are input, for example, a well-known DFT is performed, and the amplitude component I2 of the frequency component twice the AC voltage Vs of the difference current Imag (hereinafter referred to as the second harmonic component) and the AC voltage Vs A second harmonic amplitude / phase calculator 23 for calculating the phase θ2 of the second harmonic component of the difference current with respect to the phase;
Each of the phases θ1 and θ2 is input, and the polarized-polarity determination calculator 24 that determines the polarized-polarity of the transformer 6 based on the logic of the equation (1),
Deviation between secondary harmonic component command value I2_ref of differential current Imag (usually 0 to suppress DC demagnetization) and secondary harmonic component amplitude I2; For example, a bias control arithmetic unit 25 for calculating a DC compensation voltage Vhos having a polarity opposite to that of the pole polarity in order to suppress the bias of the transformer 6 by performing a well-known proportional integral calculation.
The sum of the output voltage command value Vc_ref0 of the voltage command value calculator 21 and the compensation voltage Vhos that is the output of the bias control calculator 25 is set as a new output voltage command value Vc_ref of the inverter device 4.

ここで、差電流Imagは,変圧器6の励磁電流のうち直流成分が除去された波形となる。   Here, the difference current Imag has a waveform from which the DC component has been removed from the exciting current of the transformer 6.

なお,前記I2,θ1,θ2は,入力である差電流Imagが基本波周期で同じ値であれば,時間的に変化しない一定値の信号となる。   Note that I2, θ1, and θ2 are constant value signals that do not change with time if the input difference current Imag has the same value in the fundamental wave period.

また、新たな出力電圧指令値Vc_refは、例えば、電力系統に従属した周期を持って変動する指令値であり、正弦波に類似した波形に若干の直流成分を含んだものである。   The new output voltage command value Vc_ref is, for example, a command value that varies with a period depending on the power system, and includes a slight DC component in a waveform similar to a sine wave.

本実施例で、制御装置2の構成は,電圧指令演算器21と,基本波位相演算器22,二次調波振幅・位相演算器23,偏磁極性判定演算器24及び偏磁制御演算器25を機能ブロックとして説明したが、これら機能は、例えば、1つ或いは複数の電子計算機のプログラム動作として実施してもよいのはもちろんである。   In the present embodiment, the configuration of the control device 2 includes a voltage command calculator 21, a fundamental wave phase calculator 22, a secondary harmonic amplitude / phase calculator 23, a polarized magnetic polarity determination calculator 24, and a bias control calculator. Although 25 is described as a functional block, these functions may of course be implemented as a program operation of one or a plurality of electronic computers, for example.

この場合、制御装置2においては、例えば、所定の制御周期毎に出力電圧指令値Vc_ref0を演算し、また、補償電圧Vhosを演算する。下記で示される式(1)乃至(3)に係る演算及び偏磁極性の判定も、この一連の制御周期の中でなされる。   In this case, in the control device 2, for example, the output voltage command value Vc_ref0 is calculated every predetermined control cycle, and the compensation voltage Vhos is calculated. Calculations according to the expressions (1) to (3) shown below and the determination of the magnetic pole polarity are also performed in this series of control cycles.

次に,偏磁極性判定演算器24の判定方法について詳細に説明する。   Next, the determination method of the polarized magnetic polarity determination calculator 24 will be described in detail.

変圧器が正側に偏磁している状態の変圧器の励磁電流の代表的な波形を図3に示す。励磁電流は偏磁している極性と同極性の直流成分が重畳し,偏磁している極性にピークをもつ波形になることが特徴である。励磁電流を直流成分,周期Tの基本波成分,周期T/2の二次調波成分に分離した波形を図4に示す。図4のように,正側に偏磁しているときには励磁電流の基本波成分の正側ピークと二次調波成分の正側ピークが大略一致することから,励磁電流の基本波成分と二次調波成分は式(1)の関係をもつ。   Fig. 3 shows a typical waveform of the excitation current of the transformer with the transformer biased to the positive side. The exciting current is characterized by the fact that a DC component with the same polarity as that of the demagnetized polarity is superimposed, resulting in a waveform having a peak in the depolarized polarity. Fig. 4 shows the waveforms obtained by separating the excitation current into a DC component, a fundamental component with a period T, and a second harmonic component with a period T / 2. As shown in Fig. 4, when the magnet is biased to the positive side, the positive peak of the fundamental wave component of the excitation current and the positive peak of the secondary harmonic component are approximately the same, so the fundamental wave component of the excitation current The second harmonic component has the relationship of equation (1).

