JP2016202506A - Eye refractivity measurement device - Google Patents

Eye refractivity measurement device Download PDF

Info

Publication number
JP2016202506A
JP2016202506A JP2015087049A JP2015087049A JP2016202506A JP 2016202506 A JP2016202506 A JP 2016202506A JP 2015087049 A JP2015087049 A JP 2015087049A JP 2015087049 A JP2015087049 A JP 2015087049A JP 2016202506 A JP2016202506 A JP 2016202506A
Authority
JP
Japan
Prior art keywords
eye
optical system
light
pupil
refractive power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015087049A
Other languages
Japanese (ja)
Other versions
JP6586599B2 (en
Inventor
光春 辺
Mitsuharu Hen
光春 辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tomey Corp
Original Assignee
Tomey Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tomey Corp filed Critical Tomey Corp
Priority to JP2015087049A priority Critical patent/JP6586599B2/en
Publication of JP2016202506A publication Critical patent/JP2016202506A/en
Application granted granted Critical
Publication of JP6586599B2 publication Critical patent/JP6586599B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Eye Examination Apparatus (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an eye refractivity measurement device capable of measuring eye refractivity accurately regardless of a diopter of a subject eye.SOLUTION: The eye refractivity measurement device includes: a light projecting optical system 3 projecting a measurement light flux in a spot shape to an eyeground from a position separated from a pupil center of a subject eye E by a predetermined distance; a light receiving optical system 5 extracting reflection light from the eyeground by a light block part 52 arranged at a conjugate position with a pupil of the subject eye E and including an opening in a shape of a ring or plural spots and making the reflection light incident on a two-dimensional imaging element 54; calculation means acquiring eye refractivity of the subject eye E based on output of the two-dimensional imaging element 54; and a deflection member 48 for deflecting the measurement light flux to a position separated from the pupil center of the subject eye E by a predetermined distance. The deflection member 48 is arranged at a conjugate position with the pupil of the subject eye E in a shared light path of the light projecting optical system 3 and the light receiving optical system 5. Rotation means is arranged, the rotation means rotating the deflection member 48 with an optical axis of the light projecting optical system 3 and light receiving optical system 5 as a center.SELECTED DRAWING: Figure 1

Description

本発明は、被検眼の屈折力を他覚的に測定することのできる眼屈折力測定装置に関するものである。 The present invention relates to an eye refractive power measuring apparatus that can objectively measure the refractive power of an eye to be examined.

従来から干渉性の高い光源(例えば、レーザーダイオード(LD)、スーパールミネッセントダイオード(SLD)等)を用いて、被検眼の瞳孔中心部から眼底にスポット光束を投影し、眼底からの反射光を瞳孔周辺部から取り出して受光素子により受光し、眼屈折力を測定する眼屈折力測定装置が知られている。 Conventionally, using a light source with high coherence (for example, a laser diode (LD), a super luminescent diode (SLD), etc.), a spot light beam is projected from the center of the pupil of the eye to be examined and reflected from the fundus. An eye refractive power measuring device is known that takes out the eye from the periphery of the pupil and receives light with a light receiving element to measure the eye refractive power.

特許文献1には、小瞳孔の被検眼への対応として、測定光学系の光路の瞳孔と共役位置から外れた位置にプリズムを配置し、測定光軸回りに回転させる手段をさらに備えた眼屈折力測定装置が開示されている。 In Patent Document 1, as the correspondence of the small pupil to the eye to be examined, an eye refraction is further provided with means for disposing a prism at a position deviating from the conjugate position with the pupil of the optical path of the measurement optical system and rotating it around the measurement optical axis. A force measuring device is disclosed.

特許第4492847号公報Japanese Patent No. 4492847

しかしながら、特許文献1に記載の眼屈折力測定装置においては、瞳孔と共役位置から外れた位置にプリズムを配置するため、被検眼の屈折度数(ディオプター)に応じて瞳上での光束の入射位置や水晶体での光束の大きさが変化してしまうことがわかった。そのため、白内障等により水晶体に混濁がある場合に、被検眼の屈折度数によっては散乱の影響を受けやすくなり、測定精度が悪くなることが懸念される。 However, in the eye refractive power measuring device described in Patent Document 1, since the prism is arranged at a position deviated from the conjugate position with the pupil, the incident position of the light beam on the pupil according to the refractive power (diopter) of the eye to be examined. It was found that the size of the light flux in the lens and the lens changed. Therefore, when the lens is turbid due to a cataract or the like, depending on the refractive power of the eye to be examined, it is likely to be affected by scattering, and there is a concern that the measurement accuracy may deteriorate.

さらに、屈折力の測定は、眼底での被検眼の視軸上に光束を投影して行うことが望ましいと考えられるが、特許文献1に記載の眼屈折力測定装置においては、特に負のディオプターが強い眼(強度近視眼)の場合、眼底での光束の輝点位置が視軸に対してずれが大きく、周辺収差の影響を受けて、測定精度が悪くなることが懸念される。 Furthermore, it is considered desirable to measure the refractive power by projecting a light beam on the visual axis of the eye to be examined on the fundus. However, in the eye refractive power measuring device described in Patent Document 1, a negative diopter is particularly used. In the case of a strong eye (high myopic eye), the bright spot position of the luminous flux on the fundus is largely displaced from the visual axis, and there is a concern that the measurement accuracy deteriorates due to the influence of peripheral aberration.

