JP2016194246A - Multiple steel tube-type concrete-filled steel pipe column having plurality of triangular columns, and wall - Google Patents

Multiple steel tube-type concrete-filled steel pipe column having plurality of triangular columns, and wall Download PDF

Info

Publication number
JP2016194246A
JP2016194246A JP2016141413A JP2016141413A JP2016194246A JP 2016194246 A JP2016194246 A JP 2016194246A JP 2016141413 A JP2016141413 A JP 2016141413A JP 2016141413 A JP2016141413 A JP 2016141413A JP 2016194246 A JP2016194246 A JP 2016194246A
Authority
JP
Japan
Prior art keywords
steel
concrete
column
steel tube
steel plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016141413A
Other languages
Japanese (ja)
Inventor
文聰 李
Wen Cong Li
文聰 李
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Li Wencong
Original Assignee
Li Wencong
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Li Wencong filed Critical Li Wencong
Priority to JP2016141413A priority Critical patent/JP2016194246A/en
Publication of JP2016194246A publication Critical patent/JP2016194246A/en
Pending legal-status Critical Current

Links

Landscapes

  • Panels For Use In Building Construction (AREA)
  • Rod-Shaped Construction Members (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a composite steel-concrete member that offers excellent aseismic performance and wind-pressure resistance instead of conventional column and earthquake-resisting wall, the composite steel-concrete member being a structural member offering bending rigidity, axial rigidity, bending strength and axial durability, to be applied to a gigantic column and an earthquake-resisting wall of an ultra high-rise building in a future.SOLUTION: A horizontal cross-section is made rectangular so that geometrical moment of inertia is made as large as possible in a direction exposed to bending moment. A steel plate that contributes the most to withstand the bending moment is made relatively thick, and is disposed on outside. Stability of a triangle is utilized for maintaining stability of the cross-section, and a multiple steel tube member is made by combining a triangular column made of a steel plate as a basic unit. Concrete is filled in an inner space of the multiple steel tube member, to make a multiple steel tube-type concrete-filled steel pipe column having a plurality of boxes.SELECTED DRAWING: Figure 1

Description

本発明は,建築構造物や土木構造物などを構築する際に適用される鋼・コンクリート合成部材及び耐震壁に関する。   The present invention relates to a steel / concrete composite member and a seismic wall applied when building a building structure or a civil engineering structure.

構造設計の際,合理的な部材断面が求められている。また,近年,超高層建築物および建造物の高さ・規模・形は続々更新し,時代のニーズに応じて,優れた耐震性能・耐風圧性能・耐テロ性能を有する新しい構造部材が要求されている。 In structural design, a reasonable member cross-section is required. In recent years, the height, scale, and shape of super high-rise buildings and buildings have been renewed one after another, and new structural members with excellent seismic performance, wind pressure performance, and terrorism performance have been required according to the needs of the times. ing.

一般に,ビルが高ければ高いほど,鉛直部材に対して鉛直荷重の負担が大きくなる。その鉛直荷重は主に二つ要素がある。一つは建物の高さに比例する自重である。もう一つは風荷重と地震荷重などの水平力による転倒モーメントにより生じた付加軸力である。このような付加軸力は建物の高さに応じて幾何級数的に増加する。どのように巨大な鉛直荷重を負担させるか,エンジニアにとって最も重要な課題である。この課題の解決方法としては,材料の強度を上げることおよび大断面且つ合理の鉛直部材を建物に設置することが挙げられる。本発明は,構造設計の為,合理的な部材断面を提案して,提供する。また,従来の柱と耐震壁の代わりに,優れた耐震性能・耐風圧性能・耐テロ性能を有する鋼・コンクリート合成部材を提案して,提供する。この部材は曲げ剛性,軸剛性,曲げ強度と軸耐力が期待できる構造材であり,将来の超々高層ビルの巨大柱及び超々高層ビルの耐震壁に適用できる。 In general, the higher the building, the greater the burden of vertical load on the vertical member. The vertical load has two main components. One is its own weight proportional to the height of the building. The other is the additional axial force generated by the overturning moment caused by horizontal forces such as wind loads and seismic loads. Such additional axial force increases geometrically according to the height of the building. The most important issue for engineers is how to bear a huge vertical load. Solutions to this problem include increasing the strength of the material and installing large sections and reasonable vertical members in the building. The present invention proposes and provides a reasonable member cross-section for structural design. In addition, we will propose and provide steel / concrete composite members that have excellent seismic performance, wind pressure performance, and terrorism performance instead of conventional columns and seismic walls. This member is a structural material that can be expected to have bending rigidity, axial rigidity, bending strength, and axial strength, and can be applied to giant columns of future ultra-high-rise buildings and earthquake-resistant walls of ultra-high-rise buildings.

