JP2016198733A - Linear vibration motor - Google Patents

Linear vibration motor Download PDF

Info

Publication number
JP2016198733A
JP2016198733A JP2015081205A JP2015081205A JP2016198733A JP 2016198733 A JP2016198733 A JP 2016198733A JP 2015081205 A JP2015081205 A JP 2015081205A JP 2015081205 A JP2015081205 A JP 2015081205A JP 2016198733 A JP2016198733 A JP 2016198733A
Authority
JP
Japan
Prior art keywords
coil spring
vibration motor
linear vibration
mover
end portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015081205A
Other languages
Japanese (ja)
Other versions
JP6378125B2 (en
Inventor
片田 好紀
Yoshinori Katada
好紀 片田
慎 小田島
Shin Odajima
慎 小田島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Precision Corp
Original Assignee
Nidec Copal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidec Copal Corp filed Critical Nidec Copal Corp
Priority to JP2015081205A priority Critical patent/JP6378125B2/en
Priority to CN201680017393.4A priority patent/CN107431425B/en
Priority to PCT/JP2016/061367 priority patent/WO2016163446A1/en
Publication of JP2016198733A publication Critical patent/JP2016198733A/en
Application granted granted Critical
Publication of JP6378125B2 publication Critical patent/JP6378125B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/04Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with electromagnetism
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K33/00Motors with reciprocating, oscillating or vibrating magnet, armature or coil system
    • H02K33/16Motors with reciprocating, oscillating or vibrating magnet, armature or coil system with polarised armatures moving in alternate directions by reversal or energisation of a single coil system

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)
  • Reciprocating, Oscillating Or Vibrating Motors (AREA)

Abstract

PROBLEM TO BE SOLVED: To stabilize operation characteristics of a linear vibration motor by solving a deviation of a supporting position of a spring end portion.SOLUTION: A linear vibration motor 1 includes: a movable element 10 equipped with a magnet 2 and a weight 3; a frame body 4 which supports the movable element 10 so as to reciprocate and vibrate; a coil 5 which is fixed to the frame body 4, and adds driving force for vibrating the movable element 10 to the magnet 2; and a coil spring 6 which is provided between the frame body 4 and the movable element 10. On one or both of the movable element 10 and the frame body 4, a supporting portion 20 for supporting an end portion 6A of the soil spring 6 is provided. The supporting portion 20 is equipped with a tapered surface 21 inclined to a center axis 6P of the coil spring 6 at a fixed angle. The end portion 6A of the coil spring 6 abuts on the tapered surface 21 to be supported.SELECTED DRAWING: Figure 1

Description

本発明は、信号入力によって可動子を往復振動させるリニア振動モータに関する。   The present invention relates to a linear vibration motor that reciprocally vibrates a mover by signal input.

振動モータ(或いは振動アクチュエータ)は、携帯電子機器に内蔵され、着信やアラームなどの信号発生を振動によって携帯者に伝える装置として広く普及している。また、振動モータは、タッチパネルなどのヒューマン・インターフェースにおけるハプティクス(皮膚感覚フィードバック)を実現する装置として、近年注目されている。   A vibration motor (or vibration actuator) is widely used as a device that is built in a portable electronic device and transmits a signal generation such as an incoming call or an alarm to a user by vibration. In recent years, vibration motors have attracted attention as devices for realizing haptics (skin sensation feedback) in human interfaces such as touch panels.

振動モータは、各種の形態が開発される中で、可動子を直線的に往復振動させることで比較的大きな振動を得ることができるリニア振動モータが知られている。このリニア振動モータは、マグネットと錘を備えた可動子をバネで往復振動可能に支持し、バネと可動子の固有振動数に等しい周波数の交流電流を、固定したコイルに通電して、マグネットに往復振動のための駆動力を付与するものである(下記特許文献1参照)。   As various types of vibration motors are being developed, linear vibration motors that can obtain relatively large vibrations by linearly reciprocating vibration of a mover are known. This linear vibration motor supports a mover equipped with a magnet and a weight so that it can reciprocate with a spring, and an alternating current having a frequency equal to the natural frequency of the spring and mover is passed through a fixed coil to the magnet. A driving force for reciprocating vibration is applied (see Patent Document 1 below).

特開2012−016153号公報JP 2012-016153 A

従来のリニア振動モータは、可動子と枠体の間にバネを配置して、可動子を弾性支持しており、枠体や可動子に設けた凸状又は凹状のバネ受け部にバネの端部(座巻き部)を係合してバネの支持位置を位置決めしている。この際、バネ端部の内・外径の公差と、バネ受け部の凹凸径の公差の範囲で、バネ受け部に対するバネ端部の位置にずれが生じてしまう問題があった。   In the conventional linear vibration motor, a spring is arranged between the mover and the frame to elastically support the mover, and the end of the spring is placed on a convex or concave spring receiving portion provided on the frame or the mover. The support position of the spring is positioned by engaging the part (end turn part). At this time, there is a problem in that the position of the spring end portion with respect to the spring receiving portion is deviated within the range of the tolerance of the inner and outer diameters of the spring end portion and the tolerance of the uneven diameter of the spring receiving portion.

