JP2016201325A - Lead acid battery reproduction device, lead acid battery reproduction method and lead acid battery reproduction system - Google Patents

Lead acid battery reproduction device, lead acid battery reproduction method and lead acid battery reproduction system Download PDF

Info

Publication number
JP2016201325A
JP2016201325A JP2015082327A JP2015082327A JP2016201325A JP 2016201325 A JP2016201325 A JP 2016201325A JP 2015082327 A JP2015082327 A JP 2015082327A JP 2015082327 A JP2015082327 A JP 2015082327A JP 2016201325 A JP2016201325 A JP 2016201325A
Authority
JP
Japan
Prior art keywords
current
lead
storage battery
lead storage
acid battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015082327A
Other languages
Japanese (ja)
Other versions
JP6519041B2 (en
Inventor
拓次 森
Takuji Mori
拓次 森
宏 井内
Hiroshi Iuchi
宏 井内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Ecology LLC
Toko Co Ltd
Original Assignee
Japan Ecology LLC
Toko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Ecology LLC, Toko Co Ltd filed Critical Japan Ecology LLC
Priority to JP2015082327A priority Critical patent/JP6519041B2/en
Publication of JP2016201325A publication Critical patent/JP2016201325A/en
Application granted granted Critical
Publication of JP6519041B2 publication Critical patent/JP6519041B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To reproduce a lead acid battery 2 in a short time and further to remove diluted sulfuric acid mist 50 that is generated from the lead acid battery 2 in the process of reproduction.SOLUTION: A lead acid battery reproduction device 1 comprises: forced charge means 3 that charges a lead acid battery 2 by increasing an inflow current Ae and an application voltage Ve gradually until an outflow current Ab from the lead acid battery 2 reaches a predetermined current; steady state detection means 4 for detecting a steady state of full charge by increasing/decreasing the inflow current Ae and the application voltage Ve; and sulfation dissolution means 5 for dissolving a crystal that is generated by sulfation, with the inflow current Ae and the application voltage Ve at the time of steady state detection. A lead acid battery reproduction system 100 comprises: a sealed case 31 for sealing the lead acid battery 2; a desulfurization device 32 for decomposing the diluted sulfuric acid mist 50 with caustic soda; and a suction pump 33 for decompressing the desulfurization device 32, and removes the diluted sulfuric acid mist 50.SELECTED DRAWING: Figure 1

Description

本発明は、充放電の繰り返しにより性能が劣化した鉛蓄電池を再生する鉛蓄電池再生装置に関するものである。   The present invention relates to a lead-acid battery regeneration device for regenerating a lead-acid battery whose performance has deteriorated due to repeated charge and discharge.

従来より、自動車のエンジンの始動やライト等の電力として使われている鉛蓄電池は、負極の活物質として鉛(Pb)、正極の活物質として二酸化鉛(PbO2)を用い、電解液として希硫酸(H2SO4)が用いられている。そして、鉛蓄電池の放電においては、式(1)の化学反応式により正極及び負極に硫酸鉛(PbSO4)が生成される。
PbO2 + 2 H2SO4 + Pb → PbSO4 + 2 H2O (1)
Conventionally, lead-acid batteries that have been used as power sources for starting automobile engines and lights, etc., use lead (Pb) as the active material for the negative electrode, lead dioxide (PbO 2 ) as the active material for the positive electrode, and rare electrolytes. Sulfuric acid (H 2 SO 4 ) is used. Then, in the discharge of the lead-acid battery, lead sulfate in positive and negative electrodes by the chemical reaction formula (1) (PbSO 4) is generated.
PbO 2 + 2 H 2 SO 4 + Pb → PbSO 4 + 2 H 2 O (1)

一方、鉛蓄電池の充電においては、正極及び負極に生成された硫酸鉛(PbSO4)が式(2)の化学反応式により鉛(Pb)と二酸化鉛(PbO2)に戻る。
PbSO4 + 2 H2O → PbO2 + 2 H2SO4 + Pb (2)
このように、鉛蓄電池は、化学反応式(1)及び(2)を繰り返すことにより充電可能な二次電池として動作する。
On the other hand, in the charge of the lead storage battery, lead sulfate (PbSO 4 ) produced on the positive electrode and the negative electrode returns to lead (Pb) and lead dioxide (PbO 2 ) by the chemical reaction formula of the formula (2).
PbSO 4 + 2 H 2 O → PbO 2 + 2 H 2 SO 4 + Pb (2)
Thus, the lead storage battery operates as a rechargeable secondary battery by repeating chemical reaction formulas (1) and (2).

ところが、鉛蓄電池を放電したまま放置するなどの過放電を繰り返すことより、正極及び負極に硫化鉛(PbSO4)が結晶化して蓄積し、電気の流れが阻害されるという現象(以下、「サルフェーション」という)が発生する。そして、このような現象が発生して劣化が進み再生困難となった鉛蓄電池は、ほとんどが分解され、鉛は精錬所に、電解液や筺体は産業廃棄物として処理されている。 However, by repeating overdischarge such as leaving the lead-acid battery left discharged, lead sulfide (PbSO 4 ) crystallizes and accumulates on the positive and negative electrodes, impeding the flow of electricity (hereinafter referred to as “sulfation”). ") Occurs. And most of the lead-acid batteries that have deteriorated and become difficult to regenerate due to the occurrence of such a phenomenon are decomposed, lead is treated as a smelter, and electrolytes and casings are treated as industrial waste.

この再生困難となった鉛畜電池を再生する技術の一つとして、水系で炭素正極の電解酸化により得られた炭素懸濁液を添加剤として鉛蓄電池に添加し、鉛蓄電池の正極を電気化学的ドーピングに活性化して再生する技術が提案されている(例えば、特開平9−45379号公報(特許文献1)参照)。
また、別の再生技術として、直流パルス電流を鉛蓄電池の正極から負極に向かって流すことにより、正極および負極の表面に結晶化し蓄積された硫酸鉛(PbSO4)を減少させて再生する技術が提案されている(例えば、特開2000−40537号公報(特許文献2)参照)。
As one of the technologies for regenerating the lead-acid battery that has become difficult to regenerate, a carbon suspension obtained by electrolytic oxidation of the carbon positive electrode in an aqueous system is added to the lead storage battery as an additive, and the positive electrode of the lead storage battery is electrochemically added. There has been proposed a technique of activating and regenerating by selective doping (see, for example, JP-A-9-45379 (Patent Document 1)).
As another regeneration technique, there is a technique for reducing and regenerating lead sulfate (PbSO 4 ) crystallized and accumulated on the surfaces of the positive electrode and the negative electrode by flowing a DC pulse current from the positive electrode to the negative electrode of the lead storage battery. It has been proposed (see, for example, Japanese Patent Laid-Open No. 2000-40537 (Patent Document 2)).

特開平9−45379号公報Japanese Patent Laid-Open No. 9-45379 特開2000−40537号公報JP 2000-40537 A

しかしながら、添加剤による鉛蓄電池の再生技術では、添加剤を添加しただけでは再生せずその後、充電を12時間〜24時間程度行う必要があるために再生に時間を要するという問題があった。また、別の再生技術である直流パルス電流を印加する再生技術では、パルス状の高電圧を鉛蓄電池の電極に印加するために電極を損傷させ鉛蓄電池の寿命が短くなるという問題があった。さらに、いずれの再生技術においても、鉛蓄電池の再生の過程において鉛蓄電池から有害な希硫酸ミストが多量に放出されるがその対処方法について提案もされていなかった。   However, the regeneration technology for lead-acid batteries using additives has a problem in that regeneration is not performed just by adding the additive, and it takes time for regeneration since it is necessary to perform charging for 12 to 24 hours thereafter. In addition, in the regeneration technology that applies a DC pulse current, which is another regeneration technology, there is a problem that the life of the lead storage battery is shortened by damaging the electrode in order to apply a pulsed high voltage to the electrode of the lead storage battery. Further, in any of the regeneration technologies, a large amount of harmful dilute sulfuric acid mist is released from the lead storage battery during the regeneration process of the lead storage battery, but no countermeasure has been proposed.

本発明の課題は、このような問題を解決することを課題とし、鉛蓄電池の寿命を短くすることなく、短時間に鉛蓄電池を再生することを可能とする鉛蓄電池再生装置及び鉛蓄電池再生方法を提供し、さらに、再生の過程において鉛蓄電池より発生する有害な希硫酸ミストを除去できる鉛蓄電池再生システムを提供することにある。   An object of the present invention is to solve such a problem, and to regenerate the lead storage battery in a short time without shortening the life of the lead storage battery, and a lead storage battery regeneration method. And providing a lead storage battery regeneration system capable of removing harmful dilute sulfuric acid mist generated from the lead storage battery during the regeneration process.

上記課題を解決するために本発明に関する鉛蓄電池再生装置は、再生する鉛蓄電池への流入電流及び印加電圧を制御して鉛蓄電池を再生する鉛蓄電池再生装置であって、前記鉛蓄電池からの流出電流が所定の電流に達するまで徐々に前記流入電流及び前記印加電圧を増加させて充電する強制充電手段と、前記流入電流及び前記印加電圧を増加及び減少させて満充電の定常状態を検出する定常状態検出手段と、前記定常状態の検出時の前記流入電流及び前記印加電圧にて、サルフェーションにより生じた結晶を溶解するサルフェーション溶解手段とを備えたことを特徴とするものである。   In order to solve the above problems, a lead-acid battery regeneration device according to the present invention is a lead-acid battery regeneration device that regenerates a lead-acid battery by controlling the inflow current and applied voltage to the lead-acid battery to be regenerated, and the outflow from the lead-acid battery Forced charging means for gradually increasing the inflow current and the applied voltage until the current reaches a predetermined current, and a steady state for detecting the full state by increasing and decreasing the inflow current and the applied voltage It is characterized by comprising state detection means and sulfation dissolution means for dissolving crystals generated by sulfation with the inflow current and the applied voltage when the steady state is detected.

また、上記課題を解決するために本発明に関する鉛蓄電池再生システムは、再生処理により鉛蓄電池から希硫酸ミストが発生する鉛蓄電池再生システムにおいて、再生する鉛蓄電池に接続され前記鉛蓄電池を再生処理する鉛蓄電池再生装置と、前記鉛蓄電池を密閉する密閉ケースと、前記発生した希硫酸ミストを苛性ソーダにより分解する脱硫装置と、該脱硫装置を減圧する吸引ポンプとを備え、前記密閉ケースと脱硫装置と吸引ポンプ間をパイプで連結し、前記吸引ポンプの駆動により前記希硫酸ミストを除去するようにしたことを特徴とするものである。   In order to solve the above problems, a lead storage battery regeneration system according to the present invention is a lead storage battery regeneration system in which dilute sulfuric acid mist is generated from a lead storage battery by regeneration processing, and the lead storage battery is regenerated by being connected to the lead storage battery to be regenerated. A lead storage battery regenerator, a sealed case for sealing the lead storage battery, a desulfurization device for decomposing the generated dilute sulfuric acid mist with caustic soda, and a suction pump for decompressing the desulfurization device, the sealed case and the desulfurization device, The suction pumps are connected by a pipe, and the diluted sulfuric acid mist is removed by driving the suction pump.

本発明によれば、このような構成にて電極に損傷を与えずに鉛蓄電池を再生するようにしたので、鉛蓄電池の寿命を短くすることなく、かつ短時間に鉛蓄電池を再生することを可能とする鉛蓄電池再生装置を提供することができる。また、再生の過程において鉛蓄電池より発生する有害な希硫酸ミストを除去することを可能とする鉛蓄電池再生システムを提供することができる。   According to the present invention, since the lead storage battery is regenerated without damaging the electrodes in such a configuration, the lead storage battery can be regenerated in a short time without shortening the life of the lead storage battery. It is possible to provide a lead-acid battery regeneration device that can be used. Moreover, the lead storage battery reproduction | regeneration system which makes it possible to remove the harmful dilute sulfuric acid mist which generate | occur | produces from a lead storage battery in the process of reproduction | regeneration can be provided.