本発明は、上記の課題を解決するためになされたものであって、被検眼の屈折度数によらず、精度よく眼屈折力を測定することができる眼屈折力測定装置を提供する。 The present invention has been made to solve the above-described problems, and provides an eye refractive power measuring apparatus that can accurately measure the eye refractive power regardless of the refractive power of the eye to be examined.

以下、前述の如き課題を解決するために為された本発明の態様を記載する。なお、以下に記載の各態様において採用される構成要素は、可能な限り任意の組合せで採用可能である。 Hereinafter, embodiments of the present invention made to solve the above-described problems will be described. In addition, the component employ | adopted in each aspect as described below is employable by arbitrary combinations as much as possible.

本発明の第1の態様は、被検眼の瞳孔中心から所定距離離れた位置から眼底にスポット状の測定光束を投光する投光光学系と、該被検眼の瞳孔と共役位置に配置されたリング状又は複数の点状の開口を持つ遮光部により該眼底からの反射光を取り出し二次元撮像素子に受光させる受光光学系と、前記二次元撮像素子の出力に基づいて該被検眼の眼屈折力を得る演算手段と、を有しており、該被検眼の瞳孔中心から所定距離離れた位置に前記測定光束を偏向させるための偏向部材を有し、前記偏向部材は、前記投光光学系と前記受光光学系の共用光路の該被検眼の瞳孔と共役位置に配置され、前記偏向部材を前記投光光学系及び前記受光光学系の光軸中心に回転させる回転手段を有する。 According to a first aspect of the present invention, a light projecting optical system that projects a spot-like measurement light beam to a fundus from a position that is a predetermined distance from the center of the pupil of the eye to be examined, and a conjugate position with the pupil of the eye to be examined. A light-receiving optical system that takes out reflected light from the fundus by a light-shielding part having a ring-shaped or a plurality of point-shaped openings and makes the two-dimensional image sensor receive the light, and eye refraction of the eye to be examined based on the output of the two-dimensional image sensor A deflection member for deflecting the measurement light beam at a position away from the center of the pupil of the eye to be examined, and the deflection member includes the light projecting optical system. And rotating means for rotating the deflecting member about the optical axis of the light projecting optical system and the light receiving optical system, which is disposed in a conjugate position with the pupil of the eye to be examined in the shared optical path of the light receiving optical system.

本態様に従う構造とされた眼屈折力測定装置においては、被検眼の屈折度数が異なる場合であっても、被検眼の瞳孔中心から所定距離離れた位置に略一定の大きさの光束が入射するため、白内障等による散乱の影響を低減することが可能となり、測定精度が向上する。また、被検眼の瞳孔中心から所定距離離れた位置で回転しながら測定光が入射するため、白内障等による混濁部位を避けて測定することが可能となり、測定率が向上する。さらに、被検眼の屈折度数によらず、眼底での光束輝点位置の視軸に対するズレを小さくすることにより、周辺収差等の影響を低減することが可能となり、測定精度が向上する。 In the ocular refractive power measuring apparatus structured according to this aspect, even when the refractive power of the eye to be examined is different, a light beam having a substantially constant size is incident at a position away from the center of the pupil of the eye to be examined. Therefore, it becomes possible to reduce the influence of scattering due to cataracts and the like, and the measurement accuracy is improved. In addition, since the measurement light is incident while rotating at a position away from the pupil center of the eye to be examined, it is possible to perform measurement while avoiding a turbid site due to cataracts, and the measurement rate is improved. Furthermore, by reducing the deviation of the luminous flux position on the fundus from the visual axis regardless of the refractive power of the eye to be examined, the influence of peripheral aberrations and the like can be reduced, and the measurement accuracy is improved.

本発明の第2の態様は、前記第1の態様に係る眼屈折力測定装置において、前記偏向部材は、平行平面板である。 According to a second aspect of the present invention, in the eye refractive power measurement apparatus according to the first aspect, the deflection member is a plane parallel plate.

本態様に従う構造とされた眼屈折力測定装置においては、平行平面板を用いることにより、被検眼の屈折度数によらず被検眼の瞳孔中心から所定距離離れた位置に略一定の大きさの光束を入射させることが可能となる。 In the eye refractive power measuring apparatus structured according to this aspect, by using a plane parallel plate, a light beam having a substantially constant size is located at a predetermined distance from the pupil center of the subject eye regardless of the refractive power of the subject eye. Can be made incident.

本発明の第3の態様は、前記第1又は2の態様に係る眼屈折力測定装置において、前記投光光学系に用いられる光源は、可干渉性のレーザーダイオード又はスーパールミネッセントダイオードである。 According to a third aspect of the present invention, in the eye refractive power measurement apparatus according to the first or second aspect, the light source used in the light projecting optical system is a coherent laser diode or superluminescent diode. .

