JP2016204322A - Optically active peroxide adduct and manufacturing method thereof - Google Patents

Optically active peroxide adduct and manufacturing method thereof Download PDF

Info

Publication number
JP2016204322A
JP2016204322A JP2015089893A JP2015089893A JP2016204322A JP 2016204322 A JP2016204322 A JP 2016204322A JP 2015089893 A JP2015089893 A JP 2015089893A JP 2015089893 A JP2015089893 A JP 2015089893A JP 2016204322 A JP2016204322 A JP 2016204322A
Authority
JP
Japan
Prior art keywords
group
peroxide adduct
peroxide
following formula
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015089893A
Other languages
Japanese (ja)
Inventor
孝義 荒井
Takayoshi Arai
孝義 荒井
賢人 土屋
Kento Tsuchiya
賢人 土屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiba University NUC
Original Assignee
Chiba University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiba University NUC filed Critical Chiba University NUC
Priority to JP2015089893A priority Critical patent/JP2016204322A/en
Publication of JP2016204322A publication Critical patent/JP2016204322A/en
Pending legal-status Critical Current

Links

Landscapes

  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Indole Compounds (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To establish a technique synthesizing widespread peroxide adduct with high optical purity.SOLUTION: Peroxide adduct is shown in a following formula (2), where Ris electroattracting groups such as hydrogen, electron donating substituent such as alkyl or alkoxy, halogens, nitro or ester, Ris a methyl group, an allyl group or a benzyl group, Ris a tert-butyl group or CHC(CH)group, and a quinoline skeleton that a benzene ring and nitrogen of indole are annulated can be included.SELECTED DRAWING: None

Description

本発明は、光学活性なペルオキシド付加体およびその製造方法に関する。   The present invention relates to an optically active peroxide adduct and a method for producing the same.

αアミノペルオキシド化合物は、天然物等にみられる重要な化合物である。イミンに対するペルオキシド付加反応は、αアミノペルオキシド骨格を直接的に合成することが出来る重要な反応であり、特に、触媒的不斉反応への展開が注目されている。   The α-amino peroxide compound is an important compound found in natural products. The peroxide addition reaction to imine is an important reaction capable of directly synthesizing the α-amino peroxide skeleton, and in particular, its development into a catalytic asymmetric reaction has attracted attention.

近年になって、Antilla(非特許文献1)によってイミンに対する触媒的ペルオキシド不斉付加反応が達成されている。また、非特許文献2には、イサチン由来のイミンに対するアルコールの触媒的不斉反応が報告されている。   In recent years, catalytic peroxide asymmetric addition reaction to imine has been achieved by Antilla (Non-Patent Document 1). Non-Patent Document 2 reports a catalytic asymmetric reaction of an alcohol with an imine derived from isatin.

Zheng W.; Wojtas L.; Antilla J.C., Angew. Chem. Int. Ed.,2010, 49, 6589.Zheng W. Wojtas L .; Antilla J .; C. , Angew. Chem. Int. Ed. , 2010, 49, 6589. Li T.−Z.; Wang X.−B.; Sha F.; Wu X.−Y. Tetrahedron 2013, 69, 7314.Li T. -Z. Wang X .; -B. Sha F .; Wu X. -Y. Tetrahedron 2013, 69, 7314.

しかしながら、上記文献においては反応に用いられる基質はアルデヒド由来のイミン(アルジミン)に限定しており、四級不斉炭素を構築できる点からケトン由来のイミン(ケチミン)を用いたペルオキシド類の不斉付加反応達成されていなかった。   However, in the above document, the substrate used for the reaction is limited to the aldehyde-derived imine (aldimine), and from the point that quaternary asymmetric carbon can be constructed, the asymmetry of peroxides using ketone-derived imine (ketimine). The addition reaction was not achieved.

そこで、本発明は、上記課題を鑑み、金属触媒を用いたペルオキシド付加反応およびそれにより得られる光学活性なペルオキシド付加体合成を提供することを目的とする。   In view of the above problems, an object of the present invention is to provide a peroxide addition reaction using a metal catalyst and synthesis of an optically active peroxide adduct obtained thereby.

