JP2016204852A - Strength prediction method for modified soil, and manufacturing method of modified soil - Google Patents
Strength prediction method for modified soil, and manufacturing method of modified soil Download PDFInfo
- Publication number
- JP2016204852A JP2016204852A JP2015084161A JP2015084161A JP2016204852A JP 2016204852 A JP2016204852 A JP 2016204852A JP 2015084161 A JP2015084161 A JP 2015084161A JP 2015084161 A JP2015084161 A JP 2015084161A JP 2016204852 A JP2016204852 A JP 2016204852A
- Authority
- JP
- Japan
- Prior art keywords
- soil
- test
- modified soil
- strength
- modified
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
- Soil Conditioners And Soil-Stabilizing Materials (AREA)
Abstract
Description
この発明は、改質土の強度予測方法及び改質土の製造方法に関し、詳しくは、カルシウム化合物を含んだ改質材を浚渫土に添加して混合し、養生して強度の改善された改質土を得る際に、得られる改質土の強度を予測する方法、及びこれを用いた改質土の製造方法に関する。 The present invention relates to a modified soil strength prediction method and a modified soil production method, and more specifically, a modified material containing a calcium compound is added to and mixed with dredged soil and cured to improve the strength. The present invention relates to a method for predicting the strength of the obtained modified soil when obtaining the soil, and a method for producing the modified soil using the method.
航路、泊地、河川等の浚渫により生ずる浚渫土の強度を改良して、改質土として再利用することが行われている。浚渫土は、主に水と土粒子とからなり、水と土粒子との質量比率(水/土粒子)で表される含水比が70〜250%程度と極めて高いことから、ダンプトラック等に山積みして搬送するのは困難である。そのため、これまでに浚渫土の処理が問題とされてきた。 Improvement of the strength of dredged soil caused by dredging such as routes, anchorages, rivers, etc., and reuse as modified soil is carried out. The dredged soil is mainly composed of water and soil particles, and the water content expressed by the mass ratio of water and soil particles (water / soil particles) is as high as about 70 to 250%. It is difficult to carry in piles. For this reason, the disposal of dredged soil has been regarded as a problem.
近年では、浚渫土の強度を向上させる改質材を加えて混合し、干潟や浅場の造成工事に使用したり、海底の深堀れ窪地を処理するための埋め戻し工事に使用するなど、改質土としての利用が進みつつある。そのひとつに、改質材として製鋼スラグのほか、高炉水砕スラグや高炉スラグ微粉末を用いて改質土を得る方法が知られている(例えば特許文献1参照)。 In recent years, modifiers that improve the strength of dredged soil are added and mixed for use in the construction of tidal flats and shallow waters, and in backfilling to treat deep depressions in the seabed. Use as soil is progressing. As one of the methods, there is known a method of obtaining modified soil using blast furnace granulated slag or blast furnace slag fine powder in addition to steelmaking slag as a modifier (see, for example, Patent Document 1).
これは、改質材に含まれる遊離石灰等(フリーライム(f-CaO):遊離CaO及びCa(OH)2)のカルシウム成分と、浚渫土に含まれる珪素成分やアルミニウム成分とが水和反応を起こし、カルシウムシリケート系水和物(CaO-SiO2-H2O系水和物:C-S-H)やカルシウムアルミネート系水和物(CaO-Al2O3-H2O系水和物:AFm)等が形成されることによって、強度が改良されると考えられる。そして、上記特許文献1には、改質土の一軸圧縮強度とフリーライム量との間に強い相関関係があることや、改質土の強度を発現させるためには少なくとも0.5質量%のフリーライム含有率が必要であることが記載されており、改質土の強度設計をする上で、改質材に含まれるフリーライム量がひとつの指標になり得る。 This is because the calcium component of free lime, etc. (free lime (f-CaO): free CaO and Ca (OH) 2 ) contained in the modifier and the silicon and aluminum components contained in the clay are hydrated. Calcium silicate hydrate (CaO—SiO 2 —H 2 O hydrate: CSH) and calcium aluminate hydrate (CaO—Al 2 O 3 —H 2 O hydrate: AFm) ) And the like are considered to improve the strength. In Patent Document 1, there is a strong correlation between the uniaxial compressive strength of the modified soil and the amount of free lime, and at least 0.5% by mass for expressing the strength of the modified soil. It is described that a free lime content is necessary, and the amount of free lime contained in the reforming material can be an index in designing the strength of the modified soil.
ところが、フリーライム量に基づき浚渫土と改質材との配合設計を行っても、得られる改質土の一軸圧縮強度はばらついてしまう。そのため、実際には、改質土を製造する現場で事前に供試体を作製して所定の期間養生し(通常は28日程度)、一軸圧縮強度を測定しながら、このような強度試験を繰り返し行って配合設計を行わなければならない。 However, the uniaxial compressive strength of the modified soil obtained varies even when the blended design of the clay and the modifying material is performed based on the amount of free lime. Therefore, in practice, the specimen is prepared in advance at the site where the modified soil is manufactured and cured for a predetermined period (usually about 28 days), and this strength test is repeated while measuring the uniaxial compressive strength. You have to go ahead and do the formulation design.
そこで、例えば、2種以上の試験用改質材を用意して、それぞれを蒸留水に入れて溶出するカルシウムイオン溶出量を測定し、添加対象の浚渫土に対して試験用改質材を配合して得られる各試験用改質土の一軸圧縮強度と上記カルシウムイオン溶出量との関係から相関式を求めた上で、実際に浚渫土に添加する改質材のカルシウムイオン溶出量から、得られる改質土の一軸圧縮強度を予測する方法(特許文献2参照)等が提案されている。この方法においては、フリーライム量を測定するにあたって一般に採用されているエチレングリコール法(JCAS I-01:1997)に比べて、改質材に含まれるカルシウムイオンの溶出をより正確に把握することができることから、改質土の一軸圧縮強度を予測することができる。 So, for example, prepare two or more test modifiers, measure the amount of calcium ions dissolved in each distilled water, and mix the test modifiers with the clay to be added. Obtain the correlation equation from the relationship between the uniaxial compressive strength of the modified soil for each test obtained above and the calcium ion elution amount, and obtain it from the calcium ion elution amount of the modifier actually added to the dredged soil. A method for predicting the uniaxial compressive strength of the modified soil (see Patent Document 2) and the like have been proposed. In this method, compared to the ethylene glycol method (JCAS I-01: 1997), which is generally used for measuring the amount of free lime, it is possible to grasp the elution of calcium ions contained in the modifier more accurately. As a result, the uniaxial compressive strength of the modified soil can be predicted.