本発明によれば、被検眼の屈折度数によらず、精度よく眼屈折力を測定することができる。 According to the present invention, the eye refractive power can be accurately measured regardless of the refractive power of the eye to be examined.

本実施例に係る眼屈折力測定装置の光学系の概略構成図である。It is a schematic block diagram of the optical system of the eye refractive power measuring apparatus which concerns on a present Example. 瞳上における測定光束を説明する図である。It is a figure explaining the measurement light beam on a pupil. 本実施例に係る眼屈折力測定装置の制御系のブロック図である。It is a block diagram of the control system of the eye refractive power measuring apparatus which concerns on a present Example.

先ず、図1に、本実施例の眼屈折力測定装置の装置光学系1を示す。装置光学系1は、被検眼Eの前眼部を観察する観察光学系(10,12,14,16,18,20)、被検眼Eを注視させる視標を提示する視標光学系(22,24,26,28,30,32,16,14)、装置光学系1を被検眼Eに対して上下左右前後方向(XYZ方向)で位置決めするためのXYZアライメント検出光学系(34,28,30,32,16,14,36,38)、眼の屈折力を測定するための眼屈折力測定光学系(40,42,44,46,48,32,16,14,50,52,54)を備えている。 First, FIG. 1 shows an apparatus optical system 1 of the eye refractive power measuring apparatus of the present embodiment. The apparatus optical system 1 includes an observation optical system (10, 12, 14, 16, 18, 20) for observing the anterior segment of the eye E, and a target optical system (22) that presents a target for gazing at the eye E. , 24, 26, 28, 30, 32, 16, 14), an XYZ alignment detection optical system (34, 28,...) For positioning the apparatus optical system 1 with respect to the eye E in the vertical, horizontal, and longitudinal directions (XYZ directions). 30, 32, 16, 14, 36, 38), an eye refractive power measuring optical system (40, 42, 44, 46, 48, 32, 16, 14, 50, 52, 54) for measuring the refractive power of the eye. ).

観察光学系は、例えば、波長780nmの赤外光を照射する照明光源10,12、レンズ14、ホットミラー16、レンズ18、観察用撮像素子20が設けられて構成されている。ここで、ホットミラー16は、例えば、波長400〜700nm(可視光領域)及び波長850nm以上の光束を反射し、波長850nm未満の光束を透過する特性となっている。すなわち、照明光源10,12の赤外光を透過し、後述するXYZアライメント光源34の光束の一部及び測定光源40の赤外光と、視標光源22の可視光を反射する特性となっている。照明光源10,12から発せられて被検眼Eの前眼部で反射された光束が、レンズ14を介してホットミラー16を透過し、レンズ18を介して観察用撮像素子20上に導かれる。 The observation optical system includes, for example, illumination light sources 10 and 12 that irradiate infrared light having a wavelength of 780 nm, a lens 14, a hot mirror 16, a lens 18, and an imaging device 20 for observation. Here, for example, the hot mirror 16 has a characteristic of reflecting a light beam having a wavelength of 400 to 700 nm (visible light region) and a wavelength of 850 nm or more and transmitting a light beam having a wavelength of less than 850 nm. That is, the infrared light from the illumination light sources 10 and 12 is transmitted, and a part of a light beam from an XYZ alignment light source 34 described later, the infrared light from the measurement light source 40, and the visible light from the target light source 22 are reflected. Yes. A light beam emitted from the illumination light sources 10 and 12 and reflected by the anterior eye portion of the eye E to be examined is transmitted through the hot mirror 16 through the lens 14 and guided onto the image sensor 20 for observation through the lens 18.

視標光学系は、例えば、波長400〜700nmの可視光を照射する視標光源22、第1駆動装置62(図3に図示)により光軸方向に移動可能な視標24、レンズ26、ハーフミラー28、反射ミラー30、ホットミラー32、ホットミラー16、レンズ14が設けられて構成されている。ここで、ハーフミラー28は、視標光源22及び後述するXYZアライメント光源34からの光の一部を透過すると共に残りを反射する。またホットミラー32は、例えば、波長850nm以上の光束を反射し、波長850nm未満の光束を透過する特性となっている。すなわち、視標光源22の可視光と後述するXYZアライメント光源34の光束の一部を透過し、後述する測定光源40の赤外光を反射する特性となっている。視標光源22から発せられた光束は、視標24を介して、レンズ26、ハーフミラー28を透過した後に、反射ミラー30で反射され、ホットミラー32を透過し、ホットミラー16で反射されて、レンズ14を介して被検眼Eに照射される。 The target optical system includes, for example, a target light source 22 that emits visible light having a wavelength of 400 to 700 nm, a target 24 that can be moved in the optical axis direction by a first driving device 62 (shown in FIG. 3), a lens 26, and a half. A mirror 28, a reflection mirror 30, a hot mirror 32, a hot mirror 16, and a lens 14 are provided. Here, the half mirror 28 transmits a part of light from the target light source 22 and an XYZ alignment light source 34 described later, and reflects the rest. The hot mirror 32 has a characteristic of reflecting a light beam having a wavelength of 850 nm or more and transmitting a light beam having a wavelength of less than 850 nm, for example. That is, the visible light from the target light source 22 and a part of the light beam from an XYZ alignment light source 34 described later are transmitted, and the infrared light from the measurement light source 40 described later is reflected. The luminous flux emitted from the target light source 22 passes through the lens 26 and the half mirror 28 via the target 24, is reflected by the reflection mirror 30, passes through the hot mirror 32, and is reflected by the hot mirror 16. The eye E is irradiated through the lens 14.