本発明者らは、上記課題について鋭意検討を行ったところ、金属にビスイミダゾリジンピリジン(PyBidine)配位子を配位させた触媒の存在下で、イサチン由来のケチミンとアルコール由来のペルオキシドを反応させることで、エナンチオ選択的にペルオキシド付加体を得ることが出来る点を発見し、本発明を完成させるに至った。   As a result of diligent investigations on the above-mentioned problems, the present inventors reacted an isatin-derived ketimine with an alcohol-derived peroxide in the presence of a catalyst in which a metal is coordinated with a bisimidazolidinepyridine (PyBidine) ligand. As a result, it was discovered that a peroxide adduct can be obtained enantioselectively and the present invention has been completed.

即ち、本発明の一手段に係るエナンチオ選択的にペルオキシド付加体を製造する方法は、下記式(1)で示される配位子と金属又は金属塩からなる触媒の存在下で、イサチン由来のケチミンとアルコール由来のペルオキシドを反応させる。
That is, the enantioselective method for producing a peroxide adduct according to one means of the present invention is a ketimine derived from isatin in the presence of a catalyst comprising a ligand represented by the following formula (1) and a metal or a metal salt. And a peroxide derived from alcohol.

なお、限定されるわけではないが上記式(1)で示される配位子及び触媒は、例えば特開2011−111426号公報、“Arai T.; Mishiro A.; Yokoyama N.; Suzuki K.; Sato H., J. Am. Chem. Soc. 2010, 132, 5338.”に記載された方法を用いて得ることが出来る。   Although not limited, the ligand and the catalyst represented by the above formula (1) are disclosed in, for example, JP 2011-111426 A, “Arai T .; Mishiro A .; Yokoyama N .; Suzuki K .; Sato H., J. Am. Chem. Soc. 2010, 132, 5338. ".

なおこの結果、下記式(2)で示されるペルオキシド付加体をエナンチオ選択的に得ることが出来る。
As a result, a peroxide adduct represented by the following formula (2) can be enantioselectively obtained.

ここでRは、水素、アルキルもしくはアルコキシなどの電子供与基、ハロゲン、ニトロ、エステルなどの電子求引基である。Rは、メチル基、アリル基、又はベンジル基である。Rはtert−ブチル基、又はCC(CH基である。また、インドールのベンゼン環と窒素とが渡環したキノリン骨格を有するものであっても良い。 Here, R 1 is an electron donating group such as hydrogen, alkyl or alkoxy, or an electron withdrawing group such as halogen, nitro or ester. R 2 is a methyl group, an allyl group, or a benzyl group. R 3 is a tert-butyl group or a C 6 H 5 C (CH 3 ) 2 group. Further, it may have a quinoline skeleton in which a benzene ring of nitrogen and nitrogen are crossed.

以上、本発明により、金属触媒を用いたペルオキシドの不斉付加反応およびそれにより得られる光学活性なペルオキシド付加体合成を提供することが可能となる。また、本発明によると非常に高い収率を得ることもできる。   As described above, according to the present invention, it is possible to provide an asymmetric addition reaction of a peroxide using a metal catalyst and synthesis of an optically active peroxide adduct obtained thereby. Also, according to the present invention, a very high yield can be obtained.

以下、本発明の実施形態について詳細に説明する。ただし、本発明は多くの異なる様態で実施することが可能であり、以下に示す実施形態、実施例の記載にのみ限定されるものではない。   Hereinafter, embodiments of the present invention will be described in detail. However, the present invention can be implemented in many different modes, and is not limited only to the description of the embodiments and examples shown below.