上述したように、カルシウム化合物を含んだ改質材を浚渫土に混ぜて得られる改質土は、浚渫土のシリカ分等と改質材のカルシウム分とが水和反応し、カルシウムシリケート系水和物(C-S-H)やカルシウムアルミネート系水和物(AFm)等を形成して、固化すると考えられる。そこで、コンクリートにおけるセメントと水の質量比のような強度指数を用いて、改質土の強度を整理してみると、例えば図8のようになる。すなわち、この図8は、改質材として製鋼スラグを用いた例を示すが、製鋼スラグのフリーライム量と浚渫土の水との質量比(f-CaO/水)だけでは、改質土の一軸圧縮強度を把握するのは難しいことが分かる。 As described above, the modified soil obtained by mixing the modifying material containing the calcium compound with the clay is a hydrated reaction between the silica content of the clay and the calcium content of the modifying material. It is thought to solidify by forming a hydrate (CSH) or calcium aluminate hydrate (AFm). Therefore, when the strength of the modified soil is arranged using a strength index such as a mass ratio of cement and water in concrete, for example, as shown in FIG. That is, FIG. 8 shows an example in which steelmaking slag is used as a reforming material. However, the mass ratio (f-CaO / water) between the amount of free lime in steelmaking slag and the water of dredged soil alone is used. It turns out that it is difficult to grasp the uniaxial compressive strength.
製鋼スラグや高炉スラグ微粉末のような鉄鋼スラグは、例えば、セメント用、道路用、土工用、コンクリート骨材等の各種用途で幅広く使われているのに対して、浚渫土は浚渫作業により発生するものであり、鉄鋼スラグのようないわば工業製品と呼べるようなものではない。そこで、本発明者らは、このような浚渫土の固化影響因子に着目し、実験を重ねて検討したところ、浚渫土が保有する水の成分が改質土の強度発現に寄与することを見出した。そして、浚渫土に含まれる水の電気伝導度を測定することで、改質土の強度を予測することが可能になることから、本発明を完成するに至った。 Steel slag, such as steelmaking slag and blast furnace slag fine powder, is widely used in various applications such as cement, road, earthwork, concrete aggregate, etc. It is not something that can be called an industrial product like steel slag. Therefore, the present inventors have paid attention to such solidification influencing factors of the dredged soil and conducted repeated experiments. As a result, the present inventors have found that the water component held by the dredged soil contributes to the strength development of the modified soil. It was. And since it became possible to estimate the intensity | strength of modified soil by measuring the electrical conductivity of the water contained in dredged soil, it came to complete this invention.
したがって、本発明の目的は、改質材を添加する対象の浚渫土が変わった場合にも、得られる改質土の強度を予測することができる方法を提供することにある。また、本発明の別の目的は、例えば施工中に搬入される浚渫土が変わった場合でも、事前に強度を予測して改質土を製造することができる方法を提供することにある。 Therefore, an object of the present invention is to provide a method capable of predicting the strength of the obtained modified soil even when the dredged soil to which the modifying material is added changes. Another object of the present invention is to provide a method capable of producing modified soil by predicting strength in advance even when, for example, dredged soil is changed during construction.
すなわち、本発明の要旨は次のとおりである。
(1)カルシウム化合物を含んだ改質材を浚渫土に添加して混合し、養生して強度の改善された改質土を得る際に、得られる改質土の強度を予測する方法であって、
2以上の試験用浚渫土を用意して、各試験用浚渫土が保有する水の電気伝導度を測定すると共に、それぞれの試験用浚渫土に改質材を添加して得られる試験改質土の一軸圧縮強度を測定して、試験用浚渫土の電気伝導度と試験改質土の一軸圧縮強度との相関式を求めた上で、その相関式に基づいて、実製造で使用する浚渫土が保有する水の電気伝導度から、得られる改質土の一軸圧縮強度を予測することを特徴とする改質土の強度予測方法。
(2)浚渫作業で発生した浚渫土にカルシウム化合物を含んだ改質材を添加して混合し、養生して強度の改善された改質土を製造する方法であって、
予め、浚渫作業域内の異なる場所から2以上の試験用浚渫土を採取し、各試験用浚渫土が保有する水の電気伝導度を測定すると共に、それぞれの試験用浚渫土に改質材を添加して得られる試験改質土の一軸圧縮強度を測定して、試験用浚渫土の電気伝導度と試験改質土の一軸圧縮強度との相関式を求めておき、実製造で使用する浚渫土を浚渫作業域内で採取し、該浚渫土が保有する水の電気伝導度を測定して、予め求めた相関式に基づいて、得られる改質土の一軸圧縮強度を予測した上で、実際に改質土を製造することを特徴とする改質土の製造方法。
(3)前記浚渫作業が海域又は汽水域で行われる(2)に記載の改質土の製造方法。
(4)前記相関式に基づく改質土の一軸圧縮強度の予測値が所定の基準値に達しない場合、改質材の添加量を増やすか、若しくは、塩化物イオン又は硫酸イオンのいずれかを含んだ水溶性の化合物を強度促進剤として添加して実際の改質土を製造する(2)又は(3)に記載の改質土の製造方法。
(5)前記改質材が、製鋼スラグ又は高炉スラグ微粉末のいずれか一方又は両方である(2)〜(4)のいずれかに記載の改質土の製造方法。
That is, the gist of the present invention is as follows.
(1) A method of predicting the strength of the modified soil obtained when a modified material containing a calcium compound is added to the clay and mixed and cured to obtain a modified soil with improved strength. And
Prepare two or more test clays, measure the electrical conductivity of the water held by each test clay, and add the modifier to each test clay. After measuring the uniaxial compressive strength of the soil, the correlation between the electrical conductivity of the test clay and the uniaxial compressive strength of the test modified soil was obtained, and based on the correlation, the clay used in actual production Predicting the uniaxial compressive strength of the modified soil obtained from the electrical conductivity of water held by the soil.
(2) A method for producing modified soil with improved strength by adding and mixing a modifier containing a calcium compound to dredged soil generated by dredging work.
Collect two or more test clays from different locations in the dredging area in advance, measure the electrical conductivity of the water held by each test clay, and add a modifier to each test clay. Measure the uniaxial compressive strength of the test modified soil, and obtain the correlation between the electrical conductivity of the test clay and the uniaxial compressive strength of the test modified soil. In the dredging work area, the electrical conductivity of the water held by the dredged soil is measured, and the uniaxial compressive strength of the modified soil obtained is predicted based on the correlation equation obtained in advance. A method for producing modified soil, comprising producing modified soil.
(3) The method for producing modified soil according to (2), wherein the dredging operation is performed in a sea area or a brackish water area.
(4) When the predicted value of the uniaxial compressive strength of the modified soil based on the correlation formula does not reach a predetermined reference value, increase the amount of the modifier added, or either chloride ion or sulfate ion The method for producing modified soil according to (2) or (3), wherein an actual modified soil is produced by adding the contained water-soluble compound as a strength accelerator.