第1の実施の形態に関する鉛蓄電池再生装置の構成図である。It is a lineblock diagram of a lead storage battery reproduction device about a 1st embodiment. 第1の実施の形態に関する鉛蓄電池再生装置の電圧供給部および電流供給部の回路図である。It is a circuit diagram of a voltage supply unit and a current supply unit of the lead storage battery regeneration device according to the first embodiment. 第1の実施の形態に関する鉛蓄電池再生装置の機能ブロック図である。It is a functional block diagram of the lead acid battery reproducing device concerning a 1st embodiment. 第1の実施の形態に関する鉛蓄電池再生装置の概要動作フローチャートである。It is a general | schematic operation | movement flowchart of the lead acid battery reproducing | regenerating apparatus regarding 1st Embodiment. 第1の実施の形態に関する鉛蓄電池再生装置の動作フローチャートである。It is an operation | movement flowchart of the lead acid battery reproducing | regenerating apparatus regarding 1st Embodiment. 第1の実施の形態に関する鉛蓄電池再生装置の動作フローチャートである。It is an operation | movement flowchart of the lead acid battery reproducing | regenerating apparatus regarding 1st Embodiment. 第1の実施の形態に関する鉛蓄電池再生装置の動作説明図である。It is operation | movement explanatory drawing of the lead storage battery reproducing | regenerating apparatus regarding 1st Embodiment. 第1の実施の形態に関する鉛蓄電池再生システムの構成図である。It is a lineblock diagram of a lead storage battery reproduction system about a 1st embodiment. 第1の実施の形態に関する鉛蓄電池再生装置のテスト機の試験結果表である。It is a test result table | surface of the test machine of the lead storage battery reproduction apparatus regarding 1st Embodiment. 第1の実施の形態に関する鉛蓄電池再生装置のテスト機の試験結果表である。It is a test result table | surface of the test machine of the lead storage battery reproduction apparatus regarding 1st Embodiment. 第1の実施の形態に関する鉛蓄電池再生装置のテスト機の試験結果表である。It is a test result table | surface of the test machine of the lead storage battery reproduction apparatus regarding 1st Embodiment. 第2の実施の形態に関する鉛蓄電池再生装置の構成図である。It is a block diagram of the lead acid battery reproducing | regenerating apparatus regarding 2nd Embodiment. 第2の実施の形態に関する鉛蓄電池再生システムの構成図である。It is a block diagram of the lead storage battery reproduction | regeneration system regarding 2nd Embodiment. 第2の実施の形態に関する鉛蓄電池再生システムの動作説明図である。It is operation | movement explanatory drawing of the lead storage battery reproduction | regeneration system regarding 2nd Embodiment.

(第1の実施の形態)
以下に本発明を実施するための最良の形態である第1の実施の形態を説明する。各図面に共通な要素には同一の符号を付す。
図1は第1の実施の形態に関する鉛蓄電池再生装置の構成図であり、図2は第1の実施の形態に関する鉛蓄電池再生装置の電圧供給部および電流供給部の回路図であり、図3は、第1の実施の形態に関する鉛蓄電池再生装置の機能ブロック図である。
(First embodiment)
The first embodiment, which is the best mode for carrying out the present invention, will be described below. Elements common to the drawings are given the same reference numerals.
FIG. 1 is a configuration diagram of the lead storage battery regeneration device according to the first embodiment, and FIG. 2 is a circuit diagram of a voltage supply unit and a current supply unit of the lead storage battery regeneration device according to the first embodiment. These are the functional block diagrams of the lead acid battery reproducing | regenerating apparatus regarding 1st Embodiment.

図1に示すように、第1の実施の形態に関する鉛蓄電池再生装置1は、制御部11と、流出電流測定部12と、電圧供給部13及び電流供給部14とを有し、鉛蓄電池2への電気的接続を行う端子1p、1mが設けられた構成となっている。
制御部11は、アナログ信号をデジタル信号に変換するAD変換部11aと、デジタル信号をアナログ信号に変換するDA変換部11bと、所定の経過時間を計測する時間計測部11cを備え、電圧供給部13及び電流供給部14を制御する。
As shown in FIG. 1, the lead storage battery regeneration device 1 according to the first embodiment includes a control unit 11, an outflow current measurement unit 12, a voltage supply unit 13, and a current supply unit 14, and the lead storage battery 2. The terminal 1p and 1m which perform the electrical connection to are provided.
The control unit 11 includes an AD conversion unit 11a that converts an analog signal into a digital signal, a DA conversion unit 11b that converts a digital signal into an analog signal, and a time measurement unit 11c that measures a predetermined elapsed time, and a voltage supply unit 13 and the current supply unit 14 are controlled.

電圧供給部13は、電流供給部14に供給する電圧を生成するものであり、鉛蓄電池2の正極21への印加電圧Veとなる電圧を生成し、電流供給部14に供給する。電流供給部14は、端子1pを介して鉛蓄電池2の正極21に流入電流Aeを流入させ、端子1mを介して鉛蓄電池2の負極22から流出電流Abを流出させる。流出電流測定部12は、鉛蓄電池2の負極22からの流出電流Abを測定し、制御部11に送出する。   The voltage supply unit 13 generates a voltage to be supplied to the current supply unit 14, generates a voltage that becomes the applied voltage Ve to the positive electrode 21 of the lead storage battery 2, and supplies the voltage to the current supply unit 14. The current supply unit 14 causes the inflow current Ae to flow into the positive electrode 21 of the lead storage battery 2 through the terminal 1p, and causes the outflow current Ab to flow out from the negative electrode 22 of the lead storage battery 2 through the terminal 1m. The outflow current measuring unit 12 measures the outflow current Ab from the negative electrode 22 of the lead storage battery 2 and sends it to the control unit 11.

信号Vsbは、流出電流測定部12にて流出電流Abが電圧に変換された信号であり、制御部11のAD変換部11aにてデジタル信号に変換される。信号Vsvは、制御部11にて鉛蓄電池2の正極21に印加する電圧として設定した電圧値をDA変換部11bにてアナログ信号に変換し、電圧供給部13に送出する信号である。信号Vsaは、制御部11にて鉛蓄電池2の正極21に流入する電流として設定した電流値をDA変換部11bにてアナログ信号に変換し、電流供給部14に送出する信号である。   The signal Vsb is a signal obtained by converting the outflow current Ab into a voltage in the outflow current measuring unit 12, and is converted into a digital signal by the AD conversion unit 11 a of the control unit 11. The signal Vsv is a signal that is converted to an analog signal by the DA conversion unit 11 b and is sent to the voltage supply unit 13 as a voltage value set as a voltage to be applied to the positive electrode 21 of the lead storage battery 2 by the control unit 11. The signal Vsa is a signal that is converted into an analog signal by the DA conversion unit 11 b and is sent to the current supply unit 14 as a current value set as a current flowing into the positive electrode 21 of the lead storage battery 2 by the control unit 11.

また、図1の左側に示した鉛蓄電池2は、再生される一般的な鉛蓄電池の構成として、活物質として二酸化鉛(PbO2)が用いられる正極21と、活物質として鉛(Pb)が用いられる負極22と、正極21と負極22の間に配置されメッシュ状の絶縁体として機能を有するセパレーター23と、希硫酸(H2SO4)が充填された電解液24と、から構成される。そして、鉛蓄電池再生装置1の端子1p、端子1mと鉛蓄電池2の正極21と負極22がそれぞれ接続ケーブル25にて接続され、再生処理が行われる。 In addition, the lead storage battery 2 shown on the left side of FIG. 1 includes a positive electrode 21 in which lead dioxide (PbO 2 ) is used as an active material and lead (Pb) as an active material. a negative electrode 22 used, composed of a positive electrode 21 and is disposed between the anode 22 separator 23 having a function as a mesh-like insulator, and a rare sulfuric acid (H 2 SO 4) is filled electrolyte 24, . Then, the terminal 1p and the terminal 1m of the lead storage battery regeneration device 1 and the positive electrode 21 and the negative electrode 22 of the lead storage battery 2 are connected by the connection cable 25, respectively, and a regeneration process is performed.

次に、流出電流検出部12、電圧供給部13及び電流供給部14の回路例を、図2を用いて以下説明する。流出電流検出部12は、一方端子が接地された抵抗Rsbからなり、鉛蓄電池2の負極22から流出する流出電流Abが端子1mを経由して抵抗Rsbに流れ、流出電流Abに応じて発生する電位降下を信号Vsbとして制御部11に送出する。尚、信号Vsbが低レベルの信号である場合は、オペアンプ等にて増幅したものを制御部11に送出するようにするのがよい。   Next, circuit examples of the outflow current detection unit 12, the voltage supply unit 13, and the current supply unit 14 will be described below with reference to FIG. The outflow current detection unit 12 includes a resistor Rsb whose one terminal is grounded, and the outflow current Ab flowing out from the negative electrode 22 of the lead storage battery 2 flows to the resistor Rsb via the terminal 1m, and is generated according to the outflow current Ab. The potential drop is sent to the control unit 11 as a signal Vsb. When the signal Vsb is a low level signal, it is preferable to send the signal Vsb amplified by an operational amplifier or the like to the control unit 11.

電圧供給部13は、図示しない主電源部からの出力電圧Vccに接続されたトランジスタTr1と、分圧抵抗として機能する抵抗R1及びR2と、オペアンプQ1とからなる。そして、電圧供給部13の出力となる印加電圧Veを抵抗R1、R2により分圧した電圧をオペアンプQ1の−入力に接続し、制御部11からの信号VsvをオペアンプQ1の+入力に接続する構成となっている。   The voltage supply unit 13 includes a transistor Tr1 connected to an output voltage Vcc from a main power supply unit (not shown), resistors R1 and R2 functioning as voltage dividing resistors, and an operational amplifier Q1. A voltage obtained by dividing the applied voltage Ve output from the voltage supply unit 13 by the resistors R1 and R2 is connected to the negative input of the operational amplifier Q1, and the signal Vsv from the control unit 11 is connected to the positive input of the operational amplifier Q1. It has become.

この回路例では、分圧された印加電圧Veと、制御部11からの信号Vsvの差がオペアンプQ1にて増幅されその出力にてトランジスタTr1のオン状態が制御される。
即ち、制御部11からの信号Vsvに対し印加電圧Veが低いときは、オペアンプQ1の出力が大きくなり、トランジスタTr1がオン状態となり、印加電圧Veが高くなる。一方、信号Vsvに対し印加電圧Veが高いときは、オペアンプQ1の出力が低くなり、トランジスタTr1がオフ状態となり、印加電圧Veが低くなる。この動作により、制御部11からの信号Vsvに応じた印加電圧Veが生成される。
In this circuit example, the difference between the divided applied voltage Ve and the signal Vsv from the control unit 11 is amplified by the operational amplifier Q1, and the on state of the transistor Tr1 is controlled by the output.
That is, when the applied voltage Ve is lower than the signal Vsv from the control unit 11, the output of the operational amplifier Q1 is increased, the transistor Tr1 is turned on, and the applied voltage Ve is increased. On the other hand, when the applied voltage Ve is higher than the signal Vsv, the output of the operational amplifier Q1 is lowered, the transistor Tr1 is turned off, and the applied voltage Ve is lowered. By this operation, the applied voltage Ve corresponding to the signal Vsv from the control unit 11 is generated.

一方、電流供給部14は、電圧供給部13からの印加電圧Veに接続された抵抗R5及びトランジスタTr2と、オペアンプQ2及びQ3と、オペアンプQ3の入力に接続された抵抗Rse、オペアンプQ2の出力に接続されたトランジスタTr3とからなる。
そして、制御部11からの信号Vsa信号がオペアンプQ2の+入力に接続され、抵抗Rseを流れる流入電流Aeによる電位降下を増幅するオペアンプQ3の出力がオペアンプQ2の−入力に接続された構成となっている。
On the other hand, the current supply unit 14 outputs the resistor R5 and transistor Tr2 connected to the applied voltage Ve from the voltage supply unit 13, the operational amplifiers Q2 and Q3, the resistor Rse connected to the input of the operational amplifier Q3, and the output of the operational amplifier Q2. It consists of a connected transistor Tr3.
The signal Vsa signal from the control unit 11 is connected to the + input of the operational amplifier Q2, and the output of the operational amplifier Q3 that amplifies the potential drop due to the inflow current Ae flowing through the resistor Rse is connected to the -input of the operational amplifier Q2. ing.