(実施形態1)
本実施形態に係る光学活性なペルオキシド付加体の製造方法は、下記化学式(1)で示される配位子を金属塩に配位させて得られる触媒の存在下で、イサチン由来のケチミンとアルコール由来のペルオキシドを反応させる。
(Embodiment 1)
The method for producing an optically active peroxide adduct according to the present embodiment is derived from an isatin-derived ketimine and an alcohol in the presence of a catalyst obtained by coordinating a ligand represented by the following chemical formula (1) to a metal salt. The peroxide is reacted.

配位子を配位させる金属としては、配位させることができる限りにおいてこれに限定されるわけではないが、例えばニッケル、銅、コバルト又は鉄を例示することができる。また配位子を金属に配位させる方法としては、周知の方法を採用することができ、限定されるわけではないが、金属塩と配位子を混合することで配位させることができる。金属塩としては、限定されるわけではないが、金属がニッケルである場合、NiCl、Ni(OAc)、Ni(OTf)、Ni(ClO等を用いることができる。 The metal for coordinating the ligand is not limited to this as long as it can be coordinated, and examples thereof include nickel, copper, cobalt, and iron. Moreover, as a method of coordinating a ligand to a metal, a well-known method can be adopted, and although not limited, it can be coordinated by mixing a metal salt and a ligand. The metal salts include, but are not limited to, when the metal is nickel, can be used NiCl 2, Ni (OAc) 2 , Ni (OTf) 2, Ni (ClO 4) 2 and the like.

また本実施形態に係る触媒は、イサチン由来のケチミンを用いたペルオキシドの不斉付加反応を行うために用いることができる。具体的には、本実施形態に係る触媒の存在下で、下記式(3)で示される反応のように、イサチン由来のケチミンとアルコール由来のペルオキシドを反応させて光学活性なペルオキシド付加体を合成することができる。
In addition, the catalyst according to the present embodiment can be used for performing an asymmetric addition reaction of peroxide using an isatin-derived ketimine. Specifically, an optically active peroxide adduct is synthesized by reacting an isatin-derived ketimine with an alcohol-derived peroxide in the presence of the catalyst according to the present embodiment, as shown in the reaction represented by the following formula (3). can do.

ここでRは、水素、アルキル、アルコキシなどの電子供与基、又は、ハロゲン、ニトロ、エステルなどの電子求引基である。Rは、メチル基、アリル基、ベンジル基である。Rはtert−ブチル基、CC(CH基である。また、インドールのベンゼン環と窒素とが渡環したキノリン骨格を有するものであっても良い。 Here, R 1 is an electron donating group such as hydrogen, alkyl, or alkoxy, or an electron withdrawing group such as halogen, nitro, or ester. R 2 is a methyl group, an allyl group, or a benzyl group. R 3 is a tert-butyl group or a C 6 H 5 C (CH 3 ) 2 group. Further, it may have a quinoline skeleton in which a benzene ring of nitrogen and nitrogen are crossed.

この結果、本実施形態に係る方法によると、下記式(2)で示す光学活性なペルオキシド付加体を得ることが出来る。
As a result, according to the method according to the present embodiment, an optically active peroxide adduct represented by the following formula (2) can be obtained.

ここでRは、水素、アルキル、アルコキシなどの電子供与基、又は、ハロゲン、ニトロ、エステルなどの電子求引基である。Rは、メチル基、アリル基、又はベンジル基である。Rはtert−ブチル基、又はCC(CH基である。また、インドールのベンゼン環と窒素とが渡環したキノリン骨格を有するものであっても良い。 Here, R 1 is an electron donating group such as hydrogen, alkyl, or alkoxy, or an electron withdrawing group such as halogen, nitro, or ester. R 2 is a methyl group, an allyl group, or a benzyl group. R 3 is a tert-butyl group or a C 6 H 5 C (CH 3 ) 2 group. Further, it may have a quinoline skeleton in which a benzene ring of nitrogen and nitrogen are crossed.