正に偏磁:θ2−2×θ1 ≒ 0 (rad) (1)
負側に偏磁しているときには励磁電流の基本波成分の負側ピークと二次調波成分の負側ピークが大略一致することから,励磁電流の基本波成分と二次調波成分は式(2)の関係をもつ。
Positively demagnetized: θ2−2 × θ1 ≒ 0 (rad) (1)
Since the negative side peak of the fundamental component of the excitation current and the negative side peak of the secondary harmonic component are approximately the same when biased to the negative side, the fundamental and secondary harmonic components of the excitation current are It has the relationship (2).

負に偏磁:θ2−2×θ1 ≒ π(rad) (2)
よって,偏磁極性判定演算器24は,例えば式(3)のようにして偏磁した極性を判定することができる。
Negatively magnetized: θ2−2 × θ1 ≒ π (rad) (2)
Therefore, the depolarization determining unit 24 can determine the depolarized polarity, for example, as shown in Equation (3).

正に偏磁:Cos(θ2−2×θ1) ≧ 0
負に偏磁:Cos(θ2−2×θ1) < 0 (3)
本実施例の電力変換装置1は,変圧器6の負荷電流の影響を除去することができ,直流偏磁の誤判定の可能性を低減することができる。
Positively biased: Cos (θ2−2 × θ1) ≧ 0
Negatively polarized: Cos (θ2−2 × θ1) <0 (3)
The power conversion device 1 of the present embodiment can remove the influence of the load current of the transformer 6 and can reduce the possibility of erroneous determination of DC bias.

また,本発明の電力変換装置1を適用することで,直流成分の検出誤差による直流偏磁の誤判定の可能性を低減することができる。   Further, by applying the power conversion device 1 of the present invention, it is possible to reduce the possibility of erroneous determination of DC bias due to DC component detection error.

また,変圧器の直流偏磁を高精度で抑制できるため,変圧器の騒音を低減することができる。   In addition, transformer DC noise can be suppressed with high accuracy, and transformer noise can be reduced.

第5図は,本発明の第二の実施形態である電力変換装置1の制御装置12の制御ブロック図の概略を示した図である。   FIG. 5 is a diagram schematically showing a control block diagram of the control device 12 of the power conversion device 1 according to the second embodiment of the present invention.

まず,本発明の第二の実施形態である電力変換装置の制御ブロックの構成について説明する。ただし,実施例1と同じまたは相当する部分については説明を省略し,異なる部分のみを説明する。   First, the structure of the control block of the power converter device which is 2nd embodiment of this invention is demonstrated. However, the description of the same or corresponding parts as in the first embodiment will be omitted, and only different parts will be described.

図5で示す電力変換装置1の制御装置12の制御ブロックは,図2で示した制御ブロックのうち,基本波位相演算器22と二次調波振幅・位相演算器23ではなく,系統電圧1周期毎に差電流Imagの最大値と最小値演算する周期最大値演算器31と周期最小値演算器32を用いることが異なる。   The control block of the control device 12 of the power conversion device 1 shown in FIG. 5 is not the fundamental phase calculator 22 and the secondary harmonic amplitude / phase calculator 23 but the system voltage 1 of the control blocks shown in FIG. The difference is that the period maximum value calculator 31 and the period minimum value calculator 32 for calculating the maximum value and the minimum value of the difference current Imag are used for each period.

次に,制御装置12の動作および効果について,実施例1と異なる部分のみ述べる。   Next, only the differences from the first embodiment will be described regarding the operation and effects of the control device 12.

差電流Imagは,交流CTにより検出するため,変圧器6の励磁電流のうち直流成分が除去された波形となる。直流偏磁していない場合,差電流Imagは大略正負対称な波形となり,系統電圧一周期毎の最大値と最小値の和は大略0となる。   Since the difference current Imag is detected by AC CT, the DC current component is removed from the excitation current of the transformer 6. When the DC bias is not applied, the difference current Imag has a substantially positive / negative symmetrical waveform, and the sum of the maximum value and the minimum value for each cycle of the system voltage is approximately zero.

一方,直流偏磁した場合,差電流Imagは,偏磁した極性に大きなピークをもつ正負非対称な波形となり,系統電圧一周期毎の最大値と最小値の和は偏磁した極性の値をもつ。   On the other hand, when DC is magnetized, the difference current Imag has a positive and negative asymmetric waveform with a large peak in the magnetized polarity, and the sum of the maximum and minimum values for each period of the system voltage has a value of the magnetized polarity. .

