JP2016195046A - Electrolyte membrane for solid polymer type fuel battery, solid polymer type fuel battery and method of manufacturing electrolyte membrane for solid polymer type fuel battery - Google Patents

Electrolyte membrane for solid polymer type fuel battery, solid polymer type fuel battery and method of manufacturing electrolyte membrane for solid polymer type fuel battery Download PDF

Info

Publication number
JP2016195046A
JP2016195046A JP2015074629A JP2015074629A JP2016195046A JP 2016195046 A JP2016195046 A JP 2016195046A JP 2015074629 A JP2015074629 A JP 2015074629A JP 2015074629 A JP2015074629 A JP 2015074629A JP 2016195046 A JP2016195046 A JP 2016195046A
Authority
JP
Japan
Prior art keywords
electrolyte membrane
aromatic hydrocarbon
polymer resin
hydrocarbon polymer
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015074629A
Other languages
Japanese (ja)
Other versions
JP6663647B2 (en
Inventor
竜也 袖子田
Tatsuya Sodekoda
竜也 袖子田
高橋 克巳
Katsumi Takahashi
克巳 高橋
高橋 浩
Hiroshi Takahashi
浩 高橋
前川 康成
Yasunari Maekawa
康成 前川
進華 陳
Jinhua Chen
進華 陳
長谷川 伸
Shin Hasegawa
伸 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Japan Atomic Energy Agency
IHI Shibaura Machinery Corp
Original Assignee
IHI Corp
Japan Atomic Energy Agency
IHI Shibaura Machinery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp, Japan Atomic Energy Agency, IHI Shibaura Machinery Corp filed Critical IHI Corp
Priority to JP2015074629A priority Critical patent/JP6663647B2/en
Publication of JP2016195046A publication Critical patent/JP2016195046A/en
Application granted granted Critical
Publication of JP6663647B2 publication Critical patent/JP6663647B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Conductive Materials (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electrolyte membrane that enables a solid polymer type fuel battery to operate under a high temperature condition and a low humidity condition.SOLUTION: An electrolyte membrane for a solid polymer type fuel battery is obtained by bonding an ion exchange group to a graft chain of aromatic hydrocarbon-based polymer resin containing inorganic filler. Aromatic hydrocarbon polymer type polymer resin is preferably polyether ether ketone or a derivative thereof. The solid polymer type fuel battery contains a membrane electrode assembly obtained by bonding a fuel electrode to one membrane surface of the electrolyte membrane for the solid polymer type fuel battery, and bonding an air electrode to the other membrane surface.SELECTED DRAWING: Figure 1

Description

本発明は、固体高分子形燃料電池に用いる電解質膜に関する。特に芳香族炭化水素系高分子樹脂にイオン交換基を結合させて作製した固体高分子形燃料電池用電解質膜に関する。   The present invention relates to an electrolyte membrane used for a polymer electrolyte fuel cell. In particular, the present invention relates to an electrolyte membrane for a polymer electrolyte fuel cell produced by bonding an ion exchange group to an aromatic hydrocarbon polymer resin.

固体高分子形燃料電池は、電池内に供給された燃料と酸化剤との反応時の化学エネルギーを電力として取り出す高効率な発電装置である。比較的低温で作動させることができるため、電気自動車用途、家庭用途、携帯機器用途等に需要が高い。固体高分子形燃料電池(以下、「燃料電池」と記載する場合がある。)は、膜電極接合体(Membrane Electrode Assembly, MEA)を備えるセルで構成される。MEAは、電解質膜の一方の膜面に燃料極を接合させ、他方の膜面に空気極を接合させた接合体である。燃料極と空気極とは、それぞれ少なくともガス拡散層と触媒層とを積層させた積層体である。   A polymer electrolyte fuel cell is a high-efficiency power generator that extracts, as electric power, chemical energy at the time of reaction between a fuel supplied into the cell and an oxidant. Since it can be operated at a relatively low temperature, there is a great demand for electric vehicle use, home use, portable device use, and the like. BACKGROUND ART A polymer electrolyte fuel cell (hereinafter sometimes referred to as “fuel cell”) is composed of a cell including a membrane electrode assembly (MEA). MEA is a joined body in which a fuel electrode is joined to one membrane surface of an electrolyte membrane and an air electrode is joined to the other membrane surface. The fuel electrode and the air electrode are each a laminate in which at least a gas diffusion layer and a catalyst layer are laminated.

燃料極に水素やメタノール等の燃料が供給されると、燃料は、燃料極内のガス拡散層で拡散された後、触媒層に達する。燃料が触媒層に接触することで、プロトン(水素イオン)と電子とが生成される。生成された電子は、外部回路を通じて空気極に移動する。一方プロトンは、電解質膜内を移動して空気極へ到達する。空気極には酸化剤として、酸素や空気等の酸素含有ガスが供給される。空気極の触媒層では燃料極から移動したプロトンと酸素との反応が促進され、水が生成される。燃料電池は、上記の反応で生成される化学エネルギーを電気エネルギーとして利用する。   When fuel such as hydrogen or methanol is supplied to the fuel electrode, the fuel reaches the catalyst layer after being diffused in the gas diffusion layer in the fuel electrode. When the fuel comes into contact with the catalyst layer, protons (hydrogen ions) and electrons are generated. The generated electrons move to the air electrode through an external circuit. On the other hand, protons move through the electrolyte membrane and reach the air electrode. An oxygen-containing gas such as oxygen or air is supplied to the air electrode as an oxidizing agent. In the catalyst layer of the air electrode, the reaction between protons and oxygen moved from the fuel electrode is promoted, and water is generated. The fuel cell uses chemical energy generated by the above reaction as electric energy.

上記の固体高分子形燃料電池の電池特性を向上させるため、従来、電解質膜は、プロトン伝導性が良好で導電率が高いフッ素系樹脂を材料として作製される。しかし、フッ素系樹脂は、イオン交換基の結合量が増加するに従って液状化しやすい性質を持つ。そのため、プロトン伝導性の向上には限界がある。   In order to improve the battery characteristics of the polymer electrolyte fuel cell, the electrolyte membrane is conventionally made of a fluorine-based resin having good proton conductivity and high conductivity. However, the fluorine-based resin has a property that it tends to be liquefied as the amount of ion-exchange group bonds increases. Therefore, there is a limit to improving proton conductivity.

またフッ素系樹脂は高温条件下では、プロトン伝導性を維持するため十分に加湿しなければならない。すなわちフッ素系樹脂で作製した電解質膜を用いた固体高分子形燃料電池は、高温条件下、低加湿条件下での連続稼働には適さない。電解質膜の強度向上のためフッ素系樹脂に繊維等の補強材を混合させる場合は、製造コストが上昇する。さらにフッ素系樹脂は廃棄時に特別な処理が必要なため、処理コストが高い。   In addition, the fluororesin must be sufficiently humidified to maintain proton conductivity under high temperature conditions. That is, a polymer electrolyte fuel cell using an electrolyte membrane made of a fluororesin is not suitable for continuous operation under high temperature conditions and low humidification conditions. In order to improve the strength of the electrolyte membrane, when a reinforcing material such as a fiber is mixed with the fluororesin, the manufacturing cost increases. Furthermore, since the fluororesin requires special treatment at the time of disposal, the treatment cost is high.

フッ素系樹脂に代わる電解質膜の材料として、芳香族炭化水素系高分子樹脂が挙げられる。特にポリエーテルエーテルケトン(PolyEtherEtherKetone、PEEK)は耐熱性や化学的安定性が高いため、フッ素系樹脂と比較して燃料電池用途に適する。   Examples of the material for the electrolyte membrane that can replace the fluororesin include aromatic hydrocarbon polymer resins. In particular, polyetheretherketone (PolyEtherEtherKetone, PEEK) has high heat resistance and chemical stability, and is therefore suitable for fuel cell applications compared to fluororesins.

特許文献1には、PEEK等を基材として、スルホン酸基等を有する機能性モノマーを結合した高分子電解質膜が開示される。特許文献1に開示される高分子電解質膜は、放射線グラフト重合法を用いて製造される。放射線グラフト重合法を用いる場合、基材の作製とイオン交換機能の付与とを別工程で行うことができる点で有利である。しかし、高温条件下かつ低加湿条件下で高性能な燃料電池を実現する為、芳香族炭化水素系高分子樹脂を用いた電解質膜のさらなるプロトン伝導性の向上が求められる。   Patent Document 1 discloses a polymer electrolyte membrane in which a functional monomer having a sulfonic acid group or the like is bonded using PEEK or the like as a base material. The polymer electrolyte membrane disclosed in Patent Document 1 is manufactured using a radiation graft polymerization method. When the radiation graft polymerization method is used, it is advantageous in that the preparation of the substrate and the provision of the ion exchange function can be performed in separate steps. However, in order to realize a high-performance fuel cell under high temperature conditions and low humidification conditions, further improvement in proton conductivity of an electrolyte membrane using an aromatic hydrocarbon polymer resin is required.

特開2009-67844号公報JP 2009-67844 A

本発明の課題は、固体高分子形燃料電池を高温条件下かつ低加湿条件下で作動させることができる電解質膜を提供することである。   An object of the present invention is to provide an electrolyte membrane capable of operating a polymer electrolyte fuel cell under high temperature conditions and low humidification conditions.

本発明は、無機フィラーを含有する芳香族炭化水素系高分子樹脂のグラフト鎖に、イオン交換基が結合されてなる固体高分子形燃料電池用電解質膜(以下、「電解質膜」と記載する場合がある。)である。本発明において、芳香族炭化水素系高分子樹脂は、ポリエーテルエーテルケトン又はその誘導体が好ましい。本発明は、固体高分子形燃料電池用電解質膜の一方の膜面に燃料極を接合させ、他方の膜面に空気極を接合させた膜電極接合体を含む固体高分子形燃料電池を包含する。   The present invention relates to an electrolyte membrane for a polymer electrolyte fuel cell (hereinafter referred to as “electrolyte membrane”) in which an ion exchange group is bonded to a graft chain of an aromatic hydrocarbon polymer resin containing an inorganic filler. There is.) In the present invention, the aromatic hydrocarbon polymer resin is preferably polyetheretherketone or a derivative thereof. The present invention includes a polymer electrolyte fuel cell including a membrane electrode assembly in which a fuel electrode is joined to one membrane surface of an electrolyte membrane for a polymer electrolyte fuel cell and an air electrode is joined to the other membrane surface. To do.

溶融させた芳香族炭化水素系高分子樹脂に無機フィラーを分散させた後、該芳香族炭化水素系高分子樹脂を成膜させて芳香族炭化水素系高分子樹脂膜を作製する成膜工程と、該芳香族炭化水素系高分子樹脂膜に放射線を照射し、イオン交換基含有モノマーをグラフト重合させるグラフト重合工程とを含む固体高分子形燃料電池用電解質膜の製造方法を包含する。   A film forming step for producing an aromatic hydrocarbon polymer resin film by dispersing an inorganic filler in a molten aromatic hydrocarbon polymer resin and then forming the aromatic hydrocarbon polymer resin into a film; And a method for producing an electrolyte membrane for a polymer electrolyte fuel cell, comprising a graft polymerization step of irradiating the aromatic hydrocarbon polymer resin membrane with radiation to graft polymerize an ion exchange group-containing monomer.

本発明の電解質膜は、固体高分子形燃料電池を高温条件下かつ低加湿条件下で作動させることができる。   The electrolyte membrane of the present invention can operate a polymer electrolyte fuel cell under high temperature conditions and low humidification conditions.

本発明の燃料電池に適用される膜電極接合体の模式図である。It is a schematic diagram of the membrane electrode assembly applied to the fuel cell of the present invention. 本発明の燃料電池の電流−電圧特性を示す図である。It is a figure which shows the current-voltage characteristic of the fuel cell of this invention. 本発明の燃料電池の電圧特性を示す図である。It is a figure which shows the voltage characteristic of the fuel cell of this invention.

[固体高分子形燃料電池用電解質膜]
本発明は、基材として芳香族炭化水素系高分子樹脂を用い、該芳香族炭化水素系高分子樹脂に無機フィラーを含有させることにより、含水性を向上できる。本発明を用いる固体高分子形燃料電池(以下、「燃料電池」と記載する場合がある。)においては、高温条件下で相対湿度が比較的低い作動環境で用いられる場合も、燃料極側から供給されたプロトンを速やかに空気極側へと移動させることができる。
[Electrolyte membranes for polymer electrolyte fuel cells]
In the present invention, water content can be improved by using an aromatic hydrocarbon polymer resin as a base material and adding an inorganic filler to the aromatic hydrocarbon polymer resin. In a polymer electrolyte fuel cell (hereinafter sometimes referred to as “fuel cell”) using the present invention, even when used in an operating environment where the relative humidity is relatively low under a high temperature condition, from the fuel electrode side. The supplied proton can be quickly moved to the air electrode side.