(触媒の製造)
本実施形態に係る配位子及び触媒は、限定されるわけではないが、特開2011−111426号公報、“Arai T.; Mishiro A.; Yokoyama N.; Suzuki K.; Sato H., J. Am. Chem. Soc. 2010, 132, 5338.”に記載された方法を用いて得ることができる。
(Manufacture of catalyst)
The ligand and the catalyst according to the present embodiment are not limited, but are described in JP 2011-111426 A, “Arai T .; Mishiro A .; Yokoyama N .; Suzuki K .; Sato H., J. Am. Chem. Soc. 2010, 132, 5338. ".

以上、本実施形態により、ペルオキシド付加反応において広範な基質にて光学活性なペルオキシド付加体を提供することが出来る。   As described above, according to this embodiment, it is possible to provide an optically active peroxide adduct with a wide range of substrates in the peroxide addition reaction.

以下、上記実施形態の触媒について実際に作成し、その効果について確認を行った。以下説明する。   Hereinafter, the catalyst of the above embodiment was actually prepared, and the effect was confirmed. This will be described below.

(実施例1)
本実施例では、下記式(1)で示される配位子を15.4mg用い、これに塩化メチレン中で塩化ニッケル(II)2.6mgを配位させることで触媒としてペルオキシドの不斉付加反応を行った。
Example 1
In this example, 15.4 mg of the ligand represented by the following formula (1) was used, and 2.6 mg of nickel (II) chloride was coordinated in methylene chloride to form an asymmetric addition reaction of peroxide as a catalyst. Went.

本実施例では、下記式(4−1)で示されるtert−butyl−(1−methyl−2−oxoindolin−3−ylidene)carbamate52.1mgと、下記(5−1)で示される(2−hydroperoxypropan−2−yl)benzene304.4mgとを上記触媒の存在下、10℃、4時間にて行った。この結果、下記に示すペルオキシド付加体(2−1)を81.7mg得ることができ、収率は99%(94%ee)であった。
In this example, tert-butyl- (1-methyl-2-oxindolin-3-ylidene) carbamate 52.1 mg represented by the following formula (4-1) and (2-hydroxypropanpropan represented by the following (5-1) 2-yl) benzone (304.4 mg) was carried out in the presence of the above catalyst at 10 ° C. for 4 hours. As a result, 81.7 mg of the peroxide adduct (2-1) shown below was obtained, and the yield was 99% (94% ee).

(2−1)の機器データ:
H NMR(400MHz,CDCl): δ 1.32(s,9H), 1.52(d,J=2.0Hz,6H), 3.19(s,3H), 5.78(br,1H), 6.80(d,J=7.7Hz,1H), 7.07(ddd,J=0.91,7.7Hz,1H), 7.21−7.37(m,6H), 7.72(d,J=5.9Hz,1H);
13C NMR(100MHz,CDCl): δ 26.31, 26.38, 28.00, 31.70, 80.51, 83.99, 87.37, 108.16, 122.58, 124.30, 125.41, 127.16, 128.01, 130.63, 143.80, 144.42, 153.02, 170.18;
HRMS(ESI+) calcd for C2327(M−H) 411.1940: found 411.1925;
enantiomeric excess was determined by HPLC with a Chiralpak AD−H column(hexane:2−propanol=98:2, 0.9ml/min, 254nm);
minor enantiomer Rt=28.7min, major enantiomer Rt=48.9min;
[α] 25=−12.3(c=1.0,CHCl,94%ee).
Device data of (2-1):
1 H NMR (400 MHz, CDCl 3 ): δ 1.32 (s, 9H), 1.52 (d, J = 2.0 Hz, 6H), 3.19 (s, 3H), 5.78 (br, 1H), 6.80 (d, J = 7.7 Hz, 1H), 7.07 (ddd, J = 0.91, 7.7 Hz, 1H), 7.21-7.37 (m, 6H), 7.72 (d, J = 5.9 Hz, 1H);
13 C NMR (100 MHz, CDCl 3 ): δ 26.31, 26.38, 28.00, 31.70, 80.51, 83.99, 87.37, 108.16, 122.58, 124.30 , 125.41, 127.16, 128.01, 130.63, 143.80, 144.42, 153.02, 170.18;
HRMS (ESI +) calcd for C 23 H 27 O 5 N 2 (M-H) - 411.1940: found 411.1925;
enantiomerically excess was determined by HPLC with a chiralpak AD-H column (hexane: 2-propanol = 98: 2, 0.9 ml / min, 254 nm);
minor enantiomer Rt = 28.7 min, major enantiomer Rt = 48.9 min;
[α] D 25 = -12.3 ( c = 1.0, CHCl 3, ee 94%).