(5) The method for producing modified soil according to any one of (2) to (4), wherein the modifying material is one or both of steelmaking slag and blast furnace slag fine powder.
本発明によれば、改質材を添加する対象の浚渫土が変わった場合にも、得られる改質土の強度を予測することができる。そのため、実際に改質土を製造するにあたり、従来のように供試体を作製して所定の期間養生し、一軸圧縮強度を調べる強度試験を繰り返すのに比べて、短時間でかつ簡便に改質土の強度を予測することができ、配合設計を容易にするなど、製造現場での作業性や汎用性に優れたものであると言える。 According to the present invention, the strength of the obtained modified soil can be predicted even when the target clay to which the modifying material is added changes. Therefore, when actually producing modified soil, it is easier to modify in a short time compared to the conventional method of preparing specimens, curing them for a specified period, and repeating the strength test to check the uniaxial compressive strength. It can be said that it is excellent in workability and versatility at the manufacturing site, such as being able to predict the strength of the soil and facilitating the formulation design.
以下、本発明を得るにあたり、浚渫土が保有する水の成分に着目することになった経緯とその詳細について以下で説明する。
先ず、表1には、名古屋で採取された浚渫土aと大阪で採取された浚渫土bとに対して、それぞれ改質材として転炉スラグSを添加して混合し、28日間養生して得られた改質土の一軸圧縮強度を比較した例が示されている。これらの例では改質材は共通であり(転炉スラグS)、また、浚渫土aとbについても同程度の含水比と強熱減量値を有しているにもかかわらず、得られる改質土の一軸圧縮強度には5倍強の差がある。
In the following, the background and details of the attention given to the components of the water held by the dredged soil in obtaining the present invention will be described below.
First, in Table 1, converter slag S as a modifier is added and mixed with dredged soil a collected in Nagoya and dredged soil b collected in Osaka, respectively, and cured for 28 days. The example which compared the uniaxial compressive strength of the obtained modified soil is shown. In these examples, the reforming material is common (converter slag S), and the modified a obtained even though the clays a and b have the same water content ratio and ignition loss value. There is a difference of more than 5 times in the uniaxial compressive strength of the soil.
この原因を探るべく、ポーラスカップを用いて養生中の間隙水を抽出して、間隙水に含まれる各種成分の反応(消費)状況を経時的に分析した。ここで、分析対象は、Ca、Mg、K、Al、NH4、Si、Cl、SO4であり、なかでも顕著な傾向が読み取れるものを代表して図1及び図2にまとめて示した。これら図中のグラフから分かるように、一軸圧縮強度に優れる浚渫土b×転炉スラグSの改質土では、浚渫土a×転炉スラグSの改質土に比べてCaやSiの溶出量が多い。なかでもCaについては専ら改質材から溶出するものと考えられるが、同じ改質材であるにもかかわらず、浚渫土b×転炉スラグSの方がはるかに多い。また、浚渫土b×転炉スラグSでは、ClやSO4の消費量が多いことも読み取れる。 In order to investigate this cause, pore water during curing was extracted using a porous cup, and the reaction (consumption) status of various components contained in the pore water was analyzed over time. Here, the analysis objects are Ca, Mg, K, Al, NH 4 , Si, Cl, and SO 4 , and among them, those that can read a remarkable tendency are collectively shown in FIGS. 1 and 2. As can be seen from the graphs in these figures, the leaching amount of Ca and Si in the modified soil of the dredged soil b × converter slag S, which has excellent uniaxial compressive strength, compared to the modified soil of the dredged soil a × converter slag S, There are many. Among them, Ca is considered to be eluted exclusively from the reformer, but despite the same modifier, dredging b × converter slag S is much more. It can also be seen that the dredging b × converter slag S consumes a large amount of Cl and SO 4 .
そこで、浚渫土側の固化影響因子を固定した上で評価するために、陶芸用粘土等に用いられる市販の粘土を模擬浚渫土として用いて、これに改質材を配合すると共に塩分濃度が異なる海水を添加して<強度試験1>を行った。すなわち、この粘土は表2に示した成分を有し、この粘土を予め電気炉で500℃、2時間の焼成を行い、強熱減量(Ig.loss)を12.6%から約6.5%に低下させた。そして、この焼成後の粘土を25.7質量%、f−CaO含有率が3質量%の製鋼スラグを48.6質量%、及び海水が25.7質量%となるように加えて混練し、φ100mm×高さ200mmのモールドに充填して、室温20℃、湿度60%の条件で養生して、材齢7日及び14日での供試体の一軸圧縮強度を測定した。その際、海水の塩分濃度を変えることで(淡水、汽水、海水)、得られる一軸圧縮強度の違いを評価した。 Therefore, in order to evaluate after fixing the solidification influencing factors on the clay side, a commercially available clay used for clay for ceramics, etc. is used as a simulated clay, and a modifier is added to this and the salinity concentration is different. Seawater was added to conduct <Strength Test 1>. That is, this clay has the components shown in Table 2. This clay was previously baked in an electric furnace at 500 ° C. for 2 hours, and the ignition loss (Ig.loss) was reduced from 12.6% to about 6.5. %. Then, 25.7% by mass of the clay after firing, 48.6% by mass of steelmaking slag having an f-CaO content of 3% by mass, and 25.7% by mass of seawater are added and kneaded. The mold was filled in a mold of φ100 mm × height 200 mm, cured under conditions of room temperature 20 ° C. and humidity 60%, and the uniaxial compressive strength of the specimens at the age of 7 and 14 days was measured. At that time, the difference in the uniaxial compressive strength obtained was evaluated by changing the salinity of seawater (freshwater, brackish water, seawater).
結果は図3に示したとおりであり、浚渫土に見立てた粘土から供給されるシリカ分と製鋼スラグから供給されるカルシウム分とが一定の場合でも、海水の塩分濃度が増すにつれて供試体の一軸圧縮強度が高くなる。これは、海水に含まれた塩化物イオン(Cl-)によって、製鋼スラグからのCaの溶出が促進された効果や、フリーデル氏塩の生成(Ca4Al2O6Cl2・10H2O)によるものと推測される。 The results are as shown in FIG. 3, and even when the silica content supplied from clay assumed as dredged soil and the calcium content supplied from steelmaking slag are constant, the axis of the specimen is increased as the salt concentration of seawater increases. Compressive strength increases. This seawater contains a chloride ion (Cl -) by the effect and the dissolution of Ca from steelmaking slag is promoted, formation of Friedel Mr. salts (Ca 4 Al 2 O 6 Cl 2 · 10H 2 O ).