このようなずれは、バネ端部の径方向に生じるので、バネの弾性力の方向が可動子の振動方向に対して傾斜したり、可動子の振動中にバネ端部の位置移動が生じてバネの弾性力の方向が変化したりすることで、リニア振動モータの動作特性に悪影響を及ぼす可能性がある。   Since such a deviation occurs in the radial direction of the spring end, the direction of the elastic force of the spring is inclined with respect to the vibration direction of the mover, or the position of the spring end is moved during the vibration of the mover. Changing the direction of the elastic force of the spring may adversely affect the operating characteristics of the linear vibration motor.

本発明は、このような問題に対処することを課題の一例とするものである。すなわち、バネ端部の支持位置のずれを解消して、リニア振動モータの動作特性の安定化を図ること、などが本発明の目的である。   This invention makes it an example of a subject to cope with such a problem. That is, an object of the present invention is to eliminate the shift of the support position of the spring end portion and to stabilize the operation characteristics of the linear vibration motor.

このような目的を達成するために、本発明のリニア振動モータは、以下の構成を具備するものである。
マグネットと錘を備える可動子と、前記可動子を往復振動自在に支持する枠体と、前記枠体に固定され、前記マグネットに前記可動子を振動させる駆動力を付与するコイルと、前記枠体と前記可動子との間に設けられるコイルバネとを備え、前記可動子と前記枠体の一方又は両方には、前記コイルバネの端部を支持する支持部が設けられ、前記支持部は、前記コイルバネの中心軸に対して一定角度で傾斜したテーパ面を備え、前記コイルバネの端部が前記テーパ面に当接して支持されることを特徴とするリニア振動モータ。
In order to achieve such an object, the linear vibration motor of the present invention has the following configuration.
A mover including a magnet and a weight, a frame that supports the mover in a freely reciprocating manner, a coil that is fixed to the frame and that applies a driving force to the magnet to vibrate the mover, and the frame And a coil spring provided between the movable element and the movable element, and one or both of the movable element and the frame body are provided with a support part that supports an end of the coil spring, and the support part includes the coil spring. A linear vibration motor comprising a tapered surface inclined at a constant angle with respect to a central axis of the coil spring, wherein an end portion of the coil spring is supported in contact with the tapered surface.

このような特徴を有する本発明のリニア振動モータは、可動子を往復振動させるコイルバネの端部を位置ずれ無く支持することができ、リニア振動モータの動作特性を安定化させることができる。   The linear vibration motor of the present invention having such a feature can support the end portion of the coil spring that reciprocally vibrates the mover without displacement, and can stabilize the operation characteristics of the linear vibration motor.

本発明の実施形態に係るリニア振動モータの分解斜視図である。It is a disassembled perspective view of the linear vibration motor which concerns on embodiment of this invention. 本発明の実施形態係るリニア振動モータの説明図((a)が正面図、(b)がA−A断面図)である。It is explanatory drawing ((a) is a front view, (b) is AA sectional drawing) of the linear vibration motor which concerns on embodiment of this invention. 本発明の実施形態に係るリニア振動モータの支持部を示した説明図((a)がコイルバネに対して凸状の支持部、(b)がコイルバネに対して凹状の支持部)である。It is explanatory drawing which showed the support part of the linear vibration motor which concerns on embodiment of this invention ((a) is a support part convex with respect to a coil spring, (b) is a support part concave with respect to a coil spring). 本発明の他の実施形態に係るリニア振動モータの支持部を示した説明図である。It is explanatory drawing which showed the support part of the linear vibration motor which concerns on other embodiment of this invention. 本発明の他の実施形態に係るリニア振動モータの説明図((a)が正面図、(b)がA−A断面図)である。It is explanatory drawing ((a) is a front view, (b) is AA sectional drawing) of the linear vibration motor which concerns on other embodiment of this invention. 本発明の実施形態に係るリニア振動モータを装備した携帯電子機器(携帯情報端末)を示した説明図である。It is explanatory drawing which showed the portable electronic device (mobile information terminal) equipped with the linear vibration motor which concerns on embodiment of this invention.

以下、図面を参照して本発明の実施形態を説明する。以下の説明で、各図における共通部位には同一符号を付しており、図毎の重複説明を省略している。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following description, common parts in the drawings are denoted by the same reference numerals, and redundant description for each figure is omitted.

本発明の実施形態に係るリニア振動モータ1は、マグネット2と錘3を備える可動子10と、可動子10を往復振動自在に支持する枠体4と、枠体4に固定されるコイル5と、可動子10と枠体4との間に配置されるコイルバネ6とを備えている。図において、X方向が振動方向、Y方向が振動方向と交差する幅方向、Z方向が高さ(厚さ)方向を示している。   A linear vibration motor 1 according to an embodiment of the present invention includes a mover 10 including a magnet 2 and a weight 3, a frame 4 that supports the mover 10 so as to freely reciprocate, and a coil 5 that is fixed to the frame 4. The coil spring 6 disposed between the mover 10 and the frame 4 is provided. In the figure, the X direction indicates the vibration direction, the Y direction indicates the width direction intersecting the vibration direction, and the Z direction indicates the height (thickness) direction.

