JP2016205474A - Method for designing high strength bolt friction joint part and high strength bolt friction joint - Google Patents

Method for designing high strength bolt friction joint part and high strength bolt friction joint Download PDF

Info

Publication number
JP2016205474A
JP2016205474A JP2015085557A JP2015085557A JP2016205474A JP 2016205474 A JP2016205474 A JP 2016205474A JP 2015085557 A JP2015085557 A JP 2015085557A JP 2015085557 A JP2015085557 A JP 2015085557A JP 2016205474 A JP2016205474 A JP 2016205474A
Authority
JP
Japan
Prior art keywords
strength
strength bolt
friction
bolt
stress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015085557A
Other languages
Japanese (ja)
Other versions
JP6579787B2 (en
Inventor
清三郎 東
Seizaburo Azuma
清三郎 東
隆 熊井
Takashi Kumai
隆 熊井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yoshikawa Kogyo Co Ltd
Nippon Steel Corp
Original Assignee
Yoshikawa Kogyo Co Ltd
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yoshikawa Kogyo Co Ltd, Nippon Steel and Sumitomo Metal Corp filed Critical Yoshikawa Kogyo Co Ltd
Priority to JP2015085557A priority Critical patent/JP6579787B2/en
Publication of JP2016205474A publication Critical patent/JP2016205474A/en
Application granted granted Critical
Publication of JP6579787B2 publication Critical patent/JP6579787B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method for designing a high strength bolt friction joint capable of realizing a rational number of high strength bolts and arrangement of high strength bolts and provide a high strength bolt friction joint designed on the basis of the method.SOLUTION: This invention relates to a high strength bolt frictional joint subjected to a frictional surface treatment where a coefficient of friction is dependent on a contact pressure, and it satisfies a relation of μ=14×10×t+4×10×(l+w-1.35×2×r)+0.24, where l(mm) is a frictional surface length per one high strength bolt in a stress applying direction, w(mm) is a frictional surface length per one high strength bolt in a stress crossing direction, t(mm) is a doubling plate thickness, and μ is a sliding coefficient when relations of l≤1.35×2×rand w≤1.35×2×rare applied. Since a target sliding coefficient μ and ts are set in advance and land wcan be set to cause this sliding coefficient μ and ts to be satisfied, it is possible to attain a high strength bolt frictional joint where a rational high strength bolt can be arranged.SELECTED DRAWING: Figure 1

Description

本発明は、摩擦係数が接触圧に依存する摩擦面処理を施した高力ボルト摩擦接合部の設計方法および高力ボルト摩擦接合部に関する。   The present invention relates to a high-strength bolt friction joint design method and a high-strength bolt friction joint with a friction surface treatment whose friction coefficient depends on contact pressure.

従来、建築や土木の分野において、鋼構造物(建物や橋梁等)の骨組みを構成する鋼材どうしの接合構造として、高力ボルト等の締付け具で鋼材を締付け、この締め付けた圧縮力により生じる摩擦抵抗で鋼材どうしを接合する摩擦接合が一般的に利用されている。
一般的な摩擦接合では、母材(柱や梁、筋交いなど)や添板(スプライスプレート)、ガセットプレートなどの鋼材の接合面に以下のような加工を施して摩擦係数を確保している。すなわち、サンダーやグラインダーなどにより黒皮を除去した後に放置して赤錆を発生させるか、またはショットブラスト加工などにより接合面を粗くする方法が用いられている。
しかし、このような方法によって得られる接合面の摩擦係数は、比較的小さい上に安定した摩擦抵抗が確保し難いため、設計する上で安全側に捉えた低い値(例えば、浮き錆を除去した赤錆面の場合でμ=0.45、ブラスト処理面の場合でμ=0.45など)を採用せざるを得ず、部材断面が大きくなった場合には、合理的な設計が実現し難く、その解決が望まれている。
Conventionally, in the field of construction and civil engineering, as a joining structure of steel materials that constitute the framework of steel structures (buildings, bridges, etc.), the steel material is fastened with a fastening tool such as a high-strength bolt, and the friction generated by this tightened compressive force Friction welding that joins steel materials with resistance is generally used.
In general friction welding, the friction coefficient is secured by performing the following processing on the joining surfaces of steel materials such as base materials (columns, beams, bracing, etc.), accessory plates (splice plates), and gusset plates. That is, after removing the black skin with a sander or a grinder, it is left to generate red rust, or a method of roughening the joint surface by shot blasting or the like is used.
However, the friction coefficient of the joint surface obtained by such a method is relatively small and it is difficult to secure a stable frictional resistance. Therefore, a low value (for example, floating rust is removed) taken as a safe side in designing. In the case of a red rust surface, μ = 0.45, in the case of a blasted surface, μ = 0.45, etc.) must be adopted, and when the member cross section becomes large, it is difficult to realize a rational design. The solution is desired.

このような問題を解決するための一例として、特許文献1に記載の高力ボルト摩擦接合構造が知られている。この高力ボルト摩擦接合構造は、高力ボルトによって鋼材どうしを接合するに際し、接合部を構成する鋼材の接合面のうち少なくとも一方の接合面に複数の気孔を含むようにアルミ溶射処理等の金属溶射処理を施し、当該金属溶射層の気孔率を5%以上、30%以下としたものである。
このような高力ボルト摩擦接合構造によれば、金属溶射層が形成された一方の接合面と、他方の接合面間の摩擦力が増大され、摩擦抵抗を確実に高めて合理的な設計を実現することができる。これにより、例えば、高力ボルト等の締付け具の数量を減らすことができ、また、接合面の面積を小さくすることができるので、摩擦接合構造のコンパクト化が図れる。
As an example for solving such a problem, a high-strength bolt friction joint structure described in Patent Document 1 is known. This high-strength bolt friction joint structure is made of a metal such as aluminum sprayed so as to include a plurality of pores in at least one of the joining surfaces of the steel materials constituting the joint when joining steel materials with high-strength bolts. Thermal spraying is performed, and the porosity of the metal sprayed layer is 5% or more and 30% or less.
According to such a high-strength bolt friction joint structure, the frictional force between one joint surface on which the metal sprayed layer is formed and the other joint surface is increased, so that the frictional resistance is reliably increased and a rational design can be achieved. Can be realized. Accordingly, for example, the number of fasteners such as high-strength bolts can be reduced, and the area of the joining surface can be reduced, so that the friction joining structure can be made compact.

また、前記問題を解決するための他の例として、特許文献2に記載の高力ボルト摩擦接合用スプライスプレートが知られている。これは、摩擦接合面に金属溶射による溶射層を形成した高力ボルト摩擦接合用スプライスプレートにおいて、溶射層のうち表面側に位置する表面側溶射層の気孔率が、前記表面側溶射層よりもスプライスプレート母材との界面側に位置する界面側溶射層の気孔率が大きいものである。
このような高力ボルト摩擦接合用スプライスプレートによれば、高力ボルト摩擦接合において、高い摩擦抵抗、具体的にはすべり係数(摩擦係数)0.7以上を合理的に安定して得ることができ、高力ボルト摩擦接合の接合強度および寿命を高いレベルで安定させることができる。
As another example for solving the above problem, a high-strength bolt friction joining splice plate described in Patent Document 2 is known. This is because, in the splicing plate for high-strength bolt friction welding in which a thermal spray layer is formed by metal spraying on the friction welding surface, the porosity of the surface side thermal spray layer located on the surface side of the thermal spray layer is higher than that of the surface side thermal spray layer. The interface-side sprayed layer located on the interface side with the splice plate base material has a high porosity.
According to such a high-strength bolt friction joining splice plate, a high friction resistance, specifically, a slip coefficient (friction coefficient) of 0.7 or more can be reasonably stably obtained in high-strength bolt friction joining. It is possible to stabilize the joint strength and life of the high-strength bolt friction joint at a high level.

また、上述したアルミ溶射処理のような、摩擦係数が接触圧に依存する摩擦面処理を接合面に施した高力ボルト摩擦接合部では、接触圧が低いほど摩擦係数が高くなり、また添板厚が厚いほど、母材表面への接触圧分布領域が大きくなることが知られている。   Also, in the high-strength bolt friction joint where the friction surface treatment whose friction coefficient depends on the contact pressure, such as the above-mentioned aluminum spraying treatment, is applied to the joint surface, the lower the contact pressure, the higher the friction coefficient. It is known that the thicker the thickness, the larger the contact pressure distribution area on the surface of the base material.