(実施例2)
本実施例は、下記式(4−2)に記載の化合物を用いた以外は上記実施例1と同一の条件で行った。この結果、下記化合物(2−2)を84.4mg得ることが出来た。また、(2−2)の収率は99%(94%ee)であった。
(Example 2)
This example was performed under the same conditions as in Example 1 except that the compound described in the following formula (4-2) was used. As a result, 84.4 mg of the following compound (2-2) could be obtained. The yield of (2-2) was 99% (94% ee).

(2−2)の機器データ:
H NMR(400MHz,CDCl): δ 1.33(s,9H), 1.52(d,J=4.5Hz,6H), 2.33(s,3H), 3.17(s,3H), 5.78(br,1H), 6.68(d,J=7.9Hz,1H), 7.14(d,J=8.1Hz,1H), 7.26−7.52(m,6H);
13C NMR(100MHz,CDCl): δ 21.20, 26.45, 26.49, 26.59, 28.19, 77.33, 80.61, 84.07, 87.69, 108.02, 125.60, 127.31, 128.15, 131.02, 132.29, 141.58, 144.65, 153.26, 170.25;
HRMS (ESI+) calcd for C2429(M−H) 425.2082: found 425.2097;
enantiomeric excess was determined by HPLC with a Chiralpak AD-H column (hexane:2−propanol=98:2,0.9ml/min,254nm);
minor enantiomer Rt=20.2min, major enantiomer Rt=43.5min;
[α] 20=−10.3(c=1.0,CHCl,94%ee)
Device data of (2-2):
1 H NMR (400 MHz, CDCl 3 ): δ 1.33 (s, 9H), 1.52 (d, J = 4.5 Hz, 6H), 2.33 (s, 3H), 3.17 (s, 3H), 5.78 (br, 1H), 6.68 (d, J = 7.9 Hz, 1H), 7.14 (d, J = 8.1 Hz, 1H), 7.26-7.52 ( m, 6H);
13 C NMR (100 MHz, CDCl 3 ): δ 21.20, 26.45, 26.49, 26.59, 28.19, 77.33, 80.61, 84.07, 87.69, 108.02 , 125.60, 127.31, 128.15, 131.02, 132.29, 141.58, 144.65, 153.26, 170.25;
HRMS (ESI +) calcd for C 24 H 29 O 5 N 2 (M-H) - 425.2082: found 425.2097;
enantiomerically excess was determined by HPLC with a chiralpak AD-H column (hexane: 2-propanol = 98: 2,0.9 ml / min, 254 nm);
minor enantiomer Rt = 20.2 min, major enantiomer Rt = 43.5 min;
[α] D 20 = −10.3 (c = 1.0, CHCl 3 , 94% ee)

(実施例3)
本実施例は、下記式(4−3)の化合物を用いた以外は上記実施例1と同一条件で行った。この結果、下記化合物(2−3)を86.8mg得ることが出来た。また、(2−3)の収率は99%(90%ee)であった。
Example 3
This example was performed under the same conditions as in Example 1 except that the compound of the following formula (4-3) was used. As a result, 86.8 mg of the following compound (2-3) could be obtained. The yield of (2-3) was 99% (90% ee).