図1及び図2に示すリニア振動モータ1(1A)は、マグネット2として、振動方向に沿って配置される3つのマグネット2A,2B,2Cを備える。マグネット2A,2B,2Cの間にはそれぞれスペーサヨーク7が配置されている。マグネット2A,2B,2Cは、振動方向(図示X方向)に沿って着磁されており、互いに対向する磁極が同極になるように配置されている。すなわち、X方向に沿って、マグネット2Aの一方の磁極がN極、他方の磁極がS極であれば、その隣にスペーサヨーク7を介して配置されるマグネット2Bの磁極は、マグネット2A側の磁極がS極、その逆側の磁極がN極になっており、その隣にスペーサヨーク7を介して配置されるマグネット2Cの磁極は、マグネット2B側の磁極がN極、その逆側の磁極がS極になっている。   The linear vibration motor 1 (1A) shown in FIGS. 1 and 2 includes three magnets 2A, 2B, and 2C that are arranged along the vibration direction as the magnet 2. Spacer yokes 7 are disposed between the magnets 2A, 2B, and 2C, respectively. The magnets 2A, 2B, and 2C are magnetized along the vibration direction (the X direction in the drawing), and are arranged so that the magnetic poles facing each other are the same. That is, along the X direction, if one magnetic pole of the magnet 2A is an N pole and the other magnetic pole is an S pole, the magnetic pole of the magnet 2B arranged next to the magnet via the spacer yoke 7 is on the magnet 2A side. The magnetic pole is the S pole, and the magnetic pole on the opposite side is the N pole. The magnetic pole of the magnet 2 </ b> C arranged next to it via the spacer yoke 7 is the magnetic pole on the magnet 2 </ b> B side and the magnetic pole on the opposite side. Is the S pole.

駆動電流が通電されるコイル5は、スペーサヨーク7の周囲に間隙を持って配置され、枠体4に固定されている。このコイル5は、スペーサヨーク7からその周囲に配置される磁性体(枠体4)に向かう磁束、或いは周囲の磁性体(枠体4)からスペーサヨーク7に向かう磁束が横切るように巻き回されている。これにより、スペーサヨーク7を含むマグネット2(2A,2B,2C)には、X軸方向に沿った駆動力(ローレンツ力)が付与されることになる。スペーサヨーク7を含むマグネット2(2A,2B,2C)は、X軸方向に沿って延設される補強部材8によって一体に連結補強されている。   The coil 5 to which the drive current is applied is disposed with a gap around the spacer yoke 7 and is fixed to the frame body 4. The coil 5 is wound so that the magnetic flux directed from the spacer yoke 7 toward the magnetic body (frame body 4) disposed around the coil yoke or the magnetic flux directed from the surrounding magnetic body (frame body 4) toward the spacer yoke 7 is traversed. ing. As a result, a driving force (Lorentz force) along the X-axis direction is applied to the magnet 2 (2A, 2B, 2C) including the spacer yoke 7. The magnets 2 (2A, 2B, 2C) including the spacer yoke 7 are integrally connected and reinforced by a reinforcing member 8 extending along the X-axis direction.

一体に連結補強されたマグネット2のX方向両端部には、一対の錘3が取り付けられている。これにより、マグネット2と錘3を備える可動子10が形成されている。図1及び図2に示した例では、錘3には、錘3の両端からX方向に沿って延びるガイドシャフト11が固着されている。   A pair of weights 3 are attached to both ends in the X direction of the magnet 2 that is integrally connected and reinforced. Thereby, the needle | mover 10 provided with the magnet 2 and the weight 3 is formed. In the example shown in FIGS. 1 and 2, a guide shaft 11 extending along the X direction from both ends of the weight 3 is fixed to the weight 3.

枠体4は、ガイドシャフト11を摺動自在に支持する軸受12を備えることで、ガイドシャフト11が固着された可動子10をX方向に沿って往復振動自在に支持している。図示の例では、枠体4は、底面部4Aと側壁部4B,4Cとを備える屈折された板体に、一対の板片からなる正面部4D,4Eを固着し、更に平板の上蓋部4Fを取り付けて形成され、振動方向(X方向)に長く、厚さ方向(Z方向)に薄い箱形の形状を有している。   The frame body 4 includes a bearing 12 that slidably supports the guide shaft 11, thereby supporting the movable element 10 to which the guide shaft 11 is fixed so as to be capable of reciprocating vibration along the X direction. In the illustrated example, the frame body 4 has a front surface portion 4D and 4E formed of a pair of plate pieces fixed to a refracted plate body having a bottom surface portion 4A and side wall portions 4B and 4C, and further a flat plate upper lid portion 4F. And has a box shape that is long in the vibration direction (X direction) and thin in the thickness direction (Z direction).