特開2009−121603号公報JP 2009-121603 A 特開2012−122229号公報JP 2012-122229 A

ところで、上述したアルミ溶射処理のような、摩擦係数が接触圧に依存する摩擦面処理を接合面に施した高力ボルト摩擦接合部では、すべり係数が高力ボルト径、高力ボルト強度、添板厚、溶射層厚に依存することが知られている。また、添板厚が小さくなると、すべり係数が小さくなり、十分な効果が得られない場合がある。
そこで、本発明者は、高力ボルト摩擦接合部におけるすべり係数について鋭意研究したところ、すべり係数が、上述した高力ボルト径、高力ボルト強度、添板厚、溶射層厚に加え、さらに、高力ボルト1本当たりの摩擦面長さにも依存することが実験的に明らかになった。
そして、この実験に基づいて、本発明者は、すべり係数μと高力ボルト1本当たりの摩擦面長さと、添板厚との関係を定式化した。これにより本発明者は、合理的な高力ボルト本数、高力ボルト配置ができるため、経済的な高力ボルト摩擦接合部を提供できるという知見を得るに至った。
By the way, in a high-strength bolt friction joint where a friction surface treatment whose friction coefficient depends on the contact pressure, such as the above-described aluminum spraying treatment, is applied to the joint surface, the slip coefficient has a high strength bolt diameter, high strength bolt strength, additional strength. It is known that it depends on the plate thickness and the sprayed layer thickness. Further, when the thickness of the accessory plate is decreased, the slip coefficient is decreased, and a sufficient effect may not be obtained.
Therefore, the present inventors diligently studied the slip coefficient in the high-strength bolt friction joint, the slip coefficient is in addition to the above-described high-strength bolt diameter, high-strength bolt strength, accessory plate thickness, sprayed layer thickness, It has been experimentally clarified that it also depends on the friction surface length per high-strength bolt.
Based on this experiment, the present inventor formulated the relationship between the slip coefficient μ, the friction surface length per high-strength bolt, and the thickness of the accessory plate. As a result, the present inventor has obtained the knowledge that an economical high-strength bolt friction joint can be provided because a reasonable number of high-strength bolts and high-strength bolts can be arranged.

本発明は、このような知見に基づいてなされたもので、合理的な高力ボルト本数、高力ボルト配置ができる高力ボルト摩擦接合部の設計方法およびそれに基づいて設計された高力ボルト摩擦接合部を提供することを目的としている。   The present invention has been made on the basis of such knowledge. A design method for a high-strength bolt friction joint capable of arranging a reasonable number of high-strength bolts and high-strength bolts, and high-strength bolt friction designed based thereon. The aim is to provide a joint.

前記目的を達成するために、本発明の高力ボルト接合部の設計方法は、摩擦係数が接触圧に依存する摩擦面処理を施した高力ボルト摩擦接合部の設計方法であって、
応力方向の高力ボルト1本当たりの摩擦面長さをl(mm)、
添板厚をt(mm)、
すべり係数をμとすると、
≦1.35×2×rの場合、以下の(1)式を満足し、
>1.35×2×rの場合、以下の(2)式を満足することを特徴とする。
μ=14×10−3×t+4×10−3×l+0.24 (1)
μ=14×10−3×t+4×10−3×(1.35×2×r)+0.24 (2)
但し、
=(2×e+(n−1)×p)/n
前記高力ボルトが六角ボルトの場合:r=r
前記高力ボルトがトルシアボルトの場合:r=r/2+r/2
(頭部側)=Dh/2+t
(ナット側)=Dn/2+tws/2+t
:応力方向の縁端距離(mm)
p:応力方向の高力ボルト間距離(mm)
n:応力方向の高力ボルト本数
:接触圧分布半径(mm)
Dh:トルシアボルトの頭部側座面径(mm)
Dn:ナットの座面径(mm)
ws:座金厚(mm)
とする。
In order to achieve the above object, a high-strength bolt joint design method of the present invention is a high-strength bolt friction joint design method in which a friction surface treatment whose friction coefficient depends on contact pressure is performed,
The friction surface length per one high-strength bolts in the stress direction l b (mm),
添板thickness of t s (mm),
If the slip coefficient is μ,
When l b ≦ 1.35 × 2 × r 0 , the following expression (1) is satisfied,
When l b > 1.35 × 2 × r 0 , the following expression (2) is satisfied.
μ = 14 × 10 -3 × t s + 4 × 10 -3 × l b +0.24 (1)
μ = 14 × 10 -3 × t s + 4 × 10 -3 × (1.35 × 2 × r 0) +0.24 (2)
However,
l b = (2 × e 1 + (n−1) × p) / n
When the high-strength bolt is a hexagonal bolt: r 0 = r 2
If the high strength bolt of torque shear bolt: r 0 = r 1/2 + r 2/2
r 1 (head side) = Dh 1/2 + t s
r 2 (nut side) = Dn 1/2 + t ws / 2 + t s
e 1 : Edge distance in the stress direction (mm)
p: Distance between high-strength bolts in the stress direction (mm)
n: Number of high-strength bolts in the stress direction r 0 : Radius of contact pressure distribution (mm)
Dh 1 : Torcia bolt head side bearing surface diameter (mm)
Dn 1 : Nut bearing surface diameter (mm)
t ws : Washer thickness (mm)
And

ここで、応力方向とは、母材どうしをその長手方向に添板を使用して接続した場合における母材の長手方向のことを意味している。
また、応力方向の縁端距離とは、応力方向に対する母材端部からそれに最も近いボルト孔中心までの距離、および、添板端部からそれに最も近いボルト孔中心までの距離を意味する。
Here, the stress direction means the longitudinal direction of the base material when the base materials are connected to each other using the accessory plate in the longitudinal direction.
The edge distance in the stress direction means the distance from the end of the base material to the nearest bolt hole center with respect to the stress direction and the distance from the end of the accessory plate to the nearest bolt hole center.

本発明においては、例えば、母材の有効断面または全断面に対する降伏耐力を接合部の設計外力とした場合、添板幅を母材幅と設定することで必要最小限の添板厚tsを算出することができる。また、使用する高力ボルト径・高力ボルト強度を選定し目標とするすべり係数μを設定することで、高力ボルトの許容摩擦力が決まり、設計外力と高力ボルトの許容摩擦力から必要な高力ボルト本数nを算出することができる。これらの条件と前記(1)、(2)式を用いることで、目標とする応力方向の高力ボルト1本当たりの摩擦面長さ(lbt)を設定することができる。
摩擦面長さ(l)は、l=(2×e+(n−1)×p)/nで規定されるので、これによって、目標とする応力方向の高力ボルト1本当たりの摩擦面長さ(lbt)より、応力方向の高力ボルト1本当たりの摩擦面長さ(l)が大きくなるよう高力ボルトの応力方向の縁端距離(e)、および応力方向の高力ボルト間距離(p)を決定する。ここで、2e≧pとするのが望ましい。
応力方向の高力ボルト1本当たりの摩擦面長さ(l)から、前記(1)、(2)式を用いてすべり係数μを求め、すべり係数μが目標とするすべり係数μtより大きいことを確認する、または、高力ボルトの許容摩擦力が設計外力より大きいことを確認することで、合理的な高力ボルト本数、高力ボルト配置ができる高力ボルト摩擦接合部を設計できる。
高力ボルトの許容摩擦力が設計外力より大きくならない場合や、eおよびpが適切に設定できない場合は、再度、添板厚、高力ボルト径、高力ボルト強度等を選定し直し、高力ボルト摩擦接合部を設計する。
(1)、(2)式は、高力ボルト摩擦接合部の設計において必要となるすべり係数すべてに用いてもよいし、特定のすべり係数に用いてもよい。
In the present invention, for example, when the yield strength for the effective cross section or the entire cross section of the base material is the design external force of the joint, the minimum necessary plate thickness ts is calculated by setting the base plate width as the base material width. can do. Further, by setting the slip coefficient mu t to select the high-strength bolts diameter and high-strength bolts intensity used target, determine the allowable friction high-strength bolts, the allowable friction design force and high-strength bolts The necessary number n of high strength bolts can be calculated. By using these conditions and the expressions (1) and (2), it is possible to set the friction surface length (l bt ) per high-strength bolt in the target stress direction.
The friction surface length (l b ) is defined by l b = (2 × e 1 + (n−1) × p) / n. Thus, per one high-strength bolt in the target stress direction. friction surface length (l bt) from the friction surface length per one stress direction high strength bolts (l b) becomes large as high-strength bolts stress direction of the edge distance (e 1), and the stress Determine the distance (p) between the high strength bolts in the direction. Here, it is desirable that 2e 1 ≧ p.
From the friction surface length per high-strength bolts one stress direction (l b), wherein (1), (2) determine the coefficients μ slip using equation greater slip coefficient μt slip coefficient μ is the targeted By confirming this, or by confirming that the allowable frictional force of the high-strength bolt is greater than the design external force, it is possible to design a high-strength bolt friction joint where a reasonable number of high-strength bolts and high-strength bolts can be arranged.
And if acceptable friction high strength bolt is not greater than the design external force, if e 1 and p is not properly set, again,添板thickness, high strength bolt diameter, re-select a high strength bolts strength and the like, high Design force bolt friction joints.
Expressions (1) and (2) may be used for all slip coefficients required in the design of high-strength bolt friction joints, or may be used for specific slip coefficients.