XYZアライメント検出光学系は、例えば、波長810nmの赤外光を照射するXYZアライメント光源34、ハーフミラー28、反射ミラー30、ホットミラー32、ホットミラー16、レンズ14、XYZアライメント検出センサ36,38(プロファイルセンサ)が設けられて構成されている。XYZアライメント光源34から発せられた光束は、ハーフミラー28により光束の一部が反射され、反射ミラー30で反射し、ホットミラー32を透過してホットミラー16で反射された後、レンズ14を介して被検眼Eに照射される。被検眼Eの角膜で反射された光束がプロファイルセンサ36,38に導かれるようになっている。 The XYZ alignment detection optical system includes, for example, an XYZ alignment light source 34 that irradiates infrared light having a wavelength of 810 nm, a half mirror 28, a reflection mirror 30, a hot mirror 32, a hot mirror 16, a lens 14, and XYZ alignment detection sensors 36 and 38 ( Profile sensor) is provided. A part of the light beam emitted from the XYZ alignment light source 34 is reflected by the half mirror 28, reflected by the reflection mirror 30, transmitted through the hot mirror 32, reflected by the hot mirror 16, and then passed through the lens 14. The eye E is irradiated. The light beam reflected by the cornea of the eye E is guided to the profile sensors 36 and 38.

眼屈折力測定光学系は、投光光学系3と受光光学系5とから構成されており、投光光学系3は、測定光源40、レンズ42、反射ミラー44、穴あきミラー46、平行平面板48、ホットミラー32、ホットミラー16、レンズ14が設けられて構成され、受光光学系5は、投光光学系3のレンズ14、ホットミラー16、ホットミラー32、平行平面板48、穴あきミラー46を共用し、レンズ50、リングレンズ52、第3駆動装置66(図3に図示)により光軸方向に移動可能な測定用撮像素子54が設けられて構成されている。本実施例に用いる測定光源40は、干渉性の高いスーパールミネッセントダイオード(SLD)であり、例えば、波長880nmの赤外光を発するSLDを使用する。 The eye refractive power measuring optical system includes a light projecting optical system 3 and a light receiving optical system 5. The light projecting optical system 3 includes a measuring light source 40, a lens 42, a reflecting mirror 44, a perforated mirror 46, a parallel flat surface. The face plate 48, the hot mirror 32, the hot mirror 16, and the lens 14 are provided. The light receiving optical system 5 includes the lens 14 of the light projecting optical system 3, the hot mirror 16, the hot mirror 32, the plane parallel plate 48, and a hole. The mirror 46 is shared, and a lens 50, a ring lens 52, and a measurement imaging device 54 that is movable in the optical axis direction by a third driving device 66 (shown in FIG. 3) are provided. The measurement light source 40 used in the present embodiment is a superluminescent diode (SLD) with high coherence, and for example, an SLD that emits infrared light having a wavelength of 880 nm is used.

ここで、投光光学系3に配置された平行平面板48について説明する。平行平面板48は、投光光学系3と受光光学系5との共用光路の被検眼Eの瞳孔と共役位置に配置されている。そして、本実施例においては、被検眼Eの瞳孔中心から所定距離hの位置に測定光束が入射するように平行平面板48を傾斜させる(図2参照)。これにより、被検眼Eの屈折度数が異なる場合であっても、被検眼Eの瞳孔中心から所定距離離れた位置に略一定の大きさの光束が入射するため、白内障等による散乱の影響を低減することが可能となる。また、被検眼Eの屈折度数によらず、眼底での光束輝点位置の視軸に対するズレを小さくできるため、周辺収差等の影響を低減することが可能となる。さらに、平行平面板48は、第2駆動装置64(図3に図示)により投光光学系3と受光光学系5との共用光路の光軸を中心として回転させる。これにより、瞳上での測定光束が回転されるため、白内障等による混濁部位を避けて測定することが可能となると共に、干渉性の高い光源を使用することにより発生するスペックルノイズを抑制することが可能となる。 Here, the plane parallel plate 48 disposed in the light projecting optical system 3 will be described. The plane parallel plate 48 is disposed at a conjugate position with the pupil of the eye E to be examined in the shared optical path of the light projecting optical system 3 and the light receiving optical system 5. In the present embodiment, the plane parallel plate 48 is tilted so that the measurement light beam is incident at a predetermined distance h from the center of the pupil of the eye E (see FIG. 2). As a result, even when the refractive power of the eye E to be examined is different, a light beam having a substantially constant size is incident at a predetermined distance from the center of the pupil of the eye E, thereby reducing the influence of scattering due to cataracts or the like. It becomes possible to do. Further, since the deviation of the luminous flux position on the fundus from the visual axis can be reduced regardless of the refractive power of the eye E, it is possible to reduce the influence of peripheral aberrations and the like. Further, the plane parallel plate 48 is rotated around the optical axis of the shared optical path of the light projecting optical system 3 and the light receiving optical system 5 by the second driving device 64 (shown in FIG. 3). As a result, the measurement light beam on the pupil is rotated, so that it is possible to perform measurement while avoiding a turbid site due to cataracts and the like, and speckle noise generated by using a highly coherent light source is suppressed. It becomes possible.