コイルバネ6は、X方向に沿って圧縮弾性変形自在に、可動子10と枠体4との間に設けられ、この例では、X方向の左右に2個づつ合計4個のコイルバネ6が配置されている。4個のコイルバネ6は、ガイドシャフト11が延びる軸に対して対称な位置に配置されている。   The coil springs 6 are provided between the mover 10 and the frame body 4 so as to be freely elastically deformable along the X direction. In this example, a total of four coil springs 6 are arranged, two on each side of the X direction. ing. The four coil springs 6 are arranged at symmetrical positions with respect to the axis along which the guide shaft 11 extends.

可動子10と枠体4の両方には、コイルバネ6の端部6Aを支持する支持部20が設けられている。図示の例では、可動子10と枠体4の両方に支持部20を設けているが、可動子10と枠体4の一方のみに支持部20を設けて、コイルバネ6の一方の端部6Aを支持部20に支持し、コイルバネ6の他方の端部6Aを可動子10と枠体4の他方に溶接などで固着してもよい。支持部20は、図示の例では、枠体4の正面部4D,4Eと、可動子10における錘3の端部に設けられている。   Both the mover 10 and the frame 4 are provided with a support portion 20 that supports the end portion 6 </ b> A of the coil spring 6. In the illustrated example, the support portion 20 is provided on both the mover 10 and the frame body 4. However, the support portion 20 is provided on only one of the mover 10 and the frame body 4, and one end portion 6 </ b> A of the coil spring 6 is provided. The other end 6A of the coil spring 6 may be fixed to the other of the mover 10 and the frame 4 by welding or the like. In the illustrated example, the support portion 20 is provided at the front portions 4D and 4E of the frame body 4 and the end portion of the weight 3 in the mover 10.

図3(a)に、支持部20の具体的な構成を示している。支持部20は、コイルバネ6の端部6Aが当接するテーパ面21を備えている。図3(a)に示した例は、支持部20は、コイルバネ6の端部6A内に入る凸部を備え、この凸部の外側面に端部6Aの内側が当接するテーパ面21が設けられている。   FIG. 3A shows a specific configuration of the support portion 20. The support portion 20 includes a tapered surface 21 with which the end portion 6A of the coil spring 6 abuts. In the example shown in FIG. 3A, the support portion 20 includes a convex portion that enters the end portion 6 </ b> A of the coil spring 6, and a tapered surface 21 that contacts the inside of the end portion 6 </ b> A is provided on the outer surface of the convex portion. It has been.

テーパ面21は、コイルバネ6の中心軸6Pに対して、一定角度(テーパ角θ)で傾斜している。このテーパ面21は、中心軸6Pの周り全周に、又はコイルバネ6の端部6Aが位置決めできる程度に部分的に設けられ、全ての面で中心軸6Pに対して一定のテーパ角θになっている。   The tapered surface 21 is inclined at a constant angle (taper angle θ) with respect to the central axis 6P of the coil spring 6. The tapered surface 21 is provided all around the central axis 6P, or partially so that the end 6A of the coil spring 6 can be positioned, and has a constant taper angle θ with respect to the central axis 6P on all surfaces. ing.

支持部20にこのようなテーパ面21を設けて、そのテーパ面21にコイルバネ6の端部6Aの内側を当接させると、コイルバネ6の端部6Aの内側径W1の寸法がある程度設定値から外れた場合にも、その外れ度合いがテーパ面21の最小径T1と最大径T2の範囲内であれば、テーパ面21に当接する位置を変えて、テーパ面21で端部6Aをずれなく支持することができる。テーパ面21の最大径T2と最小径T1の差は、コイルバネ6の端部6Aの内側径W1の公差とテーパ面21の寸法公差を考慮して適宜に設定される。   When such a taper surface 21 is provided on the support portion 20 and the inside of the end portion 6A of the coil spring 6 is brought into contact with the taper surface 21, the dimension of the inner diameter W1 of the end portion 6A of the coil spring 6 is somewhat deviated from a set value. Even when the taper is detached, if the degree of detachment is within the range between the minimum diameter T1 and the maximum diameter T2 of the tapered surface 21, the position of contact with the tapered surface 21 is changed, and the end 6A is supported by the tapered surface 21 without deviation. can do. The difference between the maximum diameter T2 and the minimum diameter T1 of the tapered surface 21 is appropriately set in consideration of the tolerance of the inner diameter W1 of the end 6A of the coil spring 6 and the dimensional tolerance of the tapered surface 21.