所定の電解質膜を用いた本発明の燃料電池の作動環境の具体例としては、温度条件80〜160℃において相対湿度20〜80%RHが挙げられる。なお本発明は、同じ温度条件で相対湿度が80%RHを超える作動環境でも燃料電池を作動させることができる。温度条件と相対湿度とは、一般的な燃料電池性能評価装置において設定される値である。   Specific examples of the operating environment of the fuel cell of the present invention using a predetermined electrolyte membrane include a relative humidity of 20 to 80% RH under a temperature condition of 80 to 160 ° C. In the present invention, the fuel cell can be operated even in an operating environment where the relative humidity exceeds 80% RH under the same temperature condition. The temperature condition and the relative humidity are values set in a general fuel cell performance evaluation apparatus.

本発明において、芳香族炭化水素系高分子樹脂に結合されるイオン交換基は、グラフト鎖に結合されていればよく、グラフト鎖と主鎖とに結合されていてもよい。該グラフト鎖は放射線グラフト重合、化学的なグラフト重合(連鎖移動法、酸化法等)等により形成される。該イオン交換基が結合されるのは主にグラフト鎖であるため、イオン交換基の結合量を増加させても機械的強度は損なわれない。したがって本発明は、イオン交換基の結合量の増加と、無機フィラーの含有とにより、プロトン伝導性を向上させることができる。   In the present invention, the ion exchange group bonded to the aromatic hydrocarbon polymer resin only needs to be bonded to the graft chain, and may be bonded to the graft chain and the main chain. The graft chain is formed by radiation graft polymerization, chemical graft polymerization (chain transfer method, oxidation method, etc.) and the like. Since the ion exchange group is mainly bonded to the graft chain, the mechanical strength is not impaired even if the amount of the ion exchange group is increased. Therefore, this invention can improve proton conductivity by the increase in the amount of ion-exchange group bonds, and the inclusion of an inorganic filler.

[芳香族炭化水素系高分子樹脂]
本発明においては、電解質膜として使用可能な機械的強度を備える公知の芳香族炭化水素系高分子樹脂を用いることができる。好ましくは、スーパーエンジニアリングプラスチックといわれる芳香族炭化水素系高分子樹脂が用いられる。またポリエーテルエーテルケトン構造、ポリエーテルケトン構造、ポリイミド構造、ポリスルホン構造、またはポリベンゾイミダゾール構造を有するものが好ましい。
[Aromatic hydrocarbon polymer resin]
In the present invention, a known aromatic hydrocarbon polymer resin having mechanical strength that can be used as an electrolyte membrane can be used. Preferably, an aromatic hydrocarbon polymer resin called a super engineering plastic is used. Further, those having a polyether ether ketone structure, a polyether ketone structure, a polyimide structure, a polysulfone structure, or a polybenzimidazole structure are preferable.

より具体的な例として、ポリフェニレンサルファイド(PPS)、ポリエーテルエーテルケトン(PEEK)、ポリエチレンナフタレート(PEN)、スーパーエンプラポリサルフォン(PSU)、ポリエーテルサルフォン(PES)、ポリアリレート(PAR)、ポリアミドイミド(PAI)、ポリエーテルイミド(PEI)、ポリイミド(PI)等が挙げられる。PEEKは、化学的安定性や耐強アルカリ性に優れるため、特に好ましい。   More specific examples include polyphenylene sulfide (PPS), polyetheretherketone (PEEK), polyethylene naphthalate (PEN), super engineering plastic polysulfone (PSU), polyethersulfone (PES), polyarylate (PAR), polyamide Examples include imide (PAI), polyetherimide (PEI), and polyimide (PI). PEEK is particularly preferable because it is excellent in chemical stability and strong alkali resistance.

本発明に用いられる芳香族炭化水素系高分子樹脂は、2種の芳香族炭化水素系高分子樹脂を混合させて得られるポリマーアロイを包含する。該ポリマーアロイの例としては、PEEKと、他の芳香族炭化水素系高分子樹脂またはフッ素系高分子樹脂とを混合させるポリマーアロイが挙げられる。PEEKと混合させる芳香族炭化水素系高分子樹脂としては、ポリフェニレンサルファイド(PPS)、ポリサルフォン(PSU)、ポリエーテルイミド(PEI)、またフッ素系高分子樹脂としては、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレンパーフルオロアルキルビニルエーテル共重合体(PFA)等が挙げられる。上記に例示するポリマーアロイは、イオン交換基の結合量が増加しても機械的強度を維持できる、または積極的にイオン交換基の結合量を増加できるため好ましい。一方、通常の炭化水素膜は、イオン交換基の結合量の増加に伴い、膜強度が減少して破れやすくなる。   The aromatic hydrocarbon polymer resin used in the present invention includes a polymer alloy obtained by mixing two kinds of aromatic hydrocarbon polymer resins. Examples of the polymer alloy include polymer alloys in which PEEK is mixed with other aromatic hydrocarbon polymer resin or fluorine polymer resin. As aromatic hydrocarbon polymer resin mixed with PEEK, polyphenylene sulfide (PPS), polysulfone (PSU), polyetherimide (PEI), as fluorine polymer resin, polytetrafluoroethylene (PTFE), And tetrafluoroethylene perfluoroalkyl vinyl ether copolymer (PFA). The polymer alloys exemplified above are preferable because the mechanical strength can be maintained even when the amount of ion-exchange group bonds increases, or the amount of ion-exchange group bonds can be positively increased. On the other hand, a normal hydrocarbon film is easily broken due to a decrease in film strength with an increase in the amount of ion-exchange group bonds.

上記に例示するポリマーアロイにおける、PEEKと混合させる芳香族炭化水素系高分子樹脂またはフッ素系高分子樹脂の含有量は、得られるポリマーアロイ100質量部に対し、0.1〜50質量部が好ましく、0.5〜40質量部がより好ましく、1〜35質量部がさらに好ましい。PEEKと混合させる芳香族炭化水素系高分子樹脂またはフッ素系高分子樹脂の含有量が0.1質量部未満の場合、そのようなポリマーアロイの機械的強度等は、PEEKを単独使用した場合と比較して有意な向上が認められない。上記含有量が50質量部を超える場合、膜の機械的強度が低下する場合がある。   In the polymer alloy exemplified above, the content of the aromatic hydrocarbon polymer resin or fluorine polymer resin mixed with PEEK is preferably 0.1 to 50 parts by mass with respect to 100 parts by mass of the obtained polymer alloy, 0.5 -40 mass parts is more preferable, and 1-35 mass parts is further more preferable. When the content of the aromatic hydrocarbon polymer resin or fluorine polymer resin mixed with PEEK is less than 0.1 parts by mass, the mechanical strength of such a polymer alloy is compared with the case where PEEK is used alone. There is no significant improvement. When the content exceeds 50 parts by mass, the mechanical strength of the film may be lowered.

[無機フィラー]
上記の芳香族炭化水素系高分子樹脂に含有させる無機フィラーとしては、得られる電解質膜の含水性を向上できるものを制限なく使用できる。そのような無機フィラーとしてはシリカが好ましい。本発明において芳香族炭化水素系高分子樹脂に含有させるシリカは、親水性シリカ、疎水性シリカのいずれでもよく、親水性シリカがより好ましい。またシリカの形状は、球状、鱗片状、針状のいずれでもよく、球状が好ましい。上記のシリカが芳香族炭化水素系高分子樹脂のミクロ相分離構造内の親水性部分に分散されることにより、本発明の含水率を向上できる。その結果、本発明の電解質膜はプロトン伝導性が良好である。
[Inorganic filler]
As the inorganic filler to be contained in the above aromatic hydrocarbon polymer resin, those capable of improving the water content of the obtained electrolyte membrane can be used without limitation. Silica is preferred as such an inorganic filler. In the present invention, the silica to be contained in the aromatic hydrocarbon polymer resin may be either hydrophilic silica or hydrophobic silica, more preferably hydrophilic silica. Further, the shape of silica may be spherical, scale-like, or needle-like, and spherical is preferred. The water content of the present invention can be improved by dispersing the silica in the hydrophilic part in the microphase separation structure of the aromatic hydrocarbon polymer resin. As a result, the electrolyte membrane of the present invention has good proton conductivity.

本発明において親水性シリカとは、下記に説明する疎水化処理をしていないSiO2微粒子をいう。本発明においては、市販品の親水性シリカを用いることができる。市販品の商品名としては、アエロジル(登録商標)200(株式会社日本アエロジル製)、SFP-20M(電気化学工業株式会社製)等が挙げられる。 In the present invention, the hydrophilic silica refers to SiO 2 fine particles not subjected to the hydrophobizing treatment described below. In the present invention, commercially available hydrophilic silica can be used. Examples of commercially available product names include Aerosil (registered trademark) 200 (manufactured by Nippon Aerosil Co., Ltd.), SFP-20M (manufactured by Denki Kagaku Kogyo Co., Ltd.), and the like.

疎水性シリカとしては、上記の親水性シリカを疎水化処理した微粒子が用いられる。疎水化処理は、疎水性化合物をコーティングさせて疎水層を形成させる処理である。コーティング方法としてはシランカップリング法等を適用できる。本発明においては市販の疎水性シリカを用いてもよい。市販品の商品名としては、アエロジル(登録商標)RX200(株式会社日本アエロジル製)等が挙げられる。上記の疎水性シリカの粒子径D50は、0.1〜12μmが好ましく、0.1〜6μmがより好ましい。 As the hydrophobic silica, fine particles obtained by hydrophobizing the above hydrophilic silica are used. The hydrophobic treatment is a treatment in which a hydrophobic layer is formed by coating a hydrophobic compound. A silane coupling method or the like can be applied as a coating method. In the present invention, commercially available hydrophobic silica may be used. Examples of the commercial name include Aerosil (registered trademark) RX200 (manufactured by Nippon Aerosil Co., Ltd.). The particle diameter D 50 of the hydrophobic silica is preferably 0.1 to 12 μm, and more preferably 0.1 to 6 μm.

上記の親水性シリカの粒子径D50は、0.1〜12μmが好ましく、0.1〜6μmがより好ましい。粒子径D50が12μmを超える場合、芳香族炭化水素系高分子樹脂への分散性が不十分になる。上記のシリカの粒子径D50は、レーザ回折式粒子径分布測定装置により測定できる。 The particle diameter D 50 of the hydrophilic silica is preferably 0.1 to 12 μm, and more preferably 0.1 to 6 μm. When the particle diameter D 50 exceeds 12 μm, the dispersibility in the aromatic hydrocarbon polymer resin becomes insufficient. Particle diameter D of the silica 50 can be measured by a laser diffraction type particle size distribution measuring apparatus.

シリカの含有量は、芳香族炭化水素系高分子樹脂100質量部に対し、1質量部以上5質量部以下が好ましく、3質量部以上5質量部以下がより好ましい。上記の好ましい範囲内でシリカを含有させることにより、本発明の電解質膜の含水率は、同一の条件で製作されたシリカを含まない電解質膜の含水率に比べて、1〜3倍以上の値となる。   The content of silica is preferably 1 part by mass or more and 5 parts by mass or less, and more preferably 3 parts by mass or more and 5 parts by mass or less with respect to 100 parts by mass of the aromatic hydrocarbon polymer resin. By containing silica within the above preferred range, the water content of the electrolyte membrane of the present invention is 1 to 3 times or more the water content of an electrolyte membrane not containing silica produced under the same conditions. It becomes.

本発明の電解質膜は、PEEK等の高耐熱性の芳香族炭化水素系高分子樹脂を用いるため、温度条件25〜80℃に加え、高温条件下でも使用できる。高温条件の具体例として、本発明は、温度条件80〜160℃で使用可能であり、より好ましくは80〜120℃で使用可能である。また、所定のシリカを含有させることにより含水率が良好であるため、本発明の電解質膜は、上記に例示する温度条件下において、低加湿条件であってもプロトン伝導性が良好である。   Since the electrolyte membrane of the present invention uses a highly heat-resistant aromatic hydrocarbon polymer resin such as PEEK, it can be used under high temperature conditions in addition to temperature conditions of 25 to 80 ° C. As a specific example of the high temperature condition, the present invention can be used at a temperature condition of 80 to 160 ° C, more preferably 80 to 120 ° C. Further, since the moisture content is good by containing predetermined silica, the electrolyte membrane of the present invention has good proton conductivity even under low humidification conditions under the temperature conditions exemplified above.