前記高力ボルト摩擦接合部の設計方法では、応力方向に沿って高力ボルトを配置する場合のみについてのすべり係数について説明したが、実際の高力ボルト摩擦接合では、応力方向および応力方向と直交する応力直交方向に沿ってそれぞれ高力ボルトを配置する場合が多い。
そこでこの場合において、本発明の高力ボルト接合部の設計方法は、摩擦係数が接触圧に依存する摩擦面処理を施した高力ボルト摩擦接合部の設計方法であって、
応力方向の高力ボルト1本当たりの摩擦面長さをl(mm)、
応力直交方向の高力ボルト1本当たりの摩擦面長さをw(mm)、
添板厚をt(mm)、
すべり係数をμとすると、
≦1.35×2×r、w≦1.35×2×rの場合、以下の(3)式を満足し、
>1.35×2×r、w≦1.35×2×rの場合、以下の(4)式を満足し、
≦1.35×2×r、w>1.35×2×rの場合、以下の(5)式を満足し、
>1.35×2×r、w>1.35×2×rの場合、以下の(6)式を満足することを特徴とする。
μ=14×10−3×t+4×10−3×(l+w−1.35×2×r)+0.24 (3)
μ=14×10−3×t+4×10−3×w+0.24 (4)
μ=14×10−3×t+4×10−3×l+0.24 (5)
μ=14×10−3×t+4×10−3×1.35×2×r+0.24 (6)
但し、
=(2×e+(n−1)×p)/n
=(2×e+(m−1)×g)/m
前記高力ボルトが六角ボルトの場合:r=r
前記高力ボルトがトルシアボルトの場合:r=r/2+r/2
(トルシアボルトの頭部側)=Dh/2+t
(ナット側)=Dn/2+tws/2+t
:応力方向の縁端距離(mm)
p:応力方向の高力ボルト間距離(mm)
n:応力方向の高力ボルト本数
:応力直交方向の縁端距離(mm)
g:応力直交方向の高力ボルト間距離(mm)
m:応力直交方向の高力ボルト本数
:接触圧分布半径(mm)
Dh:トルシアボルトの頭部側座面径(mm)
Dn:ナットの座面径(mm)
ws:座金厚(mm)
とする。
In the design method of the high-strength bolt friction joint, the slip coefficient is described only when the high-strength bolt is arranged along the stress direction. However, in the actual high-strength bolt friction joint, the stress direction and the stress direction are orthogonal to each other. In many cases, high-strength bolts are arranged along the stress orthogonal direction.
Therefore, in this case, the design method of the high-strength bolt joint of the present invention is a design method of the high-strength bolt friction joint subjected to the friction surface treatment whose friction coefficient depends on the contact pressure,
The friction surface length per one high-strength bolts in the stress direction l b (mm),
The friction surface length per high-strength bolt in the direction perpendicular to the stress is w b (mm),
添板thickness of t s (mm),
If the slip coefficient is μ,
In the case of l b ≦ 1.35 × 2 × r 0 and w b ≦ 1.35 × 2 × r 0 , the following expression (3) is satisfied:
When l b > 1.35 × 2 × r 0 and w b ≦ 1.35 × 2 × r 0 , the following expression (4) is satisfied:
When l b ≦ 1.35 × 2 × r 0 and w b > 1.35 × 2 × r 0 , the following expression (5) is satisfied:
When l b > 1.35 × 2 × r 0 and w b > 1.35 × 2 × r 0 , the following expression (6) is satisfied.
μ = 14 × 10 -3 × t s + 4 × 10 -3 × (l b + w b -1.35 × 2 × r 0) +0.24 (3)
μ = 14 × 10 -3 × t s + 4 × 10 -3 × w b +0.24 (4)
μ = 14 × 10 -3 × t s + 4 × 10 -3 × l b +0.24 (5)
μ = 14 × 10 -3 × t s + 4 × 10 -3 × 1.35 × 2 × r 0 +0.24 (6)
However,
l b = (2 × e 1 + (n−1) × p) / n
w b = (2 × e 2 + (m−1) × g) / m
When the high-strength bolt is a hexagonal bolt: r 0 = r 2
If the high strength bolt of torque shear bolt: r 0 = r 1/2 + r 2/2
r 1 (head side of the torque shear bolt) = Dh 1/2 + t s
r 2 (nut side) = Dn 1/2 + t ws / 2 + t s
e 1 : Edge distance in the stress direction (mm)
p: Distance between high-strength bolts in the stress direction (mm)
n: number of high-strength bolts in the stress direction e 2 : edge distance in the direction perpendicular to the stress (mm)
g: Distance between high-strength bolts in the direction perpendicular to stress (mm)
m: number of high-strength bolts in the direction perpendicular to stress r 0 : radius of contact pressure distribution (mm)
Dh 1 : Torcia bolt head side bearing surface diameter (mm)
Dn 1 : Nut bearing surface diameter (mm)
t ws : Washer thickness (mm)
And

ここで、応力直交方向とは、母材どうしをその長手方向に添板を使用して接続した場合における母材の長手方向と直交する方向のことを意味している。
また、応力直交方向の縁端距離とは、母材端部からそれに最も近いボルト孔の中心までの距離のことを意味する。
Here, the stress orthogonal direction means a direction orthogonal to the longitudinal direction of the base material when the base materials are connected to each other in the longitudinal direction using the accessory plate.
The edge distance in the direction perpendicular to the stress means the distance from the end of the base material to the center of the bolt hole closest to it.

本発明においては、例えば、母材の有効断面または全断面に対する降伏耐力を接合部の設計外力とした場合、添板幅を母材幅と設定することで必要最小限の添板厚tを算出することができる。また、使用する高力ボルト径・高力ボルト強度を選定し目標とするすべり係数μを設定することで、高力ボルトの許容摩擦力が決まり、設計外力と高力ボルトの許容摩擦力から必要な高力ボルト本数を算出することができ、列数n、行数mを設定することができる。
これらの条件と前記(3)式〜(6)式を用いることで、目標とする応力方向の高力ボルト1本当たりの摩擦面長さ(lbt)および応力直交方向における高力ボルト1本当たりの摩擦面長さ(wbt)を設定することができる。
摩擦面長さ(l)は、l=(2×e+(n−1)×p)/nで規定されるので、これによって、目標とする応力方向の高力ボルト1本当たりの摩擦面長さ(lbt)より、応力方向の高力ボルト1本当たりの摩擦面長さ(l)が大きくなるよう高力ボルトの応力方向の縁端距離(e)、および応力方向の高力ボルト間距離(p)を決定する。ここで、2e≧pとするのが望ましい。
摩擦面長さ(W)は、W=(2×e+(m−1)×g)/mで規定されるので、これによって、目標とする応力直交方向の高力ボルト1本当たりの摩擦面長さ(Wbt)より応力直交方向の高力ボルト1本当たりの摩擦面長さ(W)が大きくなるよう高力ボルトの応力直交方向の縁端距離(e2)、および応力直交方向の高力ボルト間距離(g)を決定する。ここで、2e2≧gとするのが望ましい。
応力方向の高力ボルト1本当たりの摩擦面長さ(l)および設計に用いる応力直交方向の高力ボルト1本当たりの摩擦面長さ(W)から、前記(3)〜(6)式を用いてすべり係数μを求め、すべり係数が目標とするすべり係数より大きいことを確認する、あるいは、高力ボルトの許容摩擦力が設計外力より大きいことを確認することで、合理的な高力ボルト本数、高力ボルト配置ができる高力ボルト摩擦接合部を設計できる。
高力ボルトの許容摩擦力が設計外力より大きくならない場合や、eおよびp、e2およびg、が適切に設定できない場合は、再度、添板厚、高力ボルト径、高力ボルト強度等を選定し直し、高力ボルト摩擦接合部を設計する。
(3)〜(5)式は、高力ボルト摩擦接合部の設計において必要となるすべり係数すべてに用いてもよいし、特定のすべり係数に用いてもよい。
In the present invention, for example, when the yield strength to the effective cross-section or the entire cross-section of the base material and the design force of the joint, the minimum necessary添板thickness t s by setting the添板width as the base material width Can be calculated. Further, by setting the slip coefficient mu t to select the high-strength bolts diameter and high-strength bolts intensity used target, determine the allowable friction high-strength bolts, the allowable friction design force and high-strength bolts The required number of high-strength bolts can be calculated, and the number of columns n and the number of rows m can be set.
By using these conditions and the above equations (3) to (6), the friction surface length (l bt ) per one high strength bolt in the target stress direction and one high strength bolt in the stress orthogonal direction The hit friction surface length (w bt ) can be set.
The friction surface length (l b ) is defined by l b = (2 × e 1 + (n−1) × p) / n. Thus, per one high-strength bolt in the target stress direction. friction surface length (l bt) from the friction surface length per one stress direction high strength bolts (l b) becomes large as high-strength bolts stress direction of the edge distance (e 1), and the stress Determine the distance (p) between the high strength bolts in the direction. Here, it is desirable that 2e 1 ≧ p.
Since the friction surface length (W b ) is defined by W b = (2 × e 2 + (m−1) × g) / m, one high-strength bolt in the direction perpendicular to the stress is thereby obtained. The edge distance (e 2 ) of the high-strength bolt in the stress orthogonal direction so that the friction surface length (W b ) per high-strength bolt in the direction orthogonal to the stress is greater than the friction surface length (W bt ) per contact, And the distance (g) between the high-strength bolts in the direction perpendicular to the stress. Here, it is desirable that 2e 2 ≧ g.
Friction surface length per high-strength bolts one stress direction (l b) and the friction surface length per one high-strength bolts in the stress direction perpendicular used to design the (W b), wherein (3) to (6 ) To obtain the slip coefficient μ and confirm that the slip coefficient is greater than the target slip coefficient, or confirm that the allowable friction force of the high-strength bolt is greater than the design external force. It is possible to design a high-strength bolt friction joint where the number of high-strength bolts and high-strength bolt arrangement is possible
If the allowable friction force of the high-strength bolt is not greater than the design external force, or if e 1 and p, e 2 and g cannot be set appropriately, the thickness of the accessory plate, high-strength bolt diameter, high-strength bolt strength, etc. Redesign and design a high strength bolt friction joint.
Expressions (3) to (5) may be used for all slip coefficients required in the design of a high-strength bolt friction joint, or may be used for specific slip coefficients.