次に、上記<強度試験1>で使用した製鋼スラグの代わりにCaOの試薬を用い、また、海水の代わりに蒸留水を用いて、焼成後の粘土を51質量%、CaO試薬を4質量%、及び蒸留水を45質量%となるように加えて混合し、φ50mm×高さ100mmのモールドに充填して、室温20℃、湿度60%の条件で養生して、材齢4日での供試体の一軸圧縮強度を測定する<強度試験2-1>を行った。また、焼成後の粘土を49.6質量%と、上記<強度試験2-1>とCaイオンの量が等しくなるように、CaO試薬3質量%と共にCaSO4試薬2.4質量%と、蒸留水45質量%とを添加して混練した以外は<強度試験2-1>同様にして、材齢4日での供試体の一軸圧縮強度を測定する<強度試験2-2>を行った。その結果、<強度試験2-1>の一軸圧縮強度(200kN/m2)に比べて、<強度試験2-2>では約5倍(1100kN/m2)の強度が発現することが確認された。すなわち、これらの試験によれば、SO4 2−の有無が一軸圧縮強度に大きく影響を及ぼすことが分かる。ちなみに、<強度試験2-1>で得られた供試体の様子をSEMで観察したSEM画像(倍率2000倍)、及び<強度試験2-2>の供試体のSEM画像(倍率5000倍)を図4にまとめて示す。これからも分かるように、<強度試験2-2>の場合にはエトリンガイト(3CaO・Al2O3・3CaSO4・32H2O))からなる針状水和物が多く生成していることが確認できる。 Next, a CaO reagent is used in place of the steelmaking slag used in <Strength Test 1>, and distilled water is used in place of seawater. The fired clay is 51% by mass, and the CaO reagent is 4% by mass. And distilled water is added to 45% by mass, mixed, filled in a mold of φ50 mm × height 100 mm, cured at room temperature of 20 ° C. and humidity of 60%, and served at the age of 4 days. <Strength test 2-1> was performed to measure the uniaxial compressive strength of the specimen. Further, 49.6% by mass of the clay after firing, and 2.4% by mass of CaSO 4 reagent together with 3% by mass of CaO reagent so that the amount of Ca ions is equal to the above <Strength Test 2-1>, <Strength Test 2-2> was performed in the same manner as in <Strength Test 2-1> except that 45% by mass of water was added and kneaded to measure the uniaxial compressive strength of the specimen at a material age of 4 days. As a result, it was confirmed that the strength of about 5 times (1100 kN / m 2 ) was developed in <Strength Test 2-2> compared to the uniaxial compressive strength (200 kN / m 2 ) of <Strength Test 2-1>. It was. That is, according to these tests, it can be seen that the presence or absence of SO 4 2− greatly affects the uniaxial compressive strength. By the way, SEM image (magnification 2000 times) of the specimen obtained in <strength test 2-1> was observed with SEM, and SEM image (magnification 5000 times) of the specimen of <strength test 2-2>. FIG. 4 summarizes the results. As can be seen, in the case of <Strength Test 2-2>, it was confirmed that a lot of acicular hydrates composed of ettringite (3CaO.Al 2 O 3 .3CaSO 4 .32H 2 O)) were produced. it can.
更には、上記<強度試験1>で使用した製鋼スラグの代わりにCaOの試薬を用い、また、塩分濃度が異なる海水の代わりに、表3に示した分析値を有する地域p、q、rで採取された実海水及び実汽水を用いて、表4に示した配合で混合して、φ50mm×高さ100mmのモールドに充填し、乾燥を防ぐために上面を覆って、室温20℃、湿度60%に設定した恒温恒湿室で養生した。4日養生後、モールドから供試体を取り出して一軸圧縮強度を測定する<強度試験3>を行った。そして、得られた供試体の一軸圧縮強度と実海水(又は実汽水)の電気伝導度(EC)との関係をグラフにしたものが図5である。このグラフから分かるように、イオンの存在量を表す電気伝導度と供試体の一軸圧縮強度とが相関性を示した。上記<強度試験1>及び<強度試験2>の結果を踏まえれば、Cl−やSO4 2−の影響による供試体の一軸圧縮強度の発現の程度について、電気伝導度を指標にして評価できることが分かる。 Furthermore, in place of the steelmaking slag used in <Strength Test 1> above, a reagent of CaO is used, and instead of seawater having a different salinity concentration, the regions p, q, and r having the analysis values shown in Table 3 are used. Using the collected actual seawater and actual brackish water, the mixture shown in Table 4 was mixed, filled into a mold of φ50 mm × height 100 mm, the upper surface was covered to prevent drying, room temperature 20 ° C., humidity 60% Cured in a constant temperature and humidity chamber set to After curing for 4 days, a test piece was taken out of the mold and subjected to <Strength Test 3> in which uniaxial compressive strength was measured. FIG. 5 is a graph showing the relationship between the uniaxial compressive strength of the obtained specimen and the electrical conductivity (EC) of the actual seawater (or actual brackish water). As can be seen from this graph, there was a correlation between the electric conductivity representing the abundance of ions and the uniaxial compressive strength of the specimen. Based on the results of the above <Strength Test 1> and <Strength Test 2>, the degree of expression of the uniaxial compressive strength of the specimen due to the influence of Cl − or SO 4 2− can be evaluated using the electrical conductivity as an index. I understand.
これら強度試験1〜3の結果から分かるように、浚渫土が保有する水の成分により改質土の強度発現の程度に差が生じ、なかでも、Cl−やSO4 2−といった化学成分により、得られる改質土の一軸圧縮強度が影響されることが確認できる。また、このような成分による影響は、浚渫土が保有する水の電気伝導度を指標にして評価できることを併せて見出した。 As can be seen from the results of these strength tests 1 to 3, a difference occurs in the degree of strength expression of the modified soil depending on the water component retained by the dredged soil, and in particular, chemical components such as Cl − and SO 4 2− It can be confirmed that the uniaxial compressive strength of the obtained modified soil is affected. It was also found that the influence of such components can be evaluated using the electrical conductivity of water held by the clay as an index.