合理的な部材断面に関して,柱の場合,横断面はなるべく曲げモーメントを受ける方向に断面二次モーメントの大きい長方形にする。図1に示すように,曲げモーメントに最も貢献する鋼板1は相対的に厚くして,外側に配置する。但し,図1に曲げモーメントを受ける方向は強軸方向である。鋼板1は厚肉鋼板であり,フランジとして機能する。そのため,鋼板1の厚さは重要である。また,断面の安定性を維持する為に,三角形の安定性を利用して,鋼板により三角柱を基本単位として組み合わせたマルチスチールチューブ鋼材を作製して,マルチスチールチューブ鋼材の内部空間にコンクリートを充填して,複数のボックスを有するマルチスチールチューブ型コンクリート充填鋼管柱を作る。図1のような横断面に示している鋼材は不静定トラス形式である。この図に示す実施例は三角形の安定性を利用した複数のボックスを有するマルチスチールチューブ型コンクリート充填鋼管柱の一例である。三角形の安定性を利用したマルチスチールチューブ型コンクリート充填鋼管の例はない。一方,図1に示す実施例では,鋼板1と鋼板3は型枠の機能を有する。鋼板3も外側ウェブの機能を有する。また,鋼板2と鋼板21及び鋼板22は隔離用の機能を有する。隔離用鋼板を設置する目的は柱の軸剛性,軸耐力,曲げ剛性と曲げ強度に貢献すること及び横断面の大きい柱を小さく分割することである。横断面の大きい柱にコンクリートを打設する際,水和反応によるコンクリート内部の温度の上昇によりコンクリートの内部にひび割れが生じやすい。複数の隔離用鋼板を取付けることにより,各チスチールチューブの体積は小さくなり,水和反応による不良現象を抑制することができる。水和反応による不良現象を抑制することは横断面の大きい柱を小さく分割する目的である。さらに,鋼板2と鋼板3及び鋼板22の設置は鋼材とコンクリートが一体化による強軸方向に対する応力伝達にも有利である。 In terms of reasonable member cross sections, in the case of columns, the cross section should be a rectangle with a large second moment in the direction to receive the bending moment. As shown in FIG. 1, the steel plate 1 that contributes most to the bending moment is made relatively thick and arranged outside. However, the direction to receive the bending moment in FIG. 1 is the strong axis direction. Steel plate 1 is a thick steel plate and functions as a flange. Therefore, the thickness of the steel plate 1 is important. In addition, in order to maintain the stability of the cross section, a multi-steel tube steel material is produced by combining triangular prisms as basic units with steel plates using the stability of the triangle, and the interior space of the multi-steel tube steel material is filled with concrete. Thus, a multi-steel tube type concrete-filled steel pipe column having a plurality of boxes is made. The steel material shown in the cross section as shown in FIG. The embodiment shown in this figure is an example of a multi-steel tube type concrete-filled steel pipe column having a plurality of boxes utilizing triangular stability. There are no examples of multi-steel tube-type concrete-filled steel pipes that utilize triangular stability. On the other hand, in the embodiment shown in FIG. 1, the steel plate 1 and the steel plate 3 have a formwork function. The steel plate 3 also has an outer web function. Further, the steel plate 2, the steel plate 21, and the steel plate 22 have a function for isolation. The purpose of installing the separating steel plate is to contribute to the axial rigidity, axial strength, bending rigidity and bending strength of the column, and to divide the column with a large cross section into small parts. When placing concrete in a column with a large cross-section, cracks are likely to occur inside the concrete due to a rise in the temperature inside the concrete due to the hydration reaction. By attaching a plurality of separating steel plates, the volume of each steel tube becomes smaller, and the defective phenomenon due to the hydration reaction can be suppressed. The purpose of suppressing the defective phenomenon due to the hydration reaction is to divide the column with a large cross section into small pieces. Furthermore, the installation of the steel plate 2, the steel plate 3, and the steel plate 22 is advantageous for stress transmission in the strong axis direction by integrating the steel material and the concrete.

図2も横断面の大きい鋼・コンクリート合成柱の実施例を示したものである。この実施例は三角形の安定性を利用して,鋼板により三角柱を基本単位として組み合わせた複数のボックスを有するマルチスチールチューブ型コンクリート充填鋼管柱の別例である。ただし,実施方法としては,図1と図2に示す実施例に限定しない。また,鋼板により三角柱を基本単位として組み合わせた複数のボックスを有するマルチスチールチューブ型コンクリート充填鋼管材も耐震壁に適用できる。 FIG. 2 also shows an embodiment of a steel / concrete composite column having a large cross section. This embodiment is another example of a multi-steel tube type concrete-filled steel pipe column having a plurality of boxes in which triangular columns are combined as a basic unit using steel plates by utilizing the stability of the triangle. However, the implementation method is not limited to the embodiment shown in FIGS. In addition, multi-steel tube type concrete-filled steel pipes having a plurality of boxes in which triangular prisms are combined as basic units with steel plates can also be applied to the earthquake resistant wall.