図3(b)は、支持部20の他の形態例を示している。この例では、支持部20は、コイルバネ6の端部6Aを収容する凹部を備え、この凹部の内側面にコイルバネ6の端部6Aの外側が接するテーパ面21を設けている。この例も前述した例と同様に、テーパ面21は、コイルバネ6の中心軸6Pに対して、一定角度(テーパ角θ)で傾斜している。   FIG. 3B shows another example of the support unit 20. In this example, the support portion 20 includes a concave portion that accommodates the end portion 6 </ b> A of the coil spring 6, and a tapered surface 21 that contacts the outer side of the end portion 6 </ b> A of the coil spring 6 is provided on the inner side surface of the concave portion. In this example as well, the tapered surface 21 is inclined at a certain angle (taper angle θ) with respect to the central axis 6P of the coil spring 6 in the same manner as the example described above.

この例においても、支持部20にテーパ面21を設けて、そのテーパ面21にコイルバネ6の端部6Aの外側を当接させることで、コイルバネ6の端部6Aの外側径W2の寸法がある程度設定値から外れた場合にも、その外れ度合いがテーパ面21の最小径T1と最大径T2の範囲内であれば、テーパ面21に当接する位置を変えて、テーパ面21で端部6Aをずれなく支持することができる。   Also in this example, by providing the support portion 20 with the tapered surface 21 and bringing the outside of the end portion 6A of the coil spring 6 into contact with the tapered surface 21, the size of the outer diameter W2 of the end portion 6A of the coil spring 6 is somewhat. Even when deviating from the set value, if the degree of detachment is within the range of the minimum diameter T1 and the maximum diameter T2 of the tapered surface 21, the position of contact with the tapered surface 21 is changed, and the end 6A is changed by the tapered surface 21. It can be supported without deviation.

図1及び図2に示すリニア振動モータ1(1A)は、コイルバネ6と可動子10の固有振動数に等しい周波数の交流電流をコイル5に通電することで、スペーサヨーク7を含むマグネット2に往復振動のための駆動力が付与され、可動子10がX方向に沿って往復振動する。その際、コイルバネ6の端部6Aはずれることなく支持部20に支持されるので、コイルバネ6による弾性力の方向が一定になり、安定した動作特性を示すことができる。   The linear vibration motor 1 (1A) shown in FIGS. 1 and 2 reciprocates to and from the magnet 2 including the spacer yoke 7 by passing an alternating current having a frequency equal to the natural frequency of the coil spring 6 and the mover 10 to the coil 5. A driving force for vibration is applied, and the mover 10 reciprocally vibrates along the X direction. At that time, since the end portion 6A of the coil spring 6 is supported by the support portion 20 without being displaced, the direction of the elastic force by the coil spring 6 becomes constant, and stable operating characteristics can be exhibited.

特に、支持部20の中心軸をガイドシャフト11の軸方向と一致させることで、全てのコイルバネ6の弾性力の方向がガイドシャフト11の軸方向と平行になり、ガイドシャフト11の軸方向に沿った安定した往復振動を実現することができる。その際、コイルバネ6はその中心軸6Pに沿って弾性変形することになり、コイルバネ6が座屈変形して枠体4に接触する不具合を回避することができる。また、コイルバネ6の弾性力をガイドシャフト11に対して対称に作用させることができるので、往復振動時にガイドシャフト11の軸周りに可動子10が回転してしまう不具合を解消することができる。   In particular, by making the central axis of the support portion 20 coincide with the axial direction of the guide shaft 11, the direction of the elastic force of all the coil springs 6 is parallel to the axial direction of the guide shaft 11, and along the axial direction of the guide shaft 11. Stable reciprocating vibration can be realized. At that time, the coil spring 6 is elastically deformed along the central axis 6P, and the problem that the coil spring 6 is buckled and contacts the frame 4 can be avoided. Moreover, since the elastic force of the coil spring 6 can be made to act symmetrically with respect to the guide shaft 11, the problem that the mover 10 rotates around the axis of the guide shaft 11 during reciprocating vibration can be solved.

図4及び図5に示すリニア振動モータ1(1B)は、図1及び図2に示した形態とは異なるものであり、可動子10が転動体(ベアリング)13を介して枠体4に往復振動自在に支持されている。転動体13は、可動子10における錘3の一面側に分散して複数(図示の例では3個)配置されている。錘3の一面には振動方向(X方向)に沿って溝3Pが形成されており、溝3P内に転動体13が保持されている。また、枠体4の上蓋部4Fには、溝3Pに対向する位置に溝部4F1が形成されており、溝3Pと溝部4F1とで転動体13を挟むように保持している。   The linear vibration motor 1 (1B) shown in FIGS. 4 and 5 is different from the form shown in FIGS. 1 and 2, and the movable element 10 reciprocates to the frame body 4 via a rolling element (bearing) 13. It is supported freely. A plurality of (three in the illustrated example) rolling elements 13 are arranged on one side of the weight 3 of the mover 10. A groove 3P is formed on one surface of the weight 3 along the vibration direction (X direction), and the rolling elements 13 are held in the groove 3P. Further, the upper cover portion 4F of the frame body 4 is formed with a groove portion 4F1 at a position facing the groove 3P, and the rolling element 13 is held between the groove 3P and the groove portion 4F1.