上記回路構成とすることにより、流入電流Aeに応じて発生するオペアンプQ3の出力と、制御部11からの信号Vsa信号の差がオペアンプQ2にて出力され、この出力によりトランジスタTr3のオン状態を制御し、抵抗R5とトランジスタTr3により分圧された電圧により、トランジスタTr2のオン状態を制御する。
即ち、制御部11からの信号Vsa信号に比べ、流入電流Aeが少ないときは、抵抗Rseの電位降下が少なく、オペアンプQ3の出力が低くなるので、オペアンプQ2の出力が高くなり、トランジスタTr3がオン状態となる。その結果、トランジスタTr2のベース電圧が低くなりトランジスタTr2がオン状態となり、流入電流Aeが多くなる。
With the above circuit configuration, the difference between the output of the operational amplifier Q3 generated according to the inflow current Ae and the signal Vsa signal from the control unit 11 is output by the operational amplifier Q2, and the ON state of the transistor Tr3 is controlled by this output. The on state of the transistor Tr2 is controlled by the voltage divided by the resistor R5 and the transistor Tr3.
That is, when the inflow current Ae is smaller than the signal Vsa signal from the control unit 11, the potential drop of the resistor Rse is small and the output of the operational amplifier Q3 is low, so the output of the operational amplifier Q2 is high and the transistor Tr3 is turned on. It becomes a state. As a result, the base voltage of the transistor Tr2 is lowered, the transistor Tr2 is turned on, and the inflow current Ae is increased.

一方、制御部11からの信号Vsa信号に比べ、流入電流Aeが多いときは、抵抗Rseの電位降下が多く、オペアンプQ3の出力が高くなるので、オペアンプQ2の出力が低くなり、トランジスタTr3がオフ状態となる。その結果、トランジスタTr2のベース電圧が高くなりトランジスタTr2がオフ状態となるため、流入電流Aeが少なくなる。以上の動作により、制御部11からの信号Vsa信号に応じた流入電流Aeが端子1pから鉛蓄電池2の正極21に出力される。   On the other hand, when the inflow current Ae is larger than the signal Vsa signal from the control unit 11, the potential drop of the resistor Rse is large and the output of the operational amplifier Q3 is high, so the output of the operational amplifier Q2 is low and the transistor Tr3 is turned off. It becomes a state. As a result, the base voltage of the transistor Tr2 is increased and the transistor Tr2 is turned off, so that the inflow current Ae is reduced. With the above operation, the inflow current Ae corresponding to the signal Vsa signal from the control unit 11 is output from the terminal 1p to the positive electrode 21 of the lead storage battery 2.

次に、図3を用いて、第1の実施の形態に関する鉛蓄電池再生装置1の機能を説明する。即ち、第1の実施の形態に関する鉛蓄電池再生装置1は、制御部11の制御のもとに、強制充電手段3、定常状態検出手段4及びサルフェーション溶解手段5から構成される。この場合制御部11は、RAMやROM又はハードディスク等で構成された図示しない装置記憶部と接続され、装置記憶部に記憶された制御プログラムにより動作するようにしてもよい。また、制御部11は各処理に必要なデータを装置記憶部に書き込むことができ、必要に応じて装置記憶部から読み出すことができるようにしてもよい。   Next, the function of the lead-acid battery regeneration device 1 according to the first embodiment will be described with reference to FIG. In other words, the lead-acid battery regeneration device 1 according to the first embodiment includes the forced charging means 3, the steady state detection means 4, and the sulfation dissolution means 5 under the control of the control unit 11. In this case, the control unit 11 may be connected to a device storage unit (not shown) constituted by a RAM, a ROM, a hard disk, etc., and may be operated by a control program stored in the device storage unit. In addition, the control unit 11 may write data necessary for each process in the device storage unit, and may read the data from the device storage unit as necessary.

そして、強制充電手段3は、鉛蓄電池2の負極22からの流出電流Abを測定する流出電流測定部12と、鉛蓄電池2の正極21に流入させる流入電流Aeを供給する電流供給部14と、鉛蓄電池2の正極への印加電圧Veを供給する電圧供給部13と、流入電流Aeと流出電流Abを比較し略同じとなっているか否かの判定及び流出電流Abが所定の電流Akに達したか否かの判定を行う電流比較部15と、さらに、前記判定結果に基づいて印加電圧Ve、流入電流Aeをそれぞれ微小値ΔV、ΔA分加算する電圧電流微小値加算部16とからなる。   The forced charging means 3 includes an outflow current measuring unit 12 that measures an outflow current Ab from the negative electrode 22 of the lead storage battery 2, a current supply unit 14 that supplies an inflow current Ae that flows into the positive electrode 21 of the lead storage battery 2, and The voltage supply unit 13 that supplies the applied voltage Ve to the positive electrode of the lead storage battery 2, the determination of whether the inflow current Ae and the outflow current Ab are substantially the same, and the outflow current Ab reaches a predetermined current Ak A current comparison unit 15 that determines whether or not the voltage is applied, and a voltage / current minute value addition unit 16 that adds the applied voltage Ve and the inflow current Ae by minute values ΔV and ΔA, respectively, based on the determination result.

定常状態検出手段4は、強制充電手段3とほぼ同様の構成であり、鉛蓄電池2の負極22からの流出電流Abを測定する流出電流測定部12と、鉛蓄電池2の正極21に流入させる流入電流Aeを供給する電流供給部14と、鉛蓄電池2の正極への印加電圧Veを供給する電圧供給部13と、流入電流Aeと流出電流Abを比較し略同じとなっているか否かの判定及び流出電流Abが所定の電流Akに達したか否かの判定を行う電流比較部15と、さらに、電流比較部15の判定結果に基づいて印加電圧Ve、流入電流Aeをそれぞれ微小値ΔV、ΔA分加算又は減算する電圧電流微小値加算減算部17とからなる。
サルフェーション溶解手段5は、強制充電手段3及び定常状態検出手段4と一部同様の構成であり、鉛蓄電池2の正極21に流入させる流入電流Aeを供給する電流供給部14と、鉛蓄電池2の正極への印加電圧Veを供給する電圧供給部13と、さらに、所定の経過時間を計測する時間計測部11cとからなる。
The steady state detection unit 4 has substantially the same configuration as the forced charging unit 3, and an outflow current measuring unit 12 that measures an outflow current Ab from the negative electrode 22 of the lead storage battery 2 and an inflow that flows into the positive electrode 21 of the lead storage battery 2. The current supply unit 14 that supplies the current Ae, the voltage supply unit 13 that supplies the applied voltage Ve to the positive electrode of the lead storage battery 2, and the inflow current Ae and the outflow current Ab are compared to determine whether or not they are substantially the same. And the current comparison unit 15 that determines whether or not the outflow current Ab has reached a predetermined current Ak, and further, based on the determination result of the current comparison unit 15, the applied voltage Ve and the inflow current Ae are each set to a minute value ΔV, The voltage current minute value addition / subtraction unit 17 adds or subtracts ΔA.
The sulfation dissolution means 5 has the same configuration as the forced charging means 3 and the steady state detection means 4, and includes a current supply unit 14 that supplies an inflow current Ae that flows into the positive electrode 21 of the lead storage battery 2, and a lead storage battery 2. The voltage supply unit 13 supplies the applied voltage Ve to the positive electrode, and further includes a time measurement unit 11c that measures a predetermined elapsed time.

以上の構成により、第1の実施の形態に関する鉛蓄電池再生装置1は以下のように動作する。図4は第1の実施の形態に関する鉛蓄電池再生装置の概略動作フローチャート、図5A、図5Bは第1の実施の形態に関する鉛蓄電池再生装置の動作フローチャート及び図6は第1の実施の形態に関する鉛蓄電池再生装置の動作説明図である。図4乃至図6を用いて鉛蓄電池再生装置1の動作を以下説明する。   With the above configuration, the lead-acid battery regeneration device 1 according to the first embodiment operates as follows. FIG. 4 is a schematic operation flowchart of the lead-acid battery regeneration device according to the first embodiment, FIGS. 5A and 5B are operation flowcharts of the lead-acid battery regeneration device according to the first embodiment, and FIG. 6 is related to the first embodiment. It is operation | movement explanatory drawing of a lead storage battery reproducing | regenerating apparatus. The operation of the lead-acid battery regeneration device 1 will be described below with reference to FIGS.

第1の実施の形態に関する鉛蓄電池再生装置1の再生処理は、図4に示すように、第1の工程としての強制充電工程と、第2の工程としての定常状態検出工程と、第三の工程としてのサルフェーション溶解工程とからなる。
ステージST1:第1の工程である強制充電工程は、強制充電手段3により、鉛蓄電池2の正極21に印加する印加電圧Veと流入電流Aeを徐々に上昇させ、鉛蓄電池2の負極22からの流出電流Abが流入電流Aeに追従し、かつ流出電流Abが所定の電流Akに達するまで、強制的に鉛蓄電池2を充電する工程となっている。ここで、所定の電流Akは鉛蓄電池2が受け入れることができる最大電流とするのがよく、鉛蓄電池2の定格に応じて設定する。
As shown in FIG. 4, the regeneration process of the lead storage battery regeneration device 1 relating to the first embodiment includes a forced charging process as a first process, a steady state detection process as a second process, and a third process. And a sulfation dissolution step as a step.
Stage ST1: In the forced charging step, which is the first step, the forced charging means 3 gradually increases the applied voltage Ve and the inflow current Ae applied to the positive electrode 21 of the lead storage battery 2, This is a process for forcibly charging the lead storage battery 2 until the outflow current Ab follows the inflow current Ae and the outflow current Ab reaches a predetermined current Ak. Here, the predetermined current Ak is preferably the maximum current that the lead storage battery 2 can accept, and is set according to the rating of the lead storage battery 2.

ステージST2:第2の工程である定常状態検出工程は、定常状態検出手段4により、鉛蓄電池2の正極21に印加する印加電圧Veと流入電流Aeを増減させ、鉛蓄電池2の負極22からの流出電流Abが流入電流Aeに追従し、かつ流出電流Abが所定の電流Akに到達するときまで継続することによって、満充電の定常状態として定常化する状態を検出する工程となっている。   Stage ST2: The steady state detection step, which is the second step, causes the steady state detection means 4 to increase or decrease the applied voltage Ve and the inflow current Ae applied to the positive electrode 21 of the lead storage battery 2, and from the negative electrode 22 of the lead storage battery 2. This is a process of detecting a state that is steady as a fully charged steady state by continuing until the outflow current Ab follows the inflow current Ae and the outflow current Ab reaches a predetermined current Ak.

ステージST3:第3の工程であるサルフェーション溶解工程は、サルフェーション溶解手段5により、定常状態検出工程にて検出した満充電の定常状態として定常化した状態時の印加電圧Ve及び流入電流Aeにて、所定の時間、サルフェーションにより結晶化した硫化鉛(PbSO4)を溶解させる工程(以下、サルフェーション溶解工程という)となっている。
なお、このサルフェーション溶解工程は、前記式(2)の化学反応式により電極に結晶化された硫酸鉛(PbSO4)が電解液(H2O)24に多量に溶け出す工程である。
Stage ST3: The sulfation dissolution step, which is the third step, is performed with the applied voltage Ve and the inflow current Ae when the sulfation dissolution means 5 is in the steady state as the steady state of the full charge detected in the steady state detection step. This is a step of dissolving lead sulfide (PbSO 4 ) crystallized by sulfation for a predetermined time (hereinafter referred to as sulfation dissolution step).
This sulfation dissolution step is a step in which a large amount of lead sulfate (PbSO 4 ) crystallized on the electrode by the chemical reaction formula of the above formula (2) is dissolved in the electrolytic solution (H 2 O) 24.

次に、以上の各工程を、図5A、図5Bに示す動作フローチャート及び図6示す動作説明図を用いて以下詳細に説明する。尚、図6に示す動作説明図は、時間Tを横軸として、縦軸に、鉛蓄電池2に印加する印加電圧Ve、流入電流Ae及び鉛蓄電池2から流出する流出電流Abの変化をプロットしたものである。   Next, each of the above steps will be described in detail below using the operation flowchart shown in FIGS. 5A and 5B and the operation explanatory diagram shown in FIG. The operation explanatory diagram shown in FIG. 6 plots changes in the applied voltage Ve applied to the lead storage battery 2, the inflow current Ae, and the outflow current Ab flowing out from the lead storage battery 2 on the vertical axis, with the time T as the horizontal axis. Is.