図1と図2に示す横断面の大きい鋼・コンクリート合成柱の実施例では,各スチールチューブの内部と全断面の外側に従来の主筋,せん断補強筋(または構造上の補強筋)9とCFT式メガ主筋10も設置できる(図示せず)。 In the embodiment of the steel / concrete composite column with large cross section shown in FIGS. 1 and 2, the conventional main reinforcement, shear reinforcement (or structural reinforcement) 9 and CFT are placed inside each steel tube and outside the entire cross section. An expression mega main muscle 10 can also be installed (not shown).

隔離用鋼板22の厚さと配置位置,従来の主筋の主筋比とせん断補強筋(または構造上の補強筋)9の補強筋比,CFT式メガ主筋10のサイズと本数,及び鉄骨比を調整することにより巨大柱と耐震壁の耐力・剛性・変形性能を制御できる。 Adjust the thickness and location of the steel plate 22 for isolation, the ratio of the main reinforcing bar to the main reinforcing bar and the reinforcing bar ratio of the shear reinforcing bar (or structural reinforcing bar) 9, the size and number of CFT mega main bars 10, and the steel ratio This makes it possible to control the strength, rigidity, and deformation performance of giant columns and earthquake-resistant walls.

上述の全ての実施例の鋼板は,コンクリートと鋼材の付着強度を上昇させる為に,コンクリートと接触する面は格子状の小さな突起44のある縞鋼板43(図4参照)を利用しても良い。 The steel plates of all the above-described embodiments may use a striped steel plate 43 (see FIG. 4) having small lattice-shaped protrusions 44 on the surface in contact with the concrete in order to increase the adhesion strength between the concrete and the steel material. .

本発明により提案した複数のボックスを有するマルチスチールチューブ型コンクリート充填鋼管材は柱と耐震壁にとっては革新になり,将来の超々高層ビルの巨大柱及びセンターコアに最適である。 The multi-steel tube-type concrete-filled steel pipe with multiple boxes proposed by the present invention is an innovation for columns and shear walls, and is ideal for large columns and center cores of future ultra high-rise buildings.

巨大な鋼・コンクリート合成柱の実施例の横断面図Cross section of an example of a huge steel / concrete composite column 巨大な鋼・コンクリート合成柱の他の実施例の横断面図Cross section of another example of huge steel / concrete composite column CFT式メガ主筋の実施形態の一例の詳細図a)CFT式メガ主筋の実施形態の一例の横断面図b)図3a)中のY6−Y6線における断面図の一部(一部省略図)Detailed view of an example of an embodiment of a CFT-type mega main bar a) Cross-sectional view of an example of an embodiment of a CFT-type mega main bar b) Part of a cross-sectional view taken along line Y6-Y6 in FIG. 3a) (partially omitted view) 縞鋼板の詳細図Detailed view of striped steel plate

本発明に係る鋼・コンクリート合成柱と耐震壁の実施形態に関して,(0004)〜(0009)を参照されたい。 Regarding the embodiments of the steel / concrete composite column and the seismic wall according to the present invention, please refer to (0004) to (0009).

本発明に係る鋼・コンクリート合成柱と耐震壁は建築産業や土木建設産業などの分野に広く利用できる。 The steel / concrete composite column and the earthquake-resistant wall according to the present invention can be widely used in fields such as the construction industry and the civil engineering construction industry.

1:鋼板(フランジを機能する厚肉鋼板)
2:ウェブ(H形鋼のウェブを機能する鋼板)
3:鋼板
4:スチールチューブ
5:コンクリート充填
9 :せん断補強筋(または構造上の補強筋)
10:CFT式メガ主筋
11:主筋(CFT式メガ主筋内に内蔵する縦筋)
16:両面に突出すタイプの補強鋼管を用いたジベル
21:隔離用補剛鋼板
22:隔離用鋼板
41:鋼管
42:リング式リブ
43:縞鋼板
44:格子状の小さな突起









1: Steel plate (thick steel plate that functions as a flange)
2: Web (A steel plate that functions as a H-shaped steel web)
3: Steel plate
4: Steel tube
5: Concrete filling
9: Shear reinforcement (or structural reinforcement)
10: CFT-type mega main muscle
11: Main muscle (longitudinal muscle built in CFT mega main muscle)
16: Giber using reinforced steel pipes that protrude on both sides
21: Stiffened steel plate for isolation
22: Steel plate for isolation
41: Steel pipe
42: Ring-type rib
43: Striped steel plate
44: Lattice-like small protrusions









Claims (1)