すなわち本発明の電解質膜を用いた燃料電池は、高温条件下かつ低加湿条件下で良好に作動する。例えば相対湿度30%RH(90℃)で、本発明の電解質膜を用いた燃料電池は作動させることができる。芳香族炭化水素系高分子樹脂100質量部に対するシリカの含有量が、3質量部未満の場合は、燃料電池用途として適切な導電率を得られない。一方5質量部を超える場合は、コストが上昇する原因となる。   That is, the fuel cell using the electrolyte membrane of the present invention operates well under high temperature conditions and low humidification conditions. For example, a fuel cell using the electrolyte membrane of the present invention can be operated at a relative humidity of 30% RH (90 ° C.). When the content of silica with respect to 100 parts by mass of the aromatic hydrocarbon polymer resin is less than 3 parts by mass, it is not possible to obtain conductivity suitable for fuel cell applications. On the other hand, when it exceeds 5 mass parts, it becomes a cause which raises cost.

本発明に含有されるシリカは、電解質膜のラジカル耐性向上にも寄与する。代表的なラジカルとして塩素ラジカルが挙げられる。塩素ラジカル耐性は、電解質膜を塩素に暴露し、所定時間経過後の電解質膜の劣化状態を観察することにより評価できる。またラジカル耐性をさらに向上させる場合には、シリカに加え、タルク、二酸化マンガン、カーボンブラック、ラジカルスカベンジャー等のラジカル耐性向上機能を備える機能性の無機フィラーを芳香族炭化水素系高分子樹脂に添加してもよい。その場合、芳香族炭化水素系高分子樹脂に含有させた、シリカと上記の機能性の無機フィラーとの芳香族炭化水素系高分子樹脂100質量部に対する総含有量は、40質量部未満が好ましい。シリカ等の総含有量が40質量部以上の場合、電解質膜の総質量に対する芳香族炭化水素系高分子樹脂の質量が相対的に低くなるため、電解質膜の機械的強度が低下する。   Silica contained in the present invention also contributes to improvement of radical resistance of the electrolyte membrane. A chlorine radical is mentioned as a typical radical. Chlorine radical resistance can be evaluated by exposing the electrolyte membrane to chlorine and observing the deterioration state of the electrolyte membrane after a predetermined time has elapsed. In order to further improve radical resistance, in addition to silica, functional inorganic fillers having radical resistance improving functions such as talc, manganese dioxide, carbon black and radical scavenger are added to the aromatic hydrocarbon polymer resin. May be. In that case, the total content with respect to 100 parts by mass of the aromatic hydrocarbon polymer resin of silica and the above functional inorganic filler contained in the aromatic hydrocarbon polymer resin is preferably less than 40 parts by mass. . When the total content of silica or the like is 40 parts by mass or more, the mass of the aromatic hydrocarbon polymer resin relative to the total mass of the electrolyte membrane is relatively low, so that the mechanical strength of the electrolyte membrane is reduced.

[イオン交換基]
本発明において芳香族炭化水素系高分子樹脂に結合されるイオン交換基は、カチオン交換基とアニオン交換基とのいずれでもよく、好ましくはカチオン交換基が結合される。結合されるカチオン交換基としては、スルホン酸基(またはスルホ基)、カルボン酸基(またはカルボキシ基)、ホスホン酸基(またはホスホ基)等が挙げられ、より好ましくはスルホン酸基である。アニオン交換基としては、アンモニウム基等が結合される。
[Ion exchange group]
In the present invention, the ion exchange group bonded to the aromatic hydrocarbon polymer resin may be either a cation exchange group or an anion exchange group, preferably a cation exchange group. Examples of the cation exchange group to be bonded include a sulfonic acid group (or sulfo group), a carboxylic acid group (or carboxy group), a phosphonic acid group (or phospho group), and a sulfonic acid group is more preferable. As the anion exchange group, an ammonium group or the like is bonded.

電解質膜のプロトン伝導性向上の観点からは、本発明におけるイオン交換基の含有量は多いほど好ましい。具体的には、少なくとも電解質膜のIECが1meq/g以上になるように含有させることが好ましく、2meq/g以上になるように含有させることがより好ましい。本発明においては、放射線グラフト重合法を適用してイオン交換基を芳香族炭化水素系高分子樹脂に結合させることで、上記の好ましいIECを備える電解質膜を得られる。   From the viewpoint of improving the proton conductivity of the electrolyte membrane, the higher the ion exchange group content in the present invention, the better. Specifically, it is preferably contained so that at least the IEC of the electrolyte membrane is 1 meq / g or more, and more preferably 2 meq / g or more. In the present invention, an electrolyte membrane having the above-mentioned preferred IEC can be obtained by applying a radiation graft polymerization method to bond an ion exchange group to an aromatic hydrocarbon polymer resin.

本発明においては、芳香族炭化水素系高分子樹脂の機械的強度を保持するため、芳香族炭化水素系高分子樹脂の疎水性部分でのイオン交換基の結合を抑制させることが好ましい。そのような観点から、本発明に用いられる芳香族炭化水素系高分子樹脂にはグラフト鎖を形成させ、該グラフト鎖にイオン交換基を結合させることが好ましい。ただし本発明は、イオン交換基を芳香族炭化水素系高分子樹脂の主鎖に結合させた構造を排除しない。   In the present invention, in order to maintain the mechanical strength of the aromatic hydrocarbon polymer resin, it is preferable to suppress the binding of ion exchange groups at the hydrophobic portion of the aromatic hydrocarbon polymer resin. From such a viewpoint, it is preferable that a graft chain is formed in the aromatic hydrocarbon polymer resin used in the present invention and an ion exchange group is bonded to the graft chain. However, the present invention does not exclude the structure in which the ion exchange group is bonded to the main chain of the aromatic hydrocarbon polymer resin.

本発明のイオン交換基は主にグラフト鎖に結合させるため、グラフト率が高いほどイオン交換基を結合させることができる。したがってプロトン伝導性を向上させる観点からは、芳香族炭化水素系高分子樹脂のグラフト率が高いほど好ましい。具体的なグラフト率としては、50%以上が好ましく、70%以上がより好ましい。グラフト率が50%未満の場合、イオン交換基の結合量が少なくなり所望のIECを得られない。なおグラフト率は、150〜200%が現実的な上限である。   Since the ion exchange group of the present invention is mainly bonded to the graft chain, the higher the graft ratio, the more the ion exchange group can be bonded. Therefore, from the viewpoint of improving proton conductivity, the higher the graft ratio of the aromatic hydrocarbon polymer resin, the better. The specific graft ratio is preferably 50% or more, and more preferably 70% or more. When the graft ratio is less than 50%, the amount of ion-exchange group bonds decreases and the desired IEC cannot be obtained. The practical upper limit of the graft rate is 150 to 200%.

上記の所定のシリカを含有する芳香族炭化水素系高分子樹脂は、本発明の電解質膜の基材として、従来公知の方法でフィルム状、シート状等に成膜されて用いられる。成膜された芳香族炭化水素系高分子樹脂の膜厚は、5〜200μmが好ましく、10〜120μmがより好ましい。5μm未満の場合、電解質膜が破断しやすくなる。200μmを超える場合、燃料電池用途に必要な導電率を得難くなる。   The above aromatic hydrocarbon polymer resin containing the predetermined silica is used as a base material for the electrolyte membrane of the present invention after being formed into a film, a sheet or the like by a conventionally known method. The film thickness of the formed aromatic hydrocarbon polymer resin is preferably 5 to 200 μm, more preferably 10 to 120 μm. When the thickness is less than 5 μm, the electrolyte membrane is easily broken. When it exceeds 200 μm, it is difficult to obtain the conductivity required for fuel cell applications.

[固体高分子形燃料電池用電解質膜の製造方法]
本発明の固体高分子形燃料電池用電解質膜の製造方法は、溶融させた芳香族炭化水素系高分子樹脂に所定の無機フィラーを分散させた後、該芳香族炭化水素系高分子樹脂を成膜させて芳香族炭化水素系高分子樹脂膜を作製する成膜工程と、該芳香族炭化水素系高分子樹脂膜に放射線を照射し、イオン交換基含有モノマーをグラフト重合させるグラフト重合工程とを含む。本発明の電解質膜の製造方法を、無機フィラーとしてシリカを用いた例により説明する。
[Method for producing electrolyte membrane for polymer electrolyte fuel cell]
According to the method for producing an electrolyte membrane for a polymer electrolyte fuel cell of the present invention, a predetermined inorganic filler is dispersed in a molten aromatic hydrocarbon polymer resin, and then the aromatic hydrocarbon polymer resin is formed. A film forming process for forming an aromatic hydrocarbon polymer resin film by film formation, and a graft polymerization process for irradiating the aromatic hydrocarbon polymer resin film with radiation to graft polymerize an ion exchange group-containing monomer. Including. The method for producing an electrolyte membrane of the present invention will be described with reference to an example using silica as an inorganic filler.

本発明は、芳香族炭化水素系高分子樹脂に放射線を照射する前に、該芳香族炭化水素系高分子樹脂とビニルモノマーとをグラフト重合させ、芳香族炭化水素系高分子樹脂にグラフト鎖を形成させることが好ましい。これにより芳香族炭化水素系高分子樹脂へのイオン交換基含有モノマーのグラフト率を向上できる。   In the present invention, before irradiating an aromatic hydrocarbon polymer resin with radiation, the aromatic hydrocarbon polymer resin and a vinyl monomer are graft-polymerized, and a graft chain is formed on the aromatic hydrocarbon polymer resin. It is preferable to form. Thereby, the graft ratio of the ion exchange group containing monomer to the aromatic hydrocarbon polymer resin can be improved.

[成膜工程]
本工程においては、芳香族炭化水素系高分子樹脂に所定のシリカを添加し、分散させる。シリカを均質に分散させるため、芳香族炭化水素系高分子樹脂を混練可能な粘度になるまで溶融させた状態で所定のシリカを添加し、混練することが好ましい。混練温度は、用いられる芳香族炭化水素系高分子樹脂の融点以上であればよく、例えばPEEKの場合は、350〜400℃が好ましい。
[Film formation process]
In this step, predetermined silica is added to and dispersed in the aromatic hydrocarbon polymer resin. In order to uniformly disperse the silica, it is preferable to add and knead the predetermined silica in a melted state until the viscosity of the aromatic hydrocarbon polymer resin becomes kneadable. The kneading temperature should just be more than melting | fusing point of the aromatic hydrocarbon type polymer resin used, for example, in the case of PEEK, 350-400 degreeC is preferable.

溶融させた芳香族炭化水素系高分子樹脂に、所定のシリカを添加して混練する。シリカは、本発明の作用効果を損なわない限り、1種を添加してもよく2種以上を添加してもよい。溶融させた芳香族炭化水素系高分子樹脂に添加されるシリカの添加量は、得られる電解質膜に含有されるシリカの含有量に相当する。したがって電解質膜に含有させるシリカの所望の含有量に対応する添加量のシリカを、溶融させた芳香族炭化水素系高分子樹脂に添加すればよい。   Predetermined silica is added to the molten aromatic hydrocarbon polymer resin and kneaded. As long as the effect of the present invention is not impaired, one type of silica may be added, or two or more types of silica may be added. The amount of silica added to the fused aromatic hydrocarbon polymer resin corresponds to the content of silica contained in the obtained electrolyte membrane. Accordingly, an addition amount of silica corresponding to the desired content of silica contained in the electrolyte membrane may be added to the molten aromatic hydrocarbon polymer resin.

芳香族炭化水素系高分子樹脂に対するシリカの添加量は、芳香族炭化水素系高分子樹脂100質量部に対し、0.1質量部以上50質量部以下が好ましく、0.5質量部以上40質量部以下がより好ましく、1質量部以上35質量部以下がさらに好ましい。2種以上のシリカを含有させる場合は、添加されるシリカの添加量の合計が上記の好ましい範囲の添加量になるようにする。具体例としては、親水性シリカと疎水性シリカとを質量比1:34〜34:1で添加できる。   The amount of silica added to the aromatic hydrocarbon polymer resin is preferably 0.1 parts by mass or more and 50 parts by mass or less, and more preferably 0.5 parts by mass or more and 40 parts by mass or less with respect to 100 parts by mass of the aromatic hydrocarbon polymer resin. Preferably, it is 1 to 35 parts by mass. When two or more kinds of silica are contained, the total addition amount of silica added is set to the addition amount in the above preferable range. As a specific example, hydrophilic silica and hydrophobic silica can be added at a mass ratio of 1:34 to 34: 1.