S01:先ず、強制充電工程(ST1)として、強制充電手段3により、再生処理が開始されると、制御部11は、鉛蓄電池2の正極21に印加する印加電圧Ve及び流入電流Aeの初期値を設定する。印加電圧Ve及び流入電流Aeの初期値としては、鉛蓄電池2の両電極に電気的ダメージを与えないように微弱な電圧及び電流とするのがよい。
S02:次に、制御部11は、設定する印加電圧Ve及び流入電流Aeとなるように、信号Vsv及び信号Vsaを電圧供給部13及び電流供給部14にそれぞれ出力し、鉛蓄電池2の正極21に印加電圧Veを印加し流入電流Aeを強制的に流入させる。(タイミングtx0)
S01: First, as the forced charging step (ST1), when the regeneration process is started by the forced charging means 3, the control unit 11 sets initial values of the applied voltage Ve and the inflow current Ae applied to the positive electrode 21 of the lead storage battery 2. Set. The initial values of the applied voltage Ve and the inflow current Ae are preferably weak voltages and currents so as not to cause electrical damage to both electrodes of the lead storage battery 2.
S02: Next, the control unit 11 outputs the signal Vsv and the signal Vsa to the voltage supply unit 13 and the current supply unit 14, respectively, so that the applied voltage Ve and the inflow current Ae are set, and the positive electrode 21 of the lead storage battery 2 is set. The applied voltage Ve is applied to the inflow current Ae forcibly. (Timing tx0)

S03:そして、鉛蓄電池2の負極22からの流出電流Abが流出電流測定部12の抵抗Rsbによる電位降下にて測定され、信号Vsbとして制御部11に送出される。
S04:制御部11は、電流比較部15に対し、鉛蓄電池2への流入電流Aeと鉛蓄電池2からの流出電流Abを比較し、略同じとなっているか否かを判定するよう指示する。この判定は微小な値Δαを定め、|Ae−Ab|<Δαであるか否かの判定をすればよい。
略同じでない場合は、ステップS05に進み、略同じである場合は、制御部11は、電流比較部15に対し、流出電流Abと所定の電流Akを比較し、流出電流Abが所定の電流Akに達しているか否かを判定するよう指示する。所定の電流Akに達していないときは、ステップS05に進む。
S03: The outflow current Ab from the negative electrode 22 of the lead storage battery 2 is measured by the potential drop due to the resistance Rsb of the outflow current measuring unit 12, and sent to the control unit 11 as the signal Vsb.
S04: The control unit 11 instructs the current comparison unit 15 to compare the inflow current Ae to the lead storage battery 2 and the outflow current Ab from the lead storage battery 2 to determine whether or not they are substantially the same. For this determination, a minute value Δα may be determined, and it may be determined whether or not | Ae−Ab | <Δα.
If not substantially the same, the process proceeds to step S05. If substantially the same, the control unit 11 compares the outflow current Ab with the predetermined current Ak to the current comparison unit 15, and the outflow current Ab is the predetermined current Ak. Is instructed to determine whether or not When the predetermined current Ak has not been reached, the process proceeds to step S05.

S05:流出電流Abが所定の電流Akに達していないときは、制御部11は、電圧電流微小値加算部16に対し、印加電圧Ve、流入電流Aeをそれぞれ微小値ΔV、ΔA分加算するよう指示する。その後、再びステップS02に戻る。
そして、制御部11は、新たな印加電圧Veにて流入電流Aeを鉛蓄電池2に流入させ、鉛蓄電池2からの流出電流Abを測定し、ステップS04にて流入電流Aeと流出電流Abが略同じとなり、かつ所定の電流Akに達しているか否かの判定を行うよう指示する。このようにして制御部11は、この動作を流入電流Aeと流出電流Abが略同じで、流出電流Abが所定の電流Akに達するまで繰り返す。
そして、流出電流Abが所定の電流Akに達すると、制御部11は、強制充電工程(ST1)が完了したと判断し、定常状態検出工程(ST2)のステップS06に進む。(タイミングty0)
S05: When the outflow current Ab does not reach the predetermined current Ak, the control unit 11 adds the applied voltage Ve and the inflow current Ae to the voltage / current minute value adding unit 16 by the minute values ΔV and ΔA, respectively. Instruct. Then, it returns to step S02 again.
Then, the control unit 11 causes the inflow current Ae to flow into the lead storage battery 2 at the new applied voltage Ve, measures the outflow current Ab from the lead storage battery 2, and the inflow current Ae and the outflow current Ab are substantially reduced in step S04. It is instructed to determine whether or not the same current Ak has been reached. In this way, the control unit 11 repeats this operation until the inflow current Ae and the outflow current Ab are substantially the same, and the outflow current Ab reaches the predetermined current Ak.
When the outflow current Ab reaches a predetermined current Ak, the control unit 11 determines that the forced charging step (ST1) is completed, and proceeds to step S06 of the steady state detection step (ST2). (Timing ty0)

S06:定常状態検出工程(ST2)では、ステップS02と同様、制御部11は、強制充電工程(ST1)にて設定された印加電圧Ve及び流入電流Aeとなるように、信号Vsv及び信号Vsaを電圧供給部13及び電流供給部14にそれぞれ出力し、鉛蓄電池2の正極21に印加電圧Veを印加し、流入電流Aeを強制的に流入させる。
S07:そして、ステップS03と同様に、鉛蓄電池2の負極22からの流出電流Abが流出電流測定部12の抵抗Rsbによる電位降下にて測定され、信号Vsbとして制御部11に送出される。
S06: In the steady state detection step (ST2), as in step S02, the control unit 11 sets the signal Vsv and the signal Vsa so that the applied voltage Ve and the inflow current Ae set in the forced charging step (ST1) are obtained. It outputs to the voltage supply part 13 and the electric current supply part 14, respectively, applies the applied voltage Ve to the positive electrode 21 of the lead acid battery 2, and flows inflow current Ae forcibly.
S07: As in step S03, the outflow current Ab from the negative electrode 22 of the lead storage battery 2 is measured by the potential drop due to the resistance Rsb of the outflow current measuring unit 12, and is sent to the control unit 11 as the signal Vsb.

S08:次に、制御部11は、電流比較部15に対し、鉛蓄電池2への流入電流Aeと鉛蓄電池2からの流出電流Abを比較し、略同じとなっているか否かを判定するよう指示する。略同じとなっていないときは、ステップS09に進む。
S09:そして、制御部11は、電圧電流微小値加算減算部17に対し、印加電圧Ve、流入電流Aeをそれぞれ微小値ΔV、ΔA分減算するよう指示する。その後、再びステップS06に戻り、新たな印加電圧Veにて流入電流Aeを鉛蓄電池2に流入させ、鉛蓄電池2からの流出電流Abを測定させ、ステップS08にて流入電流Aeと流出電流Abが略同じとなるまで繰り返す。
そして、減少させた印加電圧Ve、流入電流Aeに対し、鉛蓄電池2から流出する流出電流Abが追従し流入電流Aeと略同じになったときは、ステップS10に進む。(タイミングty1)
S08: Next, the control unit 11 compares the inflow current Ae to the lead storage battery 2 and the outflow current Ab from the lead storage battery 2 with respect to the current comparison unit 15, and determines whether or not they are substantially the same. Instruct. If they are not substantially the same, the process proceeds to step S09.
S09: The control unit 11 instructs the voltage / current minute value addition / subtraction unit 17 to subtract the applied voltage Ve and the inflow current Ae by the minute values ΔV and ΔA, respectively. Thereafter, the process returns to step S06 again, and the inflow current Ae is caused to flow into the lead storage battery 2 at the new applied voltage Ve, and the outflow current Ab from the lead storage battery 2 is measured. In step S08, the inflow current Ae and the outflow current Ab are Repeat until almost the same.
When the outflow current Ab flowing out from the lead storage battery 2 follows the decreased applied voltage Ve and inflow current Ae and becomes substantially the same as the inflow current Ae, the process proceeds to step S10. (Timing ty1)

S10:次に、制御部11は、ステップS09にて設定した印加電圧Ve及び流入電流Aeを電圧供給部13及び電流供給部14より出力させ、鉛蓄電池2の正極21に印加電圧Veを印加し流入電流Aeを強制的に流入させる。
S11:そして、鉛蓄電池2の負極22からの流出電流Abが流出電流測定部12の抵抗Rsbによる電位降下にて測定され、信号Vsbとして制御部11に送出される。
S10: Next, the control unit 11 outputs the applied voltage Ve and the inflow current Ae set in step S09 from the voltage supply unit 13 and the current supply unit 14, and applies the applied voltage Ve to the positive electrode 21 of the lead storage battery 2. The inflow current Ae is forcibly introduced.
S11: The outflow current Ab from the negative electrode 22 of the lead storage battery 2 is measured by a potential drop due to the resistance Rsb of the outflow current measuring unit 12, and is sent to the control unit 11 as a signal Vsb.

S12:制御部11は、電流比較部15に対し、鉛蓄電池2への流入電流Aeと鉛蓄電池2からの流出電流Abを比較し、略同じとなっているか否かを判定するよう指示する。略同じとなっていないときは、ステップS13に進む。
S13:そして、制御部11は、電圧電流微小値加算減算部17に対し、印加電圧Ve、流入電流Aeをそれぞれ微小値ΔV、ΔA分加算するよう指示する。その後、再びステップS10に進み、新たな印加電圧Veにて流入電流Aeを鉛蓄電池2に流入させ、鉛蓄電池2からの流出電流Abを測定し、ステップS12にて流入電流Aeと流出電流Abが略同じとなるまで繰り返す。
そして、増加させた印加電圧Ve、流入電流Aeに対し、鉛蓄電池2から流出する流出電流Abが追従し流入電流Aeと略同じになったときはステップS14に進む。(タイミングty2)
S12: The control unit 11 instructs the current comparison unit 15 to compare the inflow current Ae to the lead storage battery 2 and the outflow current Ab from the lead storage battery 2 to determine whether or not they are substantially the same. If they are not substantially the same, the process proceeds to step S13.
S13: The control unit 11 instructs the voltage / current minute value addition / subtraction unit 17 to add the applied voltage Ve and the inflow current Ae by the minute values ΔV and ΔA, respectively. Thereafter, the process proceeds again to step S10, and the inflow current Ae is caused to flow into the lead storage battery 2 at the new applied voltage Ve, and the outflow current Ab from the lead storage battery 2 is measured. In step S12, the inflow current Ae and the outflow current Ab are Repeat until almost the same.
When the outflow current Ab flowing out from the lead storage battery 2 follows the increased applied voltage Ve and inflow current Ae and becomes substantially the same as the inflow current Ae, the process proceeds to step S14. (Timing ty2)

S14:流出電流Abが追従し流入電流Aeと略同じになったときは、制御部11は、電流比較部15に対して、流出電流Abと所定の電流Akを比較し、流出電流Abが所定の電流Akに達しているか否かを判定するよう指示する。所定の電流Akに達していないときは、ステップS06に戻り、同様の動作を行う。
即ち、ステップS06〜S08にて、流出電流Abが流入電流Aeと略同じになるまで印加電圧Ve、流入電流Aeを微小量減少させ、ステップS10〜S13にて流出電流Abが流入電流Aeと略同じになるまで印加電圧Ve、流入電流Aeを微小量増加させる。
S14: When the outflow current Ab follows and becomes substantially the same as the inflow current Ae, the control unit 11 compares the outflow current Ab with a predetermined current Ak to the current comparison unit 15, and the outflow current Ab is predetermined. Is instructed to determine whether or not the current Ak is reached. If the predetermined current Ak has not been reached, the process returns to step S06 and the same operation is performed.
That is, in steps S06 to S08, the applied voltage Ve and the inflow current Ae are decreased by a small amount until the outflow current Ab becomes substantially the same as the inflow current Ae. In steps S10 to S13, the outflow current Ab is substantially the same as the inflow current Ae. The applied voltage Ve and the inflow current Ae are increased by a small amount until they become the same.