(2−3)の機器データ:
H NMR(400MHz,CDCl): δ 1.36(s,9H), 1.53(d,J=4.1Hz,6H), 1.98(m,2H), 2.75(t,2H), 3.69(m,2H), 5.80(br,1H), 6.96(t,J=7.7Hz,1H), 7.09(d,J=7.7Hz, 1H), 7.22−7.52(m,6H), 7.62(d,J=5.2Hz,1H);
HRMS (ESI+) calcd for C2531 (M+H) 439.2227: found 439.2217;
enantiomeric excess was determined by HPLC with a Chiralpak AD-H column (hexane:2−propanol=80:20,1.0ml/min,254nm);
minor enantiomer Rt=5.43min, major enantiomer Rt=9.47min;
[α] 25=−2.1(c=1.0,CHCl,90%ee).
Device data of (2-3):
1 H NMR (400 MHz, CDCl 3 ): δ 1.36 (s, 9H), 1.53 (d, J = 4.1 Hz, 6H), 1.98 (m, 2H), 2.75 (t, 2H), 3.69 (m, 2H), 5.80 (br, 1H), 6.96 (t, J = 7.7 Hz, 1H), 7.09 (d, J = 7.7 Hz, 1H) 7.2-2.52 (m, 6H), 7.62 (d, J = 5.2 Hz, 1H);
HRMS (ESI +) calcd for C 25 H 31 O 5 N 2 (M + H) + 439.2227: found 439.2217;
enantiomerically excess was determined by HPLC with a chiralpak AD-H column (hexane: 2-propanol = 80: 20, 1.0 ml / min, 254 nm);
minor enantiomer Rt = 5.43 min, major enantiomer Rt = 9.47 min;
[α] D 25 = −2.1 (c = 1.0, CHCl 3 , 90% ee).

以上本実施例により、本発明に係る触媒の有用性を確認することができ、広範な基質において光学活性なペルオキシド付加体を提供することが出来ることを確認した。   As described above, the usefulness of the catalyst according to the present invention can be confirmed by this example, and it has been confirmed that an optically active peroxide adduct can be provided over a wide range of substrates.

本発明は、ペルオキシド付加体を非常に高い光学純度で供給できることから、医薬・農薬の開発と生産に有用であり、産業上の利用可能性がある。

INDUSTRIAL APPLICATION Since this invention can supply a peroxide adduct with very high optical purity, it is useful for development and production of a pharmaceutical and an agrochemical, and has industrial applicability.

Claims (2)

下記式(1)で示される配位子を金属又は金属塩に配位させてなる触媒を用いて下記式(2)で示されるペルオキシド付加体をエナンチオ選択的に合成する方法。
ここでRは、水素、電子供与基、又は電子求引基である。Rは、メチル基、アリル基、又はベンジル基である。Rはtert−ブチル基、又はCC(CH基である。また、インドールのベンゼン環と窒素が渡環したキノリン骨格を有するものであっても良い。
A method of enantioselectively synthesizing a peroxide adduct represented by the following formula (2) using a catalyst obtained by coordinating a ligand represented by the following formula (1) to a metal or a metal salt.
Here, R 1 is hydrogen, an electron donating group, or an electron withdrawing group. R 2 is a methyl group, an allyl group, or a benzyl group. R 3 is a tert-butyl group or a C 6 H 5 C (CH 3 ) 2 group. Further, it may have a quinoline skeleton in which a benzene ring and nitrogen of indole are transferred.
下記式(2)で示されるペルオキシド付加体。
ここでRは、水素、電子供与基、又は電子求引基である。Rは、メチル基、アリル基、又はベンジル基である。Rはtert−ブチル基、又はCC(CH基である。また、インドールのベンゼン環と窒素とが渡環したキノリン骨格を有するものであっても良い。
A peroxide adduct represented by the following formula (2).
Here, R 1 is hydrogen, an electron donating group, or an electron withdrawing group. R 2 is a methyl group, an allyl group, or a benzyl group. R 3 is a tert-butyl group or a C 6 H 5 C (CH 3 ) 2 group. Further, it may have a quinoline skeleton in which a benzene ring of nitrogen and nitrogen are crossed.
JP2015089893A 2015-04-25 2015-04-25 Optically active peroxide adduct and manufacturing method thereof Pending JP2016204322A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015089893A JP2016204322A (en) 2015-04-25 2015-04-25 Optically active peroxide adduct and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015089893A JP2016204322A (en) 2015-04-25 2015-04-25 Optically active peroxide adduct and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2016204322A true JP2016204322A (en) 2016-12-08