シリカを添加した後、芳香族炭化水素系高分子樹脂を、シリカが均質に分散するまで混練する。上記の混練は、芳香族炭化水素系高分子樹脂が混練可能な粘度を保持できる温度として、PEEKの例では、好ましくは350〜450℃で行われる。混練装置としては、例えば2軸混練押出機(例:パーカーコーポレーション社製HK25D)を使った場合、吐出速度は2kg/hr〜8kg/hrが好ましい。混練回数は、400〜600rpmが好ましい。上記の混練条件で混練を行うことでシリカを均質に分散させることができる。   After adding the silica, the aromatic hydrocarbon polymer resin is kneaded until the silica is uniformly dispersed. In the example of PEEK, the above kneading is preferably performed at 350 to 450 ° C. as the temperature at which the viscosity capable of kneading the aromatic hydrocarbon polymer resin can be maintained. As the kneading apparatus, for example, when a twin-screw kneading extruder (for example, HK25D manufactured by Parker Corporation) is used, the discharge speed is preferably 2 kg / hr to 8 kg / hr. The number of kneading is preferably 400 to 600 rpm. Silica can be homogeneously dispersed by kneading under the above kneading conditions.

混練装置としては、2軸混練押出機等、従来公知のものを用いることができる。取扱性の観点から、混練終了後の芳香族炭化水素系高分子樹脂はペレット化することが好ましい。またペレット化させたシリカ含有芳香族炭化水素系高分子樹脂を再び溶融し、上記の混練工程を2〜10回繰り返してもよい。これによりシリカの分散性を向上できる。上記の混練工程では、架橋剤や分散剤を添加させてもよい。   As the kneading apparatus, a conventionally known apparatus such as a twin-screw kneading extruder can be used. From the viewpoint of handleability, the aromatic hydrocarbon polymer resin after kneading is preferably pelletized. Alternatively, the pelletized silica-containing aromatic hydrocarbon polymer resin may be melted again and the kneading step may be repeated 2 to 10 times. Thereby, the dispersibility of a silica can be improved. In the above kneading step, a crosslinking agent or a dispersing agent may be added.

混練終了後、シリカを均質に分散させた芳香族炭化水素系高分子樹脂をシート加工機を用いて成膜する。シート成型時の処理温度は、350〜450℃が好ましい。成膜させた芳香族炭化水素系高分子樹脂を急冷し、硬化させることで芳香族炭化水素系高分子樹脂膜を作製できる。急冷時の処理温度は、用いる芳香族炭化水素系高分子樹脂の硬化温度より低く、好ましくは80〜140℃である。シート加工機としては、ダイコーター、Tコーターが用いられる。   After completion of the kneading, an aromatic hydrocarbon polymer resin in which silica is uniformly dispersed is formed using a sheet processing machine. The processing temperature during sheet molding is preferably 350 to 450 ° C. The aromatic hydrocarbon polymer resin film can be produced by quenching and curing the formed aromatic hydrocarbon polymer resin. The treatment temperature at the time of quenching is lower than the curing temperature of the aromatic hydrocarbon polymer resin to be used, and is preferably 80 to 140 ° C. As the sheet processing machine, a die coater or a T coater is used.

[グラフト重合工程]
本工程では、得られた芳香族炭化水素系高分子樹脂膜にイオン交換基含有モノマーをグラフト重合させる。芳香族炭化水素系高分子樹脂のグラフト鎖にイオン交換基を結合させることで、同量のイオン交換基を芳香族炭化水素系高分子樹脂の主鎖に結合させる場合と比較して、芳香族炭化水素系高分子樹脂膜の水溶性を抑制できる。これにより、芳香族炭化水素系高分子樹脂の機械的強度を損なうことなく、イオン交換基を結合させることができる。
[Graft polymerization process]
In this step, an ion exchange group-containing monomer is graft polymerized to the obtained aromatic hydrocarbon polymer resin film. By attaching an ion exchange group to the graft chain of the aromatic hydrocarbon polymer resin, compared to the case where the same amount of ion exchange group is bonded to the main chain of the aromatic hydrocarbon polymer resin, it is aromatic. The water solubility of the hydrocarbon polymer resin film can be suppressed. Thereby, an ion exchange group can be combined without impairing the mechanical strength of the aromatic hydrocarbon polymer resin.

本発明は、芳香族炭化水素系高分子樹脂膜にビニルモノマーを重合させた後、上記のイオン交換基含有モノマーをグラフト重合させることが好ましい。ビニルモノマーの重合方法としては熱グラフト重合法が好ましく、他の方法としては、放射線グラフト重合法が挙げられる。   In the present invention, it is preferable to polymerize a vinyl monomer on an aromatic hydrocarbon polymer resin film and then graft-polymerize the above ion exchange group-containing monomer. As a polymerization method of the vinyl monomer, a thermal graft polymerization method is preferable, and as another method, a radiation graft polymerization method is exemplified.

[ビニルモノマー重合工程]
熱グラフト重合法を適用する場合、まずビニルモノマーを分散させたビニルモノマー反応液を調製する。溶媒としては、1,4−ジオキサン、テトラヒドロフラン等のエーテル類、トルエン、ヘキサン等の炭化水素類、メタノール、エタノール、イソプロピルアルコール等のアルコール類、アセトン、メチルイソプロピルケトン、シクロヘキサノン等のケトン類、酢酸エチル、酢酸ブチル等のエステル類、イソプロピルアミン、ジエタノールアミン、N-メチルホルムアミド、N,N-ジメチルホルムアミド等の含窒素化合物等を例示できる。
[Vinyl monomer polymerization process]
When applying the thermal graft polymerization method, first, a vinyl monomer reaction solution in which a vinyl monomer is dispersed is prepared. Solvents include ethers such as 1,4-dioxane and tetrahydrofuran, hydrocarbons such as toluene and hexane, alcohols such as methanol, ethanol and isopropyl alcohol, ketones such as acetone, methyl isopropyl ketone and cyclohexanone, and ethyl acetate. And esters such as butyl acetate, nitrogen-containing compounds such as isopropylamine, diethanolamine, N-methylformamide, and N, N-dimethylformamide.

本発明で用いられるビニルモノマーは、所定の芳香族炭化水素系高分子樹脂の主鎖にグラフト鎖を形成できるものであればよく、下記式(1)で表されるモノマーが例示される。
(上記式(1)において、Xは、H、OH、F、Cl、または炭化水素である。Rは炭化水素及びその誘導体である。)
The vinyl monomer used in the present invention may be any monomer that can form a graft chain on the main chain of a predetermined aromatic hydrocarbon polymer resin, and examples thereof include monomers represented by the following formula (1).
(In the above formula (1), X is H, OH, F, Cl, or a hydrocarbon. R is a hydrocarbon and its derivatives.)

式(1)で表されるモノマーとして、式(1)に含まれるRが、芳香環を含む炭化水素やカルボニル基やアミド基を有する炭化水素であるモノマーを例示できる。より具体的な例示としては、スチレンおよびその誘導体、アクリル酸およびその誘導体、アクリルアミド類、ビニルケトン類、アクリルニトリル類、ビニルフッ素系モノマー、またはこれらの多官能性モノマーが挙げられる。   Examples of the monomer represented by the formula (1) include a monomer in which R contained in the formula (1) is a hydrocarbon having an aromatic ring or a hydrocarbon having a carbonyl group or an amide group. More specific examples include styrene and its derivatives, acrylic acid and its derivatives, acrylamides, vinyl ketones, acrylonitriles, vinyl fluorine-based monomers, or polyfunctional monomers thereof.

多官能性モノマーの具体例としては、ジビニルベンゼン、ビスビニルフェニルエタン、2,4,6-トリアリルオキシ-1,3,5-トリアジン、トリアリル-1,2,4-ベンゼントリカルボキシレート、トリアリル-1,3,5-トリアジン-2,4,6-トリオン、ジビニルスルホン、エチレングリコールジビニルエーテル、ジエチレングリコールジビニルエーテル、トリエチレングリコールジビニルエーテル、シクロヘキサンジメタノールジビニルエーテル、フェニルアセチレン、ジフェニルアセチレン、1,4-ジフェニル-1,3-ブタジエン、ジアリルエーテル、ブタジエン、イソブテンが挙げられる。これらの多官能性モノマーは、熱グラフト重合性が高いため好ましい。また芳香族炭化水素系高分子樹脂の主鎖に架橋構造を形成できるため、電解質膜の機械的強度を向上できる。   Specific examples of the polyfunctional monomer include divinylbenzene, bisvinylphenylethane, 2,4,6-triallyloxy-1,3,5-triazine, triallyl-1,2,4-benzenetricarboxylate, triallyl -1,3,5-triazine-2,4,6-trione, divinyl sulfone, ethylene glycol divinyl ether, diethylene glycol divinyl ether, triethylene glycol divinyl ether, cyclohexane dimethanol divinyl ether, phenylacetylene, diphenylacetylene, 1,4 -Diphenyl-1,3-butadiene, diallyl ether, butadiene, isobutene. These polyfunctional monomers are preferred because of their high thermal graft polymerizability. Moreover, since a crosslinked structure can be formed in the main chain of the aromatic hydrocarbon polymer resin, the mechanical strength of the electrolyte membrane can be improved.

上記のビニルモノマー反応液に、シリカを含有する芳香族炭化水素系高分子樹脂膜を浸漬し、大気中で重合反応を行う。温度条件は、40〜100℃が好ましく、50〜80℃がより好ましい。反応時間は、0.2〜1時間が好ましい。反応終了後、グラフト鎖を形成させた芳香族炭化水素系高分子樹脂膜を不活性ガス雰囲気下で乾燥させる。上記の熱グラフト重合法によるビニルモノマー反応工程におけるビニルモノマーのグラフト率は、1〜50%である。ビニルモノマーのグラフト率は、芳香族炭化水素系高分子樹脂膜の上記反応前の乾燥時重量(W1)と同反応後の乾燥時重量(W2)とを測定して下記式(2)により求めることができる。
An aromatic hydrocarbon polymer resin film containing silica is immersed in the above vinyl monomer reaction solution, and a polymerization reaction is performed in the air. The temperature condition is preferably 40 to 100 ° C, more preferably 50 to 80 ° C. The reaction time is preferably 0.2 to 1 hour. After completion of the reaction, the aromatic hydrocarbon polymer resin film on which the graft chain is formed is dried in an inert gas atmosphere. The graft ratio of the vinyl monomer in the vinyl monomer reaction step by the thermal graft polymerization method is 1 to 50%. The graft ratio of the vinyl monomer was determined by measuring the dry weight (W 1 ) before the reaction of the aromatic hydrocarbon polymer resin film and the dry weight (W 2 ) after the reaction as shown in the following formula (2) It can ask for.

[イオン交換基含有モノマーグラフト重合工程]
グラフト鎖を形成させた芳香族炭化水素系高分子樹脂膜は、乾燥後、放射線を照射し、ラジカルを生成させる。基材となる芳香族炭化水素系高分子樹脂膜に、上記に例示するビニルモノマー反応工程等により、予めグラフト鎖を形成させておくことで、ラジカル生成量を向上させることができる。生成させたラジカルと、イオン交換基含有モノマーとを反応させて、芳香族炭化水素系高分子樹脂にイオン交換基を結合させる。
[Ion exchange group-containing monomer graft polymerization step]
The aromatic hydrocarbon polymer resin film on which the graft chain is formed is irradiated with radiation after drying to generate radicals. By forming a graft chain in advance on the aromatic hydrocarbon polymer resin film as the base material by the vinyl monomer reaction step exemplified above, the amount of radical generation can be improved. The generated radical and the ion exchange group-containing monomer are reacted to bond the ion exchange group to the aromatic hydrocarbon polymer resin.

本発明で用いる放射線グラフト重合法の例として、前照射法と同時照射法とが挙げられる。前照射法とは、芳香族炭化水素系高分子樹脂膜に放射線を照射後、イオン交換基を含有するモノマーを反応させる方法である。同時照射法とは、芳香族炭化水素系高分子樹脂膜と、イオン交換基含有モノマーとに同時に放射線を照射して上記モノマーを反応させる方法である。本発明においては、上記のいずれの方法を適用してもよい。   Examples of the radiation graft polymerization method used in the present invention include a pre-irradiation method and a simultaneous irradiation method. The pre-irradiation method is a method of reacting a monomer containing an ion exchange group after irradiating the aromatic hydrocarbon polymer resin film with radiation. The simultaneous irradiation method is a method in which an aromatic hydrocarbon polymer resin film and an ion exchange group-containing monomer are irradiated with radiation at the same time to react with the monomer. In the present invention, any of the above methods may be applied.