可動子10は、可動枠14を有しており、可動枠14上に2つの錘3と2つのマグネット2D,2Eが固定されている。2つのマグネット2D,2EはX方向に並べて配置されており、Z方向に沿って互いに逆向きに着磁されている。この2つのマグネット2D,2Eに対してY方向に延びる一対の直線部を有するコイル5が上蓋部4Fに固定されており、2つのマグネット2D,2Eの一方から磁性体である上蓋部4Fを通って2つのマグネット2D,2Eの他方に至る磁束を横切るように、上蓋部4Fに固定されたコイル5が配置されている。   The mover 10 has a movable frame 14 on which two weights 3 and two magnets 2D and 2E are fixed. The two magnets 2D and 2E are arranged side by side in the X direction, and are magnetized in opposite directions along the Z direction. A coil 5 having a pair of linear portions extending in the Y direction with respect to the two magnets 2D and 2E is fixed to the upper lid portion 4F, and passes from one of the two magnets 2D and 2E through the upper lid portion 4F which is a magnetic body. The coil 5 fixed to the upper lid portion 4F is disposed so as to cross the magnetic flux reaching the other of the two magnets 2D and 2E.

このようなリニア振動モータ1(1B)において、可動枠14の端部と枠体4の正面部4D,4Eに、前述した支持部20が設けられており、この支持部20にコイルバネ6の端部6Aが支持されている。リニア振動モータ1(1B)においても、コイルバネ6と可動子10の固有振動数に等しい周波数の交流電流をコイル5に通電することで、マグネット2(2D,2E)に往復振動のための駆動力が付与され、可動子10が、溝3P或いは溝部4F1に沿って往復振動する。その際、コイルバネ6の端部6Aはずれることなく支持部20に支持されるので、コイルバネ6による弾性力の方向が一定になり、安定した動作特性を得ることができる。   In such a linear vibration motor 1 (1B), the support portion 20 described above is provided on the end portion of the movable frame 14 and the front portions 4D and 4E of the frame body 4, and the end portion of the coil spring 6 is provided on the support portion 20. Part 6A is supported. Also in the linear vibration motor 1 (1B), a driving force for reciprocal vibration is applied to the magnet 2 (2D, 2E) by applying an alternating current having a frequency equal to the natural frequency of the coil spring 6 and the mover 10 to the coil 5. Is applied, and the mover 10 reciprocally vibrates along the groove 3P or the groove portion 4F1. At that time, since the end portion 6A of the coil spring 6 is supported by the support portion 20 without shifting, the direction of the elastic force by the coil spring 6 becomes constant, and stable operating characteristics can be obtained.

本発明の実施形態に係るリニア振動モータ1の形態は、前述した例に限定されるものではなく、マグネット2と錘3を備える可動子10と、可動子10を往復振動自在に支持する枠体4と、枠体4に固定され、マグネット2に可動子10を振動させる駆動力を付与するコイル5と、枠体4と可動子10との間に設けられ、可動子10の振動によって弾性変形するコイルバネ6を備える形態であれば、支持部20を備える本発明の実施形態になり得る。   The form of the linear vibration motor 1 according to the embodiment of the present invention is not limited to the above-described example, and the movable element 10 including the magnet 2 and the weight 3 and the frame body that supports the movable element 10 so as to freely reciprocate. 4, a coil 5 fixed to the frame 4, and provided between the frame 4 and the mover 10, and provided with a coil 5 for applying a driving force for vibrating the mover 10 to the magnet 2, and elastically deformed by the vibration of the mover 10. If it is a form provided with the coil spring 6 to perform, it can become embodiment of this invention provided with the support part 20. FIG.

本発明の実施形態係るリニア振動モータ1は、扁平な箱形の形状を有する枠体4を用いることで、薄型化され且つ安定した往復振動を得ることができる。特に、枠体4を可動子10の厚さに近い薄厚にした場合にも、コイルバネ6と枠体4とが接触することを極力回避することができ、薄型ながら異音発生の少ないリニア振動モータ1を得ることができる。   The linear vibration motor 1 according to the embodiment of the present invention can be made thin and stable reciprocating vibration by using the frame 4 having a flat box shape. In particular, even when the frame body 4 is made as thin as the thickness of the mover 10, it is possible to avoid the coil spring 6 and the frame body 4 from contacting each other as much as possible, and the linear vibration motor that is thin but generates less noise. 1 can be obtained.