本実施例の電力変換装置1は,系統電圧一周期毎の差電流Imagの最大値Imag_maxと最小値Imag_minの和を変圧器6の偏磁量として,変圧器6の偏磁量の指令値Isum_ref(通常,直流偏磁を抑制する場合は0とする)との偏差を偏磁制御演算器25に入力する。   The power conversion device 1 of the present embodiment uses the sum of the maximum value Imag_max and the minimum value Imag_min of the difference current Imag for each cycle of the system voltage as the amount of bias of the transformer 6, and the command value Isum_ref of the amount of bias of the transformer 6 (Normally, 0 is used to suppress DC bias), and the deviation is input to the bias control calculator 25.

本実施例の電力変換装置1を適用することで,変圧器6の負荷電流の影響を除去することができ,直流偏磁の誤判定の可能性を低減することができる。   By applying the power conversion device 1 of the present embodiment, the influence of the load current of the transformer 6 can be removed, and the possibility of erroneous determination of DC bias can be reduced.

また,本発明の電力変換装置1を適用することで,直流成分の検出誤差による直流偏磁の誤判定の可能性を低減することができる。   Further, by applying the power conversion device 1 of the present invention, it is possible to reduce the possibility of erroneous determination of DC bias due to DC component detection error.

また,一般に変圧器が直流偏磁して飽和すると励磁電流が急激に大きくなるため,系統電圧一周期毎の差電流Imagの最大値Imag_maxと最小値Imag_minの和も非常に大きくなる。そのため,本発明の電力変換装置1を適用することで,高感度で直流偏磁を検出できる。   In general, when the transformer is DC-magnetized and saturated, the excitation current increases rapidly, so the sum of the maximum value Imag_max and the minimum value Imag_min of the difference current Imag for each cycle of the system voltage also becomes very large. Therefore, by applying the power conversion device 1 of the present invention, it is possible to detect the DC bias with high sensitivity.

また,変圧器の直流偏磁を高精度で抑制できるため,変圧器の騒音を低減することができる。   In addition, transformer DC noise can be suppressed with high accuracy, and transformer noise can be reduced.

以上のように,変圧器を用いて交流系統に連系する電力変換装置のうち特に,変圧器の直流偏磁を抑制する機能を有する電力変換装置に関するものである。   As mentioned above, it is related with the power converter device which has a function which suppresses the direct current | flow magnetism of a transformer among the power converter devices connected to an alternating current system using a transformer.

1 電力変換装置
2 制御装置
3 PWM回路
4 電圧形インバータ装置
5 直流電圧センサ
6 変圧器
7 出力電流センサ
8 交流電圧センサ
9 交流系統
10 二次側交流CT
11 一次側交流CT
12 負担抵抗
13 電流検出手段
21 電圧指令演算器
22 基本波位相演算器
23 二次調波振幅・位相演算器
24 偏磁極性判定演算器
25 偏磁制御演算器
31 周期最大値演算器
32 周期最小値演算器
1 Power converter
2 Control unit
3 PWM circuit
4 Voltage source inverter device
5 DC voltage sensor
6 Transformer
7 Output current sensor
8 AC voltage sensor
9 AC system
10 Secondary AC CT
11 Primary AC CT
12 Burden resistance
13 Current detection means
21 Voltage command calculator
22 Fundamental phase calculator
23 Second harmonic amplitude / phase calculator
24 Polarity judgment calculator
25 Magnetic bias control calculator
31 Period maximum value calculator
32 Period minimum value calculator

Claims (7)