測定光源40から発せられた光束は、レンズ42を介して反射ミラー44で反射し、穴あきミラー46の中央部のあいた穴、平行平面板48を通り、ホットミラー32、ホットミラー32で反射し、レンズ14を介して被検眼Eの眼底に照射される。このとき、光軸周りに回転する平行平面板48により、瞳上での光束が回転する。被検Eの眼底で反射された光束が、レンズ14を介してホットミラー16、ホットミラー16で反射され、平行平面板48を通り、穴あきミラー46でリング状のミラーにあたり反射され、レンズ50、リングレンズ52を介して測定用撮像素子54に導かれるようになっている。 The light beam emitted from the measurement light source 40 is reflected by the reflection mirror 44 through the lens 42, passes through the hole in the center of the perforated mirror 46, the parallel plane plate 48, and is reflected by the hot mirror 32 and the hot mirror 32. The fundus of the eye E is irradiated through the lens 14. At this time, the light beam on the pupil is rotated by the plane parallel plate 48 rotating around the optical axis. The light beam reflected by the fundus of the subject E is reflected by the hot mirror 16 and the hot mirror 16 through the lens 14, passes through the plane parallel plate 48, is reflected by the perforated mirror 46 and is reflected by the ring mirror 46, and the lens 50. The light is guided to the measurement image sensor 54 via the ring lens 52.

次に、本実施例の眼屈折力測定装置の制御系の構成を説明する。図3に示すように、眼屈折力測定装置は、制御装置60によって制御される。制御装置60は、CPU,ROM,RAM等からなるマイクロコンピュータ(マイクロプロセッサ)によって構成されている。制御装置60には、第1〜第4駆動装置62〜68と、測定用撮像素子54と、観察用撮像素子20と、プロファイルセンサ36,38と、モニタ72と、メモリ74が接続されている。 Next, the configuration of the control system of the eye refractive power measurement apparatus of the present embodiment will be described. As shown in FIG. 3, the eye refractive power measurement device is controlled by a control device 60. The control device 60 is configured by a microcomputer (microprocessor) including a CPU, a ROM, a RAM, and the like. The control device 60 is connected with first to fourth driving devices 62 to 68, a measurement imaging device 54, an observation imaging device 20, profile sensors 36 and 38, a monitor 72, and a memory 74. .

制御装置60は、第1〜第3駆動装置62〜66を制御することで視標24、平行平面板48、測定用撮像素子54、位置調整機構70を駆動する。すなわち、制御装置60が第1駆動装置62を制御することで視標24を光軸方向に移動させ、第2駆動装置64を制御することで平行平面板48を光軸中心に回転させ、第3駆動装置66を制御することで測定用撮像素子54を光軸方向に移動させ、第4駆動装置68を制御することで位置調整機構70を駆動させる。また、制御装置60には、観察用撮像素子20で撮像された前眼部像が入力され、モニタ72に表示する。そして、制御装置60には、プロファイルセンサ36,38で検出された角膜反射光の電気信号が入力され、制御装置60は、第4駆動装置68を制御することで位置調整機構70を駆動させ、装置光学系1と被検眼Eの位置合せを行う。さらに、制御装置60には、測定用撮像素子54で撮像されたリング像が入力され、制御装置60は、リング像から屈折値を算出し、屈折値をモニタ72に表示するとともに、メモリ74に入力する。 The control device 60 drives the visual target 24, the plane parallel plate 48, the measurement image sensor 54, and the position adjustment mechanism 70 by controlling the first to third drive devices 62 to 66. That is, the control device 60 controls the first driving device 62 to move the visual target 24 in the optical axis direction, and the second driving device 64 controls the parallel plane plate 48 to rotate about the optical axis. The measurement image sensor 54 is moved in the optical axis direction by controlling the third driving device 66, and the position adjusting mechanism 70 is driven by controlling the fourth driving device 68. Further, the anterior segment image captured by the observation imaging element 20 is input to the control device 60 and displayed on the monitor 72. The controller 60 receives the electrical signal of the corneal reflected light detected by the profile sensors 36 and 38, and the controller 60 controls the fourth driving device 68 to drive the position adjusting mechanism 70. The apparatus optical system 1 and the eye E to be examined are aligned. Further, the control device 60 receives the ring image picked up by the measurement image sensor 54, and the control device 60 calculates the refraction value from the ring image, displays the refraction value on the monitor 72, and stores it in the memory 74. input.