図6は、本発明の実施形態に係るリニア振動モータ1を装備した電子機器の一例として、携帯情報端末100を示している。安定した振動が得られ薄型化や幅方向のコンパクト化が可能なリニア振動モータ1を備える携帯情報端末100は、通信機能における着信やアラーム機能などの動作開始・終了時を異音が発生しにくい安定した振動で使用者に伝えることができる。また、リニア振動モータ1の薄型化・幅方向のコンパクト化によって高い携帯性或いはデザイン性を追求した携帯情報端末100を得ることができる。更に、リニア振動モータ1は、厚さを抑えた直方体形状の枠体4内に各部を収容したコンパクト形状であるから、薄型化された携帯情報端末100の内部にスペース効率よく装備することができる。   FIG. 6 shows a portable information terminal 100 as an example of an electronic apparatus equipped with the linear vibration motor 1 according to the embodiment of the present invention. The portable information terminal 100 provided with the linear vibration motor 1 that can obtain stable vibration and can be thinned and compact in the width direction is unlikely to generate abnormal noise at the start and end of an incoming call or alarm function in a communication function. Can convey to the user with stable vibration Further, the portable information terminal 100 pursuing high portability or design can be obtained by making the linear vibration motor 1 thin and compact in the width direction. Furthermore, since the linear vibration motor 1 has a compact shape in which each part is housed in a rectangular parallelepiped frame 4 with a reduced thickness, the linear vibration motor 1 can be efficiently installed in the thinned portable information terminal 100. .

以上、本発明の実施の形態について図面を参照して詳述してきたが、具体的な構成はこれらの実施の形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計の変更等があっても本発明に含まれる。また、上述の各実施の形態は、その目的及び構成等に特に矛盾や問題がない限り、互いの技術を流用して組み合わせることが可能である。   As described above, the embodiments of the present invention have been described in detail with reference to the drawings. However, the specific configuration is not limited to these embodiments, and the design can be changed without departing from the scope of the present invention. Is included in the present invention. In addition, the above-described embodiments can be combined by utilizing each other's technology as long as there is no particular contradiction or problem in the purpose and configuration.

1(1A,1B):リニア振動モータ,
2(2A,2B,2C,2D,2E):マグネット,
3:錘,3P:溝,
4:枠体,4A:底面部,4B,4C:側壁部,4D,4E:正面部,
4F:上蓋部,4F1:溝部,
5:コイル,6:コイルバネ,6A:端部,6P:中心軸,
7:スペーサヨーク,8:補強部材,
10:可動子,11:ガイドシャフト,12:軸受,
13:転動体(ベアリング),14:可動枠,
20:支持部,21:テーパ面,θ:テーパ角,
1 (1A, 1B): linear vibration motor,
2 (2A, 2B, 2C, 2D, 2E): magnet,
3: weight, 3P: groove,
4: Frame body, 4A: Bottom portion, 4B, 4C: Side wall portion, 4D, 4E: Front portion,
4F: upper lid part, 4F1: groove part,
5: coil, 6: coil spring, 6A: end, 6P: central axis,
7: Spacer yoke, 8: Reinforcing member,
10: mover, 11: guide shaft, 12: bearing,
13: rolling element (bearing), 14: movable frame,
20: support part, 21: taper surface, θ: taper angle,

Claims (6)

マグネットと錘を備える可動子と、
前記可動子を往復振動自在に支持する枠体と、
前記枠体に固定され、前記マグネットに前記可動子を振動させる駆動力を付与するコイルと、
前記枠体と前記可動子との間に設けられるコイルバネとを備え、
前記可動子と前記枠体の一方又は両方には、前記コイルバネの端部を支持する支持部が設けられ、
前記支持部は、前記コイルバネの中心軸に対して一定角度で傾斜したテーパ面を備え、前記コイルバネの端部が前記テーパ面に当接して支持されることを特徴とするリニア振動モータ。
A mover comprising a magnet and a weight;
A frame that supports the mover in a freely reciprocating manner;
A coil that is fixed to the frame and applies a driving force to the magnet to vibrate the mover;
A coil spring provided between the frame and the mover;
One or both of the mover and the frame is provided with a support portion that supports an end of the coil spring,
The linear vibration motor, wherein the support portion includes a tapered surface inclined at a constant angle with respect to a central axis of the coil spring, and an end portion of the coil spring is supported in contact with the tapered surface.
前記支持部は、前記コイルバネの端部内に入る凸部を備え、該凸部の外側面に前記端部の内側が接する前記テーパ面が設けられることを特徴とする請求項1記載のリニア振動モータ。   2. The linear vibration motor according to claim 1, wherein the support portion includes a convex portion that enters the end portion of the coil spring, and the tapered surface that is in contact with the inner side of the end portion is provided on an outer surface of the convex portion. . 前記支持部は、前記コイルバネの端部を収容する凹部を備え、該凹部の内側面に前記端部の外側が接する前記テーパ面が設けられることを特徴とする請求項1記載のリニア振動モータ。   2. The linear vibration motor according to claim 1, wherein the support portion includes a concave portion that accommodates an end portion of the coil spring, and the tapered surface that is in contact with the outer side of the end portion is provided on an inner surface of the concave portion. 前記枠体に支持されるガイドシャフトを備え、前記可動子は、前記ガイドシャフトに沿って一軸方向に往復振動することを特徴とする請求項1〜3のいずれか1項に記載のリニア振動モータ。   4. The linear vibration motor according to claim 1, further comprising a guide shaft supported by the frame body, wherein the movable element reciprocally vibrates in one axial direction along the guide shaft. . 前記可動子は、前記枠体に対して滑動支持又は転動支持されることを特徴とする請求項1〜4のいずれか1項に記載のリニア振動モータ。   The linear vibration motor according to claim 1, wherein the movable element is slidably supported or rolled with respect to the frame body. 請求項1〜5のいずれか1項に記載のリニア振動モータを備える携帯電子機器。   A portable electronic device provided with the linear vibration motor of any one of Claims 1-5.
JP2015081205A 2015-04-10 2015-04-10 Linear vibration motor Active JP6378125B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015081205A JP6378125B2 (en) 2015-04-10 2015-04-10 Linear vibration motor
CN201680017393.4A CN107431425B (en) 2015-04-10 2016-04-07 linear vibration motor
PCT/JP2016/061367 WO2016163446A1 (en) 2015-04-10 2016-04-07 Linear vibration motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015081205A JP6378125B2 (en) 2015-04-10 2015-04-10 Linear vibration motor