さらに前照射法としてはポリマーラジカル法と、パーオキサイド法とが挙げられる。ポリマーラジカル法とは、芳香族炭化水素系高分子樹脂膜に不活性ガス雰囲気下で放射線を照射する方法である。パーオキサイド法とは、芳香族炭化水素系高分子樹脂膜に酸素存在下で放射線を照射する方法である。本発明においては、ポリマーラジカル法が好ましい。   Further, examples of the pre-irradiation method include a polymer radical method and a peroxide method. The polymer radical method is a method in which an aromatic hydrocarbon polymer resin film is irradiated with radiation in an inert gas atmosphere. The peroxide method is a method in which an aromatic hydrocarbon polymer resin film is irradiated with radiation in the presence of oxygen. In the present invention, the polymer radical method is preferred.

芳香族炭化水素系高分子樹脂膜に照射する放射線の種類としては、γ線、X線、電子線、イオンビーム、紫外線等を例示できる。γ線、電子線は、ラジカル生成が容易なため好ましく用いられる。放射線照射量は、1kGy以上500kGy以下が好ましく、5kGy以上100kGy以下がより好ましく、10kGy以上60kGy以下がさらに好ましい。1kGy未満の場合、グラフト鎖の形成が不十分になる。500kGyを超える場合、芳香族炭化水素系高分子樹脂膜が破断する場合がある。   Examples of the type of radiation applied to the aromatic hydrocarbon polymer resin film include γ rays, X rays, electron beams, ion beams, ultraviolet rays, and the like. γ rays and electron beams are preferably used because radical generation is easy. The irradiation dose is preferably 1 kGy or more and 500 kGy or less, more preferably 5 kGy or more and 100 kGy or less, and further preferably 10 kGy or more and 60 kGy or less. If it is less than 1 kGy, the formation of graft chains becomes insufficient. If it exceeds 500 kGy, the aromatic hydrocarbon polymer resin film may break.

芳香族炭化水素系高分子樹脂とイオン交換基含有モノマーとの反応は、溶媒にイオン交換基含有モノマーを分散させたイオン交換基含有モノマー反応液に、芳香族炭化水素系高分子樹脂膜を浸漬させて行うことができる。これによりイオン交換基含有モノマーのホモポリマー化を抑制できる。   In the reaction between the aromatic hydrocarbon polymer resin and the ion exchange group-containing monomer, the aromatic hydrocarbon polymer resin film is immersed in an ion exchange group-containing monomer reaction solution in which the ion exchange group-containing monomer is dispersed in a solvent. Can be done. Thereby, homopolymerization of the ion exchange group-containing monomer can be suppressed.

所定のイオン交換基含有モノマーを溶媒に分散させたイオン交換基含有モノマー反応液を調製する。上記溶媒に分散させるイオン交換基含有モノマーは1種でもよく2種以上でもよい。所定の溶媒で上記のモノマーを希釈させることにより、ホモポリマーの生成を抑制できる。   An ion exchange group-containing monomer reaction solution in which a predetermined ion exchange group-containing monomer is dispersed in a solvent is prepared. The ion-exchange group-containing monomer dispersed in the solvent may be one type or two or more types. By diluting the above monomer with a predetermined solvent, the formation of a homopolymer can be suppressed.

イオン交換基含有モノマーとしては、スチレンスルホン酸エチルエステル(ETSS)、ス
チレンスルホン酸、スチレンスルホン酸ナトリウム等が好ましい。
As the ion exchange group-containing monomer, styrene sulfonic acid ethyl ester (ETSS), styrene sulfonic acid, sodium styrene sulfonate and the like are preferable.

上記のイオン交換基含有モノマー反応液中のイオン交換基含有モノマーの濃度は、20〜80容積%が好ましく、25〜75容積%がより好ましい。溶媒としては、ジオキサン、テトラヒドロフラン等のエーテル類、トルエン、ヘキサン等の炭化水素類、メタノール、エタノール、イソプロピルアルコール等のアルコール類、アセトン、メチルイソプロピルケトン、シクロヘキサノン等のケトン類、酢酸エチル、酢酸ブチル等のエステル類、イソプロピルアミン、ジエタノールアミン、N-メチルホルムアミド、N,N-ジメチルホルムアミド等の窒素含有化合物等を例示できる。   The concentration of the ion exchange group-containing monomer in the ion exchange group-containing monomer reaction liquid is preferably 20 to 80% by volume, more preferably 25 to 75% by volume. Solvents include ethers such as dioxane and tetrahydrofuran, hydrocarbons such as toluene and hexane, alcohols such as methanol, ethanol and isopropyl alcohol, ketones such as acetone, methyl isopropyl ketone and cyclohexanone, ethyl acetate, butyl acetate and the like And nitrogen-containing compounds such as isopropylamine, diethanolamine, N-methylformamide, and N, N-dimethylformamide.

上記のイオン交換基含有モノマー反応液に、シリカを含有する芳香族炭化水素系高分子樹脂膜を浸漬し、空気中または不活性ガス雰囲気下で放射線グラフト重合反応を行う。反応雰囲気中の酸素濃度は、ラジカルの失活を抑制する観点から低いほど好ましく、0.01体積%以下がより好ましい。0.01体積%を超えると、ラジカルが失活しグラフト率が低くなる。不活性ガスとしては窒素、アルゴン等が用いられる。   An aromatic hydrocarbon polymer resin film containing silica is immersed in the above-mentioned ion exchange group-containing monomer reaction solution, and a radiation graft polymerization reaction is performed in air or in an inert gas atmosphere. The oxygen concentration in the reaction atmosphere is preferably as low as possible from the viewpoint of suppressing radical deactivation, and more preferably 0.01% by volume or less. If it exceeds 0.01% by volume, the radicals are deactivated and the graft ratio is lowered. Nitrogen, argon or the like is used as the inert gas.

重合時の温度条件は、40〜100℃が好ましく、50〜80℃がより好ましい。これによりホモポリマーの生成やラジカルの失活を抑制できる。反応時間は、1〜48時間が好ましく、5〜20時間がより好ましい。上記のイオン交換基含有モノマーグラフト重合工程によるイオン交換基含有モノマーのグラフト率は、50〜200%程度である。   The temperature condition during the polymerization is preferably 40 to 100 ° C, more preferably 50 to 80 ° C. Thereby, formation of homopolymer and radical deactivation can be suppressed. The reaction time is preferably 1 to 48 hours, more preferably 5 to 20 hours. The graft ratio of the ion exchange group-containing monomer in the ion exchange group-containing monomer graft polymerization step is about 50 to 200%.

[イオン交換基の有効化工程]
上記の放射線グラフト重合法により芳香族炭化水素系高分子樹脂に結合されたイオン交換基は、洗浄、乾燥後、従来公知の方法でイオン交換基を有効化させる。具体例としては、芳香族炭化水素系高分子樹脂膜を純水に90〜95℃で15〜24時間浸漬させて加水分解する方法等が挙げられる。これにより本発明の固体高分子形燃料電池用電解質膜を製造することができる。
[Ion exchange group activation process]
The ion exchange group bonded to the aromatic hydrocarbon polymer resin by the above-mentioned radiation graft polymerization method is made effective by the conventionally known method after washing and drying. Specific examples include a method of hydrolyzing an aromatic hydrocarbon polymer resin film by immersing it in pure water at 90 to 95 ° C. for 15 to 24 hours. Thereby, the electrolyte membrane for a polymer electrolyte fuel cell of the present invention can be produced.

本発明の製造方法により得られる電解質膜のIECは、0.2〜3.0meq/gであり、より好ましくは0.5〜3.0meq/gであり、さらに好ましくは1.0〜3.0meq/gであり、2.0〜3.0meq/gが最も好ましい。本発明の電解質膜は、芳香族炭化水素系高分子樹脂膜を基材とするため、機械的強度、耐強アルカリ性、耐薬品性に優れる。また所定のシリカを添加することで、電解質膜の含水率、ラジカル耐性、耐酸性を向上させることができる。そのため本発明の電解質膜は、高温条件下かつ低加湿条件下においても導電性が良好で、燃料電池用途に好適である。   The IEC of the electrolyte membrane obtained by the production method of the present invention is 0.2 to 3.0 meq / g, more preferably 0.5 to 3.0 meq / g, still more preferably 1.0 to 3.0 meq / g, and 2.0 to 3.0. meq / g is most preferred. Since the electrolyte membrane of the present invention is based on an aromatic hydrocarbon polymer resin membrane, it is excellent in mechanical strength, strong alkali resistance, and chemical resistance. Moreover, the water content, radical resistance, and acid resistance of the electrolyte membrane can be improved by adding predetermined silica. Therefore, the electrolyte membrane of the present invention has good conductivity even under high temperature conditions and low humidification conditions, and is suitable for fuel cell applications.

[固体高分子形燃料電池]
本発明の燃料電池は、上記の固体高分子形燃料電池用電解質膜の一方の膜面に燃料極を接合させ、他方の膜面に空気極を接合させた膜電極接合体を含む。当該電解質膜は耐熱性と含水率に優れるため、本発明の燃料電池は高温条件下や低加湿条件下においても高導電率で作動する。
[Polymer fuel cell]
The fuel cell of the present invention includes a membrane electrode assembly in which a fuel electrode is joined to one membrane surface of the electrolyte membrane for a polymer electrolyte fuel cell and an air electrode is joined to the other membrane surface. Since the electrolyte membrane is excellent in heat resistance and moisture content, the fuel cell of the present invention operates with high conductivity even under high temperature conditions and low humidification conditions.

図1は、本発明の燃料電池を構成する膜電極接合体(MEA)を示す模式図である。図1において、MEA100は、固体高分子形燃料電池用電解質膜(電解質膜)300の一方の膜面に、燃料極200を接合させ、他方の膜面に空気極400を接合させた構造である。燃料極200と空気極400とは、それぞれ触媒層とガス拡散層とを接合させた構造を備える。201は燃料極200の触媒層、202は燃料極200のガス拡散層である。401は空気極400の触媒層、402は空気極400のガス拡散層である。   FIG. 1 is a schematic view showing a membrane electrode assembly (MEA) constituting the fuel cell of the present invention. In FIG. 1, an MEA 100 has a structure in which a fuel electrode 200 is joined to one membrane surface of an electrolyte membrane (electrolyte membrane) 300 for a polymer electrolyte fuel cell, and an air electrode 400 is joined to the other membrane surface. . The fuel electrode 200 and the air electrode 400 each have a structure in which a catalyst layer and a gas diffusion layer are joined. 201 is a catalyst layer of the fuel electrode 200, and 202 is a gas diffusion layer of the fuel electrode 200. 401 is a catalyst layer of the air electrode 400, and 402 is a gas diffusion layer of the air electrode 400.

燃料極200の触媒層201は、電解質膜300の燃料極側の膜面に接合される。燃料極200のガス拡散層202は、上記の触媒層201の電解質膜300との接合面と反対側の面に接合される。空気極400の触媒層401は、電解質膜300の空気極側の膜面に接合される。空気極400のガス拡散層402は、触媒層401の電解質膜300との接合面と反対側の面に接合される。   The catalyst layer 201 of the fuel electrode 200 is joined to the membrane surface of the electrolyte membrane 300 on the fuel electrode side. The gas diffusion layer 202 of the fuel electrode 200 is bonded to the surface of the catalyst layer 201 opposite to the surface where the catalyst layer 201 is bonded to the electrolyte membrane 300. The catalyst layer 401 of the air electrode 400 is joined to the air electrode side film surface of the electrolyte membrane 300. The gas diffusion layer 402 of the air electrode 400 is bonded to the surface of the catalyst layer 401 opposite to the bonding surface with the electrolyte membrane 300.

燃料極200の触媒層201と空気極400との触媒層401とは、いずれも触媒を担体に担持させてなる。燃料極200の触媒層201に用いられる触媒は、燃料の酸化反応を促進する金属粒子であれば良い。好ましくは、白金、白金パラジウムが用いられる。空気極400の触媒層401に用いられる触媒は、酸素の還元反応を促進する金属粒子であれば良い。具体例としては、白金、金、コバルト等およびこれらの合金を挙げられる。好ましくは、白金が用いられる。   The catalyst layer 201 of the fuel electrode 200 and the catalyst layer 401 of the air electrode 400 both have a catalyst supported on a carrier. The catalyst used for the catalyst layer 201 of the fuel electrode 200 may be metal particles that promote the oxidation reaction of the fuel. Preferably, platinum and platinum palladium are used. The catalyst used for the catalyst layer 401 of the air electrode 400 may be metal particles that promote the oxygen reduction reaction. Specific examples include platinum, gold, cobalt and the like and alloys thereof. Preferably, platinum is used.