そして、流出電流Abが所定の電流Akに達していないときは、ステップS06に戻り、同様の動作を行う。このとき、ステップS06〜S08にて流出電流Abが流入電流Aeと略同じになるタイミングが、タイミングty3、ty5、・・・となり、ステップS10〜S13にて流出電流Abが流入電流Aeと略同じになるタイミングが、タイミングty4、ty6、・・・となる。
そして、流出電流Abが所定の電流Akに達すると、制御部11は、満充電の定常状態となっていると判断し、このときの印加電圧Ve及び流出電流Abを電圧Vk、電流Akとして保持し、次のステージであるサルフェーション溶解工程のステップS15に進む。(タイミングtz0)
If the outflow current Ab does not reach the predetermined current Ak, the process returns to step S06 and the same operation is performed. At this time, the timing at which the outflow current Ab becomes substantially the same as the inflow current Ae in steps S06 to S08 is the timing ty3, ty5,..., And the outflow current Ab is substantially the same as the inflow current Ae in steps S10 to S13. Are the timings ty4, ty6, and so on.
When the outflow current Ab reaches the predetermined current Ak, the control unit 11 determines that the full charge is in a steady state, and holds the applied voltage Ve and the outflow current Ab at this time as the voltage Vk and the current Ak. Then, the process proceeds to step S15 of the sulfation dissolution process which is the next stage. (Timing tz0)

S15:サルフェーション溶解工程(ST3)では、先ず、制御部11は、サルフェーションにより結晶化した硫化鉛(PbSO4)を溶解させる所定の時間として時間Tkを設定し、この時間を時間計測部11cにセットする。尚、通常の鉛蓄電池では、時間Tkは1時間程度とすればよい。 S15: In the sulfation dissolution step (ST3), first, the control unit 11 sets time Tk as a predetermined time for dissolving lead sulfide (PbSO 4 ) crystallized by sulfation, and sets this time in the time measurement unit 11c. To do. In a normal lead-acid battery, the time Tk may be about 1 hour.

S16:そして、定常状態検出工程(ST2)にて満充電の定常状態として保持された電圧Vkを鉛蓄電池2の正極21に印加し、保持された電流Akを流入させ続ける。
S17、S18:そして、制御部11は、時間Tkの経過を判定し、経過していないときは時間計測部11cをカウントアップし、時間Tkが経過し、タイミングtzkとなるまで繰り返す。
S16: The voltage Vk held as a fully charged steady state in the steady state detection step (ST2) is applied to the positive electrode 21 of the lead storage battery 2, and the held current Ak is kept flowing.
S17, S18: Then, the control unit 11 determines the elapse of the time Tk. When the time Tk has not elapsed, the control unit 11 counts up the time measuring unit 11c and repeats until the time Tk elapses and the timing tzk is reached.

以上説明した再生処理は、鉛蓄電池2の定格により異なるが、通常の鉛蓄電池2であれば、2〜3時間程度で強制充電工程、定常状態検出工程及びサルフェーション溶解工程がすべて終了する。そして、本実施の形態に関する鉛蓄電池再生装置1によれば、電極に損傷を与えることなく再生処理を行うことができる。
尚、以上の第1の実施の形態の説明では、印加電圧Ve及び流入電流Aeをそれぞれ微小値ΔV、ΔA分増減させるように説明したが、印加電圧Veについては、一定の電圧とし、流入電流Aeのみを変化させるようにしてもよい。
Although the regeneration process described above varies depending on the rating of the lead storage battery 2, if it is a normal lead storage battery 2, the forced charging process, the steady state detection process, and the sulfation dissolution process are all completed in about 2 to 3 hours. And according to the lead acid battery reproducing | regenerating apparatus 1 regarding this Embodiment, a reproduction | regeneration process can be performed, without damaging an electrode.
In the above description of the first embodiment, the application voltage Ve and the inflow current Ae have been described so as to increase or decrease by the minute values ΔV and ΔA, respectively. However, the application voltage Ve is a constant voltage, and the inflow current Only Ae may be changed.

ところで、通常、鉛蓄電池2には充電中に発生するガスを排気するための排気栓や触媒栓(以下、「排気栓等」という)が備えられており、上記再生処理においても、この排気栓等2aから希硫酸ミストが放出される。この希硫酸ミストは、継続して吸入すると慢性の上気道炎又は気管支炎を起こすなどの有害性がある。
そこで、本願発明者は、再生処理において鉛蓄電池2から放出される希硫酸ミストを除去する鉛蓄電池再生システムを考案した。この鉛蓄電池再生システム100を、図7を用いて以下説明する。
By the way, the lead storage battery 2 is usually provided with an exhaust plug and a catalyst plug (hereinafter referred to as “exhaust plug”, etc.) for exhausting the gas generated during charging. Dilute sulfuric acid mist is released from 2a. This dilute sulfuric acid mist has harmful effects such as chronic upper respiratory tract inflammation or bronchitis if inhaled continuously.
Therefore, the present inventor has devised a lead storage battery regeneration system that removes dilute sulfuric acid mist released from the lead storage battery 2 in the regeneration process. The lead storage battery regeneration system 100 will be described below with reference to FIG.

図7は第1の実施の形態に関する鉛蓄電池再生システムの構成図である。第1の実施の形態に関する鉛蓄電池再生システム100は、鉛蓄電池2を再生処理する前述の鉛蓄電池再生装置1と、再生する鉛蓄電池2と、鉛蓄電池2を密閉する密閉ケース31と、苛性ソーダ水溶液32aを入れた脱硫装置32と、脱硫装置32の空気圧を下げるための吸引ポンプ33からなる。   FIG. 7 is a configuration diagram of the lead-acid battery regeneration system according to the first embodiment. A lead storage battery regeneration system 100 according to the first embodiment includes a lead storage battery regeneration device 1 that regenerates a lead storage battery 2, a lead storage battery 2 to be regenerated, a sealed case 31 that seals the lead storage battery 2, and an aqueous caustic soda solution. It comprises a desulfurization device 32 containing 32a and a suction pump 33 for lowering the air pressure of the desulfurization device 32.

そして、鉛蓄電池再生装置1と鉛蓄電池2間が接続ケーブル25にて接続される。鉛蓄電池2の排気栓等2aから希硫酸ミスト50が放出されるが、密閉ケース31によって密閉されている。密閉ケース31と脱硫装置32は第1のパイプ35によって接続され、第1のパイプ35の一端は密閉ケース31の内部に通じ、第1のパイプ35の他端は脱硫装置32の苛性ソーダ水溶液32a内に通じている。脱硫装置32の苛性ソーダ水溶液32aの上部は空間になっており、第2のパイプ36の一端が当該空間に通じ、第2のパイプ36の他端は吸引ポンプ33に接続された構成となっている。   The lead storage battery regeneration device 1 and the lead storage battery 2 are connected by a connection cable 25. Although dilute sulfuric acid mist 50 is discharged from the exhaust plug 2a and the like of the lead storage battery 2, it is sealed by a sealing case 31. The sealed case 31 and the desulfurization device 32 are connected by a first pipe 35, one end of the first pipe 35 communicates with the inside of the sealed case 31, and the other end of the first pipe 35 is in the caustic soda aqueous solution 32 a of the desulfurization device 32. Leads to. The upper part of the caustic soda aqueous solution 32 a of the desulfurization device 32 is a space, and one end of the second pipe 36 communicates with the space, and the other end of the second pipe 36 is connected to the suction pump 33. .

以上の構成により第1の実施の形態に関する鉛蓄電池再生システム100は以下のように動作する。鉛蓄電池再生装置1は、鉛蓄電池2の再生動作を前述の図5A及び図5Bに示す動作フローチャートに従い、強制充電工程(ST1)、定常状態検出工程(ST2)及びサルフェーション溶解工程(ST3)の順に行う。
このとき、サルフェーションにより鉛蓄電池2の両電極に結晶化し付着した硫化鉛(PbSO4)が電解液に溶け出し、前記式(2)の化学反応式のように希硫酸(H2SO4)が発生し、鉛蓄電池2の排気栓等2aから希硫酸ミスト50が密閉ケース31内に放出される。
With the above configuration, the lead storage battery regeneration system 100 according to the first embodiment operates as follows. The lead storage battery regeneration device 1 performs the regeneration operation of the lead storage battery 2 in the order of the forced charging step (ST1), the steady state detection step (ST2), and the sulfation dissolution step (ST3) in accordance with the operation flowchart shown in FIGS. 5A and 5B. Do.
At this time, lead sulfide (PbSO 4 ) crystallized and adhered to both electrodes of the lead storage battery 2 by sulfation dissolves into the electrolyte solution, and dilute sulfuric acid (H 2 SO 4 ) is converted into the chemical reaction formula of the above formula (2). The dilute sulfuric acid mist 50 is discharged into the sealed case 31 from the exhaust plug 2a or the like of the lead storage battery 2.

そして、吸引ポンプ33を起動すると、第2のパイプ36を経由して脱硫装置32の上部空間の空気が吸引され空気圧が減少する。すると、密閉ケース31内の希硫酸ミスト50が第1のパイプ35を経由して脱硫装置32内に吸引され、気泡51となる。
そして、気泡51内の希硫酸(H2SO4)と脱硫装置32内の苛性ソーダ水溶液32a(NaOH)との化学反応により式(3)の化学反応式により無害の硫化ナトリウムと水に分解され、脱硫装置32内の水溶液に溶解する。
H2SO4 + 2NaOH → Na2SO4 + 2H2O (3)
その結果、有害な希硫酸ミスト50が除去され、脱硫装置32上部には空気のみが残り、この空気が排出ガス52として吸引ポンプ33より排出される。
When the suction pump 33 is activated, the air in the upper space of the desulfurizer 32 is sucked through the second pipe 36 and the air pressure decreases. Then, the dilute sulfuric acid mist 50 in the sealed case 31 is sucked into the desulfurization device 32 via the first pipe 35 and becomes bubbles 51.
Then, the chemical reaction of dilute sulfuric acid (H 2 SO 4 ) in the bubble 51 and the aqueous caustic soda solution 32a (NaOH) in the desulfurizer 32 is decomposed into harmless sodium sulfide and water by the chemical reaction formula (3). Dissolves in the aqueous solution in the desulfurizer 32.
H 2 SO 4 + 2NaOH → Na 2 SO 4 + 2H 2 O (3)
As a result, harmful dilute sulfuric acid mist 50 is removed, and only air remains in the upper part of the desulfurization device 32, and this air is discharged from the suction pump 33 as the exhaust gas 52.

図8A乃至図8Cは、第1の実施の形態に関する鉛蓄電池再生装置のテスト機の試験結果表である。本実施の形態を適用した鉛蓄電池再生装置1はテスト機としての1号機から5号機である。試験結果表のバッテリーサイズ欄は試験対象にしたバッテリーを示し、通常の車載用バッテリーサイズである。試験項目欄の項目は、電圧(V)、容量(A)(CCAともいう)及び比重の3項目である。テスト機は、当該3項目の測定値が測定可能である。なお。CCAとは、コールドクランキングアンペア―の略で、鉛バッテリーが持つ固有の性能基準値である。   8A to 8C are test result tables of the test machine of the lead storage battery regeneration device according to the first embodiment. The lead storage battery regeneration device 1 to which this embodiment is applied is No. 1 to No. 5 as test machines. The battery size column in the test result table indicates the battery to be tested, and is a normal vehicle battery size. The items in the test item column are three items: voltage (V), capacity (A) (also referred to as CCA), and specific gravity. The test machine can measure the measurement values of the three items. Note that. CCA is an abbreviation for cold cranking ampere, and is a performance standard value unique to lead batteries.

初期データ欄の数値は、使用できなくなった車載用バッテリーについて、テスト機による再生動作を行う前の前記3項目の測定値である。試験結果欄の数値は、試験後の前記3項目の測定値である。試験時間欄の時間は第1の実施の形態に関する動作を示す図5のフローチャートの再生処理開始から、同じく再生処理終了までの時間である。   The numerical values in the initial data column are the measured values of the three items before performing the reproduction operation by the test machine for the in-vehicle battery that can no longer be used. The numerical values in the test result column are measured values of the three items after the test. The time in the test time column is the time from the start of the reproduction process to the end of the reproduction process in the flowchart of FIG. 5 showing the operation relating to the first embodiment.