Publications (2)

Publication Number Publication Date
JP2016198733A true JP2016198733A (en) 2016-12-01
JP6378125B2 JP6378125B2 (en) 2018-08-22

Family

ID=57073278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015081205A Active JP6378125B2 (en) 2015-04-10 2015-04-10 Linear vibration motor

Country Status (3)

Country Link
JP (1) JP6378125B2 (en)
CN (1) CN107431425B (en)
WO (1) WO2016163446A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6715193B2 (en) * 2017-01-13 2020-07-01 日立オートモティブシステムズ株式会社 Linear motor and compressor
JP7166156B2 (en) * 2018-12-04 2022-11-07 日本電産サンキョー株式会社 Actuator and Actuator Manufacturing Method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5057776U (en) * 1973-09-21 1975-05-29
JPS571591Y2 (en) * 1974-08-30 1982-01-11
JP2001123950A (en) * 1999-10-26 2001-05-08 Matsushita Electric Ind Co Ltd Linear compressor
JP2011097747A (en) * 2009-10-29 2011-05-12 Nidec Copal Corp Vibration actuator
JP2014028349A (en) * 2012-07-31 2014-02-13 Nidec Copal Corp Vibration actuator

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4331172A (en) * 1980-09-15 1982-05-25 Acf Industries, Incorporated Fire-safe valve structure
CN104901501A (en) * 2010-06-30 2015-09-09 日本电产科宝株式会社 Oscillating actuator
CN203363303U (en) * 2013-07-01 2013-12-25 台州中恒机械有限公司 Air-resistant prevention check valve of feed pump
CN103977519A (en) * 2014-05-04 2014-08-13 宁波金田消防器材有限公司 Valve assembly for fire extinguisher

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5057776U (en) * 1973-09-21 1975-05-29
JPS571591Y2 (en) * 1974-08-30 1982-01-11
JP2001123950A (en) * 1999-10-26 2001-05-08 Matsushita Electric Ind Co Ltd Linear compressor
JP2011097747A (en) * 2009-10-29 2011-05-12 Nidec Copal Corp Vibration actuator
JP2014028349A (en) * 2012-07-31 2014-02-13 Nidec Copal Corp Vibration actuator

Also Published As

Publication number Publication date
JP6378125B2 (en) 2018-08-22
CN107431425A (en) 2017-12-01
WO2016163446A1 (en) 2016-10-13
CN107431425B (en) 2019-12-13

Similar Documents

Publication Publication Date Title
US10566889B2 (en) Linear vibration motor
JP6421089B2 (en) Linear vibration motor and portable electronic device including the linear vibration motor
CN107534375B (en) Linear vibration motor
US10270326B2 (en) Linear vibration motor
JP6591248B2 (en) Linear vibration motor
CN107107112B (en) Linear vibration motor
JP6378125B2 (en) Linear vibration motor
JP6396261B2 (en) Linear vibration motor
CN107534376B (en) Linear vibration motor
JP6333186B2 (en) Linear vibration motor
JP2017212793A (en) Linear vibration motor
US20190207501A1 (en) Mover, vibration actuator, and electronic device
JP6378127B2 (en) Linear vibration motor
WO2018008280A1 (en) Linear vibration motor
WO2017057193A1 (en) Linear vibration motor
JP6333187B2 (en) Linear vibration motor
JP2019193511A (en) Linear vibration motor and electronic apparatus
JP6479557B2 (en) Linear vibration motor
JP2020182912A (en) Vibration actuator and tactile sense device
JP2023023948A (en) vibration actuator
JP2018051434A (en) Linear vibration motor
JP2017208933A (en) Linear vibration motor
JP2019063693A (en) Linear vibration motor
JP2017017875A (en) Linear vibration motor
KR20180009600A (en) Vibrator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180710

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180726

R150 Certificate of patent or registration of utility model

Ref document number: 6378125

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250