担体としては、カーボンブラック等が用いられる。また触媒層には公知の導電剤や撥水性材料を含有させてもよい。公知の導電剤としてはアセチレンブラック、ケッチェンブラック等が挙げられる。公知の撥水性材料としては、ポリテトラフルオロエチレン(PTFE)等が挙げられる。また触媒層の形成方法の例としては、少なくとも触媒や担体を有機溶媒に分散させた塗工液を調製し、該塗工液をスクリーン印刷法等を用いて基材に塗布し乾燥させる方法が挙げられる。上記の塗工液を用いて触媒層を形成する場合、塗工液中の触媒の濃度は、30〜70質量%が好ましい。   Carbon black or the like is used as the carrier. The catalyst layer may contain a known conductive agent or water repellent material. Known conductive agents include acetylene black, ketjen black and the like. Known water-repellent materials include polytetrafluoroethylene (PTFE) and the like. Examples of the method for forming the catalyst layer include a method in which a coating liquid in which at least a catalyst or a carrier is dispersed in an organic solvent is prepared, and the coating liquid is applied to a substrate using a screen printing method or the like and dried. Can be mentioned. When forming a catalyst layer using said coating liquid, the density | concentration of the catalyst in a coating liquid has preferable 30-70 mass%.

燃料極200のガス拡散層202と空気極400のガス拡散層402とは、いずれも従来公知の材料を用いて作製できる。具体的な材料例としては、カーボン不織布、カーボンペーパー、等が挙げられる。   Both the gas diffusion layer 202 of the fuel electrode 200 and the gas diffusion layer 402 of the air electrode 400 can be manufactured using conventionally known materials. Specific examples of the material include carbon non-woven fabric and carbon paper.

MEA100の作製方法は特に限定されないが、従来公知のホットプレス法等を適用できる。ホットプレス法を適用する作製方法の例としては、燃料極200を、その触媒層201が電解質膜300の一方の膜面に隣接するように配置する。また空気極400を、その触媒層401が電解質膜300の他方の膜面に隣接するように配置する。その後、燃料極200と電解質膜300と空気極400とを、温度条件100〜250℃、加圧条件0.5〜50MPaで加圧し、一体化させることでMEA100を作製できる。   A method for producing MEA 100 is not particularly limited, and a conventionally known hot press method or the like can be applied. As an example of a manufacturing method to which the hot press method is applied, the fuel electrode 200 is disposed so that the catalyst layer 201 is adjacent to one membrane surface of the electrolyte membrane 300. The air electrode 400 is disposed so that the catalyst layer 401 is adjacent to the other membrane surface of the electrolyte membrane 300. Thereafter, the fuel electrode 200, the electrolyte membrane 300, and the air electrode 400 are pressurized and integrated at a temperature condition of 100 to 250 ° C. and a pressure condition of 0.5 to 50 MPa, whereby the MEA 100 can be manufactured.

本発明の燃料電池のセルは、燃料極200と電解質膜300と空気極400とを積層させたMEA100の積層方向の両端に、集電体を配置する。燃料極側に接合される集電体と空気極側に接合される集電体とは、互いに外部回路で接続される。本発明の燃料電池のセルは、少なくとも1つのMEAを含む構成であればよく、2つ以上のMEAをセパレータを介してスタックさせた構成としてもよい。2つ以上のMEAをスタックさせる場合、集電体は、積層方向の最も外側に位置する燃料極と空気極とに接合させればよい。   In the cell of the fuel cell of the present invention, current collectors are disposed at both ends in the stacking direction of the MEA 100 in which the fuel electrode 200, the electrolyte membrane 300, and the air electrode 400 are stacked. The current collector joined to the fuel electrode side and the current collector joined to the air electrode side are connected to each other by an external circuit. The cell of the fuel cell of the present invention only needs to have a configuration including at least one MEA, and may have a configuration in which two or more MEAs are stacked via a separator. When two or more MEAs are stacked, the current collector may be joined to the fuel electrode and the air electrode located on the outermost side in the stacking direction.

本発明の燃料電池に用いられる電解質膜は、シリカを含有させたPEEK等芳香族炭化水素系高分子樹脂にイオン交換基を結合させて作製される。これにより該電解質膜の含水率とイオン交換基の結合量を向上できるためプロトン伝導性が良好である。また高耐熱性で機械的強度が高い。そのような所定の電解質膜を用いる本発明の燃料電池は、80〜100%RH(70℃)、80〜100%RH(80℃)、相対湿度20〜40%RH(90℃)、相対湿度40〜70%RH(110℃)、相対湿度50〜80%RH(120℃)のいずれの作動環境でも作動する。本発明は、高温条件下かつ低加湿条件下でも作動するため、自動車用途に好適である。また高耐久性を備える。   The electrolyte membrane used in the fuel cell of the present invention is produced by binding an ion exchange group to an aromatic hydrocarbon polymer resin such as PEEK containing silica. As a result, the water content of the electrolyte membrane and the amount of ion exchange groups can be improved, so that proton conductivity is good. High heat resistance and high mechanical strength. The fuel cell of the present invention using such a predetermined electrolyte membrane has 80-100% RH (70 ° C.), 80-100% RH (80 ° C.), relative humidity 20-40% RH (90 ° C.), relative humidity. It operates in any operating environment of 40 to 70% RH (110 ° C) and relative humidity 50 to 80% RH (120 ° C). Since the present invention operates under high temperature conditions and low humidification conditions, it is suitable for automotive applications. It also has high durability.

本発明を、実施例によりさらに説明する。ただし本発明は以下に記載する実施例に限定されない。   The invention is further illustrated by the examples. However, the present invention is not limited to the examples described below.

[電解質膜の作製]
(実施例1-4、比較例1)
(成膜工程)
混練装置内に、芳香族炭化水素系高分子樹脂としてのPEEK粉末と、親水性シリカ粉末(一次粒子径12nm、比表面積200±25m2/g)とを投入し、温度条件350℃以上でPEEK粉末を溶融させながら親水性シリカ粉末と混練した。PEEK粉末と親水性シリカ粉末との混練物における親水性シリカ粉末の含有率は5%とした。混練装置は、パーカーコーポレーション社製の2軸混練押出機(HK25D)を用いた。混練時間終了後、親水性シリカを含有させたPEEKをペレット化した。該ペレットを再び混練装置内に投入して溶融させ、さらに親水性シリカとPEEKとを混練させた。その後得られたペレットを乾燥させた。
[Production of electrolyte membrane]
(Example 1-4, Comparative Example 1)
(Film formation process)
PEEK powder as an aromatic hydrocarbon polymer resin and hydrophilic silica powder (primary particle size 12 nm, specific surface area 200 ± 25 m 2 / g) are put into the kneader and PEEK is used at a temperature of 350 ° C or higher. The powder was kneaded with hydrophilic silica powder while melting. The content of the hydrophilic silica powder in the kneaded product of the PEEK powder and the hydrophilic silica powder was 5%. As the kneading apparatus, a twin-screw kneading extruder (HK25D) manufactured by Parker Corporation was used. After the kneading time, PEEK containing hydrophilic silica was pelletized. The pellets were again put into a kneading apparatus and melted, and hydrophilic silica and PEEK were further kneaded. Thereafter, the obtained pellets were dried.

乾燥させた親水性シリカ含有PEEKのペレットをシート加工機に投入し、温度条件400℃で加熱しながら、シート成型し成膜した。得られた親水性シリカ含有PEEK膜を、急冷し硬化させた。硬化後の親水性シリカ含有PEEK膜の膜厚は、16μmであった。   The dried pellets of hydrophilic silica-containing PEEK were put into a sheet processing machine, and sheet-molded to form a film while heating at a temperature condition of 400 ° C. The obtained hydrophilic silica-containing PEEK film was quenched and cured. The film thickness of the hydrophilic silica-containing PEEK film after curing was 16 μm.

(グラフト重合工程)
得られた親水性シリカ含有PEEK膜から寸法2cm×3cmの試験片を切り出した。試験片の乾燥状態の重量を測定し、ジビニルベンゼン(DVB)モノマーとの反応前の親水性シリカ含有PEEK膜の乾燥時重量(W1)とした。実施例1においては、熱グラフト重合法により親水性シリカ含有PEEK膜にビニルモノマーを結合しグラフト鎖を形成させた後、放射線グラフト重合法により、さらにETSSモノマーを結合させた。
(Graft polymerization process)
A test piece having a size of 2 cm × 3 cm was cut out from the obtained hydrophilic silica-containing PEEK membrane. The weight of the test piece in the dry state was measured and used as the dry weight (W 1 ) of the hydrophilic silica-containing PEEK membrane before the reaction with the divinylbenzene (DVB) monomer. In Example 1, after a vinyl monomer was bonded to a hydrophilic silica-containing PEEK film by thermal graft polymerization to form a graft chain, ETSS monomer was further bonded by radiation graft polymerization.

まずDVBモノマーを結合させるため、成分重量比1:3でDVBを1,4-ジオキサンに添加したDVB反応液を調製した。ガラス容器内で試験片とDVB反応液とを大気中、90℃で反応させ、DVBモノマーをPEEKに重合させて、PEEKにグラフト鎖を形成させた。反応終了後、試験片をアルゴン雰囲気下で1時間乾燥させた。試験片の乾燥状態の重量を測定し、DVBモノマーとの反応後の親水性シリカ含有PEEK膜の放射線照射前の乾燥時重量(W2)とした。 First, a DVB reaction solution was prepared by adding DVB to 1,4-dioxane at a component weight ratio of 1: 3 in order to bind DVB monomers. The test piece and the DVB reaction solution were reacted in the glass container at 90 ° C. in the atmosphere to polymerize the DVB monomer into PEEK, thereby forming a graft chain on PEEK. After completion of the reaction, the test piece was dried for 1 hour under an argon atmosphere. The weight of the test piece in the dry state was measured and taken as the dry weight (W 2 ) before irradiation of the hydrophilic silica-containing PEEK film after the reaction with the DVB monomer.

続いてETSSモノマーを結合させるため、乾燥後の試験片をガラス容器に入れ、アルゴン雰囲気下で30kGyのγ線を照射した。また、成分重量比1:3でスチレンスルホン酸エチルエステル(ETSS)を1,4-ジオキサンに添加したETSS反応液を調製した。上記ガラス容器内で該ETSS反応液に試験片を浸漬させた。その後、アルゴン雰囲気下、反応温度85℃で試験片とETSS反応液とを24時間反応させ、ETSSモノマーをPEEKに重合させスルホン酸基をPEEKに結合させた。反応終了後、試験片を洗浄し乾燥させた。グラフト重合工程終了後のETSSモノマーを結合させた試験片の乾燥状態の重量を測定し、グラフト重合工程終了後の重量(W3)とした。式(3)によりETSSモノマーのグラフト率を求めた。実施例1のETSSモノマーグラフト率とを表1に示す。 Subsequently, in order to bind the ETSS monomer, the dried test piece was placed in a glass container and irradiated with 30 kGy of γ rays in an argon atmosphere. Further, an ETSS reaction liquid in which styrene sulfonic acid ethyl ester (ETSS) was added to 1,4-dioxane at a component weight ratio of 1: 3 was prepared. The test piece was immersed in the ETSS reaction solution in the glass container. Thereafter, the test piece and the ETSS reaction solution were reacted for 24 hours under an argon atmosphere at a reaction temperature of 85 ° C., and the ETSS monomer was polymerized into PEEK to bond sulfonic acid groups to PEEK. After completion of the reaction, the test piece was washed and dried. The dry weight of the test piece bonded with the ETSS monomer after completion of the graft polymerization step was measured and taken as the weight (W 3 ) after completion of the graft polymerization step. The grafting rate of the ETSS monomer was determined from equation (3). Table 1 shows the ETSS monomer graft ratio of Example 1.

(イオン交換基有効化工程)
ガラス容器内で、グラフト重合工程終了後の試験片を、純水に95℃で16時間浸漬させて加水分解処理を行い、実施例1の電解質膜を得た。
(Ion exchange group validation process)
In the glass container, the test piece after completion of the graft polymerization step was immersed in pure water at 95 ° C. for 16 hours for hydrolysis treatment to obtain an electrolyte membrane of Example 1.