判定結果とは、前記3項目の試験項目について、JIS(日本工業規格)に規定された値を超えたかどうかを示し、超えた場合にはその項目に「○」を記載した。具体的には、JISによると電圧(V)はバッテリーサイズにかかわらず12.7以上であることが必要である。容量(A)はバッテリーサイズにより異なるが、例えばバッテリーサイズ「40」の場合は275であることが必要である。比重は1.27以上であることが必要である。備考欄の「再生完了」とは試験項目欄の3項目がすべてJISの規定に適合した場合に記載した。図8A乃至図8Cの試験結果表に示したように試験対象とした全てのバッテリーについてJISの規定に適合し、再生が完了したことが分かる。   The determination result indicates whether or not the test item of the three items exceeded the value specified in JIS (Japanese Industrial Standard), and when it exceeded, “◯” was described in the item. Specifically, according to JIS, the voltage (V) needs to be 12.7 or more regardless of the battery size. The capacity (A) varies depending on the battery size. For example, in the case of the battery size “40”, the capacity (A) needs to be 275. The specific gravity needs to be 1.27 or more. “Regeneration completed” in the remarks column is described when all three items in the test item column conform to JIS regulations. As shown in the test result tables of FIGS. 8A to 8C, it can be seen that all the batteries to be tested conform to the JIS regulations and the regeneration is completed.

以上詳細に述べたように第1の実施の形態に関する鉛蓄電池再生装置1によれば、所定の電流Akに達するまで徐々に鉛蓄電池2への流入電流Ae及び印加電圧Veを増加させて充電する強制充電手段3と、鉛蓄電池2への流入電流Ae及び印加電圧Veを増減させて満充電の定常状態を検出する定常状態検出手段4と、所定の時間、サルフェーションにより結晶化した硫化鉛を溶解させるサルフェーション溶解手段5とを備えて、電極に損傷を与えることなく鉛蓄電池2を再生するようにしたので、鉛蓄電池2の寿命を短くすることなく、短時間に鉛蓄電池2を再生することができる。   As described in detail above, according to the lead-acid battery regeneration device 1 according to the first embodiment, charging is performed by gradually increasing the inflow current Ae and the applied voltage Ve to the lead-acid battery 2 until the predetermined current Ak is reached. Forced charging means 3, steady state detecting means 4 for detecting a steady state of full charge by increasing / decreasing the inflow current Ae and applied voltage Ve to the lead storage battery 2, and dissolving lead sulfide crystallized by sulfation for a predetermined time Since the sulfation dissolution means 5 is provided and the lead storage battery 2 is regenerated without damaging the electrodes, the lead storage battery 2 can be regenerated in a short time without shortening the life of the lead storage battery 2. it can.

また、再生する鉛蓄電池2に接続され鉛蓄電池2を再生処理する鉛蓄電池再生装置1と、鉛蓄電池2を密閉する密閉ケース31と、発生した希硫酸ミストを苛性ソーダにより分解する脱硫装置32と、脱硫装置32を減圧する吸引ポンプ33とを備え、密閉ケース31と脱硫装置32と吸引ポンプ33の間をパイプで連結して吸引ポンプ33の駆動により希硫酸ミストを除去するようにしたので、再生の過程において鉛蓄電池2より発生する有害な希硫酸ミスト50を除去することができる。   A lead storage battery regeneration device 1 connected to the regenerative lead storage battery 2 for reprocessing the lead storage battery 2, a sealed case 31 for sealing the lead storage battery 2, a desulfurization device 32 for decomposing the generated dilute sulfuric acid mist with caustic soda, A suction pump 33 for reducing the pressure of the desulfurization device 32 is provided. The sealed case 31, the desulfurization device 32, and the suction pump 33 are connected by a pipe, and the suction pump 33 is driven to remove dilute sulfuric acid mist. The harmful dilute sulfuric acid mist 50 generated from the lead storage battery 2 in the process can be removed.

(第2の実施の形態)
第2の実施の形態に関する鉛蓄電池再生装置61は、再生処理に際して発生する有害な希硫酸ミスト50の量に応じて鉛蓄電池再生システム200の吸引ポンプ63の吸引力を変化させることができる構成としている。
図9は、第2の実施の形態に関する鉛蓄電池再生装置の構成図であり、図10は第2の実施の形態に関する鉛蓄電池再生システムの構成図であり、図11は第2の実施の形態に関する鉛蓄電池再生システムの動作説明図である。ここで、図11は、横軸を時間Tとし、縦軸に鉛蓄電池再生装置61の制御部11から送信される吸引ポンプ制御信号Ps及び吸引ポンプ63の吸引力Fexをプロットしたものである。
(Second Embodiment)
The lead storage battery regeneration device 61 according to the second embodiment is configured to change the suction force of the suction pump 63 of the lead storage battery regeneration system 200 according to the amount of harmful dilute sulfuric acid mist 50 generated during the regeneration process. Yes.
FIG. 9 is a configuration diagram of a lead storage battery regeneration device according to the second embodiment, FIG. 10 is a configuration diagram of a lead storage battery regeneration system according to the second embodiment, and FIG. 11 is a second embodiment. It is operation | movement explanatory drawing of the lead storage battery reproduction | regeneration system regarding. Here, FIG. 11 plots the suction pump control signal Ps transmitted from the control unit 11 of the lead storage battery regeneration device 61 and the suction force Fex of the suction pump 63 on the horizontal axis with time T as the horizontal axis.

図9に示したように、第2の実施の形態に関する鉛蓄電池再生装置61は、制御部11にて吸引ポンプ63の吸引力を制御する制御信号Psを生成し、生成した制御信号Psを吸引ポンプ63に送出する端子1qを設けた構成となっている。
この制御信号Psは、強制充電手段3、定常状態検出手段4及びサルフェーション溶解手段5による再生工程、即ち、強制充電工程(ST1)、定常状態検出工程(ST2)及びサルフェーション溶解工程(ST3)に応じた制御信号となる。その他の構成は、図1及び図2にて説明した第1の実施の形態に関する鉛蓄電池再生装置1の構成と同様であるので、簡略化のために同様の構成についてはその詳細な説明を省略する
As shown in FIG. 9, the lead-acid battery regeneration device 61 according to the second embodiment generates a control signal Ps for controlling the suction force of the suction pump 63 by the control unit 11, and sucks the generated control signal Ps. A terminal 1 q for sending to the pump 63 is provided.
This control signal Ps corresponds to the regeneration process by the forced charging means 3, the steady state detecting means 4 and the sulfation dissolution means 5, that is, the forced charging process (ST1), the steady state detection process (ST2) and the sulfation dissolution process (ST3). Control signal. The other configuration is the same as the configuration of the lead storage battery regeneration device 1 related to the first embodiment described with reference to FIGS. 1 and 2, and thus detailed description of the same configuration is omitted for the sake of brevity. Do

また、第2の実施の形態に関する鉛蓄電池再生システム200は、図10に示したように、吸引ポンプ63に端子1zを備え、鉛蓄電池再生装置61の端子1qと吸引ポンプ63の端子1z間を接続コード26にて接続することにより、鉛蓄電池再生装置61の制御部11からの吸引ポンプ制御信号Psを送信できるようになっている。その他の構成は、図7に示した第1の実施の形態に関する鉛蓄電池再生システム100の構成と同様であるので、簡略化のために同様の構成についてはその詳細な説明を省略する。   Moreover, as shown in FIG. 10, the lead storage battery regeneration system 200 according to the second embodiment includes the terminal 1z in the suction pump 63, and the space between the terminal 1q of the lead storage battery regeneration device 61 and the terminal 1z of the suction pump 63. By connecting with the connection cord 26, the suction pump control signal Ps from the control unit 11 of the lead storage battery regeneration device 61 can be transmitted. Since the other configuration is the same as the configuration of the lead storage battery regeneration system 100 according to the first embodiment shown in FIG. 7, the detailed description of the same configuration is omitted for the sake of brevity.

以上の構成により、第2の実施の形態に関する鉛蓄電池再生装置61及び鉛蓄電池再生システム200は以下のように動作する。この動作を第1の実施の形態において説明した強制充電工程(ST1)、定常状態検出工程(ST2)、サルフェーション溶解工程(ST3)の順に説明する。
ステージST1:まず、鉛蓄電池再生装置61の制御部11が、再生する鉛蓄電池2の最初の再生工程である強制充電工程を開始する。この工程においても、正極21及び負極22に生成された硫化鉛(PbSO4)が電解液に溶け出し、微量ではあるが、前記式(2)の化学反応式のように希硫酸(H2SO4)が発生し、鉛蓄電池2の排気栓等2aから希硫酸ミスト50が密閉ケース31内に放出される。
With the above configuration, the lead storage battery regeneration device 61 and the lead storage battery regeneration system 200 according to the second embodiment operate as follows. This operation will be described in the order of the forced charging step (ST1), the steady state detection step (ST2), and the sulfation dissolution step (ST3) described in the first embodiment.
Stage ST1: First, the control unit 11 of the lead storage battery regeneration device 61 starts a forced charging process which is the first regeneration process of the lead storage battery 2 to be regenerated. Also in this step, lead sulfide (PbSO 4 ) produced in the positive electrode 21 and the negative electrode 22 dissolves into the electrolyte, and although it is in a very small amount, dilute sulfuric acid (H 2 SO 2) as in the chemical reaction formula of the above formula (2). 4 ) occurs, and dilute sulfuric acid mist 50 is discharged into the sealed case 31 from the exhaust plug 2a of the lead storage battery 2 and the like.

このとき、図11に示したように、強制充電工程(ST1)の開始のタイミングに合わせて、制御部11から吸引ポンプ制御信号Ps1を吸引ポンプ63に送信し、吸引ポンプ63を起動し、吸引力Fex1を発生させる。
すると、第2のパイプ36に接続された脱硫装置32の上部空間の空気圧が減少し、密閉ケース31内の希硫酸ミスト50を吸引し、第1のパイプ35を経由して脱硫装置32内に気泡51が発生し始める。
At this time, as shown in FIG. 11, the suction pump control signal Ps1 is transmitted from the control unit 11 to the suction pump 63 in synchronization with the start timing of the forced charging step (ST1), the suction pump 63 is started, and suction is performed. The force Fex1 is generated.
Then, the air pressure in the upper space of the desulfurization device 32 connected to the second pipe 36 is reduced, and the diluted sulfuric acid mist 50 in the sealed case 31 is sucked into the desulfurization device 32 via the first pipe 35. Bubbles 51 begin to be generated.

そして、気泡51内の希硫酸(H2SO4)と脱硫装置32内の苛性ソーダ水溶液(NaOH)32aとの化学反応により前述式(3)の化学反応式により無害の硫化ナトリウムと水に分解され、脱硫装置32内の水溶液に溶解する。
その結果、有害成分は除去され、吸引ポンプ63より排出される排出ガス52には、有害な成分はほとんど含まれない。また、強制充電工程(ST1)では発生する希硫酸ミスト50は比較的少なく、この発生量に応じた低い吸引力Fex1にて吸引するので、無駄な電力も発生しない。
Then, by the chemical reaction between the dilute sulfuric acid (H 2 SO 4 ) in the bubble 51 and the caustic soda aqueous solution (NaOH) 32a in the desulfurizer 32, it is decomposed into harmless sodium sulfide and water by the chemical reaction formula of the above formula (3). And dissolved in the aqueous solution in the desulfurization apparatus 32.
As a result, harmful components are removed, and the exhaust gas 52 discharged from the suction pump 63 contains almost no harmful components. Further, in the forced charging step (ST1), the dilute sulfuric acid mist 50 generated is relatively small, and suction is performed with a low suction force Fex1 corresponding to the generated amount, so that no wasteful power is generated.

ステージST2:そして、強制充電工程(ST1)が終了すると、鉛蓄電池再生装置61の制御部11は次の定常状態検出工程(ST2)に移行する。この工程においては、サルフェーションにより正極21及び負極22に結晶化して付着した硫化鉛(PbSO4)も電解液に溶け出し、微量ではあるが、強制充電工程(ST1)より多くの希硫酸(H2SO4)が発生し、鉛蓄電池2の排気栓等2aから希硫酸ミスト50が密閉ケース31内に放出される。 Stage ST2: When the forced charging step (ST1) ends, the control unit 11 of the lead-acid battery regeneration device 61 proceeds to the next steady state detection step (ST2). In this step, lead sulfide (PbSO 4 ) crystallized and adhered to the positive electrode 21 and the negative electrode 22 by sulfation also dissolves in the electrolyte, and although it is in a small amount, more dilute sulfuric acid (H 2 ) than in the forced charging step (ST1). SO 4 ) is generated, and the dilute sulfuric acid mist 50 is discharged into the sealed case 31 from the exhaust plug 2 a of the lead storage battery 2.