以上のような知見に基づき、本発明では、カルシウム化合物を含んだ改質材を浚渫土に添加して混合し、養生して強度の改善された改質土を得るにあたり、予め2以上の試験用浚渫土を用意して、各試験用浚渫土が保有する水の電気伝導度を例えば市販の電気伝導率計(電気伝導度計)等を用いて測定すると共に、それぞれの試験用浚渫土に改質材を添加して得られる試験改質土の一軸圧縮強度を測定して、試験用浚渫土の電気伝導度と試験改質土の一軸圧縮強度との相関式を求めた上で、その相関式に基づいて、実製造で使用する浚渫土が保有する水の電気伝導度から、得られる改質土の一軸圧縮強度を予測するようにする。ここで、試験改質土を得るにあたっては、実際に目的の改質土を得る場合と同様の割合で試験用浚渫土と改質材とを配合し、所定の期間養生すればよい。なお、一軸圧縮強度の測定は、JIS A 1216(土の一軸圧縮試験方法)に従うことができる。 Based on the above findings, in the present invention, two or more tests are performed in advance in order to obtain a modified soil with improved strength by adding and mixing a modifier containing calcium compounds to the clay and curing. Prepare soil for the test, and measure the electrical conductivity of the water held by each test soil using, for example, a commercially available conductivity meter (electrical conductivity meter). After measuring the uniaxial compressive strength of the test modified soil obtained by adding the modifier, and determining the correlation between the electrical conductivity of the test clay and the uniaxial compressive strength of the test modified soil, Based on the correlation equation, the uniaxial compressive strength of the modified soil obtained is predicted from the electrical conductivity of water held by the dredged soil used in actual production. Here, in obtaining the test modified soil, the test clay and the modifying material may be blended at a ratio similar to the case of actually obtaining the target modified soil and cured for a predetermined period. In addition, the measurement of uniaxial compressive strength can follow JIS A 1216 (uniaxial compressive test method of soil).
また、得られた改質土は、例えば、港湾・空港建設における土工用材料や海域環境再生用途である覆砂材、浅場・干潟造成用材、浚渫窪地等の深堀れ窪地の埋戻し材、埋立材をはじめ、各種用途に使用することができる。これらの改質土は、その用途等にもよるが、改質土を用いて施工する建設現場や改質土を投入する環境再生現場に隣接した(又は近場の)浚渫作業で発生した浚渫土をその場で又は一旦仮置きしてから、改質材を添加して改質土を製造することがある。そのような場合、浚渫作業の領域が指定されるなど、浚渫作業域が定められていることが多いことから、浚渫作業域内の異なる場所から2以上の試験用浚渫土を採取して、上記のような相関式を得るようにすればよい。例えば、港湾の維持浚渫工事のような建設であれば、浚渫作業域は港湾区域である。このように定められた浚渫作業域であれば、浚渫土が有する土粒子の性質(土質や土粒子の大きさなど)が比較的揃っており、水の電気伝導度を用いて改質土の強度を予測する上で都合がよく、なかでも河口付近や潮の流れが変わり易いような浚渫作業域では、浚渫土が保有する水の成分が変化するため、本発明を好適に用いることができる。 In addition, the obtained improved soil is, for example, earthworks materials for port / airport construction, sand-covering materials for reclaiming the marine environment, materials for creating shallow and tidal flats, backfill materials for deep depressions such as depressions, landfills, etc. It can be used for various applications including materials. These modified soils, depending on their use, etc., are generated by dredging work adjacent to (or nearby) dredging work at construction sites where modified soil is used or environmental regeneration sites where modified soil is introduced. In some cases, the soil is temporarily placed on the spot or temporarily, and then the modifying material is added to produce the modified soil. In such a case, the dredging work area is often specified, for example, the dredging work area is specified. Therefore, two or more test dredged materials are collected from different locations in the dredging work area. Such a correlation equation may be obtained. For example, if the construction is a maintenance dredging work for a port, the dredging work area is a port area. In the dredging area defined in this way, the characteristics of the soil particles (such as soil quality and soil particle size) of the dredged soil are relatively uniform, and the electric conductivity of water is used to In the dredging work area that is convenient for predicting the strength, especially in the vicinity of the estuary and where the flow of the tide is likely to change, the water component of the dredged soil changes, so that the present invention can be suitably used. .
また、本発明の強度予測方法を用いて改質土を製造するには、上述したように、例えば、浚渫作業域内の異なる場所から2以上の試験用浚渫土を採取して、事前に試験用浚渫土の電気伝導度と試験改質土の一軸圧縮強度との相関式を求めておき、実製造で使用する浚渫土を浚渫作業域内で採取したところで、該浚渫土が保有する水の電気伝導度を測定して、予め求めた相関式から、得られる改質土の一軸圧縮強度を予測する。その際、予測した一軸圧縮強度が目標強度に達していれば、そのまま改質土を製造することができるが、仮に目標強度に達していなければ、例えば改質材の添加量を増やしたり、或いは、塩化物イオン又は硫酸イオンのいずれか一方又は両方を含んだ水溶性の化合物を強度促進剤として添加するようにしてもよい。また、実製造で改質土を製造している際に、例えば浚渫土の性状が見た目での変化が明らかであったり、予測した強度の値とのずれが顕著になったりしたら、再度試験用浚渫土を採取して相関式を作り直すようにすればよい。なお、一軸圧縮強度の所定の基準値について、一例を挙げれば、例えば、深掘れ窪地の埋戻しの場合には、覆砂に対する地耐力確保の観点から改質土として10kN/m2程度の強度が要求される。また、同様に、浅場・干潟の造成では、藻礁石材に対する地耐力確保の観点から20kN/m2程度の強度が要求され、更に、埋め立てでは、用途地耐力確保や沈降対策強度確保の観点から40〜50kN/m2程度の強度が要求される。 In addition, in order to produce the modified soil using the strength prediction method of the present invention, as described above, for example, two or more test clays are collected from different locations in the dredging work area and used for the test in advance. The correlation between the electrical conductivity of the dredged soil and the uniaxial compressive strength of the test modified soil is obtained, and when the dredged soil used for actual production is collected in the dredging work area, the electrical conductivity of the water retained by the dredged soil is collected. Measure the degree and predict the uniaxial compressive strength of the modified soil obtained from the correlation equation obtained in advance. At that time, if the predicted uniaxial compressive strength has reached the target strength, the modified soil can be produced as it is, but if the target strength has not been reached, for example, the amount of addition of the modifier is increased, or Alternatively, a water-soluble compound containing either or both of chloride ions and sulfate ions may be added as a strength promoter. In addition, when producing modified soil in actual production, for example, if the change in the appearance of the dredged soil is obvious or the deviation from the predicted strength value becomes significant, it is again used for testing. Collect dredged soil and recreate the correlation equation. In addition, if an example is given about the predetermined | prescribed reference value of uniaxial compressive strength, for example, in the case of the backfill of a deep dug depression, the intensity | strength of about 10 kN / m < 2 > as a modified soil from a viewpoint of securing earth proof strength with respect to sand covering Is required. Similarly, in the construction of shallow fields and tidal flats, a strength of about 20 kN / m 2 is required from the viewpoint of securing earth proof strength against algal reef stones, and in landfill, from the viewpoint of securing land proof strength and strength against sedimentation. A strength of about 40 to 50 kN / m 2 is required.