次に、以上のような構成を備える眼屈折力測定装置を用いて眼屈折力の測定を行う場合の動作を説明する。 Next, the operation in the case of measuring the eye refractive power using the eye refractive power measuring apparatus having the above configuration will be described.

まず、検査者は、被検眼Eに対して視標24を固視させ、モニタ72に表示される前眼部像とアライメント指標をもとに、図示しないジョイスティック等の操作部材を手動によって操作して、被検眼Eに対して装置光学系1の位置合せを行う。すなわち、制御装置60は、観察用撮像素子20から入力された前眼部像と、プロファイルセンサ36,38から入力された角膜反射光によるアライメント指標に基づいて検査者の操作部材の操作に応じて、第4駆動装置68により位置調整機構70を駆動する。これによって、被検眼Eに対する装置光学系1のXY方向(縦横方向)の位置とZ方向(進退動する方向)の位置が調整される。 First, the examiner fixes the target 24 with respect to the eye E, and manually operates an operation member such as a joystick (not shown) based on the anterior eye image and the alignment index displayed on the monitor 72. Thus, the optical system 1 is aligned with the eye E. That is, the control device 60 responds to the operation of the operation member of the examiner based on the anterior segment image input from the observation imaging element 20 and the alignment index based on the corneal reflected light input from the profile sensors 36 and 38. The position adjusting mechanism 70 is driven by the fourth driving device 68. Thereby, the position of the apparatus optical system 1 with respect to the eye E to be examined is adjusted in the XY direction (vertical / horizontal direction) and the Z direction (forward / backward direction).

アライメントが完了すると、測定光源40を点灯し、制御装置60は、第2駆動装置64を駆動して、平行平面板48を回転させる。測定光源40から出射された赤外光は、レンズ42、反射ミラー44、穴あきミラー46、平行平面板48、ホットミラー32、ホットミラー32、レンズ14を介して被検眼Eの眼底上にスポット状の点光源像を形成する。このとき、傾斜して配置され、光軸周りに回転する平行平面板48により、被検眼Eの瞳孔中心から所定距離の位置に測定光束が入射し、瞳上での光束が回転される。 When the alignment is completed, the measurement light source 40 is turned on, and the control device 60 drives the second drive device 64 to rotate the parallel flat plate 48. The infrared light emitted from the measurement light source 40 is spotted on the fundus of the eye E through the lens 42, the reflection mirror 44, the perforated mirror 46, the parallel plane plate 48, the hot mirror 32, the hot mirror 32, and the lens 14. A point light source image is formed. At this time, the measurement light beam is incident at a predetermined distance from the center of the pupil of the eye E, and is rotated on the pupil by the parallel flat plate 48 that is disposed at an inclination and rotates around the optical axis.

眼底に投影された点光源像は反射されて、レンズ14、ホットミラー16、ホットミラー16、回転する平行平面板48、穴あきミラー46、レンズ50を介して、リングレンズ52によって測定用撮像素子54にリング状に結像する。このとき、制御装置60は、第3駆動装置66を駆動し、測定用撮像素子54を光軸方向に移動させて、最も細く、明るくなるリング像を取得する。 The point light source image projected on the fundus is reflected and is measured by the ring lens 52 via the lens 14, the hot mirror 16, the hot mirror 16, the rotating plane parallel plate 48, the perforated mirror 46, and the lens 50. 54 forms an image in a ring shape. At this time, the control device 60 drives the third drive device 66 and moves the measurement image sensor 54 in the optical axis direction to obtain the thinnest and brightest ring image.

制御装置60は、予備測定として測定用撮像素子54により入力されたリング像から屈折力を求める。その屈折力に基づいて、制御装置60は、第1駆動装置62を駆動させて視標24を光軸方向に移動し、眼底と視標24を共役位置に置き、その後適当なディオプター分だけ遠方に移動させることにより、被検眼Eに雲霧をかける。この状態で本測定が実行され、上述と同様に測定用撮像素子54により取得されたリング像を基に屈折力を測定する。 The control device 60 obtains the refractive power from the ring image input by the measurement image sensor 54 as a preliminary measurement. Based on the refractive power, the control device 60 drives the first driving device 62 to move the target 24 in the optical axis direction, places the fundus and the target 24 at the conjugate position, and then moves away by an appropriate diopter. The cloud is applied to the eye E to be examined. In this state, the main measurement is performed, and the refractive power is measured based on the ring image acquired by the measurement image sensor 54 as described above.

制御装置60は、測定用撮像素子54により入力されたリング像の各経線方向のリング像座標を検出する。検出されたリング像の位置に基づいて、最小二乗法等を用いて楕円近似する。そして、近似された楕円の形状からS(球面度数)、C(乱視度数)、A(乱視軸角度)の屈折値を算出する。このように算出された被検眼Eの屈折値は、モニタ72に表示されると共に、メモリ74に記憶される。 The control device 60 detects the ring image coordinates in each meridian direction of the ring image input by the measurement image sensor 54. Based on the position of the detected ring image, an ellipse is approximated using the least square method or the like. Then, the refractive values of S (spherical power), C (astigmatic power), and A (astigmatic axis angle) are calculated from the approximate ellipse shape. The refraction value of the eye E thus calculated is displayed on the monitor 72 and stored in the memory 74.