変圧器を介して電力系統に連系する電力変換装置であって,所定の交流電力を前記変換器に出力するインバータ装置と,前記変圧器へ流れる電流に応じて交流電流を出力する第1の交流電流センサと、前記変圧器から流れる電流に応じて交流電流を出力する第2の交流電流センサを有し、前記第1の交流電流センサの電流と前記第2の交流電流センサの電流との差分である差分電流から前記変圧器の励磁電流の交流成分を検出する励磁電流検出部と、前記変圧器の励磁電流の交流成分から前記変圧器の鉄心の偏磁を判定する偏磁判定部を有し、前記変圧器の励磁電流に含まれる直流成分が抑制されるように構成したことを特徴とした電力変換装置。
A power converter connected to a power system through a transformer, an inverter device that outputs predetermined AC power to the converter, and a first that outputs an AC current according to a current flowing to the transformer An AC current sensor, and a second AC current sensor that outputs an AC current according to a current flowing from the transformer, wherein the current of the first AC current sensor and the current of the second AC current sensor An excitation current detection unit that detects an alternating current component of the transformer excitation current from a difference current that is a difference, and a demagnetization determination unit that determines the bias of the transformer iron core from the alternating current component of the transformer excitation current. And a power converter configured to suppress a direct current component included in the exciting current of the transformer.
請求項1記載の電力変換装置であって,前記第1の交流電流センサは第1の変流器として構成され、前記第2の交流電流センサは第2の変流器として構成され、前記第1の変流器と前記第2の変流器の変流比の比は前記変圧器の一次側と二次側の巻数比の逆数に大略等しくし,前記第1の交流電流と前記第2の交流電流の出力を接続し,前記第1の交流電流と前記第2の交流電流の出力と並列に抵抗を接続し,前記抵抗に流れる電流から前記変圧器の励磁電流の交流成分を検出することを特徴とした電力変換装置。
2. The power conversion device according to claim 1, wherein the first alternating current sensor is configured as a first current transformer, the second alternating current sensor is configured as a second current transformer, and The ratio of the current transformer ratio of the first current transformer and the second current transformer is substantially equal to the reciprocal of the turns ratio of the primary side and the secondary side of the transformer, and the first alternating current and the second current transformer The output of the alternating current is connected, a resistor is connected in parallel with the output of the first alternating current and the second alternating current, and the alternating current component of the exciting current of the transformer is detected from the current flowing through the resistor. A power converter characterized by that.
請求項1記載の電力変換装置であって,前記励磁電流の交流成分のうち前記電力系統の系統電圧と等しい周波数成分である基本波成分と,前記系統電圧の二倍の周波数成分である二次調波成分との位相差から前記変圧器の鉄心の偏磁極性を判定し,前記励磁電流の二次調波成分の振幅から前記変圧器の鉄心の偏磁量を判定することを特徴とする電力変換装置。
2. The power conversion device according to claim 1, wherein among the alternating current components of the exciting current, a fundamental wave component that is a frequency component equal to a system voltage of the power system and a secondary component that is a frequency component twice the system voltage. The magnetic pole of the transformer core is determined from the phase difference from the harmonic component, and the amount of magnetic bias of the transformer core is determined from the amplitude of the secondary harmonic component of the excitation current. Power conversion device.
請求項1記載の電力変換装置であって,前記励磁電流の交流成分の前記系統電圧1周期間の最大値または最小値を算出し,前記最大値または前記最小値から前記変圧器鉄心の偏磁極性および偏磁量を判定することを特徴とする電力変換装置。
2. The power converter according to claim 1, wherein a maximum value or a minimum value of the AC component of the excitation current during one period of the system voltage is calculated, and the polarized magnetic pole of the transformer core is calculated from the maximum value or the minimum value. The power converter characterized by determining the property and the amount of magnetic bias.
請求項1記載の電力変換装置であって,前記励磁電流の交流成分の前記系統電圧1周期間の最大値または最小値を算出し,前記最大値と前記最小値の和から前記変圧器鉄心の偏磁極性および偏磁量を判定する機能を有することを特徴とする電力変換装置。
The power conversion device according to claim 1, wherein a maximum value or a minimum value of the AC component of the excitation current during one cycle of the system voltage is calculated, and a sum of the maximum value and the minimum value is used to calculate the transformer core. A power conversion device having a function of determining a polarization property and a polarization amount.
請求項1記載の電力変換装置であって,前記第1の交流電流センサと前記第2の交流電流センサの少なくともいずれか一方を空心構成の変流器とすることを特徴とする電力変換装置。
2. The power conversion device according to claim 1, wherein at least one of the first alternating current sensor and the second alternating current sensor is a current transformer having an air-core configuration.
インバータ装置から変圧器へ流れる電流の交流成分に応じて第1の交流電流を出力し、前記変圧器から電力系統へ流れる電流の交流成分に応じて第2の交流電流を出力し、前記第1の交流電流と前記第2の交流電流との差分である差分電流を形成し、前記インバータ装置から変圧器へ流れる電流に含まれる直流成分が抑制されるようになっており、前記差分電流から前記変圧器の励磁電流の交流成分を検出し、前記励磁電流の交流成分から前記変圧器の鉄心の偏磁を判定する変圧器の偏磁判定方法。 A first alternating current is output according to the alternating current component of the current flowing from the inverter device to the transformer, a second alternating current is output according to the alternating current component of the current flowing from the transformer to the power system, and the first Forming a differential current that is a difference between the alternating current of the second current and the second alternating current, and a direct current component included in a current flowing from the inverter device to the transformer is suppressed, and from the differential current, the A transformer demagnetization determination method for detecting an AC component of an excitation current of a transformer and determining a demagnetization of an iron core of the transformer from the AC component of the excitation current.
JP2013016330A 2013-01-31 2013-01-31 Electric power conversion system and determination method for bias magnetism of transformer Pending JP2014150598A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013016330A JP2014150598A (en) 2013-01-31 2013-01-31 Electric power conversion system and determination method for bias magnetism of transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013016330A JP2014150598A (en) 2013-01-31 2013-01-31 Electric power conversion system and determination method for bias magnetism of transformer