PEEK粉末と親水性シリカ粉末との混練物における、親水性シリカ粉末の添加率をそれぞれ1%、3%とした他は、実施例1と同様に電解質膜を作製し実施例2、実施例3とした。   An electrolyte membrane was prepared in the same manner as in Example 1 except that the addition rate of the hydrophilic silica powder in the kneaded mixture of PEEK powder and hydrophilic silica powder was 1% and 3%, respectively. It was.

(実施例4)
成膜工程を、親水性シリカ粉末に代えて疎水性シリカ粉末(一次粒子径12nm、比表面積140±25m2/g)とPEEK粉末と混練させた他は、実施例1と同様にして行った。PEEK粉末と疎水性シリカ粉末との混練物における疎水性シリカ粉末の含有率は5%とした。その後、実施例1と同様にしてグラフト重合工程とイオン交換基有効化工程とを行って電解質膜を作製し、実施例4とした。
(Example 4)
The film forming step was performed in the same manner as in Example 1 except that the hydrophobic silica powder (primary particle diameter 12 nm, specific surface area 140 ± 25 m 2 / g) and PEEK powder were kneaded instead of the hydrophilic silica powder. . The content of the hydrophobic silica powder in the kneaded product of the PEEK powder and the hydrophobic silica powder was 5%. Thereafter, in the same manner as in Example 1, the graft polymerization step and the ion exchange group validation step were performed to produce an electrolyte membrane, and Example 4 was obtained.

(比較例1)
(成膜工程)
混練装置内に、芳香族炭化水素系高分子樹脂としてのPEEK粉末を投入した。混練装置としては、パーカーコーポレーション社製の2軸混練押出機(HK25D)を用いた。混練時間終了後、PEEKをペレット化した。該ペレットを再び混練装置内に投入して溶融させ、さらに混練させた。その後得られたペレットを乾燥させた。
(Comparative Example 1)
(Film formation process)
PEEK powder as an aromatic hydrocarbon polymer resin was charged into the kneading apparatus. As a kneading apparatus, a twin-screw kneading extruder (HK25D) manufactured by Parker Corporation was used. After the kneading time, PEEK was pelletized. The pellets were again put into a kneader and melted and further kneaded. Thereafter, the obtained pellets were dried.

乾燥させたPEEKのペレットをシート加工機に投入し、温度条件380℃以上で加熱しながら、シート成型した。得られたPEEK膜を急冷し、硬化させた。硬化後のPEEK膜の膜厚は、16μmであった。   The dried PEEK pellets were put into a sheet processing machine, and the sheet was molded while heating at a temperature condition of 380 ° C. or higher. The obtained PEEK film was quenched and cured. The film thickness of the PEEK film after curing was 16 μm.

シリカを添加しないPEEK膜から寸法2cm×3cmの試験片を切り出した。該試験片について実施例1と同様にグラフト重合工程とイオン交換基有効化工程とを行い電解質膜を作製し、比較例1とした。   A test piece having a size of 2 cm × 3 cm was cut out from a PEEK film to which silica was not added. The test piece was subjected to a graft polymerization step and an ion exchange group validation step in the same manner as in Example 1 to produce an electrolyte membrane, which was referred to as Comparative Example 1.

実施例1-4および比較例1の試験片について式(3)によりETSSモノマーグラフト率を求めた。実施例1-4および比較例1のETSSモノマーグラフト率を表1に示す。   For the test pieces of Example 1-4 and Comparative Example 1, the ETSS monomer graft ratio was determined by the formula (3). Table 1 shows the ETSS monomer graft ratios of Example 1-4 and Comparative Example 1.

[含水率]
室温下、水中で保存される実施例1-4と比較例1との電解質膜を取り出し、寸法2cm×3cmで切り出した。切り出した各電解質膜の表面を軽く拭き取った後、湿潤時重量(W4)を測定した。上記の湿潤状態の各電解質膜を、それぞれ95℃で1時間乾燥させ、乾燥時重量(W5)を測定した。得られた湿潤時重量(W4)と乾燥時重量(W5)とに基づき、式(4)により各電解質膜の含水率を求めた。
[Moisture content]
The electrolyte membranes of Example 1-4 and Comparative Example 1 stored in water at room temperature were taken out and cut out with dimensions of 2 cm × 3 cm. After lightly wiping the surface of each cut-out electrolyte membrane, the wet weight (W 4 ) was measured. Each wet electrolyte membrane was dried at 95 ° C. for 1 hour, and the dry weight (W 5 ) was measured. Based on the obtained wet weight (W 4 ) and dry weight (W 5 ), the water content of each electrolyte membrane was determined by Equation (4).

[導電率]
膜厚がいずれも16μmの実施例1-4および比較例1の電解質膜を、寸法2cm×3cmで切り出した。切り出した各電解質膜について、それぞれ交流インピーダンスメーターを用いて膜抵抗測定を行った。膜抵抗測定は、各電解質膜を1M硫酸水溶液で湿潤させた後、対極となる2つのPt電極(電極間距離5mm)の間に配置し、100kHzの交流電流を印加して行った。得られた膜抵抗値Rm(Ω)に基づき、式(5)により各電解質膜の導電率を求めた。式(5)において、dは電極間距離、Sは電解質膜の膜面積である。
[conductivity]
The electrolyte membranes of Examples 1-4 and Comparative Example 1 each having a film thickness of 16 μm were cut out with dimensions of 2 cm × 3 cm. About each cut-out electrolyte membrane, membrane resistance measurement was performed using the alternating current impedance meter, respectively. Membrane resistance was measured by wetting each electrolyte membrane with a 1M sulfuric acid aqueous solution, placing it between two Pt electrodes (distance between electrodes: 5 mm) as counter electrodes, and applying an alternating current of 100 kHz. Based on the obtained membrane resistance value Rm (Ω), the electrical conductivity of each electrolyte membrane was determined by Equation (5). In formula (5), d is the distance between the electrodes, and S is the membrane area of the electrolyte membrane.

[イオン交換容量(IEC)]
導電率測定後の実施例1-4および比較例1の電解質膜を、それぞれ0.1M硫酸水溶液に50℃で4時間以上浸漬し、プロトン型とした。さらに50℃の飽和食塩水に4時間浸漬して、H型を-SO3Na型に置換させた。上記の各電解質膜を取り出した後の飽和食塩水を0.1M NaOHで中和滴定して、置換させたプロトン(H+)を定量し、各電解質膜の酸性基濃度[n(酸性基)obs]を求めた。
[Ion exchange capacity (IEC)]
The electrolyte membranes of Example 1-4 and Comparative Example 1 after the conductivity measurement were each immersed in a 0.1 M sulfuric acid aqueous solution at 50 ° C. for 4 hours or longer to obtain a proton type. Further, it was immersed in a saturated saline solution at 50 ° C. for 4 hours to replace the H type with the —SO 3 Na type. The saturated saline solution after each electrolyte membrane was taken out was neutralized and titrated with 0.1M NaOH, the substituted proton (H + ) was quantified, and the acid group concentration [n (acid group) obs of each electrolyte membrane ] Was requested.

グラフト重合工程終了後の電解質膜の乾燥時重量W3と、酸性基濃度[n(酸性基)obs]とを用いて、式(6)により各電解質膜のIECを求めた。
The IEC of each electrolyte membrane was determined by Equation (6) using the dry weight W 3 of the electrolyte membrane after the graft polymerization step and the acidic group concentration [n (acidic group) obs].

実施例1-4および比較例1についての含水率と室温での導電率とIECとの測定結果を表2に示す。   Table 2 shows the measurement results of moisture content, electrical conductivity at room temperature, and IEC for Example 1-4 and Comparative Example 1.

(実施例5)
[燃料電池のセルの作製]
[触媒層の作製]
燃料極を構成する触媒層を作製するため、メタノール水溶液に白金とカーボンブラックとナフィオン溶液とPTFE溶液とを分散させた塗工液を調製した。該塗工液は、触媒の濃度が50%になるように調製した。該塗工液を、スプレー法で基材に塗布し、乾燥させた。
(Example 5)
[Fabrication of fuel cell]
[Production of catalyst layer]
In order to produce a catalyst layer constituting the fuel electrode, a coating solution was prepared by dispersing platinum, carbon black, Nafion solution, and PTFE solution in an aqueous methanol solution. The coating solution was prepared so that the concentration of the catalyst was 50%. The coating solution was applied to the substrate by a spray method and dried.

空気極を構成する触媒層を作製するため、メタノール水溶液に白金とカーボンブラックとナフィオン溶液とPTFE溶液とを分散させた塗工液を調製した。該塗工液は、触媒の濃度が50%になるように調製した。該塗工液を、スプレー法で基材に塗布し、乾燥させた。   In order to produce a catalyst layer constituting the air electrode, a coating solution was prepared by dispersing platinum, carbon black, Nafion solution, and PTFE solution in a methanol aqueous solution. The coating solution was prepared so that the concentration of the catalyst was 50%. The coating solution was applied to the substrate by a spray method and dried.

[ガス拡散層の作製]
PTFE溶液を分散させた塗工液を調製し、カーボンペーパーに塗布し、乾燥させた。
[Production of gas diffusion layer]
A coating solution in which the PTFE solution was dispersed was prepared, applied to carbon paper, and dried.

[MEAの作製]
寸法5cm×5cmの実施例3の電解質膜の一方の膜面に燃料極の触媒層を積層し、他方の膜面に空気極の触媒層を積層した積層体を形成した。該積層体を温度条件120℃、圧力条件1MPaでホットプレスし、燃料極の触媒層と電解質膜と空気極の触媒層とを一体化させた。ホットプレス後、各触媒層の基材を剥離させた。
[Production of MEA]
A fuel electrode catalyst layer was laminated on one membrane surface of the electrolyte membrane of Example 3 having dimensions of 5 cm × 5 cm, and an air electrode catalyst layer was laminated on the other membrane surface. The laminate was hot-pressed under a temperature condition of 120 ° C. and a pressure condition of 1 MPa to integrate the fuel electrode catalyst layer, the electrolyte membrane, and the air electrode catalyst layer. After hot pressing, the base material of each catalyst layer was peeled off.

燃料極と空気極との各触媒層の基材を剥離させた面に、それぞれガス拡散層を積層させた。その後、温度条件140℃、圧力条件2MPaでホットプレスし、上記の積層体の積層方向の両端にガス拡散層を一体化させた。これにより、電解質膜の一方の膜面に燃料極を備え、他方の膜面に空気極を備えるMEAを作製した。   Gas diffusion layers were laminated on the surfaces of the catalyst layers of the fuel electrode and the air electrode on which the base material was peeled off. Thereafter, hot pressing was performed at a temperature condition of 140 ° C. and a pressure condition of 2 MPa, and the gas diffusion layers were integrated at both ends in the stacking direction of the laminate. Thus, an MEA having a fuel electrode on one membrane surface of the electrolyte membrane and an air electrode on the other membrane surface was produced.

[セパレータ等の接合]
得られたMEAの燃料極側の端面に、燃料としての水素を供給可能な流路を設けたセパレータを接合させた。空気極側の端面に、ボンベから酸素含有ガスを供給可能な流路を設けたセパレータを接合させた。該セパレータには、プロトンと酸素との反応により生成される水を排出すため為の流路も設けた。燃料極側セパレータと空気極側セパレータとには、それぞれさらに集電板と絶縁板とを配置し、固定した。得られた燃料電池のセルを実施例5とした。
[Separation of separators]
A separator provided with a flow path capable of supplying hydrogen as a fuel was joined to the end face of the obtained MEA on the fuel electrode side. A separator provided with a flow path capable of supplying an oxygen-containing gas from a cylinder was joined to the end face on the air electrode side. The separator was also provided with a flow path for discharging water generated by the reaction between protons and oxygen. A current collecting plate and an insulating plate were further arranged and fixed on the fuel electrode side separator and the air electrode side separator, respectively. The obtained fuel cell was designated as Example 5.

寸法5cm×5cmの実施例4の電解質膜を用いて実施例5と同様の方法でMEAを作製した。このMEAを用いて実施例5と同様の方法で燃料電池セルを作製し、実施例6とした。比較例1の電解質膜を用いて実施例5と同様の方法でMEAを作製した。このMEAを用いて実施例5と同様の方法で燃料電池セルを作製し、比較例2とした。得られた実施例5、実施例6、比較例2の燃料電池のセルを用いて、それぞれの電池特性を測定した。   An MEA was produced in the same manner as in Example 5 using the electrolyte membrane of Example 4 having dimensions of 5 cm × 5 cm. Using this MEA, a fuel cell was produced in the same manner as in Example 5, and designated as Example 6. An MEA was produced in the same manner as in Example 5 using the electrolyte membrane in Comparative Example 1. Using this MEA, a fuel cell was produced in the same manner as in Example 5, and designated as Comparative Example 2. Using the obtained fuel cell cells of Example 5, Example 6, and Comparative Example 2, the respective battery characteristics were measured.