このとき、図11に示したように、制御部11から吸引ポンプ制御信号Ps1よりやや高いレベルのPs2を吸引ポンプ63に送信し、吸引ポンプ63を駆動し、吸引力Fex2を発生させる。
すると、脱硫装置32の上部空間の空気圧がさらに減少し、密閉ケース31内の希硫酸ミスト50を強く吸引し、第1のパイプ35を経由して脱硫装置32内に気泡51がさらに発生する。そして、気泡51内の希硫酸(H2SO4)と脱硫装置32内の苛性ソーダ水溶液(NaOH)32aとの化学反応により上記式(3)の化学反応式により無害の硫化ナトリウム(Na2SO4)と水(H2O)に分解し、脱硫装置33内の水溶液に溶解する。
At this time, as shown in FIG. 11, the control unit 11 transmits Ps2 of a slightly higher level than the suction pump control signal Ps1 to the suction pump 63, drives the suction pump 63, and generates the suction force Fex2.
Then, the air pressure in the upper space of the desulfurization device 32 is further reduced, the diluted sulfuric acid mist 50 in the sealed case 31 is strongly sucked, and bubbles 51 are further generated in the desulfurization device 32 via the first pipe 35. Then, harmless sodium sulfide (Na 2 SO 4 ) is obtained by the chemical reaction of the above formula (3) by the chemical reaction between the dilute sulfuric acid (H 2 SO 4 ) in the bubbles 51 and the aqueous caustic soda solution (NaOH) 32 a in the desulfurizer 32. ) And water (H 2 O) and dissolved in the aqueous solution in the desulfurization apparatus 33.

その結果、有害成分は除去され、吸引ポンプ63より排出される排出ガス52には、有害な成分はほとんど含まれない。また、定常状態検出工程(ST2)において発生する希硫酸ミスト50の発生量に応じた吸引力Fex2にて吸引するので、無駄な電力も発生しない。   As a result, harmful components are removed, and the exhaust gas 52 discharged from the suction pump 63 contains almost no harmful components. Moreover, since it attracts | sucks with the attraction | suction force Fex2 according to the generation amount of the diluted sulfuric acid mist 50 generate | occur | produced in a steady state detection process (ST2), useless electric power does not generate | occur | produce.

ステージST3:そして、定常状態検出工程(ST2)が終了すると、鉛蓄電池再生装置61の制御部11は、サルフェーション溶解工程(ST3)に移行する。サルフェーションにより正極21及び負極22に結晶化して付着した硫化鉛(PbSO4)が多量に電解液に溶け出し、強制充電工程(ST1)及び定常状態検出工程(ST2)よりさらに多量に、希硫酸(H2SO4)が発生し、鉛蓄電池2の排気栓等2aから希硫酸ミスト50が密閉ケース31内に放出される。
このとき、図11に示したように、制御部11から吸引ポンプ制御信号Ps1又はPs2より高いレベルの吸引ポンプ制御信号Ps3を吸引ポンプ63に送信し、吸引ポンプ63を駆動し、高い吸引力Fex3を発生させる。
Stage ST3: When the steady state detection step (ST2) is completed, the control unit 11 of the lead-acid battery regeneration device 61 proceeds to the sulfation dissolution step (ST3). A large amount of lead sulfide (PbSO 4 ) crystallized and adhered to the positive electrode 21 and the negative electrode 22 by sulfation is dissolved in the electrolyte solution, and more dilute sulfuric acid (ST1) and a steady state detection step (ST2) than dilute sulfuric acid (ST2). H 2 SO 4 ) is generated, and the dilute sulfuric acid mist 50 is discharged into the sealed case 31 from the exhaust plug 2 a of the lead storage battery 2.
At this time, as shown in FIG. 11, the suction pump control signal Ps3 having a level higher than the suction pump control signal Ps1 or Ps2 is transmitted from the control unit 11 to the suction pump 63, the suction pump 63 is driven, and the high suction force Fex3 Is generated.

すると、脱硫装置32の空気圧が大幅に減少し、密閉ケース31内の空気及び多量に発生する希硫酸ミスト50を強力に吸引し、第1のパイプ35を経由して脱硫装置32内に気泡51がさらに発生する。そして、気泡51内の希硫酸(H2SO4)と脱硫装置32内の苛性ソーダ水溶液(NaOH)32aとの化学反応により、無害の硫化ナトリウム(Na2SO4)と水(H2O)に分解し、脱硫装置33内の水溶液に溶解する。
その結果、サルフェーション溶解工程(ST3)において発生する多量の希硫酸ミスト50を高い吸引力Fex3にて吸引するので、有害成分は除去され、吸引ポンプ63より排出される排出ガス52には、有害な成分はほとんど含まれない。
Then, the air pressure of the desulfurization device 32 is significantly reduced, and the air in the sealed case 31 and the dilute sulfuric acid mist 50 generated in a large amount are strongly sucked, and bubbles 51 are introduced into the desulfurization device 32 via the first pipe 35. Further occurs. Then, harmless sodium sulfide (Na 2 SO 4 ) and water (H 2 O) are formed by a chemical reaction between the dilute sulfuric acid (H 2 SO 4 ) in the bubbles 51 and the sodium hydroxide aqueous solution (NaOH) 32 a in the desulfurizer 32. It is decomposed and dissolved in the aqueous solution in the desulfurizer 33.
As a result, since a large amount of dilute sulfuric acid mist 50 generated in the sulfation dissolution step (ST3) is sucked with a high suction force Fex3, harmful components are removed and harmful to the exhaust gas 52 discharged from the suction pump 63. Contains almost no ingredients.

尚、以上の説明では、強制充電工程(ST1)にて、一定の吸引ポンプ制御信号Ps1、一定の吸引力Fex1にて吸引を行うように説明したが、強制充電工程(ST1)では、徐々に希硫酸ミスト50が増加するため、この増加に合わせて、破線で示した吸引ポンプ制御信号Ps1*、吸引力Fex1*などのように変化させて吸引力を発生させるようにしてもよい。   In the above description, in the forced charging step (ST1), the suction is performed with the constant suction pump control signal Ps1 and the constant suction force Fex1, but in the forced charging step (ST1), the suction is gradually performed. Since the dilute sulfuric acid mist 50 increases, the suction force may be generated by changing the suction pump control signal Ps1 *, the suction force Fex1 *, etc., indicated by the broken line in accordance with the increase.

以上詳細に述べたように第2の実施の形態に関する鉛蓄電池再生装置61及び鉛蓄電池再生システム200によれば、鉛蓄電池再生装置61の再生処理を開始するタイミングと吸引ポンプ63の起動を同期させ、強制充電工程(ST1)、定常状態検出工程(ST2)及びサルフェーション溶解工程(ST3)において発生する希硫酸ミストの量に応じて吸引ポンプ63の吸引力を制御するようにしたので、第1の実施の形態に関する鉛蓄電池再生装置及び鉛蓄電池再生システム効果に加え、無駄に吸引ポンプ63を駆動することがなく効率よく希硫酸ミストを除去することができる。   As described in detail above, according to the lead storage battery regeneration device 61 and the lead storage battery regeneration system 200 according to the second embodiment, the timing of starting the regeneration process of the lead storage battery regeneration device 61 and the start of the suction pump 63 are synchronized. Since the suction force of the suction pump 63 is controlled according to the amount of dilute sulfuric acid mist generated in the forced charging step (ST1), steady state detection step (ST2) and sulfation dissolution step (ST3), the first In addition to the effects of the lead storage battery regeneration device and the lead storage battery regeneration system according to the embodiment, the dilute sulfuric acid mist can be efficiently removed without wastefully driving the suction pump 63.

一般的にバッテリーの再生は、新品のバッテリーと同じ状態(物理的、化学的に同じ状態)に戻すことをいう。本発明でいうバッテリーの再生とは、新品とほぼ同等の性能を取り戻すことをいう。本発明の再生処理後は化学的に若干変化しているが、測定値としては新品と同じ値になっている。従って、本発明はバッテリーの蘇生と同義であるとも解釈できる。   In general, battery regeneration means returning to the same state (physically and chemically the same state) as a new battery. The battery regeneration in the present invention refers to recovering almost the same performance as a new product. Although there is a slight chemical change after the regeneration treatment of the present invention, the measured value is the same as that of a new product. Therefore, it can be interpreted that the present invention is synonymous with battery resuscitation.

1 鉛蓄電池再生装置
2 鉛蓄電池
3 強制充電手段
4 定常状態検出手段
5 サルフェーション溶解手段
11 制御部
12 流出電流測定部
13 電圧供給部
14 電流供給部
15 電流比較部
16 電圧電流微小値加算部
17 電圧電流微小値加算減算部
31 密閉ケース
32 脱硫装置
32a 苛性ソーダ水溶液
33 吸引ポンプ
ST1 強制充電工程
ST2 定常状態検出工程
ST3 サルフェーション溶解工程
Ps 吸引ポンプ制御信号
DESCRIPTION OF SYMBOLS 1 Lead storage battery regeneration apparatus 2 Lead storage battery 3 Forced charging means 4 Steady state detection means 5 Sulfation dissolution means 11 Control part 12 Outflow current measurement part 13 Voltage supply part 14 Current supply part 15 Current comparison part 16 Voltage current minute value addition part 17 Voltage Current minute value addition / subtraction unit 31 Sealed case 32 Desulfurization device 32a Caustic soda aqueous solution 33 Suction pump ST1 Forced charging process ST2 Steady state detection process ST3 Sulfation dissolution process Ps Suction pump control signal

Claims (13)