本発明で用いる浚渫土は、高い含水比(一般には含水比70〜250%程度)を有して、主に水と土粒子とからなるものであり、総じて浚渫により生じたものを用いることができる。例えば、港湾の航路や泊地を拡げる目的や、海底の汚泥・底質汚染を除去する目的等で発生した海底浚渫土を挙げることができるが、なかでも好適には、海域又は汽水域から浚渫された浚渫土であるのがよい。 The dredged soil used in the present invention has a high water content ratio (generally, a water content ratio of about 70 to 250%), and is mainly composed of water and soil particles. it can. For example, the submarine soil generated for the purpose of expanding the route and anchorage of the port and the purpose of removing sludge and sediment from the seabed can be cited. It is good that it is dredged.
一方の改質材としては、カルシウム化合物を含み、浚渫土と混合して養生する際にカルシウムイオンを溶出するものであればよく、例えば、製鋼スラグ、高炉スラグ微粉末、消石灰、生石灰、セメント等を挙げることができ、これらの1種又は2種以上を用いることができる。 On the other hand, the modifier may contain any calcium compound and can dissolve calcium ions when mixed with clay and cured, for example, steelmaking slag, blast furnace slag fine powder, slaked lime, quicklime, cement, etc. 1 type, or 2 or more types of these can be used.
ここで、製鋼スラグとは、鉄鋼製造プロセスで副産物として産出されるものであり、転炉や電気炉等の製鋼炉において、銑鉄やスクラップから不要な成分を除去して、靭性・加工性のある鋼にする製鋼工程で生じる石灰分を主体としたものである。具体的には、転炉スラグ、予備処理スラグ、脱炭スラグ、脱燐スラグ、脱硫スラグ、脱珪スラグ、電気炉還元スラグ、電気炉酸化スラグ、二次精錬スラグ、造塊スラグ等を挙げることができる。また、高炉スラグ微粉末とは、銑鉄を製造する製銑過程で生成する溶融状態の高炉スラグに加圧水を噴射するなどして水砕し、急激に冷却した高炉水砕スラグを微粉砕したものである。 Here, steelmaking slag is produced as a by-product in the steelmaking process, and in steelmaking furnaces such as converters and electric furnaces, it removes unnecessary components from pig iron and scrap and has toughness and workability. It is mainly composed of lime produced in the steel making process. Specifically, converter slag, pretreatment slag, decarburization slag, dephosphorization slag, desulfurization slag, desiliconization slag, electric furnace reduction slag, electric furnace oxidation slag, secondary refining slag, ingot slag, etc. Can do. The blast furnace slag fine powder is a pulverized granulated blast furnace slag that has been rapidly cooled and crushed by spraying pressurized water onto the molten blast furnace slag produced during the iron making process of pig iron. is there.
また、改質材と浚渫土とを混合する手段については特に制限されず、公知の方法を採用することができる。更に、混合した後の養生方法については、気中養生、水中養生等の一般的な改質土を得るための方法を用いることができ、用途等に応じて養生日数を適宜選択すればよい。 Further, the means for mixing the modifier and the clay is not particularly limited, and a known method can be adopted. Furthermore, about the curing method after mixing, the method for obtaining general modified soils, such as air curing and underwater curing, can be used, and the curing days may be appropriately selected according to the use and the like.
本発明によって得られた改質土は、上述したように、例えば、港湾・空港建設のような海域における潜堤を構築したり、干潟や浅場の造成工事に使用することができるほか、藻場の造成、深堀れ窪地を処理する埋め戻し工事、海面埋め立て工事等に利用することができ、なかでも、海域環境の修復・再生に好適に用いることができる。 As described above, the modified soil obtained by the present invention can be used for constructing a submerged dike in a sea area such as construction of a port / airport, and can be used for constructing a tidal flat or a shallow place. It can be used for back-up construction, sea level landfill construction, etc., which are suitable for restoration / regeneration of the marine environment.
以下、実施例に基づき本発明を説明するが、本発明はこれらの内容に制限されるものではない。 EXAMPLES Hereinafter, although this invention is demonstrated based on an Example, this invention is not restrict | limited to these contents.
(試験例1)
浚渫土として、表5に示したように名古屋と大阪の各海域で採取した浚渫土1〜4と、カルシウム化合物を含んだ改質材として、表6に示したスラグA〜Bとを用いて、改質土を得る試験を行った。このうち、浚渫土については、名古屋の港湾区域の浚渫作業域から2種類の浚渫土を採取して浚渫土1及び2とし、また、大阪の港湾区域の浚渫作業域から2種類の浚渫土を採取して浚渫土3及び4とした。ここで、表5における細粒分含有率は、0.075mm未満の粒子の含有率を表し、JIS A 1223の土の細粒分含有率試験方法から得られた値である。また、強熱減量はJIS A 1226に準拠する強熱減量試験から得られた値であり、液性限界、塑性限界、及び塑性指数は、それぞれJIS A 1205の土の液性限界・塑性限界試験方法より求めたものである。更に、水の電気伝導度は各浚渫土から遠心分離により水を回収し、市販の電気伝導度計で電気伝導度を測定したものである。一方、改質材については、スラグA、スラグB、スラグCのいずれも製鋼スラグを用いた。また、表6に示したf−CaO含有率(%)は、エチレングリコール法(JCAS I-01:1997)に基づき測定した値である。
(Test Example 1)
As dredged soil, as shown in Table 5, dredged soil 1 to 4 collected in each area of Nagoya and Osaka, and slags A to B shown in Table 6 as a modifier containing a calcium compound were used. Then, a test for obtaining modified soil was conducted. Of these, for dredged soil, two types of dredged material were collected from dredged work areas in Nagoya's port area and dredged as dredged soils 1 and 2, and two types of dredged material were drowned from dredged work areas in Osaka's port area. It was collected as clay 3 and 4. Here, the fine particle content in Table 5 represents the content of particles less than 0.075 mm, and is a value obtained from the JIS A 1223 soil fine particle content test method. In addition, the loss on ignition is a value obtained from an ignition loss test in accordance with JIS A 1226, and the liquid limit, plastic limit, and plastic index are JIS A 1205 soil liquid limit / plastic limit test, respectively. It is obtained from the method. Furthermore, the electrical conductivity of water is obtained by collecting water from each clay by centrifugation and measuring the electrical conductivity with a commercially available electrical conductivity meter. On the other hand, steel slag was used for all of the slag A, slag B, and slag C. The f-CaO content (%) shown in Table 6 is a value measured based on the ethylene glycol method (JCAS I-01: 1997).