また、本発明の高力ボルト摩擦接合部は、上述した設計方法により設計されたものである。   The high-strength bolt friction joint of the present invention is designed by the design method described above.

本発明による設計方法を用いることで、合理的な高力ボルト本数、高力ボルト配置とした高力ボルト摩擦接合部を得ることができる。   By using the design method according to the present invention, a high-strength bolt friction joint having a reasonable number of high-strength bolts and high-strength bolt arrangement can be obtained.

本発明に係る高力ボルト摩擦接合部の実施の形態を示すもので、その正面図である。1 is a front view showing an embodiment of a high-strength bolt friction joint according to the present invention. 同、下面図である。FIG. 本発明に係る高力ボルト摩擦接合部に用いる高力ボルトとナットを示すもので、(a)は六角ボルトの側面図、(b)はトルシアボルトの側面図、(c)はナットの側面図である。The high strength bolt and nut used for the high strength bolt friction joint part which concerns on this invention are shown, (a) is a side view of a hexagon bolt, (b) is a side view of a torcia bolt, (c) is a side view of a nut. It is. 本発明に係る高力ボルト摩擦接合部において、添板厚ごとの、高力ボルト1本当たりの摩擦面長さlとすべり係数μについての関係について示したグラフである。In high-strength bolted joint according to the present invention, for each添板thickness is a graph showing the relationship between the coefficient and slip friction surface length l b per one high-strength bolts mu. 本発明に係る高力ボルト摩擦接合部の他の実施の形態を示すもので、その下面図である。The other embodiment of the high strength bolt friction junction part which concerns on this invention is shown, and it is the bottom view. 本発明に係る高力ボルト摩擦接合構部をH形鋼どうしを接続する場合に適用した例を示す斜視図である。It is a perspective view which shows the example applied when connecting the H-shaped steel to the high strength bolt friction joining structure part which concerns on this invention. 本発明に係る高力ボルト摩擦接合部の設計方法によって設計した高力ボルト摩擦接合部と、通常の設計方法によって設計した高力ボルト摩擦接合部とを比較した図である。It is the figure which compared the high strength bolt friction joining part designed by the design method of the high strength bolt friction joining part which concerns on this invention, and the high strength bolt friction joining part designed by the normal design method.

以下、図面を参照しながら本発明の実施の形態について説明する。
(第1の実施の形態)
図1および図2は第1の実施の形態の高力ボルト摩擦接合部を示すもので、図1は正面図、図2は下面図である。
図1および図2において、符号1は被接合材、符号2は添板を示す。本実施の形態では、被接合材1はH形鋼のフランジである。なお、被接合材1はH形鋼のウエブであってもよいし、その他の鋼材等であってもよい。
本実施の形態では、H形鋼どうしをその長手方向に接続する際に、両H形鋼を所定の隙間をもって同軸に配置したうえで、片側フランジ(被接合材、母材)1,1どうしを添板2によって接続している。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(First embodiment)
1 and 2 show the high-strength bolt friction joint of the first embodiment. FIG. 1 is a front view and FIG. 2 is a bottom view.
1 and 2, reference numeral 1 denotes a material to be joined, and reference numeral 2 denotes an accessory plate. In this Embodiment, the to-be-joined material 1 is a flange of H-section steel. In addition, the to-be-joined material 1 may be a web of H-section steel, and may be other steel materials.
In the present embodiment, when connecting the H-shaped steels in the longitudinal direction, the two H-shaped steels are arranged coaxially with a predetermined gap, and the one-side flanges (joined materials, base materials) 1, 1 are connected to each other. Are connected by the accessory plate 2.

この場合、片側フランジ(被接合材)1を挟んで上下一対の添板2,2を配置し、当該添板2,2を、隣り合う片側フランジ1,1に掛け渡すようにして、それぞれの片側フランジ1の上下面に当接したうえで、当該片側フランジ1,1に接合している。
片側フランジ1の添板2との接合面1aは、表面粗さ(最大高さRz)が50μm以上となるように、ブラスト処理されている。または、片側フランジ1の接合面1aは、酸化鉄(赤錆、黒皮など)により覆われていてもよい。
In this case, a pair of upper and lower accessory plates 2 and 2 are arranged with a one-side flange (material to be joined) 1 interposed therebetween, and the accessory plates 2 and 2 are stretched over the adjacent one-side flanges 1 and 1, respectively. After contacting the upper and lower surfaces of the one-side flange 1, it is joined to the one-side flange 1, 1.
The joint surface 1a of the one-side flange 1 with the accessory plate 2 is blasted so that the surface roughness (maximum height Rz) is 50 μm or more. Alternatively, the joint surface 1a of the one-side flange 1 may be covered with iron oxide (red rust, black skin, etc.).

添板2の片側フランジ1との接合面2aには摩擦面処理が施されている。この摩擦面処理は、溶射金属が定着する程度に下地処理された上に、低強度金属であるアルミが溶融した状態で吹き付けられ、アルミ溶射層が形成されたものとなっている。下地処理は、例えば、表面粗さ(最大高さRz)が50μm以上となるようにブラスト処理されている。
アルミ溶射層は、高力ボルト5が挿通されるボルト孔を中心にとした接合面上の円周内に形成されている。この円周の直径は、例えば高力ボルト5の軸径の3倍に設定されている。また、アルミ溶射層の厚さは、200μm以上、500μm以下の範囲内で設定され、例えば、300μmとなっている。
本実施の形態では、高力ボルト5はトルシアボルトであるが、六角ボルトであってもよい。また、高力ボルトの強度は引張強さで1400MPaであるが、800〜1400MPaのいずれの強度でもよい。
A friction surface treatment is applied to the joint surface 2 a of the accessory plate 2 with the one-side flange 1. In this friction surface treatment, the ground coating is applied to such an extent that the sprayed metal is fixed, and the aluminum, which is a low-strength metal, is sprayed in a molten state to form an aluminum sprayed layer. In the ground treatment, for example, blasting is performed so that the surface roughness (maximum height Rz) is 50 μm or more.
The aluminum sprayed layer is formed in the circumference on the joint surface around the bolt hole through which the high-strength bolt 5 is inserted. The diameter of this circumference is set to, for example, three times the shaft diameter of the high strength bolt 5. Further, the thickness of the aluminum sprayed layer is set within a range of 200 μm or more and 500 μm or less, for example, 300 μm.
In the present embodiment, the high strength bolt 5 is a torcia bolt, but may be a hexagon bolt. The strength of the high strength bolt is 1400 MPa in terms of tensile strength, but any strength of 800 to 1400 MPa may be used.

アルミ溶射層中には、図示しない複数の気孔が、全体に亘って均一に分散して形成されており、アルミ溶射層の体積に対する複数の気孔の全容積の割合を示す気孔率は、5%以上、30%以下の範囲内で設定され、例えば、21%となっている。なお、アルミ溶射層は、アルミ成分が99.5%のワイヤ形状の溶射材料を用いてアーク溶射法により形成される。   A plurality of pores (not shown) are uniformly dispersed throughout the aluminum sprayed layer, and the porosity indicating the ratio of the total volume of the plurality of pores to the volume of the aluminum sprayed layer is 5%. As described above, it is set within a range of 30% or less, and is, for example, 21%. The aluminum sprayed layer is formed by an arc spraying method using a wire-shaped sprayed material having an aluminum component of 99.5%.

このようにして添板2の接合面2aに形成されたアルミ溶射層は、接触圧(平均接触圧)が低いほど摩擦係数が高くなるような摩擦面処理を施したものとなっている。
このような添板2と片側フランジ1との接合部は、摩擦係数が接触圧に依存する摩擦面処理を施した高力ボルト摩擦接合部となっている。言い換えれば、接触圧が低いほど摩擦係数が高くなるような摩擦面処理を施した高力ボルト摩擦接合部となっている。
なお、片側フランジ1および添板2,2に挿通された高力ボルト5には、座金7が外挿されるとともにナット8が螺合されて締め付けられている。この締め付けた圧縮力により生じる摩擦抵抗でフランジ1と添板2とが摩擦接合されている。
Thus, the aluminum sprayed layer formed on the joining surface 2a of the accessory plate 2 is subjected to a friction surface treatment such that the lower the contact pressure (average contact pressure), the higher the friction coefficient.
Such a joining portion between the accessory plate 2 and the one-side flange 1 is a high-strength bolt friction joining portion subjected to a friction surface treatment whose friction coefficient depends on contact pressure. In other words, it is a high-strength bolt friction joint that has been subjected to a friction surface treatment such that the lower the contact pressure, the higher the friction coefficient.
Note that a washer 7 is externally inserted and a nut 8 is screwed and fastened to the high-strength bolt 5 inserted through the one-side flange 1 and the accessory plates 2 and 2. The flange 1 and the accessory plate 2 are friction-joined by the frictional resistance generated by the tightened compressive force.