Publications (1)

Publication Number Publication Date
JP2014150598A true JP2014150598A (en) 2014-08-21

Family

ID=51573171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013016330A Pending JP2014150598A (en) 2013-01-31 2013-01-31 Electric power conversion system and determination method for bias magnetism of transformer

Country Status (1)

Country Link
JP (1) JP2014150598A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016116423A (en) * 2014-12-18 2016-06-23 株式会社日立製作所 Power conversion device, and control method for power conversion device
CN106199274A (en) * 2016-07-21 2016-12-07 国家电网公司 A kind of D.C. magnetic biasing administers site selection method
WO2019058878A1 (en) * 2017-09-22 2019-03-28 株式会社日立製作所 Power conversion device and power conversion system
CN114019286A (en) * 2021-11-05 2022-02-08 国网四川省电力公司经济技术研究院 Transformer direct-current magnetic bias tolerance checking field test method and system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01126704A (en) * 1987-11-12 1989-05-18 Toshiba Corp Direct current deviated magnetism suppressing device for transformer
JPH0728534A (en) * 1993-07-13 1995-01-31 Toshiba Corp Controller for power converter
JP2012157237A (en) * 2011-01-27 2012-08-16 General Electric Co <Ge> Reduction in generator-sourced fault current contribution

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01126704A (en) * 1987-11-12 1989-05-18 Toshiba Corp Direct current deviated magnetism suppressing device for transformer
JPH0728534A (en) * 1993-07-13 1995-01-31 Toshiba Corp Controller for power converter
JP2012157237A (en) * 2011-01-27 2012-08-16 General Electric Co <Ge> Reduction in generator-sourced fault current contribution

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016116423A (en) * 2014-12-18 2016-06-23 株式会社日立製作所 Power conversion device, and control method for power conversion device
CN106199274A (en) * 2016-07-21 2016-12-07 国家电网公司 A kind of D.C. magnetic biasing administers site selection method
WO2019058878A1 (en) * 2017-09-22 2019-03-28 株式会社日立製作所 Power conversion device and power conversion system
JP2019058038A (en) * 2017-09-22 2019-04-11 株式会社日立製作所 Power conversion device and power conversion system
CN114019286A (en) * 2021-11-05 2022-02-08 国网四川省电力公司经济技术研究院 Transformer direct-current magnetic bias tolerance checking field test method and system
CN114019286B (en) * 2021-11-05 2024-04-26 国网四川省电力公司经济技术研究院 Transformer direct-current magnetic bias tolerance capability checking field test method and system

Similar Documents

Publication Publication Date Title
WO2014010187A1 (en) Current detection device
Taitoda et al. Iron loss estimation method for a general hysteresis loop with minor loops
JP2014150598A (en) Electric power conversion system and determination method for bias magnetism of transformer
JP6642230B2 (en) DC bias detection method for transformer core and DC bias detection system for transformer core
US10564189B2 (en) Integrated circuit using a digital method for AC/DC-sensitive residual current measurement
US11300591B2 (en) Contactless current measurement
US20170023623A1 (en) Current detection circuit unaffected by noise
JP5834217B2 (en) DC power supply device and application system
JP5449222B2 (en) DC leakage detection device
JP6896592B2 (en) Open phase detection device and open phase detection system
JP2016156743A (en) Curent detection device
JP6298581B2 (en) Current detection device and substation equipment provided with the same
WO2015075983A1 (en) Power conversion device and power conversion device control method
JP5943371B2 (en) Inverter power supply
CN108732403B (en) Current sensor and magnetic flux balancing circuit thereof
JPH07298627A (en) Controller for power converter
KR20120015451A (en) Saturation control unit for an interphase transforming unit and pwm control apparatus for a voltage converting device
US20180041147A1 (en) Motor torque ripple reduction using dc bus harmonics
JPH1140429A (en) Transformer, detecting device for direct current magnetic deviation of transformer and evaluating device for direct current magnetic deviation
JP5640842B2 (en) Power conversion apparatus and control method thereof
RU2410829C1 (en) Method to reduce saturation of pulse converter transformer and converter for its realisation
JP5272678B2 (en) Overexcitation detection device
JP3463164B2 (en) Power conversion device equipped with demagnetization suppression control device
WO2023281696A1 (en) Current leakage sensor and circuit protection system
US11971436B2 (en) Method and system for determining a phase shift between a phase current and a phase voltage

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160406

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160906