[電流-電圧特性]
実施例5と実施例6と比較例2との燃料電池セルを燃料電池性能評価装置にセットした。セル温度を80℃、相対湿度を100%RHとして、燃料極に水素を500cc/min、空気極に空気を2,000cc/min供給し、負荷として電流を徐々に取り出しながら、電流-電圧特性を計測した。計測結果を図2に示す。図2に示されるように、実施例5と実施例6とは本発明所定のシリカを含有させた電解質膜を用いることにより、比較例2と比較して電圧低下が抑制される。
[Current-voltage characteristics]
The fuel cells of Example 5, Example 6, and Comparative Example 2 were set in the fuel cell performance evaluation apparatus. The cell temperature is 80 ° C, the relative humidity is 100% RH, hydrogen is supplied to the fuel electrode at 500cc / min, air is supplied to the air electrode at 2,000cc / min, and the current-voltage characteristics are measured while gradually taking out the current as a load. did. The measurement results are shown in FIG. As shown in FIG. 2, in Example 5 and Example 6, the use of an electrolyte membrane containing silica according to the present invention suppresses voltage drop as compared with Comparative Example 2.

[電圧特性]
実施例5と実施例6と比較例2との燃料電池セルを燃料電池性能評価装置にセットした。セル温度を90℃、相対湿度を30%RHとして、燃料極に水素を500cc/min、空気極に空気を2,000cc/min供給し、負荷として一定電流密度0.25A/cm2をかけながら、電流-電圧特性を計測した。計測結果を図3に示す。図3に示されるように、実施例5と実施例6とは、本発明所定のシリカを含有させた電解質膜を用いることにより、高温条件下かつ低加湿条件下でも、作動開始から少なくとも8時間、同程度の電圧を維持できる。上記の計測では実施例5は、作動開始から8時間後の電圧低下率は、8.75mV/hrであった。また実施例6の8時間後の電圧低下率は、5mV/hrであった。
[Voltage characteristics]
The fuel cells of Example 5, Example 6, and Comparative Example 2 were set in the fuel cell performance evaluation apparatus. The cell temperature is 90 ° C, the relative humidity is 30% RH, hydrogen is supplied to the fuel electrode at 500cc / min, air is supplied to the air electrode at 2,000cc / min, and a constant current density of 0.25A / cm 2 is applied as a load. -Voltage characteristics were measured. The measurement results are shown in FIG. As shown in FIG. 3, Example 5 and Example 6 use at least 8 hours from the start of operation even under high-temperature and low-humidification conditions by using an electrolyte membrane containing silica according to the present invention. The same level of voltage can be maintained. In the above measurement, in Example 5, the voltage drop rate after 8 hours from the start of operation was 8.75 mV / hr. In addition, the voltage drop rate after 8 hours in Example 6 was 5 mV / hr.

100 膜電極接合体
200 燃料極
201 触媒層
202 ガス拡散層
300 固体高分子形燃料電池用電解質膜
400 空気極
401 触媒層
402 ガス拡散層
100 Membrane electrode assembly
200 Fuel electrode
201 catalyst layer
202 Gas diffusion layer
300 Electrolyte membrane for polymer electrolyte fuel cell
400 air electrode
401 catalyst layer
402 Gas diffusion layer

Claims (4)

無機フィラーを含有する芳香族炭化水素系高分子樹脂のグラフト鎖に、イオン交換基が結合されてなる固体高分子形燃料電池用電解質膜。   An electrolyte membrane for a polymer electrolyte fuel cell, wherein an ion exchange group is bonded to a graft chain of an aromatic hydrocarbon polymer resin containing an inorganic filler. 芳香族炭化水素系高分子樹脂が、ポリエーテルエーテルケトン又はその誘導体である請求項1に記載の固体高分子形燃料電池用電解質膜。   2. The electrolyte membrane for a polymer electrolyte fuel cell according to claim 1, wherein the aromatic hydrocarbon polymer resin is polyether ether ketone or a derivative thereof. 請求項1または請求項2に記載される固体高分子形燃料電池用電解質膜の一方の膜面に燃料極を接合させ、他方の膜面に空気極を接合させた膜電極接合体を含む固体高分子形燃料電池。   A solid comprising a membrane electrode assembly in which a fuel electrode is joined to one membrane surface of the electrolyte membrane for a polymer electrolyte fuel cell according to claim 1 or claim 2 and an air electrode is joined to the other membrane surface Polymer fuel cell. 溶融させた芳香族炭化水素系高分子樹脂に無機フィラーを分散させた後、該芳香族炭化水素系高分子樹脂を成膜させて芳香族炭化水素系高分子樹脂膜を作製する成膜工程と、該芳香族炭化水素系高分子樹脂膜に放射線を照射し、イオン交換基含有モノマーをグラフト重合させるグラフト重合工程とを含む固体高分子形燃料電池用電解質膜の製造方法。   A film forming step for producing an aromatic hydrocarbon polymer resin film by dispersing an inorganic filler in a molten aromatic hydrocarbon polymer resin and then forming the aromatic hydrocarbon polymer resin into a film; A method for producing an electrolyte membrane for a polymer electrolyte fuel cell, comprising: a graft polymerization step of irradiating the aromatic hydrocarbon polymer resin membrane with radiation to graft polymerize an ion exchange group-containing monomer.
JP2015074629A 2015-03-31 2015-03-31 Electrolyte membrane for polymer electrolyte fuel cell, polymer electrolyte fuel cell, and method for producing electrolyte membrane for polymer electrolyte fuel cell Active JP6663647B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015074629A JP6663647B2 (en) 2015-03-31 2015-03-31 Electrolyte membrane for polymer electrolyte fuel cell, polymer electrolyte fuel cell, and method for producing electrolyte membrane for polymer electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015074629A JP6663647B2 (en) 2015-03-31 2015-03-31 Electrolyte membrane for polymer electrolyte fuel cell, polymer electrolyte fuel cell, and method for producing electrolyte membrane for polymer electrolyte fuel cell

Publications (2)

Publication Number Publication Date
JP2016195046A true JP2016195046A (en) 2016-11-17
JP6663647B2 JP6663647B2 (en) 2020-03-13

Family

ID=57322994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015074629A Active JP6663647B2 (en) 2015-03-31 2015-03-31 Electrolyte membrane for polymer electrolyte fuel cell, polymer electrolyte fuel cell, and method for producing electrolyte membrane for polymer electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP6663647B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021111542A (en) * 2020-01-14 2021-08-02 東レ株式会社 Membrane electrode complex

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04370145A (en) * 1991-06-20 1992-12-22 Mitsui Toatsu Chem Inc Electrically conductive aromatic polyether ketone resin composition and its formed article
JP2005166384A (en) * 2003-12-02 2005-06-23 Kaneka Corp Proton conductive film and manufacturing method of same
JP2006233086A (en) * 2005-02-25 2006-09-07 Japan Atomic Energy Agency Functional membrane, method for producing electrolytic membrane for fuel battery, and electrolytic membrane for fuel battery
WO2007126222A1 (en) * 2006-04-28 2007-11-08 Industry-University Cooperation Foundation, Hanyang University Proton conductive composite membrane comprising surfactant and inorganic filler, and fuel cell comprising the same
WO2008120379A1 (en) * 2007-03-29 2008-10-09 Fujitsu Limited Electrolyte membrane, process for producing the same, membrane electrode assembly and polymer electrolyte fuel cell
JP2009067844A (en) * 2007-09-11 2009-04-02 Japan Atomic Energy Agency Highly proton-conductive polymer electrolyte membrane having excellent mechanical strength and method for producing the same
JP2009123436A (en) * 2007-11-13 2009-06-04 Nitto Denko Corp Electrolyte membrane for polymer electrolyte fuel cell

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04370145A (en) * 1991-06-20 1992-12-22 Mitsui Toatsu Chem Inc Electrically conductive aromatic polyether ketone resin composition and its formed article
JP2005166384A (en) * 2003-12-02 2005-06-23 Kaneka Corp Proton conductive film and manufacturing method of same
JP2006233086A (en) * 2005-02-25 2006-09-07 Japan Atomic Energy Agency Functional membrane, method for producing electrolytic membrane for fuel battery, and electrolytic membrane for fuel battery
WO2007126222A1 (en) * 2006-04-28 2007-11-08 Industry-University Cooperation Foundation, Hanyang University Proton conductive composite membrane comprising surfactant and inorganic filler, and fuel cell comprising the same
WO2008120379A1 (en) * 2007-03-29 2008-10-09 Fujitsu Limited Electrolyte membrane, process for producing the same, membrane electrode assembly and polymer electrolyte fuel cell
JP2009067844A (en) * 2007-09-11 2009-04-02 Japan Atomic Energy Agency Highly proton-conductive polymer electrolyte membrane having excellent mechanical strength and method for producing the same
JP2009123436A (en) * 2007-11-13 2009-06-04 Nitto Denko Corp Electrolyte membrane for polymer electrolyte fuel cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021111542A (en) * 2020-01-14 2021-08-02 東レ株式会社 Membrane electrode complex
JP7528445B2 (en) 2020-01-14 2024-08-06 東レ株式会社 Membrane Electrode Assembly

Also Published As

Publication number Publication date
JP6663647B2 (en) 2020-03-13

Similar Documents

Publication Publication Date Title
CN109417180B (en) Membrane electrode assembly, method of preparing the same, and fuel cell including the same
US11637306B2 (en) Membrane-electrode assembly, method for manufacturing same, and fuel cell comprising same
JP4728208B2 (en) POLYMER ELECTROLYTE MEMBRANE FOR FUEL CELL AND FUEL CELL SYSTEM INCLUDING THE SAME
JPWO2004051776A1 (en) Solid polymer electrolyte membrane, solid polymer fuel cell using the membrane, and method for producing the same
WO2004114444A1 (en) Membrane electrode assembly for solid polymer fuel cell and method for producing same
KR20150047018A (en) Catalyst slurry for fuel cell, and electrode, membrane electrode assembly and fuel cell using the same
JP5189394B2 (en) Polymer electrolyte membrane
US10985381B2 (en) Nanostructured electrode for polymer electrolyte membrane fuel cell, and manufacturing method therefor
JP6663647B2 (en) Electrolyte membrane for polymer electrolyte fuel cell, polymer electrolyte fuel cell, and method for producing electrolyte membrane for polymer electrolyte fuel cell
JP2014110232A (en) Fluorine-based polymer electrolyte film
JP2004178814A (en) Method of manufacturing membrane/electrode assembly for solid polymer fuel cell
WO2004010525A1 (en) Catalyst electrode, process for producing the same, electrochemical device, and process for producing the same
JP2016081624A (en) Manufacturing method of electrode catalyst layer for fuel cell, and electrode catalyst layer for fuel cell
JP5316413B2 (en) Solid polymer electrolyte membrane, method for producing solid polymer electrolyte membrane, and fuel cell
JP2009187726A (en) Solid polyelectrolyte membrane, its manufacturing method, membrane electrode assembly for fuel cell, and fuel cell
JP2004071324A (en) Polymer electrolyte fuel cell and its manufacturing method
JP2005285413A (en) Proton conductive membrane, its manufacturing method, and solid polymer type fuel cell using proton conductive membrane
JP7106002B2 (en) Polymer electrolyte membrane, membrane electrode assembly, solid polymer electrolyte fuel cell, and method for producing polymer electrolyte membrane
JP5313569B2 (en) Solid polymer electrolyte membrane and method for producing solid polymer electrolyte membrane
JP2008153175A (en) Manufacturing method of membrane-electrode assembly for polymer electrolyte fuel cell
JP5309576B2 (en) Gas decomposition element
JP2005174827A (en) Solid polymer electrolyte membrane, fuel cell using the same, and manufacturing method of them
JP2007048543A (en) Electrolyte film and direct liquid fuel type fuel cell
JP6747013B2 (en) Membrane electrode assembly and fuel cell
JP2016193987A (en) Electrolyte membrane and method for producing electrolyte membrane

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20161130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20161130

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180326

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20180326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190319

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190320

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190520

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20191008

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200108

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20200116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200217

R150 Certificate of patent or registration of utility model

Ref document number: 6663647

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250