上述したように、高力ボルト摩擦接合部におけるすべり係数は、高力ボルトのボルト径、ボルト強度、添板厚、溶射層厚に加え、さらに、高力ボルト1本当たりの摩擦面長さにも依存することを、本発明者が実験的に明らかにしている。
そして、この実験に基づいて、以下のように、すべり係数μと、高力ボルト1本当たりの摩擦面長さと、添板厚との関係を定式化した。
As described above, the slip coefficient in the high-strength bolt friction joint is determined by the friction surface length per high-strength bolt in addition to the bolt diameter, bolt strength, splice thickness, and sprayed layer thickness of the high-strength bolt. The present inventor has experimentally clarified that this also depends on the above.
Based on this experiment, the relationship between the slip coefficient μ, the friction surface length per high-strength bolt, and the thickness of the accessory plate was formulated as follows.

すなわち、本実施の形態の高力ボルト摩擦接合部は、応力方向の高力ボルト1本当たりの摩擦面長さをl(mm)、応力直交方向の高力ボルト1本当たりの摩擦面長さをw(mm)、添板厚をt(mm)、すべり係数をμとすると、l≦1.35×2×r、w≦1.35×2×rの場合であり、以下の(3)式を満足している。
μ=14×10−3×t+4×10−3×(l+w−1.35×2×r)+0.24 (3)
That is, the high-strength bolt friction joint of the present embodiment has a friction surface length of 1 b (mm) per high-strength bolt in the stress direction and a friction surface length per high-strength bolt in the stress orthogonal direction. In the case of l b ≦ 1.35 × 2 × r 0 and w b ≦ 1.35 × 2 × r 0 where w b (mm) is the thickness, t s (mm) is the plate thickness, and the slip coefficient is μ And the following expression (3) is satisfied.
μ = 14 × 10 -3 × t s + 4 × 10 -3 × (l b + w b -1.35 × 2 × r 0) +0.24 (3)

但し、
=(2×e+(n−1)×p)/n
=(2×e+(m−1)×g)/m
高力ボルトが六角ボルトの場合:r=r
高力ボルトがトルシアボルトの場合:r=r/2+r/2
(頭部側)=Dh/2+t
(ナット側)=Dn/2+tws/2+t
:応力方向の縁端距離(mm)
p:応力方向の高力ボルト間距離(mm)
n:応力方向の高力ボルト本数
:応力直交方向の縁端距離(mm)
g:応力直交方向の高力ボルト間距離(mm)
m:応力直交方向の高力ボルト本数
:接触圧分布半径(mm)
Dh:トルシアボルトの頭部側座面径(mm)
Dn:ナットの座面径(mm)
ws:座金厚(mm)
とする。
However,
l b = (2 × e 1 + (n−1) × p) / n
w b = (2 × e 2 + (m−1) × g) / m
When the high-strength bolt is a hexagonal bolt: r 0 = r 2
If the high-strength bolts of torque shear bolt: r 0 = r 1/2 + r 2/2
r 1 (head side) = Dh 1/2 + t s
r 2 (nut side) = Dn 1/2 + t ws / 2 + t s
e 1 : Edge distance in the stress direction (mm)
p: Distance between high-strength bolts in the stress direction (mm)
n: number of high-strength bolts in the stress direction e 2 : edge distance in the direction perpendicular to the stress (mm)
g: Distance between high-strength bolts in the direction perpendicular to stress (mm)
m: number of high-strength bolts in the direction perpendicular to stress r 0 : radius of contact pressure distribution (mm)
Dh 1 : Torcia bolt head side bearing surface diameter (mm)
Dn 1 : Nut bearing surface diameter (mm)
t ws : Washer thickness (mm)
And

ここで、六角ボルトとは図3(a)に示すボルト頭形状を有するもので、トルシアボルトとは図3(b)に示すボルト頭形状を有するものである。トルシアボルトのボルト頭側座面径Dhは、図3(b)に示すように、頭部5aの下面と面一な円の径である。また、ナットの座面径Dnとは図3(c)に示すようにナット下面から突出して設けられている座面5bの径である。 Here, the hexagonal bolt has a bolt head shape shown in FIG. 3 (a), and the torcia bolt has a bolt head shape shown in FIG. 3 (b). The bolt head side seating surface diameter Dh 1 of the torque shear bolt, as shown in FIG. 3 (b), a diameter of the lower surface flush circle head 5a. Further, a diameter of the seat surface 5b of the seating surface diameter Dn 1 of the nut is provided to protrude from the nut lower surface as shown in Figure 3 (c).

また、応力方向とは、図1および図2に示すように、被接合材である母材(フランジ)1,1どうしをその長手方向に添板2を使用して接続した場合における母材(フランジ)1,1の長手方向(図1および図2において左右方向)のことを意味している。
応力直交方向とは、図1および図2に示すように、母材(フランジ)1,1どうしをその長手方向に添板2を使用して接続した場合における母材(フランジ)1,1の長手方向と直交する方向(図2において上下方向)のことを意味している。
In addition, as shown in FIGS. 1 and 2, the stress direction is a base material in the case where base materials (flanges) 1 and 1 that are materials to be joined are connected to each other using the accessory plate 2 in the longitudinal direction ( It means the longitudinal direction of the flanges 1 and 1 (the left-right direction in FIGS. 1 and 2).
As shown in FIGS. 1 and 2, the stress orthogonal direction means that the base materials (flange) 1, 1 when the base materials (flange) 1, 1 are connected to each other using the accessory plate 2 in the longitudinal direction. It means a direction (vertical direction in FIG. 2) orthogonal to the longitudinal direction.

応力方向の縁端距離(e)とは、母材(フランジ)1,1どうしをその長手方向に添板2を使用して接続した場合において、母材(フランジ)1,1の長手方向における添板2の一方の端部に位置する高力ボルト5と、添板2の一方の端との間の距離および添板2の他方の端部に位置する高力ボルト5と、母材(フランジ)1の接合端との間の距離のことを意味する。
また、応力直交方向の縁端距離(e)とは、母材(フランジ)1,1どうしをその長手方向に添板2を使用して接続した場合において、母材(フランジ)1,1の長手方向と直交する方向における添板2の端部に位置する高力ボルト5と、添板2の一方の端との間の距離のことを意味する。
The edge distance (e 1 ) in the stress direction is the longitudinal direction of the base material (flange) 1, 1 when the base materials (flange) 1, 1 are connected to each other using the accessory plate 2 in the longitudinal direction. The high-strength bolt 5 located at one end of the accessory plate 2 and the distance between one end of the accessory plate 2 and the high-strength bolt 5 located at the other end of the accessory plate 2, and the base material (Flange) The distance between the joint ends of 1 means.
The edge distance (e 2 ) in the direction perpendicular to the stress is the base material (flange) 1, 1 when the base materials (flange) 1, 1 are connected to each other using the accessory plate 2 in the longitudinal direction. This means the distance between the high-strength bolt 5 located at the end of the accessory plate 2 and one end of the accessory plate 2 in the direction orthogonal to the longitudinal direction.

また、前記(2)式のl≦1.35×2×rは、応力方向の高力ボルト1本当たりの摩擦面長さの最大値を意味しており、lがこれ以上になると(1)式において、すべり係数μが一定となる。これはlが十分大きく隣り合う高力ボルト間で接触圧分布の重なりが生じない場合には、すべり係数μとlとの相関が無くなるためである。
同様に、前記(3)式のw≦1.35×2×rは、応力直交方向の高力ボルト1本当たりの摩擦面長さの最大値を意味しており、wがこれ以上になると(1)式において、すべり係数μが一定となる。
In addition, l b ≦ 1.35 × 2 × r 0 in the equation (2) means the maximum value of the friction surface length per high-strength bolt in the stress direction, and l b is more than this. Then, the slip coefficient μ is constant in the equation (1). This is the case where the overlap of the contact pressure distribution does not occur between the high-strength bolts l b are adjacent large enough, because the correlation between slip coefficient μ and l b is eliminated.
Similarly, w b ≦ 1.35 × 2 × r 0 in the equation (3) means the maximum value of the friction surface length per high-strength bolt in the direction perpendicular to the stress, and w b If it becomes above, in (1) Formula, slip coefficient (mu) will become fixed.