鋼板により作製した中空三角柱を基本単位として組み合わせた複数のボックスを有するマルチスチールチューブ鋼材を作る工程と,前記の複数のボックスを有するマルチスチールチューブ鋼材の内部空間にコンクリートを充填する工程とを備えたことを特徴とする鋼・コンクリート合成柱又は壁の製造方法。 A step of making a multi-steel tube steel material having a plurality of boxes in which hollow triangular prisms made of steel plates are combined as a basic unit, and a step of filling concrete into the internal space of the multi-steel tube steel material having the plurality of boxes A method for producing a steel / concrete composite column or wall.
JP2016141413A 2016-07-19 2016-07-19 Multiple steel tube-type concrete-filled steel pipe column having plurality of triangular columns, and wall Pending JP2016194246A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016141413A JP2016194246A (en) 2016-07-19 2016-07-19 Multiple steel tube-type concrete-filled steel pipe column having plurality of triangular columns, and wall

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016141413A JP2016194246A (en) 2016-07-19 2016-07-19 Multiple steel tube-type concrete-filled steel pipe column having plurality of triangular columns, and wall

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2015025977A Division JP6025884B2 (en) 2015-02-13 2015-02-13 Steel / concrete composite

Publications (1)

Publication Number Publication Date
JP2016194246A true JP2016194246A (en) 2016-11-17

Family

ID=57323610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016141413A Pending JP2016194246A (en) 2016-07-19 2016-07-19 Multiple steel tube-type concrete-filled steel pipe column having plurality of triangular columns, and wall

Country Status (1)

Country Link
JP (1) JP2016194246A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107859235A (en) * 2017-11-24 2018-03-30 国网江苏省电力公司经济技术研究院 A kind of network assembled assembled wall plate
CN110565876A (en) * 2019-09-06 2019-12-13 上海林伟建筑工程有限公司 Assembled building constructional column
CN112709371A (en) * 2019-10-25 2021-04-27 姜博霖 Method for manufacturing special-shaped column of inner support steel structure

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107859235A (en) * 2017-11-24 2018-03-30 国网江苏省电力公司经济技术研究院 A kind of network assembled assembled wall plate
CN107859235B (en) * 2017-11-24 2020-02-07 国网江苏省电力公司经济技术研究院 Grid structure assembled combination wall body board
CN110565876A (en) * 2019-09-06 2019-12-13 上海林伟建筑工程有限公司 Assembled building constructional column
CN110565876B (en) * 2019-09-06 2022-01-28 上海林伟建筑工程有限公司 Assembled building constructional column
CN112709371A (en) * 2019-10-25 2021-04-27 姜博霖 Method for manufacturing special-shaped column of inner support steel structure

Similar Documents

Publication Publication Date Title
Huang et al. Experimental study on seismic behaviour of an innovative composite shear wall
Nie et al. Comparative study on steel plate shear walls used in a high-rise building
CN104929281A (en) Steel bar truss stiffened steel concrete composite shear wall
JP2016194245A (en) Multiple steel pipe column
JP2016194246A (en) Multiple steel tube-type concrete-filled steel pipe column having plurality of triangular columns, and wall
Chen et al. Axial compressive behavior of through-beam connections between concrete-filled steel tubular columns and reinforced concrete beams
Kumari Concrete filled steel tubular (CFST) columns in composite structures
Hu et al. Experimental seismic performance of CFDST-steel beam frames with different construction details
Sabbagh et al. An integrated thin-walled steel skeleton structure (two full scale tests)
CN108240053B (en) Assembled integral energy-consumption frame wallboard system and construction method
Khateeb et al. Behavior of novel CFST circular column-to-foundation connections under cyclic loading
CN103883031A (en) I-shaped multi-cavity double-steel-plate shear wall with built-in steel mesh reinforcement and manufacturing method
CN103883032A (en) I-shaped steel plate shear wall with built-in round steel reinforcement cages and externally-attached steel plate supports and manufacturing method
CN105239724A (en) Giant rectangular-section concrete filled steel tubular column
EA010211B1 (en) A reinforced concrete column with reinforcing steel pipes
KR101373262B1 (en) Connecting plate crossing type concrete filled tubular column
Garai et al. Three-Dimensional Exterior Bracing Systems for Tall Buildings
Ahiwale et al. Influence of compressive load on concrete filled steel tubular column with variable thickness
JP2016200000A (en) Steel-concrete composite wall having three or more parallel steel plates in in-plane direction in wall
Pavlikov et al. Industrial uncapital ungirder frame structure for residential buildings
Lou et al. Studies into a high performance composite connection for high-rise buildings
CN116005888B (en) Steel pipe batten plate column connected by cross plate
JP6628096B2 (en) Structure having a CFT-type mega main bar
KR20100063532A (en) Concrete filled tube girder reinforced with steel bar and manufacturing method of the same
Koo et al. A study on the stability of the single-layer latticed dome during erection using the step-up method