以上、本発明の実施例について詳細に説明したが、これは例示に過ぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。 As mentioned above, although the Example of this invention was described in detail, this is only an illustration and does not limit a claim. The technology described in the claims includes various modifications and changes of the specific examples illustrated above.

例えば、上述した実施例では、XYZアライメント検出光学系におけるXYZアライメント光源34を用いてプロファイルセンサ36,38の検出に基づいて被検眼Eに対する装置光学系1の上下左右前後方向(XYZ方向)の位置合せを行ったが、これに限定されず、XY方向とZ方向の位置検出を別個に独立した光学系にて構成してもよい。また、XYZアライメント検出センサ36,38としてプロファイルセンサの代わりにCCDを用いてもよい。 For example, in the above-described embodiment, the position of the apparatus optical system 1 in the up / down / left / right front / rear direction (XYZ direction) with respect to the eye E based on the detection of the profile sensors 36 and 38 using the XYZ alignment light source 34 in the XYZ alignment detection optical system. However, the present invention is not limited to this, and position detection in the XY direction and the Z direction may be configured by independent optical systems. Further, a CCD may be used as the XYZ alignment detection sensors 36 and 38 instead of the profile sensor.

また、本実施例では、偏向部材として平行平面板48を用いたが、プリズムを用いてもよい。また、測定光源40としてスーパールミネッセントダイオードを用いたが、レーザーダイオードを用いてもよい。 In this embodiment, the plane parallel plate 48 is used as the deflecting member, but a prism may be used. Further, although the super luminescent diode is used as the measurement light source 40, a laser diode may be used.

また、本実施例では、リングレンズ52により測定用撮像素子54にリング像を受光させる構成としたが、リングレンズの代わりに複数の点状の開口を持つ遮光部材を用いてもよい。この場合、測定用撮像素子には複数の点像が受光される。制御装置60では、点像の座標を検出し、検出された点像の位置に基づいて楕円近似する。そして、近似された楕円の形状からS,C,Aの屈折値を算出する。 Further, in this embodiment, the ring image 52 is received by the measurement imaging element 54 by the ring lens 52, but a light shielding member having a plurality of dot-shaped openings may be used instead of the ring lens. In this case, a plurality of point images are received by the measurement image sensor. The control device 60 detects the coordinates of the point image and approximates the ellipse based on the detected position of the point image. Then, the refraction values of S, C, and A are calculated from the approximate ellipse shape.

以上、本明細書または図面に説明した技術要素は、単独であるいは各種の組み合わせによって技術的有用性を発揮するものであり、出願時請求項記載の組み合わせに限定されるものではない。また、本明細書または図面に例示した技術は複数目的を同時に達成するものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。 As described above, the technical elements described in this specification or the drawings exhibit technical usefulness alone or in various combinations, and are not limited to the combinations described in the claims at the time of filing. In addition, the technology illustrated in the present specification or the drawings achieves a plurality of objects at the same time, and has technical utility by achieving one of the objects.

1:装置光学系、3:投光光学系、5:受光光学系、20:観察用撮像素子、36,38:プロファイルセンサ、24:視標、40:測定光源、48:平行平面板、54:測定用撮像素子、60:制御装置、62:第1駆動装置、64:第2駆動装置、66:第3駆動装置、68:第4駆動装置、70:位置調整機構、72:モニタ、74:メモリ 1: device optical system, 3: light projecting optical system, 5: light receiving optical system, 20: imaging device for observation, 36, 38: profile sensor, 24: target, 40: measurement light source, 48: plane parallel plate, 54 : Image sensor for measurement, 60: Control device, 62: First drive device, 64: Second drive device, 66: Third drive device, 68: Fourth drive device, 70: Position adjustment mechanism, 72: Monitor, 74 :memory

Claims (3)