ここで、前記実験に基づく、添板厚ごとの、高力ボルト1本当たりの摩擦面長さlとすべり係数μとの関係について図4に示す。
図4に示すように、摩擦面長さlが長くなるにしたがって、すべり係数は高くなっていき、摩擦面長さlが所定の最大値を超えると一定となるのが分かる。
つまり、摩擦面長さlがl>1.35×2×rとなると、すべり係数μは、μ=14×10−3×t+4×10−3×(1.35×2×r)+0.24と一定となる。
また、図示は省略するが、高力ボルト1本当たりの摩擦面長さwとすべり係数μについての関係も同様となり、摩擦面長さwが長くなるにしたがって、すべり係数は高くなっていき、摩擦面長さwが所定の最大値を超えると一定となる。
つまり、摩擦面長さwがw>1.35×2×rとなると、すべり係数μは、μ=14×10−3×t+4×10−3×1.35×2×r+0.24と一定となる。
また、l>1.35×2×r、w≦1.35×2×rの場合、μ=14×10−3×t+4×10−3×w+0.24となり、l≦1.35×2×r、w>1.35×2×rの場合、μ=14×10−3×t+4×10−3×l+0.24 となる。
また、摩擦面長さ(継手長)l、wが小さくなると、添板の長さが短くなり、鋼重量を減らすことができる。
さらに、すべり係数μが大きくなると、高力ボルト本数を減らすことができる。
Here, based on the experiment, for each添板thickness, the relationship between the coefficient and slip friction surface length l b per one high-strength bolts μ shown in FIG.
As shown in FIG. 4, according to the friction surface length l b becomes longer, sliding coefficient gradually increased, it can be seen that the friction surface length l b is constant it exceeds a predetermined maximum value.
That is, when the friction surface length l b is l b> 1.35 × 2 × r 0, the slip coefficient μ, μ = 14 × 10 -3 × t s + 4 × 10 -3 × (1.35 × 2 × r 0 ) +0.24 and constant.
Although not shown, the relationship between the friction surface length w b per high-strength bolt and the slip coefficient μ is the same, and the slip coefficient increases as the friction surface length w b increases. go, the friction surface length w b is constant exceeds a predetermined maximum value.
That is, when the friction surface length w b is w b> 1.35 × 2 × r 0, the slip coefficient μ, μ = 14 × 10 -3 × t s + 4 × 10 -3 × 1.35 × 2 × It becomes constant at r 0 +0.24.
Further, l b> 1.35 × 2 × r 0, if the w b ≦ 1.35 × 2 × r 0, μ = 14 × 10 -3 × t s + 4 × 10 -3 × w b +0.24 next , a l b ≦ 1.35 × 2 × r 0, w b> 1.35 × case of 2 × r 0, μ = 14 × 10 -3 × t s + 4 × 10 -3 × l b +0.24 .
Also, the friction surface length (joint lengths) l b, if w b is reduced, shortens the length of添板can reduce steel weight.
Further, when the slip coefficient μ is increased, the number of high-strength bolts can be reduced.

また、すべり係数μと添板厚tとは正の相関関係にあることが分かる。これは、添板厚が大きくなると、接触圧分布半径rが大きくなり、その結果、ボルト張力が同じ場合には接触圧が相対的に小さくなり、すべり係数が大きくなるためである。 Further, it is found that a positive correlation between the slip coefficient μ and添板thickness t s. This is because the contact pressure distribution radius r 0 increases as the splicing plate thickness increases, and as a result, when the bolt tension is the same, the contact pressure is relatively reduced and the slip coefficient is increased.

図1および図2を用いて、具体的な設計例を示す。前提として、母材幅Wb=200mm、母材厚tb=36mm、母材・添板とも降伏点が325MPaの鋼材、高力ボルト5は1400MPa級の径24mmのトルシアボルト、応力直交方向の高力ボルト本数はm=2、としている。添板については、添板幅を母材と同じ200mmとし、母材と同等以上の降伏耐力を有するように添板厚を選定するとts=19mmとなる。すべり係数を0.7に設定すると、必要な高力ボルト本数は、母材有効断面での降伏耐力bPey=(200mm−2×26mm)×36mm×325MPa/1000=1732kNを高力ボルト1本のすべり耐力Ps=349kN×2面×0.7=489kNで除した数値3.54以上必要となるので4本となる。すなわち、応力方向の高力ボルト本数はn=2となる。ここで母材幅と添板幅が決定しているので、Wb=200mm/2=100mmとなる。eとgについては、2e≧gの関係を踏まえると、e=50mm、g=100mmと設定することができる。また。eとpについては、上記の条件と(1)式より、l=58.53mmとなる。ここで、r=43mm/2+19mm=40.5mm、r=38mm/2+6mm/2+19mm=41mm、r=40.5mm/2+41mm/2=40.75mmを用いている。2e≧pの関係を踏まえつつ、eとpを設定すれば、e=30mm、p=60mmとすることで、合理的な添板の長さを得ることができる。この例では、ボルト径、添板厚ts、応力直交方向の高力ボルト本数m、すべり係数μを設定して高力ボルト本数および応力方向のeとpを設定したが、高力ボルト配置を先に決めてすべり係数と高力ボルト本数を決定してもよい。 A specific design example is shown using FIG. 1 and FIG. As a premise, the base material width Wb = 200 mm, the base material thickness tb = 36 mm, the base material and the attached plate both have a steel material with a yield point of 325 MPa, the high strength bolt 5 is a 1400 MPa class torcia bolt with a diameter of 24 mm, and high strength in the direction perpendicular to the stress. The number of bolts is m = 2. As for the accessory plate, if the accessory plate width is set to 200 mm, which is the same as that of the base material, and the thickness of the accessory plate is selected so that the yield strength is equal to or greater than that of the base material, ts = 19 mm. When the slip coefficient is set to 0.7, the required number of high-strength bolts is the yield strength bPey = (200 mm−2 × 26 mm) × 36 mm × 325 MPa / 1000 = 1732 kN in the base metal effective section of one high-strength bolt. The slip resistance Ps = 349 kN × 2 surfaces × 0.7 = 489 kN divided by 3.54 or more is necessary, so there are four. That is, the number of high-strength bolts in the stress direction is n = 2. Here, since the base material width and the accessory plate width are determined, Wb = 200 mm / 2 = 100 mm. Regarding e 2 and g, e 2 = 50 mm and g = 100 mm can be set based on the relationship of 2e 2 ≧ g. Also. For e 1 and p, l b = 58.53 mm from the above condition and the equation (1). Here, r 1 = 43 mm / 2 + 19 mm = 40.5 mm, r 2 = 38 mm / 2 + 6 mm / 2 + 19 mm = 41 mm, and r 0 = 40.5 mm / 2 + 41 mm / 2 = 40.75 mm are used. If e 1 and p are set in consideration of the relationship of 2e 1 ≧ p, a reasonable length of the accessory plate can be obtained by setting e 1 = 30 mm and p = 60 mm. In this example, bolt diameter,添板thickness ts, high-strength bolts the number m of the stress perpendicular direction has been set to e 1 and p of high-strength bolts the number and direction of stress by setting the slip coefficient mu, high strength bolt arrangement May be determined first to determine the slip coefficient and the number of high-strength bolts.

なお、本実施の形態では、応力直交方向の高力ボルト本数mが2の場合を例にとって説明したが、mが1の場合でかつフランジ1の幅方向(応力直交方向)に十分な摩擦面長さ(w)を確保できる場合には、前記(3)式において、摩擦面長さ(w)が最大値である1.35×2×rとなるので、前記(1)式は、
μ=14×10−3×t+4×10−3×l+0.24となる。
したがって、この場合、この式に基づいて同様な設計を行うことで、合理的な高力ボルトの軸径、高力ボルト本数、高力ボルト配置をした高力ボルト摩擦接合部を設計することができる。
In this embodiment, the case where the number m of high-strength bolts in the direction perpendicular to the stress is 2 has been described as an example, but the friction surface sufficient in the width direction of the flange 1 (the direction perpendicular to the stress) when m is 1 When the length (w b ) can be secured, the friction surface length (w b ) is 1.35 × 2 × r 0 which is the maximum value in the equation (3). Is
the μ = 14 × 10 -3 × t s + 4 × 10 -3 × l b +0.24.
Therefore, in this case, it is possible to design a high-strength bolt friction joint with a reasonable high-strength bolt shaft diameter, number of high-strength bolts, and placement of high-strength bolts by performing a similar design based on this formula. it can.

また、本実施の形態では、高力ボルト5を応力方向および応力直交方向に沿って一直線上に配置することで、2列2行の直列配置としたが、図5に示すように、フランジ1の幅方向の長さが長い場合、千鳥状に配置してもよい。図5は、千鳥状に配置して4列2行とした場合の例である。
この場合、応力方向における高力ボルト間距離は応力方向における距離pを採用するのではなく、応力方向と交差する斜め方向の距離pを採用するとともに、このような千鳥状の配置を1行とみなして、応力方向における高力ボルトの本数n(n=4)とする。
また、1行の幅を同行で隣り合う高力ボルト間の距離gとし、当該方向において、隣り合う行間の距離を応力直交方向の高力ボルト間の距離gとして、w=(2×e+(m−1)×g2+m×g1)/mとして設計すればよい。
Further, in the present embodiment, the high-strength bolts 5 are arranged in a straight line along the stress direction and the stress orthogonal direction so as to be arranged in two columns and two rows, but as shown in FIG. If the length in the width direction is long, they may be arranged in a staggered pattern. FIG. 5 shows an example in a case where they are arranged in a zigzag pattern and have 4 columns and 2 rows.
In this case, high-strength bolts distance in stress direction rather than employing a distance p in the direction of stress, while adopting the distance p m in the oblique direction intersecting the direction of stress, one row of such a staggered arrangement It is assumed that the number of high-strength bolts in the stress direction is n (n = 4).
Also, w b = (2) where the width of one row is the distance g 1 between adjacent high-strength bolts in the same row, and the distance between adjacent rows in this direction is the distance g 2 between the high-strength bolts in the direction perpendicular to the stress. What is necessary is just to design as * e < 2 > + (m-1) * g2 + m * g1) / m.

したがって、応力方向の高力ボルト1本当たりの摩擦面長さlおよび応力直交方向の高力ボルト1本当たりの摩擦面長さwは以下のようになる。
=(2×e+(n−1)×p)/n
=(2×e+m×g+(m−1)×g)/m
なお、高力ボルト5を千鳥状に配置した場合でも、第1の実施の形態と同様の効果を得ることができる。
Therefore, the friction surface length w b per high-strength bolts one friction surface length l b and the stress perpendicular direction per one high-strength bolts in the stress direction is as follows.
l b = (2 × e 1 + (n−1) × p m ) / n
w b = (2 × e 2 + m × g 1 + (m−1) × g 2 ) / m
Even when the high-strength bolts 5 are arranged in a staggered manner, the same effects as those of the first embodiment can be obtained.