再生する鉛蓄電池への流入電流及び印加電圧を制御して鉛蓄電池を再生する鉛蓄電池再生装置であって、
前記鉛蓄電池からの流出電流が所定の電流に達するまで徐々に前記流入電流及び前記印加電圧を増加させて充電する強制充電手段と、前記流入電流及び前記印加電圧を増加及び減少させて満充電の定常状態を検出する定常状態検出手段と、前記定常状態検出時の前記流入電流及び前記印加電圧にて、サルフェーションにより生じた結晶を溶解するサルフェーション溶解手段とを備えたことを特徴とする鉛蓄電池再生装置。
A lead-acid battery regeneration device for regenerating a lead-acid battery by controlling an inflow current and an applied voltage to the lead-acid battery to be regenerated,
Forced charging means for gradually increasing the inflow current and the applied voltage until the outflow current from the lead storage battery reaches a predetermined current, and charging and charging the inflow current and the applied voltage by increasing and decreasing the full current. A lead-acid battery regeneration comprising: steady state detection means for detecting a steady state; and sulfation dissolution means for dissolving crystals generated by sulfation with the inflow current and the applied voltage at the time of detection of the steady state apparatus.
前記強制充電手段は、前記流出電流を測定する流出電流測定部と、再生する鉛蓄電池への前記流入電流を供給する電流供給部と、前記印加電圧を供給する電圧供給部と、前記流入電流と前記流出電流を比較し略同じとなっているか否かの判定及び前記流出電流が所定の電流に達したか否かの判定を行う電流比較部と、前記電流比較部による判定結果に基づき前記流入電流及び前記印加電圧をそれぞれ微小値分加算する電圧電流微小値加算部とを備えたことを特徴とする請求項1記載の鉛蓄電池再生装置。   The forced charging means includes an outflow current measuring unit that measures the outflow current, a current supply unit that supplies the inflow current to the lead storage battery to be regenerated, a voltage supply unit that supplies the applied voltage, and the inflow current. Comparing the outflow currents to determine whether they are substantially the same and determining whether the outflow current has reached a predetermined current, and the inflow based on the determination result by the current comparison unit The lead-acid battery regeneration device according to claim 1, further comprising a voltage / current minute value adding unit that adds a current and the applied voltage by a minute value. 前記定常状態検出手段は、前記流出電流を測定する流出電流測定部と、再生する鉛蓄電池への前記流入電流を供給する電流供給部と、前記印加電圧を供給する電圧供給部と、前記流入電流と前記流出電流を比較し略同じとなっているか否かの判定及び前記流出電流が所定の電流に達したか否かの判定を行う電流比較部と、前記電流比較部による判定結果に基づき前記流入電流及び前記印加電圧をそれぞれ微小値分加算又は減算する電圧電流微小値加算減算部とを備えたことを特徴とする請求項1記載の鉛蓄電池再生装置。   The steady state detection means includes an outflow current measuring unit that measures the outflow current, a current supply unit that supplies the inflow current to the lead storage battery to be regenerated, a voltage supply unit that supplies the applied voltage, and the inflow current. And comparing the outflow current and determining whether or not the outflow current is substantially the same and determining whether or not the outflow current has reached a predetermined current, and based on the determination result by the current comparison unit The lead-acid battery regeneration device according to claim 1, further comprising a voltage / current minute value addition / subtraction unit that adds or subtracts the inflow current and the applied voltage by a minute value. 前記サルフェーション溶解手段は、再生する鉛蓄電池への前記流入電流を供給する電流供給部と、前記印加電圧を供給する電圧供給部と、サルフェーションにより生じた結晶の溶解を行う時間を計測する時間計測手段とを備えたことを特徴とする請求項1記載の鉛蓄電池再生装置。   The sulfation dissolution means includes a current supply unit that supplies the inflow current to the lead storage battery to be regenerated, a voltage supply unit that supplies the applied voltage, and a time measurement unit that measures the time for melting the crystals generated by the sulfation. The lead-acid battery regeneration device according to claim 1, comprising: 前記所定の電流は、前記鉛蓄電池が受け入れることができる最大電流としたことを特徴とする請求項1乃至4いずれか一記載の鉛電池再生装置。   The lead-acid battery regenerating apparatus according to any one of claims 1 to 4, wherein the predetermined current is a maximum current that can be accepted by the lead-acid battery. 前記鉛蓄電池再生装置は、前記強制充電手段、前記定常状態検出手段及び前記サルフェーション溶解手段による再生工程に応じた制御信号を出力するようにしたことを特徴とする請求項1乃至4いずれか一記載の鉛電池再生装置。   The lead acid battery regeneration device outputs a control signal according to a regeneration process by the forced charging means, the steady state detection means, and the sulfation dissolution means. Lead battery regenerator. 再生処理により鉛蓄電池から希硫酸ミストが発生する鉛蓄電池再生システムにおいて、 再生する前記鉛蓄電池に接続され前記鉛蓄電池を再生処理する鉛蓄電池再生装置と、
前記鉛蓄電池を密閉する密閉ケースと、
前記発生した希硫酸ミストを苛性ソーダにより分解する脱硫装置と、
該脱硫装置を減圧する吸引ポンプとを備え、
前記密閉ケースと脱硫装置と吸引ポンプ間をパイプで連結し、前記吸引ポンプの駆動により前記希硫酸ミストを除去するようにしたことを特徴とする鉛蓄電池再生システム。
In a lead storage battery regeneration system in which dilute sulfuric acid mist is generated from a lead storage battery by a regeneration process, a lead storage battery regeneration device connected to the lead storage battery to be regenerated and regenerating the lead storage battery
A sealed case for sealing the lead acid battery;
A desulfurization apparatus for decomposing the generated dilute sulfuric acid mist with caustic soda;
A suction pump for depressurizing the desulfurization device,
A lead storage battery regeneration system, wherein the sealed case, the desulfurization device, and the suction pump are connected by a pipe, and the diluted sulfuric acid mist is removed by driving the suction pump.
前記鉛蓄電池再生装置は、請求項1乃至4いずれか一記載の鉛電池再生装置であって、
前記制御信号に基づいて前記吸引ポンプの吸引力を変化させるようにしたことを特徴とする請求項7記載の鉛蓄電池再生システム。
The lead-acid battery regeneration device is the lead-acid battery regeneration device according to any one of claims 1 to 4,
8. The lead-acid battery regeneration system according to claim 7, wherein the suction force of the suction pump is changed based on the control signal.
前記吸引力は、サルフェーションにより生じた結晶の溶解を行うサルフェーション溶解手段による再生工程にて最大となるようにしたことを特徴とする請求項8記載の鉛電池再生システム。   9. The lead battery regeneration system according to claim 8, wherein the suction force is maximized in a regeneration step by a sulfation dissolution means for dissolving crystals generated by sulfation. 再生する鉛蓄電池への流入電流及び印加電圧を制御して鉛蓄電池を再生する鉛蓄電池再生方法であって、
前記鉛蓄電池からの流出電流が所定の電流に達するまで徐々に前記流入電流及び前記印加電圧を増加させて充電する強制充電工程と、
前記流入電流及び前記印加電圧を増加及び減少させて満充電の定常状態を検出する定常状態検出工程と、
前記定常状態の検出時の前記流入電流及び前記印加電圧にて、サルフェーションにより生じた結晶を溶解するサルフェーション溶解工程を含むことを特徴とする鉛蓄電池再生方法。
A lead storage battery regeneration method for regenerating a lead storage battery by controlling an inflow current and an applied voltage to the regenerative lead storage battery,
A forced charging step of charging by gradually increasing the inflow current and the applied voltage until an outflow current from the lead storage battery reaches a predetermined current; and
A steady state detecting step of increasing and decreasing the inflow current and the applied voltage to detect a steady state of full charge;
A method for regenerating a lead-acid battery, comprising a sulfation dissolution step of dissolving a crystal generated by sulfation with the inflow current and the applied voltage at the time of detecting the steady state.
前記強制充電工程は、前記流出電流を測定する流出電流測定工程と、再生する鉛蓄電池への前記流入電流を供給する電流供給工程と、前記印加電圧を供給する電圧供給工程と、前記流入電流と前記流出電流を比較し略同じとなっているか否かの判定及び前記流出電流が所定の電流に達したか否かの判定を行う電流比較工程と、前記電流比較部による判定結果に基づき前記流入電流及び前記印加電圧をそれぞれ微小値分加算する電圧電流微小値加算工程とを含むことを特徴とする請求項10記載の鉛蓄電池再生方法。   The forced charging step includes an outflow current measuring step for measuring the outflow current, a current supply step for supplying the inflow current to the lead storage battery to be regenerated, a voltage supply step for supplying the applied voltage, and the inflow current. A current comparison step of comparing whether or not the outflow currents are substantially the same and determining whether or not the outflow current has reached a predetermined current; and the inflow based on a determination result by the current comparison unit The lead-acid battery regeneration method according to claim 10, further comprising a voltage / current minute value adding step of adding a current and the applied voltage by a minute value. 前記定常状態検出工程は、前記流出電流を測定する流出電流測定工程と、再生する鉛蓄電池への前記流入電流を供給する電流供給工程と、前記印加電圧を供給する電圧供給工程と、前記流入電流と前記流出電流を比較し略同じとなっているか否かの判定及び前記流出電流が所定の電流に達したか否かの判定を行う電流比較工程と、前記電流比較部による判定結果に基づき前記流入電流及び前記印加電圧をそれぞれ微小値分加算又は減算する電圧電流微小値加算減算工程とを含むことを特徴とする請求項10記載の鉛蓄電池再生方法。   The steady state detection step includes an outflow current measurement step for measuring the outflow current, a current supply step for supplying the inflow current to the lead acid battery to be regenerated, a voltage supply step for supplying the applied voltage, and the inflow current. And comparing the outflow current and determining whether or not the outflow current is substantially the same and determining whether or not the outflow current has reached a predetermined current, and based on the determination result by the current comparison unit, The lead-acid battery regeneration method according to claim 10, further comprising a voltage / current minute value addition / subtraction step of adding or subtracting the inflow current and the applied voltage by a minute value. 前記サルフェーション溶解工程は、再生する鉛蓄電池への前記流入電流を供給する電流供給工程と、前記印加電圧を供給する電圧供給工程と、サルフェーションにより生じた結晶の溶解を行う時間を計測する時間計測工程とを含むことを特徴とする請求項10記載の鉛蓄電池再生方法。
The sulfation dissolution step includes a current supply step for supplying the inflow current to the lead storage battery to be regenerated, a voltage supply step for supplying the applied voltage, and a time measurement step for measuring a time for melting the crystals generated by the sulfation. The lead acid battery regeneration method of Claim 10 characterized by the above-mentioned.
JP2015082327A 2015-04-14 2015-04-14 Lead storage battery regenerating apparatus, lead storage battery regenerating method and lead storage battery regenerating system Expired - Fee Related JP6519041B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015082327A JP6519041B2 (en) 2015-04-14 2015-04-14 Lead storage battery regenerating apparatus, lead storage battery regenerating method and lead storage battery regenerating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015082327A JP6519041B2 (en) 2015-04-14 2015-04-14 Lead storage battery regenerating apparatus, lead storage battery regenerating method and lead storage battery regenerating system

Publications (2)

Publication Number Publication Date
JP2016201325A true JP2016201325A (en) 2016-12-01
JP6519041B2 JP6519041B2 (en) 2019-05-29

Family

ID=57424544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015082327A Expired - Fee Related JP6519041B2 (en) 2015-04-14 2015-04-14 Lead storage battery regenerating apparatus, lead storage battery regenerating method and lead storage battery regenerating system

Country Status (1)

Country Link
JP (1) JP6519041B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170140121A (en) * 2017-09-06 2017-12-20 주식회사 하이드 A method for recycling and managing industrial lead battery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003052129A (en) * 2001-08-03 2003-02-21 Matsushita Electric Ind Co Ltd Battery-charging method
WO2010137334A1 (en) * 2009-05-28 2010-12-02 パナソニック株式会社 Lead storage battery charging control method, charging control circuit, power source device and lead storage battery
JP2012059517A (en) * 2010-09-08 2012-03-22 Waizu System Engineering Co Ltd Regeneration device and regeneration method for storage battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003052129A (en) * 2001-08-03 2003-02-21 Matsushita Electric Ind Co Ltd Battery-charging method
WO2010137334A1 (en) * 2009-05-28 2010-12-02 パナソニック株式会社 Lead storage battery charging control method, charging control circuit, power source device and lead storage battery
JP2012059517A (en) * 2010-09-08 2012-03-22 Waizu System Engineering Co Ltd Regeneration device and regeneration method for storage battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170140121A (en) * 2017-09-06 2017-12-20 주식회사 하이드 A method for recycling and managing industrial lead battery
KR102025988B1 (en) 2017-09-06 2019-11-26 주식회사 하이드 A method for recycling and managing industrial lead battery

Also Published As

Publication number Publication date
JP6519041B2 (en) 2019-05-29

Similar Documents

Publication Publication Date Title
US10461348B2 (en) Fuel cell system and method of controlling the same
CN100495785C (en) Fuel cell system operating method
KR20170017113A (en) Method for activating stack of fuel cell
CN113906167B (en) Control method of hydrogen generation system and hydrogen generation system
JP6519041B2 (en) Lead storage battery regenerating apparatus, lead storage battery regenerating method and lead storage battery regenerating system
JP2005327737A (en) Method for regenerating storage battery
JP2009016324A (en) Regenerating method for lead storage battery and its device
JP2007135375A (en) Controller for dc-dc converter
CN108933305B (en) Storage battery grading and devulcanizing method and system
CN101056005A (en) Hybrid power supply
KR101567036B1 (en) Reproducing apparatus of industrial battery and Reproduction method of industrial storage battery using the same apparatus
KR20170140121A (en) A method for recycling and managing industrial lead battery
KR101004762B1 (en) A bettery restoration unit and restoration method
KR20150053182A (en) Battery charger
JP2011071001A (en) Regeneration method for lead-acid battery and lead film removing device used for the same
KR20120039423A (en) Apparatus and method for recycling and charging simultaneously a battery
JP2002334723A (en) Method for regenerating lead-acid battery
JP2017107692A (en) Lithium air battery and regeneration method thereof
KR102378696B1 (en) Apparatus for restoring capability of a secondary battery
JP2019129620A (en) Charging control device of vehicle
JP2010062007A (en) Method of regenerating lead-acid battery
JP2010129538A (en) Method for reproducing lead storage battery and reproducing apparatus thereof
JP2005322592A (en) Charging method of secondary battery
JP6672095B2 (en) Nickel-metal hydride storage battery regeneration method and nickel-metal hydride storage battery regeneration device
JP2006073448A (en) Method for regenerating lead-acid battery and method for regenerating lead electrode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180328

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20180328

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190402

R150 Certificate of patent or registration of utility model

Ref document number: 6519041

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350