先ず、上記で準備した浚渫土1とスラグAとを容積比70:30にして(浚渫土1を容積比率70%、スラグAを容積比率30%)、電動式ハンドミキサーを用いて撹拌混合した後、φ100mm×高さ200mmのモールドに詰めて成型し、20℃、湿度60%の恒温室で28日間気中養生して改質土1−Aを得た。このようにして得られた改質土1−Aについて、JIS A 1216に基づき一軸圧縮強度を測定し、サンプル数3(n=3)としてその平均を求めたところ、241kN/m2であった。同様にして、浚渫土1〜3とスラグA〜Cとを表7に示したように組み合わせて配合し、養生して得た改質土の一軸圧縮強度を測定した。サンプル数3での平均値を表7にまとめて示す。また、これら改質土の一軸圧縮強度と浚渫土が保有する水の電気伝導度との関係について、グラフにしたものを図6に示す。 First, the clay 1 prepared above and the slag A were mixed at a volume ratio of 70:30 (the clay 1 had a volume ratio of 70% and the slag A had a volume ratio of 30%), and were stirred and mixed using an electric hand mixer. Thereafter, it was packed in a mold of φ100 mm × height 200 mm and molded, and then air-cured in a constant temperature room at 20 ° C. and a humidity of 60% for 28 days to obtain modified soil 1-A. With respect to the modified soil 1-A thus obtained, the uniaxial compressive strength was measured based on JIS A 1216, and the average was obtained as the number of samples 3 (n = 3), which was 241 kN / m 2 . . Similarly, the clays 1 to 3 and the slags A to C were combined and blended as shown in Table 7, and the uniaxial compressive strength of the modified soil obtained by curing was measured. Table 7 summarizes the average values for three samples. FIG. 6 is a graph showing the relationship between the uniaxial compressive strength of the modified soil and the electrical conductivity of water held by the dredged soil.
図6のグラフによれば、i)名古屋の海域で採取した浚渫土1及び2に対して改質材としてスラグAを添加した場合、ii)名古屋の海域で採取した浚渫土1及び2に対して改質材としてスラグBを添加した場合、及び、iii)大阪の海域で採取した浚渫土3及び4に対して改質材としてスラグCを添加した場合について、いずれも浚渫土が保有する水の電気伝導度の上昇に伴い、改質土の一軸圧縮強度が増大する傾向を示すことが確認された。 According to the graph of FIG. 6, i) when slag A is added as a modifier to dredged soils 1 and 2 collected in the Nagoya area, ii) against dredged soils 1 and 2 collected in the Nagoya area. In the case where slag B is added as a modifier, and iii) in the case where slag C is added as a modifier to dredged soils 3 and 4 collected in the sea area of Osaka, the water held by the dredged soil It was confirmed that the uniaxial compressive strength of the modified soil tends to increase as the electrical conductivity of the soil increases.
(実施例1)
上記の試験例1において、ii)名古屋の海域で採取した浚渫土1及び2に対して改質材としてスラグBを添加した場合に得られた浚渫土の水の電気伝導度(x)と改質土の一軸圧縮強度(y)との相関式を利用して、すなわち図7に示したy=5.2258x−155.23を利用して、浚渫土1及び2と同じ名古屋の港湾区域の浚渫作業域内の別の場所から採取された浚渫土XにスラグBを添加した場合に得られる改質土の一軸圧縮強度を予測した。ここで使用した浚渫土Xは下記表8に示した性状を有し、浚渫土Xが保有する水の電気伝導度は47mS/cmであった。そのため、容積比70%の浚渫土Xに対して容積比30%でスラグBを添加して養生したとすれば、上記相関式よりy=5.2258×47-155.23=90.3826(kN/m2)の一軸圧縮強度を有する改質土が得られると予測できる。
Example 1
In Test Example 1 above, ii) the electrical conductivity (x) of dredged water obtained when slag B was added as a modifier to dredged soils 1 and 2 collected in the sea area of Nagoya Using the correlation equation with the uniaxial compressive strength (y) of the soil, that is, using y = 5.2258x−155.23 shown in FIG. The uniaxial compressive strength of the modified soil obtained when slag B was added to the dredged soil X collected from another location was predicted. The clay X used here had the properties shown in Table 8 below, and the electrical conductivity of the water retained by the clay X was 47 mS / cm. Therefore, if slag B is added and cured at a volume ratio of 30% to 70% volume clay X, y = 5.2258 × 47-155.23 = 90.3826 (kN / m 2 ) from the above correlation equation. It can be predicted that modified soil having uniaxial compressive strength will be obtained.
そこで、先の試験例1での手順と同様にして、実際に、浚渫土Xに対してスラグBを上記容積比で添加して撹拌混合した後、モールドに詰めて成型して、20℃、湿度60%の恒温室で28日間気中養生して改質土を得た。そして、実際に得られた改質土の一軸圧縮強度をサンプル数3(n=3)で測定したところ、一軸圧縮強度の平均値は107kN/m2であり、先の強度予測値に近い値であることが確認された。 Therefore, in the same manner as in the previous test example 1, after actually adding slag B to the clay X in the above volume ratio and stirring and mixing, the mold was packed into a mold and molded at 20 ° C. A modified soil was obtained by air curing in a constant temperature room at 60% humidity for 28 days. Then, when the uniaxial compressive strength of the modified soil actually obtained was measured with 3 samples (n = 3), the average value of the uniaxial compressive strength was 107 kN / m 2 , which was close to the predicted strength value. It was confirmed that.
以上の結果から分かるように、本発明によれば、得られる改質土の強度を予測することが可能になる。そのため、実際に改質土を製造するにあたり、従来のように供試体を作製して所定の期間養生し、一軸圧縮強度を調べる強度試験を繰り返すのに比べて、短時間でかつ簡便に改質土の強度を予測できることから、配合設計を容易にすることができる。また、本発明によって得られた改質土は、例えば、港湾・空港建設等の土工用材料や海域環境再生用途での埋戻し材料をはじめとした各種用途に使用でき、実用性に優れたものである。 As can be seen from the above results, according to the present invention, it is possible to predict the strength of the obtained modified soil. Therefore, when actually producing modified soil, it is easier to modify in a short time compared to the conventional method of preparing specimens, curing them for a specified period, and repeating the strength test to check the uniaxial compressive strength. Since the strength of the soil can be predicted, the blending design can be facilitated. In addition, the modified soil obtained by the present invention can be used for various applications including earthworks materials for port / airport construction and backfill materials for marine environment regeneration applications, and has excellent practicality. It is.
Claims (5)
2以上の試験用浚渫土を用意して、各試験用浚渫土が保有する水の電気伝導度を測定すると共に、それぞれの試験用浚渫土に改質材を添加して得られる試験改質土の一軸圧縮強度を測定して、試験用浚渫土の電気伝導度と試験改質土の一軸圧縮強度との相関式を求めた上で、その相関式に基づいて、実製造で使用する浚渫土が保有する水の電気伝導度から、得られる改質土の一軸圧縮強度を予測することを特徴とする改質土の強度予測方法。 A method for predicting the strength of a modified soil obtained when a modified material containing a calcium compound is added to and mixed with dredged soil and cured to obtain a modified soil with improved strength,
Prepare two or more test clays, measure the electrical conductivity of the water held by each test clay, and add the modifier to each test clay. After measuring the uniaxial compressive strength of the soil, the correlation between the electrical conductivity of the test clay and the uniaxial compressive strength of the test modified soil was obtained, and based on the correlation, the clay used in actual production Predicting the uniaxial compressive strength of the modified soil obtained from the electrical conductivity of water held by the soil.