本実施の形態の高力ボルト摩擦接合部は、例えば図6に示すように、H形鋼からなる鋼製梁16,16どうしを添板22,23によって接続する場合において、当該添板22と鋼製梁16のフランジ16bとを摩擦接合する場合および添板23とウエブ16aとを摩擦接合する場合に適用できる。
この場合、例えば、隣り合うフランジ16b,16bの上下面に添板22を掛け渡して当接したうえで、高力ボルト5を、座金7およびナット8によって締め付けることによって、添板22とフランジ16bを高力ボルト摩擦接合することができる。
また、隣り合うウエブ16a,16aの両表面に添板23を掛け渡して当接したうえで、高力ボルト5を座金7およびナット8によって締め付けることによって、添板23とウエブ16aを高力ボルト摩擦接合することができる。
For example, as shown in FIG. 6, the high-strength bolt friction joint portion according to the present embodiment is formed by connecting the steel beams 16, 16 made of H-shaped steel with the accessory plates 22, 23. This can be applied to the case where the flange 16b of the steel beam 16 is friction-joined and the case where the accessory plate 23 and the web 16a are friction-joined.
In this case, for example, the auxiliary plate 22 and the flange 16b are fastened by tightening the high strength bolt 5 with the washer 7 and the nut 8 after the auxiliary plate 22 is stretched over and in contact with the upper and lower surfaces of the adjacent flanges 16b and 16b. The high-strength bolt can be friction bonded.
Further, the auxiliary plate 23 is stretched over and abutted against both surfaces of the adjacent webs 16a and 16a, and the high strength bolt 5 is tightened with the washer 7 and the nut 8 to thereby fix the auxiliary plate 23 and the web 16a to the high strength bolt. Can be friction bonded.

次に、図7を参照して、本発明に係る、摩擦係数が接触圧に依存する摩擦面処理(アルミ溶射処理)を施した高力ボルト摩擦接合部の設計方法によって設計した高力ボルト摩擦接合部と、通常の設計方法によって設計した高力ボルト摩擦接合部とを比較して、本発明の効果を明確にする。   Next, referring to FIG. 7, the high-strength bolt friction designed by the design method of the high-strength bolt friction joint subjected to the friction surface treatment (aluminum spraying treatment) whose friction coefficient depends on the contact pressure according to the present invention. The effect of the present invention will be clarified by comparing the joint and a high-strength bolt friction joint designed by a normal design method.

図7の左欄に示すように、通常のブラスト処理等が施された添板とフランジの摩擦面のすべり係数μはμ=0.45である。
これに対し、本発明では、添板は摩擦係数が接触圧に依存する摩擦面処理(アルミ溶射処理)が施されている。
なお、添板とウエブとの接合は、通常のブラスト処理等が施された添板を使用した。
As shown in the left column of FIG. 7, the slip coefficient μ between the friction plate and the flange plate and the flange subjected to the normal blasting process is μ = 0.45.
On the other hand, in the present invention, the accessory plate is subjected to a friction surface treatment (aluminum spraying treatment) in which the friction coefficient depends on the contact pressure.
In addition, the attachment board and the web which used the attachment board to which the normal blasting process etc. were given were used.

そして、添板とフランジとの摩擦面において、応力方向の高力ボルト1本当たりの摩擦面長さをl(mm)、応力直交方向のボルト1本当たりの摩擦面長さをw(mm)、添板厚をt(mm)、すべり係数をμとし、上述した(1)式〜(3)式を満たすように高力ボルト摩擦接合部を設計した。
なお、添板厚は36mm、フランジ厚は37mmである。
Then, on the friction surface between the accessory plate and the flange, the friction surface length per high-strength bolt in the stress direction is l b (mm), and the friction surface length per bolt in the stress orthogonal direction is w b ( mm), the thickness of the accessory plate is t s (mm), the slip coefficient is μ, and the high-strength bolt friction joint is designed to satisfy the above-described formulas (1) to (3).
The accessory plate thickness is 36 mm, and the flange thickness is 37 mm.

まず、図7の右欄に示すように、高力ボルトとしてトルシアボルトを使用した。
トルシアボルトの場合
=r/2+r/2
頭側 r=41/2+36=56.5mm
ナット側 r=38/2+6/2+36=58mm
したがって、
=56.5/2+58/2=57.25mmとなる。
First, as shown in the right column of FIG. 7, Torcia bolts were used as high-strength bolts.
In the case of torque shear bolt r 0 = r 1/2 + r 2/2
Cranial r 1 = 41/2 + 36 = 56.5 mm
Nut side r 2 = 38/2 + 6/2 + 36 = 58 mm
Therefore,
r 0 = 56.5 / 2 + 58/2 = 57.25 mm.

また、摩擦面長さlは、
=(2×e+(n−1)×p)/n
=(2×40+(4−1)×60.2)/4=65.15mm
≦1.35×2×57.25=154.575mmとなる。
Also, the friction surface length l b is
l b = (2 × e 1 + (n−1) × p m ) / n
= (2 × 40 + (4-1) × 60.2) /4=65.15 mm
l b ≦ 1.35 × 2 × 57.25 = 154.575 mm.

摩擦面長さwは、
=(2×e+m×g+(m−1)×g)/m
=(2×33+40+(1−1)×40)/1=106mm
≦1.35×2×57.25=154.575mmとなる。
The friction surface length w b is
w b = (2 × e 2 + m × g 1 + (m−1) × g 2 ) / m
= (2 × 33 + 40 + (1-1) × 40) / 1 = 106 mm
w b ≦ 1.35 × 2 × 57.25 = 154.575 mm.

したがって、すべり係数μは、
μ=14×10−3×t+4×10−3×(l+w−1.35×2×r)+0.24
=14×10−3×36+4×10−3×(65.15+106−1.35×2×57.25)+0.24
=0.504+0.0663+0.24=0.81
ここで、計算上はすべり係数0.81を採用できるが、安全側に0.7を採用した。
なお、高力ボルト本数nの算出式は周知のため省略している。
Therefore, the slip coefficient μ is
μ = 14 × 10 -3 × t s + 4 × 10 -3 × (l b + w b -1.35 × 2 × r 0) +0.24
= 14 × 10 −3 × 36 + 4 × 10 −3 × (65.15 + 106−1.35 × 2 × 57.25) +0.24
= 0.504 + 0.0663 + 0.24 = 0.81
Here, a slip coefficient of 0.81 can be employed for calculation, but 0.7 is employed for the safety side.
The formula for calculating the number n of high-strength bolts is omitted because it is well known.

図7に示すように、本発明では、従来に比して、添板とフランジの摩擦面において、すべり係数が大きくなることで、高力ボルトの本数が少なくなり、さらにフランジ側の添板の長さが短くなっているのが分かる。   As shown in FIG. 7, in the present invention, the number of high strength bolts is reduced by increasing the slip coefficient on the friction surface between the accessory plate and the flange as compared with the prior art. You can see that the length is getting shorter.

1 フランジ(被接合材)
2,22,23 添板
5 高力ボルト
7 座金
8 ナット
1 Flange (material to be joined)
2,22,23 Adhesive plate 5 High-strength bolt 7 Washer 8 Nut

Claims (3)