Family

ID=57488828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015089893A Pending JP2016204322A (en) 2015-04-25 2015-04-25 Optically active peroxide adduct and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2016204322A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112645871A (en) * 2020-12-31 2021-04-13 天津大学 N-CF2H-1, 2-dihydroSynthesis method of pyridine-2-ketone compound

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112645871A (en) * 2020-12-31 2021-04-13 天津大学 N-CF2H-1, 2-dihydroSynthesis method of pyridine-2-ketone compound
CN112645871B (en) * 2020-12-31 2022-09-16 天津大学 N-CF 2 H-1, 2-dihydroSynthesis method of pyridine-2-ketone compound

Similar Documents

Publication Publication Date Title
Dagousset et al. Photoredox-induced three-component azido-and aminotrifluoromethylation of alkenes
Chew et al. Our odyssey with functionalized chiral phosphines: from optical resolution to asymmetric synthesis to catalysis
Li et al. Silver-Catalyzed Decarboxylative Alkylfluorination of Alkenes
Xu et al. Trifluoromethylations of Alkenes Using PhICF3Cl as Bifunctional Reagent
Raja et al. Co (II) and 2-amino-perimidinium based new generation hybrid material promoted facile dimerization of aroyl chloride: A route to α-diketone
Zhang et al. Enantioselective addition of diethylzinc to N-diphenylphosphinoylimines employing N, N-dialkyl-1, 2-diphenyl-2-aminoethanols as chiral ligands
JP2016204322A (en) Optically active peroxide adduct and manufacturing method thereof
CN105001159B (en) A kind of method of the outer amine of chiral phosphoric acid catalysis quinoline 3 amine asymmetric transfer hydrogenation synthesis of chiral ring
JP6548214B2 (en) Catalyst having an aminosalicylaldimine ligand coordinated to metal and method for producing iodocyclic compound using the same
JP6476497B2 (en) Process for producing optically active compound, and novel metal-diamine complex
Imada et al. Sequential asymmetric homoallenylation of primary amines with a palladium catalyst
Réthoré et al. Tetrathiafulvalene–oxazoline ligands in the iridium catalyzed enantioselective hydrogenation of arylimines
Liu et al. Asymmetric Transfer Hydrogenation of Aromatic Ketones Catalyzed by New Chiral C2-Symmetric Bis (sulfonyl) tetraaza Ligands Complexed with [Ru (η 6-p-cymene) Cl 2] 2 in Water
Ueda et al. A new class of C2 chiral photodimer ligands for catalytic enantioselective diethylzinc addition to arylaldehydes
Liu et al. The synthesis of chiral N-tosylatedaminoimine ligands and their application in enantioselective addition of phenylacetylene to imines
JP2013142071A (en) Pyrrolidinyl-spirooxindole derivative and method for producing the same
Almansa et al. N-Benzyl-l-prolinol: an efficient catalyst for the enantioselective addition of dialkylzinc reagents to N-(diphenylphosphinoyl) imines
JP5569938B2 (en) Pyrrolidine derivative and method for producing the same
CN106831508A (en) A kind of method for being catalyzed asymmetric oxidation thioether
JP2013142080A (en) Indole derivative and method for producing the same
EP2065371A1 (en) Chiral organic catalysts for the stereoselective reduction of carbon-nitrogen double bonds for the preparation of enantiomerically enriched amines
JP2017206485A (en) Optically active 1,3-diamine derivative and method for producing the same
JP2005255660A (en) Polyfunctional group-containing lactams and method for producing the same
JP2018135292A (en) Method for producing optically active alcohol and asymmetric catalyst
JP2008222600A (en) Method for producing optically active 1,2-aminoalcohol compound and optically active catalyst

Legal Events

Date Code Title Description
RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20170913