被検眼の瞳孔中心から所定距離離れた位置から眼底にスポット状の測定光束を投光する投光光学系と、
該被検眼の瞳孔と共役位置に配置されたリング状又は複数の点状の開口を持つ遮光部により該眼底からの反射光を取り出し二次元撮像素子に受光させる受光光学系と、
前記二次元撮像素子の出力に基づいて該被検眼の眼屈折力を得る演算手段と、を有しており、
該被検眼の瞳孔中心から所定距離離れた位置に前記測定光束を偏向させるための偏向部材を有し、
前記偏向部材は、前記投光光学系と前記受光光学系の共用光路の該被検眼の瞳孔と共役位置に配置され、前記偏向部材を前記投光光学系及び前記受光光学系の光軸中心に回転させる回転手段を有することを特徴とする眼屈折力測定装置。
A projection optical system that projects a spot-shaped measurement light beam on the fundus from a position away from the pupil center of the eye to be examined;
A light receiving optical system in which reflected light from the fundus is taken out by a light-shielding portion having a ring-shaped or a plurality of point-shaped openings arranged at a conjugate position with the pupil of the eye to be examined, and received by a two-dimensional imaging device;
Calculating means for obtaining the eye refractive power of the eye based on the output of the two-dimensional imaging device,
A deflection member for deflecting the measurement light beam at a position away from the center of the pupil of the eye to be examined;
The deflecting member is disposed at a conjugate position with the pupil of the eye to be examined in a shared optical path of the light projecting optical system and the light receiving optical system, and the deflecting member is centered on the optical axis of the light projecting optical system and the light receiving optical system. An eye refractive power measuring device comprising a rotating means for rotating.
前記偏向部材は、平行平面板であることを特徴とする請求項1に記載の眼屈折力測定装置。 The ocular refractive power measuring apparatus according to claim 1, wherein the deflecting member is a plane-parallel plate. 前記投光光学系に用いられる光源は、可干渉性のレーザーダイオード又はスーパールミネッセントダイオードであることを特徴とする請求項1又は2に記載の眼屈折力測定装置。 The eye refractive power measuring apparatus according to claim 1, wherein a light source used in the light projecting optical system is a coherent laser diode or a super luminescent diode.
JP2015087049A 2015-04-21 2015-04-21 Eye refractive power measuring device Active JP6586599B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015087049A JP6586599B2 (en) 2015-04-21 2015-04-21 Eye refractive power measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015087049A JP6586599B2 (en) 2015-04-21 2015-04-21 Eye refractive power measuring device

Publications (2)

Publication Number Publication Date
JP2016202506A true JP2016202506A (en) 2016-12-08
JP6586599B2 JP6586599B2 (en) 2019-10-09

Family

ID=57490762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015087049A Active JP6586599B2 (en) 2015-04-21 2015-04-21 Eye refractive power measuring device

Country Status (1)

Country Link
JP (1) JP6586599B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE212017000230U1 (en) 2016-10-14 2019-05-27 Chuo Hatsujo Kabushiki Kaisha Holding device for vehicle
CN113625445A (en) * 2021-08-16 2021-11-09 重庆远视科技有限公司 Optical system for measuring refractive information

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001340299A (en) * 2000-06-02 2001-12-11 Topcon Corp Optical measuring device for eye
JP4492847B2 (en) * 2003-12-25 2010-06-30 株式会社ニデック Eye refractive power measuring device
JP2014188273A (en) * 2013-03-28 2014-10-06 Canon Inc Ophthalmologic apparatus, control method for the same, and program

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001340299A (en) * 2000-06-02 2001-12-11 Topcon Corp Optical measuring device for eye
JP4492847B2 (en) * 2003-12-25 2010-06-30 株式会社ニデック Eye refractive power measuring device
JP2014188273A (en) * 2013-03-28 2014-10-06 Canon Inc Ophthalmologic apparatus, control method for the same, and program

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE212017000230U1 (en) 2016-10-14 2019-05-27 Chuo Hatsujo Kabushiki Kaisha Holding device for vehicle
CN113625445A (en) * 2021-08-16 2021-11-09 重庆远视科技有限公司 Optical system for measuring refractive information

Also Published As

Publication number Publication date
JP6586599B2 (en) 2019-10-09

Similar Documents

Publication Publication Date Title
JP4769923B2 (en) Integrated device for non-contact measurement of the axial length of the eye and / or the curvature of the cornea and / or the depth of the anterior chamber, suitable for the calculation of intraocular lenses
US8851673B2 (en) Imaging apparatus
JP6007466B2 (en) Corneal shape measuring device
US11191431B2 (en) Ophthalmic apparatus
EP2415393B1 (en) Ophthalmic apparatus
JP6465551B2 (en) Optical interference eye size measuring device
JP6951054B2 (en) Subjective optometry device
US9078601B2 (en) Anterior segment measuring apparatus
JP2014079496A (en) Ophthalmologic apparatus and ophthalmologic control method, and program
JP4666461B2 (en) Eye refractive power measuring device
US9339185B2 (en) Imaging apparatus that acquires a first image and, via an aberration correction unit, a second image of an area corresponding to a part of the first image
JP2020081469A (en) Ophthalmologic apparatus
JP6736356B2 (en) Ophthalmic equipment
JP6586599B2 (en) Eye refractive power measuring device
US7219999B2 (en) Device for measuring optical characteristic of eye
JP6898712B2 (en) Ophthalmic equipment
JP6634765B2 (en) Ophthalmic apparatus and ophthalmic apparatus control program
JP6823339B2 (en) Ophthalmic equipment
JP2020130266A (en) Ophthalmologic apparatus
JP7459491B2 (en) Ophthalmology measuring device
WO2023074579A1 (en) Eye refraction measurement device and eye refraction measurement program
JP7480552B2 (en) Ophthalmic device and axial length calculation program
JP7480553B2 (en) Ophthalmic Equipment
JP7035630B2 (en) Ophthalmic equipment
JP7187769B2 (en) Ophthalmic device and ophthalmic device control program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181221

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190624

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190712

R150 Certificate of patent or registration of utility model

Ref document number: 6586599

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250