摩擦係数が接触圧に依存する摩擦面処理を施した高力ボルト摩擦接合部の設計方法であって、
応力方向の高力ボルト1本当たりの摩擦面長さをl(mm)、
添板厚をt(mm)、
すべり係数をμとすると、
≦1.35×2×rの場合、以下の(1)式を満足し、
>1.35×2×rの場合、以下の(2)式を満足することを特徴とする高力ボルト摩擦接合部の設計方法。
μ=14×10−3×t+4×10−3×l+0.24 (1)
μ=14×10−3×t+4×10−3×(1.35×2×r)+0.24 (2)
但し、
=(2×e+(n−1)×p)/n
前記高力ボルトが六角ボルトの場合:r=r
前記高力ボルトがトルシアボルトの場合:r=r/2+r/2
(頭部側)=Dh/2+t
(ナット側)=Dn/2+tws/2+t
:応力方向の縁端距離(mm)
p:応力方向の高力ボルト間距離(mm)
n:応力方向の高力ボルト本数
:接触圧分布半径(mm)
Dh:トルシアボルトの頭部側座面径(mm)
Dn:ナットの座面径(mm)
ws:座金厚(mm)
とする。
A method of designing a high-strength bolt friction joint with a friction surface treatment whose friction coefficient depends on contact pressure,
The friction surface length per one high-strength bolts in the stress direction l b (mm),
添板thickness of t s (mm),
If the slip coefficient is μ,
When l b ≦ 1.35 × 2 × r 0 , the following expression (1) is satisfied,
In the case of l b > 1.35 × 2 × r 0 , the following formula (2) is satisfied.
μ = 14 × 10 -3 × t s + 4 × 10 -3 × l b +0.24 (1)
μ = 14 × 10 -3 × t s + 4 × 10 -3 × (1.35 × 2 × r 0) +0.24 (2)
However,
l b = (2 × e 1 + (n−1) × p) / n
When the high-strength bolt is a hexagonal bolt: r 0 = r 2
If the high strength bolt of torque shear bolt: r 0 = r 1/2 + r 2/2
r 1 (head side) = Dh 1/2 + t s
r 2 (nut side) = Dn 1/2 + t ws / 2 + t s
e 1 : Edge distance in the stress direction (mm)
p: Distance between high-strength bolts in the stress direction (mm)
n: Number of high-strength bolts in the stress direction r 0 : Radius of contact pressure distribution (mm)
Dh 1 : Torcia bolt head side bearing surface diameter (mm)
Dn 1 : Nut bearing surface diameter (mm)
t ws : Washer thickness (mm)
And
摩擦係数が接触圧に依存する摩擦面処理を施した高力ボルト摩擦接合部の設計方法であって、
応力方向の高力ボルト1本当たりの摩擦面長さをl(mm)、
応力直交方向の高力ボルト1本当たりの摩擦面長さをw(mm)、
添板厚をt(mm)、
すべり係数をμとすると、
≦1.35×2×r、w≦1.35×2×rの場合、以下の(3)式を満足し、
>1.35×2×r、w≦1.35×2×rの場合、以下の(4)式を満足し、
≦1.35×2×r、w>1.35×2×rの場合、以下の(5)式を満足し、
>1.35×2×r、w>1.35×2×rの場合、以下の(6)式を満足することを特徴とする高力ボルト摩擦接合部の設計方法。
μ=14×10−3×t+4×10−3×(l+w−1.35×2×r)+0.24 (3)
μ=14×10−3×t+4×10−3×w+0.24 (4)
μ=14×10−3×t+4×10−3×l+0.24 (5)
μ=14×10−3×t+4×10−3×1.35×2×r+0.24 (6)
但し、
=(2×e+(n−1)×p)/n
=(2×e+(m−1)×g)/m
前記高力ボルトが六角ボルトの場合:r=r
前記高力ボルトがトルシアボルトの場合:r=r/2+r/2
(頭部側)=Dh/2+t
(ナット側)=Dn/2+tws/2+t
:応力方向の縁端距離(mm)
p:応力方向の高力ボルト間距離(mm)
n:応力方向の高力ボルト本数
:応力直交方向の縁端距離(mm)
g:応力直交方向の高力ボルト間距離(mm)
m:応力直交方向の高力ボルト本数
:接触圧分布半径(mm)
Dh:トルシアボルトの頭部側座面径(mm)
Dn:ナットの座面径(mm) tws:座金厚(mm)
とする。
A method of designing a high-strength bolt friction joint with a friction surface treatment whose friction coefficient depends on contact pressure,
The friction surface length per one high-strength bolts in the stress direction l b (mm),
The friction surface length per high-strength bolt in the direction perpendicular to the stress is w b (mm),
添板thickness of t s (mm),
If the slip coefficient is μ,
In the case of l b ≦ 1.35 × 2 × r 0 and w b ≦ 1.35 × 2 × r 0 , the following expression (3) is satisfied:
When l b > 1.35 × 2 × r 0 and w b ≦ 1.35 × 2 × r 0 , the following expression (4) is satisfied:
When l b ≦ 1.35 × 2 × r 0 and w b > 1.35 × 2 × r 0 , the following expression (5) is satisfied:
A design method for a high-strength bolt friction joint that satisfies the following expression (6) when l b > 1.35 × 2 × r 0 and w b > 1.35 × 2 × r 0 .
μ = 14 × 10 -3 × t s + 4 × 10 -3 × (l b + w b -1.35 × 2 × r 0) +0.24 (3)
μ = 14 × 10 -3 × t s + 4 × 10 -3 × w b +0.24 (4)
μ = 14 × 10 -3 × t s + 4 × 10 -3 × l b +0.24 (5)
μ = 14 × 10 -3 × t s + 4 × 10 -3 × 1.35 × 2 × r 0 +0.24 (6)
However,
l b = (2 × e 1 + (n−1) × p) / n
w b = (2 × e 2 + (m−1) × g) / m
When the high-strength bolt is a hexagonal bolt: r 0 = r 2
If the high strength bolt of torque shear bolt: r 0 = r 1/2 + r 2/2
r 1 (head side) = Dh 1/2 + t s
r 2 (nut side) = Dn 1/2 + t ws / 2 + t s
e 1 : Edge distance in the stress direction (mm)
p: Distance between high-strength bolts in the stress direction (mm)
n: number of high-strength bolts in the stress direction e 2 : edge distance in the direction perpendicular to the stress (mm)
g: Distance between high-strength bolts in the direction perpendicular to stress (mm)
m: number of high-strength bolts in the direction perpendicular to stress r 0 : radius of contact pressure distribution (mm)
Dh 1 : Torcia bolt head side bearing surface diameter (mm)
Dn 1 : Nut bearing surface diameter (mm) t ws : Washer thickness (mm)
And
請求項1または2項に記載の設計方法により設計されたことを特徴とする高力ボルト摩擦接合部。   A high-strength bolt friction joint that is designed by the design method according to claim 1.
JP2015085557A 2015-04-20 2015-04-20 High-strength bolt friction joint design method and high-strength bolt friction joint Active JP6579787B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015085557A JP6579787B2 (en) 2015-04-20 2015-04-20 High-strength bolt friction joint design method and high-strength bolt friction joint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015085557A JP6579787B2 (en) 2015-04-20 2015-04-20 High-strength bolt friction joint design method and high-strength bolt friction joint

Publications (2)

Publication Number Publication Date
JP2016205474A true JP2016205474A (en) 2016-12-08
JP6579787B2 JP6579787B2 (en) 2019-09-25

Family

ID=57486850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015085557A Active JP6579787B2 (en) 2015-04-20 2015-04-20 High-strength bolt friction joint design method and high-strength bolt friction joint

Country Status (1)

Country Link
JP (1) JP6579787B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113123523A (en) * 2021-04-15 2021-07-16 重庆大学 Connecting beam structure capable of recovering energy consumption and enhancing energy consumption capacity

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06272323A (en) * 1993-03-24 1994-09-27 Nkk Corp High-strength bolt friction grip joint structure
JP2008156914A (en) * 2006-12-25 2008-07-10 Ideal Brain Kk Steel joint part
JP2009121603A (en) * 2007-11-15 2009-06-04 Nippon Steel Corp High strength bolt frictional joining structure and forming method of metal thermal spraying layer in high strength bolt frictional joining structure
JP2010019371A (en) * 2008-07-11 2010-01-28 Shimizu Corp High-strength bolt friction joint structure and high-strength bolt friction joining method
JP2012122229A (en) * 2010-12-07 2012-06-28 Yoshikawa Kogyo Co Ltd Splice plate for high strength bolt friction joint

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06272323A (en) * 1993-03-24 1994-09-27 Nkk Corp High-strength bolt friction grip joint structure
JP2008156914A (en) * 2006-12-25 2008-07-10 Ideal Brain Kk Steel joint part
JP2009121603A (en) * 2007-11-15 2009-06-04 Nippon Steel Corp High strength bolt frictional joining structure and forming method of metal thermal spraying layer in high strength bolt frictional joining structure
JP2010019371A (en) * 2008-07-11 2010-01-28 Shimizu Corp High-strength bolt friction joint structure and high-strength bolt friction joining method
JP2012122229A (en) * 2010-12-07 2012-06-28 Yoshikawa Kogyo Co Ltd Splice plate for high strength bolt friction joint

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113123523A (en) * 2021-04-15 2021-07-16 重庆大学 Connecting beam structure capable of recovering energy consumption and enhancing energy consumption capacity

Also Published As

Publication number Publication date
JP6579787B2 (en) 2019-09-25

Similar Documents

Publication Publication Date Title
JP6343214B2 (en) Steel slab reinforcement structure
TWI329168B (en) Friction-joining steel plate and friction-joining structure
JP2005351412A (en) Connection method for steel pipes
Lee et al. Cyclic seismic testing of steel moment connections reinforced with welded straight haunch
JP2009079401A (en) Girder structure using corrugated steel plate web
JP2021032078A (en) Replaceable high energy dissipative prefabricated prestressed shear wall with built-in steel braces
JP6579787B2 (en) High-strength bolt friction joint design method and high-strength bolt friction joint
JP2010095849A (en) Method for reinforcing steel floor slab
JP2010159550A (en) Member for friction joint and friction joint structure
KR20120084394A (en) Steel composite beam
JP2017066702A (en) Vertical connection structure of steel sheet pipe and steel sheet pile wall
JP6444912B2 (en) Steel structure reinforcement and repair structure and method
JP4705525B2 (en) High strength bolt joint
JP2005220731A (en) Buckling reinforcement structure for brace
JP6996544B2 (en) Seismic retrofitting method for existing structures
JP4170647B2 (en) Sliding resistance member and bolt friction joint structure
JP3476129B2 (en) Bridge reinforcement method
JP2020033794A (en) Vertical joint structure of steel sheet pile
JP7244268B2 (en) Joining structure of steel materials
JP4956765B2 (en) Building structure
Miltenberger Capacity design of grouted anchors
JP6548353B2 (en) High strength bolt friction joint structure
Asada et al. Proposal for seismic retrofit of beam-to-column connection by the addition of H-section haunches to beams using bolt connection
KR20140014473A (en) Yieldable steel arches supports in tunnel construction
JP2022108978A (en) Friction joint structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190827

R150 Certificate of patent or registration of utility model

Ref document number: 6579787

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250