予め、浚渫作業域内の異なる場所から2以上の試験用浚渫土を採取し、各試験用浚渫土が保有する水の電気伝導度を測定すると共に、それぞれの試験用浚渫土に改質材を添加して得られる試験改質土の一軸圧縮強度を測定して、試験用浚渫土の電気伝導度と試験改質土の一軸圧縮強度との相関式を求めておき、実製造で使用する浚渫土を浚渫作業域内で採取し、該浚渫土が保有する水の電気伝導度を測定して、予め求めた相関式に基づいて、得られる改質土の一軸圧縮強度を予測した上で、実際に改質土を製造することを特徴とする改質土の製造方法。 A method for producing modified soil with improved strength by adding and mixing a modifier containing a calcium compound to dredged soil generated by dredging work.
Collect two or more test clays from different locations in the dredging area in advance, measure the electrical conductivity of the water held by each test clay, and add a modifier to each test clay. Measure the uniaxial compressive strength of the test modified soil, and obtain the correlation between the electrical conductivity of the test clay and the uniaxial compressive strength of the test modified soil. In the dredging work area, the electrical conductivity of the water held by the dredged soil is measured, and the uniaxial compressive strength of the modified soil obtained is predicted based on the correlation equation obtained in advance. A method for producing modified soil, comprising producing modified soil.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015084161A JP6464904B2 (en) | 2015-04-16 | 2015-04-16 | Method for predicting strength of modified soil and method for producing modified soil |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015084161A JP6464904B2 (en) | 2015-04-16 | 2015-04-16 | Method for predicting strength of modified soil and method for producing modified soil |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016204852A true JP2016204852A (en) | 2016-12-08 |
JP6464904B2 JP6464904B2 (en) | 2019-02-06 |
Family
ID=57489033
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015084161A Active JP6464904B2 (en) | 2015-04-16 | 2015-04-16 | Method for predicting strength of modified soil and method for producing modified soil |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6464904B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017166311A (en) * | 2016-03-09 | 2017-09-21 | 新日鐵住金株式会社 | Estimation method of allowable generation quantity of ettringite and determination method of allowable content of sulfur |
JP2018127794A (en) * | 2017-02-07 | 2018-08-16 | 株式会社大林組 | Ground improvement method using steel slag and ground construction method using steel slag |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012031618A (en) * | 2010-07-30 | 2012-02-16 | Jfe Steel Corp | Method for estimating strength of modified dredged material and method for modifying dredged material |
JP2013227724A (en) * | 2012-04-24 | 2013-11-07 | System Keisoku Kk | Strength management method for cement-based improvement body |
JP2014006183A (en) * | 2012-06-26 | 2014-01-16 | Penta Ocean Construction Co Ltd | Quality control method for admixture of dredged soil and steelmaking slag |
JP2014012930A (en) * | 2012-07-03 | 2014-01-23 | Nippon Steel & Sumitomo Metal | Estimation method of modified soil strength and manufacturing method of modified soil using the same |
-
2015
- 2015-04-16 JP JP2015084161A patent/JP6464904B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012031618A (en) * | 2010-07-30 | 2012-02-16 | Jfe Steel Corp | Method for estimating strength of modified dredged material and method for modifying dredged material |
JP2013227724A (en) * | 2012-04-24 | 2013-11-07 | System Keisoku Kk | Strength management method for cement-based improvement body |
JP2014006183A (en) * | 2012-06-26 | 2014-01-16 | Penta Ocean Construction Co Ltd | Quality control method for admixture of dredged soil and steelmaking slag |
JP2014012930A (en) * | 2012-07-03 | 2014-01-23 | Nippon Steel & Sumitomo Metal | Estimation method of modified soil strength and manufacturing method of modified soil using the same |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017166311A (en) * | 2016-03-09 | 2017-09-21 | 新日鐵住金株式会社 | Estimation method of allowable generation quantity of ettringite and determination method of allowable content of sulfur |
JP2018127794A (en) * | 2017-02-07 | 2018-08-16 | 株式会社大林組 | Ground improvement method using steel slag and ground construction method using steel slag |
Also Published As
Publication number | Publication date |
---|---|
JP6464904B2 (en) | 2019-02-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Kasap et al. | Physico-chemical and micro-structural behavior of cemented mine backfill: Effect of pH in dam tailings | |
JP5728845B2 (en) | Method for estimating strength of modified dredged soil and method for modifying dredged soil | |
CN102002366A (en) | Salinized soil curing agent prepared from industrial waste slag | |
JP6662046B2 (en) | Method for producing solidified body containing mud | |
JP2024045574A (en) | Manufacturing method of modified soil of high moisture content mud | |
JP2012031618A5 (en) | ||
JP5790597B2 (en) | Method for predicting strength of modified soil and method for producing modified soil using the same | |
EP2760806A1 (en) | Process design for solidifying sludge | |
JP6464904B2 (en) | Method for predicting strength of modified soil and method for producing modified soil | |
JP6142760B2 (en) | Strength prediction method for modified soil | |
Tran et al. | A state-of-the-art review on the utilization of new green binders in the production of controlled low-strength materials | |
KR100773991B1 (en) | Solidification method of dredged soils | |
JP6529821B2 (en) | Powder stabilization agent for ground stabilization, ground stabilization material, and ground stabilization method using the same | |
JP7133281B2 (en) | Dredged soil modification method | |
JP2018002509A (en) | Neutralization suppression of cement-based cured product and chloride ion permeation suppression method | |
JP6682920B2 (en) | Manufacturing method of artificial stone | |
Yan-kai et al. | Experimental study on strength degradation of steel slag+ cement-solidified soil under seawater erosion | |
KR20060136325A (en) | Solidification method of dredged soils | |
JP7532560B2 (en) | Neutral solidification material and soil processing method | |
CN112500101A (en) | Anti-cracking drilling fluid rock debris curing agent and using method thereof | |
JP6409581B2 (en) | Strength prediction method for modified soil | |
KR20100060928A (en) | A manufacturing method of flowing soil including coal dust | |
JP5627283B2 (en) | Treatment method of seabed sediment | |
JP2015231937A (en) | Method for manufacturing civil engineering material for land applications | |
JP2012148227A (en) | Ground material composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20171206 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20180813 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20180821 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20181016 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20181211 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20181224 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6464904 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |