JP2016194031A - Composition for ito conductive film formation and ito conductive film - Google Patents

Composition for ito conductive film formation and ito conductive film Download PDF

Info

Publication number
JP2016194031A
JP2016194031A JP2015121859A JP2015121859A JP2016194031A JP 2016194031 A JP2016194031 A JP 2016194031A JP 2015121859 A JP2015121859 A JP 2015121859A JP 2015121859 A JP2015121859 A JP 2015121859A JP 2016194031 A JP2016194031 A JP 2016194031A
Authority
JP
Japan
Prior art keywords
ito
mass
conductive film
composition
ito particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015121859A
Other languages
Japanese (ja)
Other versions
JP6530644B2 (en
Inventor
真也 白石
Shinya Shiraishi
真也 白石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Electronic Chemicals Co Ltd
Original Assignee
Mitsubishi Materials Electronic Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Electronic Chemicals Co Ltd filed Critical Mitsubishi Materials Electronic Chemicals Co Ltd
Publication of JP2016194031A publication Critical patent/JP2016194031A/en
Application granted granted Critical
Publication of JP6530644B2 publication Critical patent/JP6530644B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a composition for forming an ITO conductive film which can suppress the increase of surface resistivity of an ITO conductive film under high temperature and high humidity and irradiation with ultraviolet rays, is excellent in adhesiveness to a substrate, and has good conductivity, transparency and light resistance, and to provide an ITO conductive film.SOLUTION: There is provided a composition which contains ITO particles, a binder resin and an organic solvent, contains 3-45 mass% of the ITO particles in the composition, and 10-52 mass% of the components other than the ITO particles in a solid matter of the composition, where the ITO particles have a specific surface area of 42-65 m/g by a BET method and an L value of 36 or less, and the binder resin contains ethyl cellulose and a terpene phenol resin having a softening point of 130-160°C. The ITO conductive film is formed by uniformly dispersing ITO particles having the above described predetermined specific surface area by the BET method and the above described predetermined L value into a terpene phenol resin having the above described softening point, and contains 48-90 mass% of the ITO particles in the film and 10-52 mass% of the components other than the ITO particles in the film.SELECTED DRAWING: None

Description

本発明は、高温高湿下及び紫外線照射下においてITO導電膜の表面抵抗率の変化を抑制でき、基材への密着性に優れ、良好な導電性と透明性と耐光性を兼ね備えたITO導電膜を形成するための組成物及びITO導電膜に関するものである。本明細書において、ITOとはインジウム錫酸化物(Indium Tin Oxide)をいう。   The present invention is capable of suppressing changes in the surface resistivity of an ITO conductive film under high temperature and high humidity and under ultraviolet irradiation, has excellent adhesion to a substrate, and has both good conductivity, transparency and light resistance. The present invention relates to a composition for forming a film and an ITO conductive film. In this specification, ITO refers to indium tin oxide.

LCD(Liquid Crystal Display)やPDP(Plasma Display Panel)、有機EL(ElectroLuminescence)、タッチパネル等の表示装置には、透明電極が用いられている。この透明電極は、ITO等からなる透明導電材料によって構成されることが多い。このような透明電極は、通常スパッタリング法などで膜状に形成される(例えば、特許文献1参照)。しかしながら成膜する基板の大型化に伴い、スパッタリング装置が大型になり、コストが高くなる問題点があった。この点を解決するため、スパッタリング法に代わって、透明導電膜形成用塗布液又は透明導電性ペースト組成物を基板上に塗布する方法が提案されている(例えば、特許文献2及び3参照)。   Transparent electrodes are used in display devices such as LCD (Liquid Crystal Display), PDP (Plasma Display Panel), organic EL (ElectroLuminescence), and touch panels. This transparent electrode is often composed of a transparent conductive material made of ITO or the like. Such a transparent electrode is usually formed into a film by a sputtering method or the like (see, for example, Patent Document 1). However, with an increase in the size of the substrate on which the film is formed, there is a problem that the sputtering apparatus becomes large and the cost increases. In order to solve this problem, a method of applying a transparent conductive film forming coating solution or a transparent conductive paste composition on a substrate instead of the sputtering method has been proposed (for example, see Patent Documents 2 and 3).

上記特許文献2には、透明性と導電性を兼ね備えたITO透明導電膜を、塗布法、特にインクジェット印刷法により形成するのに適した透明導電膜形成用塗布液が示される。この透明導電膜形成用塗布液は、アセチルアセトンインジウム、有機錫化合物、セルロース誘導体、アルキルフェノール及び/又はアルケニルフェノール、二塩基酸エステル及び/又は酢酸ベンジル、ジエチレングリコール誘導体を含み、アセチルアセトンインジウムと有機錫化合物との合計含有量が1〜30重量%、セルロース誘導体の含有量が5重量%以下であることを特徴とする。   Patent Document 2 discloses a coating liquid for forming a transparent conductive film suitable for forming an ITO transparent conductive film having both transparency and conductivity by a coating method, particularly an ink jet printing method. This coating liquid for forming a transparent conductive film contains acetylacetone indium, organotin compound, cellulose derivative, alkylphenol and / or alkenylphenol, dibasic acid ester and / or benzyl acetate, and diethylene glycol derivative. The total content is 1 to 30% by weight, and the content of the cellulose derivative is 5% by weight or less.

上記特許文献3には、基板上に印刷により塗布した際、良好な表面特性を有し、かつ良好な導電性と透明性を兼ね備えた透明導電膜を形成できる透明導電性ペースト組成物が示される。この透明導電性ペースト組成物は、組成物の固形分中、80〜99重量%の透明導電性粒子と、バインダ樹脂と、テルペン系溶媒とケトン系溶媒の有機溶媒とを含有する。   Patent Document 3 discloses a transparent conductive paste composition that can form a transparent conductive film having good surface properties and good conductivity and transparency when applied on a substrate by printing. . This transparent conductive paste composition contains 80 to 99% by weight of transparent conductive particles, a binder resin, a terpene solvent, and an organic solvent such as a ketone solvent in the solid content of the composition.

しかしながら、特許文献2の透明導電膜形成用塗布液のように、バインダとしてセルロース誘導体のみであると、例えば基材のPETフィルム上に透明導電膜形成用塗布液を成膜した場合、膜が基材から剥離し易く、信頼性を低下させる一因となっていた。また上記特許文献2及び3の方法で塗布された透明導電膜は、高温高湿下に長時間置かれると、雰囲気中の酸素や水分に起因して表面抵抗率が上昇する傾向にあった。この課題を解決するため、樹脂とITO粉末のような透明導電粒子とシリカ材料とシランカップリング剤とを含有することにより、温度や湿度の影響による表面抵抗率の変化が小さい透明導電材料が開示されている(例えば、特許文献4参照)。この特許文献4に示される透明導電材料により形成された透明導電膜は、高温高湿下であっても表面抵抗率の上昇を十分に抑制することが可能である。   However, like the transparent conductive film forming coating solution of Patent Document 2, if the cellulose derivative alone is used as the binder, for example, when the transparent conductive film forming coating solution is formed on the PET film of the substrate, the film is based on It was easy to peel off from the material, which was one of the causes of reducing reliability. Moreover, when the transparent conductive film applied by the methods of Patent Documents 2 and 3 described above is placed under high temperature and high humidity for a long time, the surface resistivity tends to increase due to oxygen and moisture in the atmosphere. In order to solve this problem, a transparent conductive material having a small change in surface resistivity due to the influence of temperature and humidity is disclosed by containing transparent conductive particles such as resin, ITO powder, silica material, and a silane coupling agent. (For example, see Patent Document 4). The transparent conductive film formed of the transparent conductive material disclosed in Patent Document 4 can sufficiently suppress an increase in surface resistivity even under high temperature and high humidity.

特開2004−315951号公報(段落[0002])JP 2004-315951 A (paragraph [0002]) 特開2006−28431号公報(要約、請求項1、請求項7)JP 2006-28431 A (summary, claim 1, claim 7) 特開2011−192401号公報(要約、請求項1)JP2011-192401A (summary, claim 1) 特開2009−135044号公報(要約、請求項1)JP 2009-135044 (Abstract, Claim 1) WO2006/028131号公報(請求項12、段落[0010]、段落[0012]、段落[0022]、段落[0025]、段落[0041]〜[0046]、図1、図4、図8)WO 2006/028131 (Claim 12, Paragraph [0010], Paragraph [0012], Paragraph [0022], Paragraph [0025], Paragraphs [0041] to [0046], FIGS. 1, 4, and 8)

しかしながら、近年では、透明導電膜の用途が一層多岐にわたっており、従来にも増して厳しい条件下であっても、高温高湿下における透明導電膜の表面抵抗率の変化を抑制できる導電膜形成用組成物が求められている。   However, in recent years, the use of transparent conductive films has become more diverse, and for conductive film formation that can suppress changes in the surface resistivity of transparent conductive films under high temperature and high humidity even under severer conditions than before. There is a need for a composition.

更に、近年では、タッチパネルが長時間直射日光に曝される過酷な環境下で使用されるケースが増えてきている。この場合、タッチパネルが当該日光に含まれる紫外線等の影響を受けて劣化するおそれがある。具体的には、タッチパネルの透明電極にITO導電膜を用いた場合、ITO導電膜の表面抵抗率が低下し、タッチセンサーの感度の不具合を生じる。この課題を解決するため、比較的過酷な野外使用においても、紫外線による劣化を防止し、優れた性能を発揮することが可能な耐光性を有する抵抗膜式タッチパネルが開示されている(例えば、特許文献5参照)。この抵抗膜式タッチパネルは、偏光板、上部面状部材、ITO透明導電膜、配線基板、スペーサ、ITO透明導電膜、下部面状部材を積層して構成され、上部面状部材として、紫外線吸収材料を含む紫外線吸収粘着層を2つのシロキサン架橋型アクリルシリコーン樹脂フィルムからなる層の間に介設している。このタッチパネルによれば、紫外線吸収粘着層によりタッチパネルに紫外線が入射しても、紫外線による劣化が防止される。しかしながら、このタッチパネルでは、紫外線吸収粘着層を別個に設ける必要があり、構成要素が増加し、製造工程が複雑化する不具合があった。   Furthermore, in recent years, the number of cases in which a touch panel is used in a harsh environment exposed to direct sunlight for a long time is increasing. In this case, the touch panel may be deteriorated by the influence of ultraviolet rays or the like included in the sunlight. Specifically, when an ITO conductive film is used for the transparent electrode of the touch panel, the surface resistivity of the ITO conductive film is lowered, causing a problem in the sensitivity of the touch sensor. In order to solve this problem, there has been disclosed a light-resistant resistive touch panel capable of preventing deterioration due to ultraviolet rays and exhibiting excellent performance even in relatively severe outdoor use (for example, patents) Reference 5). This resistive film type touch panel is configured by laminating a polarizing plate, an upper planar member, an ITO transparent conductive film, a wiring board, a spacer, an ITO transparent conductive film, and a lower planar member, and an ultraviolet absorbing material as the upper planar member. An ultraviolet-absorbing pressure-sensitive adhesive layer containing is interposed between two siloxane cross-linked acrylic silicone resin film layers. According to this touch panel, even if ultraviolet rays are incident on the touch panel by the ultraviolet absorbing adhesive layer, deterioration due to ultraviolet rays is prevented. However, in this touch panel, it is necessary to provide an ultraviolet-absorbing adhesive layer separately, which increases the number of constituent elements and complicates the manufacturing process.

本発明の第1の目的は、従来にも増して厳しい条件下であっても、ITO導電膜の高温高湿下における表面抵抗率の上昇を抑制でき、基材への密着性に優れ、良好な導電性と透明性を兼ね備えたITO導電膜を形成するための組成物及びITO導電膜を提供することにある。   The first object of the present invention is to suppress the increase in surface resistivity of ITO conductive film under high temperature and high humidity even under severer conditions than before, excellent in adhesion to the substrate and good An object of the present invention is to provide a composition and an ITO conductive film for forming an ITO conductive film having both conductivity and transparency.

本発明の第2の目的は、好ましくは、長時間紫外線が照射される過酷な環境下においても、特別な紫外線吸収粘着層を必要とせずにITO導電膜の表面抵抗率の低下を抑制でき耐光性に優れ、かつ基材への密着性に優れ、良好な導電性と透明性を兼ね備えたITO導電膜を形成するための組成物及びITO導電膜を提供することにある。   The second object of the present invention is to suppress the decrease in the surface resistivity of the ITO conductive film without requiring a special UV-absorbing adhesive layer, even in a harsh environment where ultraviolet rays are irradiated for a long time. It is providing the composition and ITO electrically conductive film for forming the ITO electrically conductive film which is excellent in adhesiveness, was excellent in the adhesiveness to a base material, and had favorable electroconductivity and transparency.

本発明の第1の観点は、ITO粒子とバインダ樹脂と有機溶媒とを含むITO導電膜形成用組成物において、前記組成物100質量%中、前記ITO粒子を3〜45質量%含み、前記組成物の固形分100質量%中、前記ITO粒子以外の成分を10〜52質量%含み、前記ITO粒子が42〜65m/gのBET法による比表面積と36以下のL値を有し、前記バインダ樹脂がエチルセルロース及び130〜160℃の軟化点を有するテルペンフェノール樹脂を含むことを特徴とする。 According to a first aspect of the present invention, in the composition for forming an ITO conductive film comprising ITO particles, a binder resin, and an organic solvent, 3 to 45% by mass of the ITO particles are contained in 100% by mass of the composition. In a solid content of 100% by mass, the composition contains 10 to 52% by mass of components other than the ITO particles, and the ITO particles have a specific surface area by the BET method of 42 to 65 m 2 / g and an L value of 36 or less, The binder resin includes ethyl cellulose and a terpene phenol resin having a softening point of 130 to 160 ° C.

本発明の第2の観点は、第1の観点に基づく発明であって、前記エチルセルロースと前記テルペンフェノール樹脂の質量比がエチルセルロース:テルペンフェノール樹脂=10〜80:90〜20であるITO導電膜形成用組成物である。   2nd viewpoint of this invention is invention based on 1st viewpoint, Comprising: The ITO electrically conductive film formation whose mass ratio of the said ethyl cellulose and the said terpene phenol resin is ethyl cellulose: terpene phenol resin = 10-80: 90-20 Composition.

本発明の第3の観点は、第1又は第2の観点に基づく発明であって、分散剤を前記液ITO粒子100質量部に対して1〜15質量部更に含むITO導電膜形成用組成物である。   A third aspect of the present invention is an invention based on the first or second aspect, wherein the composition for forming an ITO conductive film further comprises 1 to 15 parts by mass of a dispersant with respect to 100 parts by mass of the liquid ITO particles. It is.

本発明の第4の観点は、第1ないし第3いずれかの観点に基づく発明であって、スクリーン印刷用ペースト又は塗料に用いられるITO導電膜形成用組成物である。   A fourth aspect of the present invention is an invention based on any one of the first to third aspects, and is an ITO conductive film forming composition used for a screen printing paste or paint.

本発明の第5の観点は、第4の観点に基づく発明であって、前記スクリーン印刷用ペーストに用いられる場合、前記有機溶媒が3−メトキシ−3−メチル−1−ブタノールと、ブチルカルビトールアセテート又はα−テルピネオールの溶媒とからなるITO導電膜形成用組成物である。   A fifth aspect of the present invention is the invention based on the fourth aspect, and when used in the screen printing paste, the organic solvent is 3-methoxy-3-methyl-1-butanol and butyl carbitol. An ITO conductive film forming composition comprising an acetate or α-terpineol solvent.

本発明の第6の観点は、第4の観点に基づく発明であって、前記塗料に用いられる場合、前記有機溶媒が3−メトキシ−3−メチル−1−ブタノールと、2−ブタノン、4−メチル−2−ペンタノン、エタノール、2−プロパノール、1−ブタノール、トルエン、メタノール、1-プロパノール、酢酸エチル、酢酸ブチル、アセトン、2,4−ペンタンジオン及びキシレンからなる群より選ばれた1種又は2種以上の溶媒とからなるITO導電膜形成用組成物である。   6th viewpoint of this invention is invention based on 4th viewpoint, Comprising: When used for the said coating material, when the said organic solvent is 3-methoxy-3-methyl- 1-butanol, 2-butanone, 4- One selected from the group consisting of methyl-2-pentanone, ethanol, 2-propanol, 1-butanol, toluene, methanol, 1-propanol, ethyl acetate, butyl acetate, acetone, 2,4-pentanedione and xylene, or An ITO conductive film forming composition comprising two or more kinds of solvents.

本発明の第7の観点は、第1ないし第6いずれかの観点に基づく発明であって、フェノール系酸化防止剤又はヒンダードアミン系光安定剤を、前記組成物の固形分100質量%中、0.1〜5質量%更に含むITO導電膜形成用組成物である。   A seventh aspect of the present invention is an invention based on any one of the first to sixth aspects, wherein the phenolic antioxidant or the hindered amine light stabilizer is added in 100% by mass of the solid content of the composition. It is a composition for ITO electrically conductive film formation which further contains 1-5 mass%.

本発明の第8の観点は、第1ないし第7いずれかの観点に基づく発明であって、前記ITO粒子以外の成分中、加水分解基を持つ有機ケイ素化合物と水とを更に含み、前記有機ケイ素化合物の含有量が前記組成物の固形分100質量中、5〜52質量%であり、前記水の含有量が、前記加水分解基を持つ有機ケイ素化合物に含まれる加水分解基がメトキシ基もしくはエトキシ基であり、この加水分解基のモル数に対して、0.05〜0.7倍モル数であるITO導電膜形成用組成物である。   An eighth aspect of the present invention is the invention based on any one of the first to seventh aspects, further comprising an organic silicon compound having a hydrolyzing group and water in the components other than the ITO particles, The content of the silicon compound is 5 to 52% by mass in 100% by mass of the solid content of the composition, and the water content is a methoxy group or a hydrolyzable group contained in the organosilicon compound having the hydrolyzable group. It is an ethoxy group, and is a composition for forming an ITO conductive film that is 0.05 to 0.7 times the number of moles of this hydrolyzable group.

本発明の第9の観点は、第1ないし第7いずれかの観点に基づく発明であって、ITO粒子が有機ケイ素の加水分解物で被覆され、前記有機ケイ素の加水分解物で被覆されたITO粒子のBET法による比表面積が50〜70m/gであり、前記有機ケイ素の加水分解物の被覆量が被覆前のITO粒子100質量部に対して0.5〜15質量部であるITO導電膜形成用組成物である。 A ninth aspect of the present invention is an invention based on any one of the first to seventh aspects, wherein ITO particles are coated with a hydrolyzate of organic silicon, and the ITO is coated with the hydrolyzate of organic silicon. ITO conductive material having a specific surface area of 50 to 70 m 2 / g of particles by BET method and a coating amount of the hydrolyzate of organosilicon of 0.5 to 15 parts by mass with respect to 100 parts by mass of ITO particles before coating It is a composition for film formation.

本発明の第10の観点は、42〜65m/gのBET法による比表面積と36以下のL値を有するITO粒子が130〜160℃の軟化点を有するテルペンフェノール樹脂中に均一に分散してなり、膜中、前記ITO粒子を48〜90質量%、前記ITO粒子以外の成分を10〜52質量%含むITO導電膜である。 According to a tenth aspect of the present invention, ITO particles having a specific surface area of 42 to 65 m 2 / g BET method and an L value of 36 or less are uniformly dispersed in a terpene phenol resin having a softening point of 130 to 160 ° C. It is an ITO conductive film containing 48 to 90% by mass of the ITO particles and 10 to 52% by mass of components other than the ITO particles in the film.

本発明の第11の観点は、第10の観点に基づく発明であって、フェノール系酸化防止剤又はヒンダードアミン系光安定剤を、前記組成物の固形分100質量%中、0.1〜5質量%更に含むITO導電膜である。   An eleventh aspect of the present invention is an invention based on the tenth aspect, wherein the phenolic antioxidant or the hindered amine light stabilizer is added in an amount of 0.1 to 5% by mass in 100% by mass of the solid content of the composition. % Further ITO conductive film.

本発明の第12の観点は、第10の観点に基づく発明であって、前記ITO粒子以外の成分中、加水分解基を持つ有機ケイ素化合物と水とを更に含み、前記有機ケイ素化合物の含有量が前記組成物の固形分100質量中、5〜52質量%であり、前記水の含有量が、
前記加水分解基を持つ有機ケイ素化合物に含まれる加水分解基がメトキシ基もしくはエトキシ基であり、この加水分解基のモル数に対して、0.05〜0.7倍モル数であるITO導電膜である。
A twelfth aspect of the present invention is the invention based on the tenth aspect, further comprising an organosilicon compound having a hydrolyzable group and water in components other than the ITO particles, and the content of the organosilicon compound Is 5 to 52% by mass in 100% by mass of the solid content of the composition, and the water content is
The ITO conductive film in which the hydrolyzable group contained in the organosilicon compound having the hydrolyzable group is a methoxy group or an ethoxy group, and the number of moles of the hydrolyzable group is 0.05 to 0.7 times. It is.

本発明の第13の観点は、50〜70m/gのBET法による比表面積を有する、有機ケイ素の加水分解物で被覆されたITO粒子が130〜160℃の軟化点を有するテルペンフェノール樹脂中に均一に分散してなり、膜中、前記有機ケイ素の加水分解物で被覆されたITO粒子を70〜90質量%、前記有機ケイ素の加水分解物で被覆されたITO粒子以外の成分を10〜30質量%含み、前記有機ケイ素の加水分解物の被覆量が被覆前の前記ITO粒子100質量部に対して0.5〜15質量部であるITO導電膜である。 A thirteenth aspect of the present invention is a terpene phenol resin in which ITO particles coated with a hydrolyzate of organosilicon having a specific surface area by the BET method of 50 to 70 m 2 / g have a softening point of 130 to 160 ° C. In the film, 70 to 90% by mass of ITO particles coated with the organosilicon hydrolyzate and 10 to 10 components other than the ITO particles coated with the organosilicon hydrolyzate are contained in the film. An ITO conductive film containing 30% by mass and having a coating amount of the hydrolyzate of organosilicon of 0.5 to 15 parts by mass with respect to 100 parts by mass of the ITO particles before coating.

本発明の第14の観点は、第13の観点に基づく発明であって、前記有機ケイ素の加水分解物で被覆されたITO粒子以外の成分中、フェノール系酸化防止剤又はヒンダードアミン系光安定剤を更に含むITO導電膜である。   14th viewpoint of this invention is invention based on 13th viewpoint, Comprising: In components other than the ITO particle | grains coat | covered with the hydrolyzate of the said organosilicon, a phenolic antioxidant or a hindered amine light stabilizer is added. Furthermore, it is an ITO conductive film.

本発明の第1の観点のITO導電膜形成用組成物では、所定の比表面積とL値を有するITO粒子を3〜45質量%含むため、ITO導電膜にしたときに、良好な導電性と透明性を兼ね備えることができる。またバインダ樹脂として、130〜160℃という高い軟化点を有するテルペンフェノール樹脂を含むことにより、この組成物を基材上に塗布したときにITO導電膜の基材への密着性に優れ、かつITO導電膜の高温高湿下における表面抵抗率の変化を抑制する。またエチルセルロースを含むことにより、この組成物を印刷用ペーストとしたときに印刷性を向上させることができる。   In the composition for forming an ITO conductive film according to the first aspect of the present invention, it contains 3-45 mass% of ITO particles having a predetermined specific surface area and an L value. It can have transparency. In addition, by including a terpene phenol resin having a high softening point of 130 to 160 ° C. as the binder resin, when this composition is applied onto the substrate, the ITO conductive film has excellent adhesion to the substrate, and ITO A change in surface resistivity of the conductive film under high temperature and high humidity is suppressed. Moreover, when ethyl cellulose is contained, when this composition is used as a printing paste, the printability can be improved.

本発明の第2の観点のITO導電膜形成用組成物では、所定の質量比の範囲内において、エチルセルロースがテルペンフェノール樹脂と比べてその質量割合が少ない場合には、テルペンフェノール樹脂の接着効果が発現しやすくなるので、基材への密着性が高まる効果が有り、反対に、エチルセルロースがテルペンフェノール樹脂と比べてその質量割合が多い場合には、エチルセルロースによる液組成物の増粘性を図ることが容易となり、スクリーン印刷用ペーストとしての印刷性が向上する効果が有る。   In the composition for forming an ITO conductive film according to the second aspect of the present invention, in the range of a predetermined mass ratio, when ethyl cellulose has a smaller mass ratio than the terpene phenol resin, the adhesion effect of the terpene phenol resin is obtained. Since it is easy to express, it has the effect of increasing the adhesion to the substrate, and conversely, when ethyl cellulose has a larger mass ratio than terpene phenol resin, it can increase the viscosity of the liquid composition with ethyl cellulose. It becomes easy and has the effect of improving the printability as a screen printing paste.

本発明の第3の観点のITO導電膜形成用組成物では、分散剤を所定量含むことにより、塗膜にした際の膜の光学特性が向上する効果、即ち透明性が向上し、かつヘーズが低減する効果を有する。   In the composition for forming an ITO conductive film according to the third aspect of the present invention, by including a predetermined amount of the dispersant, the effect of improving the optical properties of the film when formed into a coating film, that is, the transparency is improved, and the haze is improved. Has the effect of reducing.

本発明の第4の観点のITO導電膜形成用組成物は、スクリーン印刷用ペースト又は塗料に用いられる利点がある。   The composition for forming an ITO conductive film according to the fourth aspect of the present invention has an advantage of being used for a screen printing paste or paint.

本発明の第5の観点のスクリーン印刷用ペーストに用いられる場合、有機溶媒として3−メトキシ−3−メチル−1−ブタノールを用いると、比較的高沸点(174℃)でありながら、水溶性であるため、ITO粒子を容易に分散させることができ、塗膜の光学特性向上を図ることが可能である。また高沸点溶媒であるブチルカルビトールアセテート(247℃)もしくはα−テルピネオール(219℃)を併用すると、3−メトキシ−3−メチル−1−ブタノール単独使用におけるスクリーン印刷時の乾燥性が速い弊害を防止して、連続生産においても、膜の表面抵抗率のばらつきを抑制することができる。   When used in the screen printing paste of the fifth aspect of the present invention, when 3-methoxy-3-methyl-1-butanol is used as the organic solvent, it is water-soluble while having a relatively high boiling point (174 ° C.). Therefore, the ITO particles can be easily dispersed, and the optical properties of the coating film can be improved. In addition, when butyl carbitol acetate (247 ° C.) or α-terpineol (219 ° C.), which is a high boiling point solvent, is used in combination, the problem of quick drying at the time of screen printing in the case of using 3-methoxy-3-methyl-1-butanol alone is caused. Thus, variation in the surface resistivity of the film can be suppressed even in continuous production.

本発明の第6の観点の塗料に用いられる場合、有機溶媒として3−メトキシ−3−メチル−1−ブタノールを用いると、比較的高沸点(174℃)でありながら、水溶性であるため、ITO粒子を容易に分散させることができ、塗膜の光学特性向上を図ることが可能である。また低沸点溶媒である2−ブタノン、4−メチル−2−ペンタノン、エタノール、2−プロパノール、1−ブタノール、トルエン、メタノール、1-プロパノール、酢酸エチル、酢酸ブチル、アセトン、2,4−ペンタンジオン及びキシレンからなる群より選ばれた1種又は2種以上溶媒を併用すると、3−メトキシ−3−メチル−1−ブタノール単独使用時よりも、乾燥性をより高めることができる。   When used in the paint according to the sixth aspect of the present invention, when 3-methoxy-3-methyl-1-butanol is used as the organic solvent, it is water-soluble while having a relatively high boiling point (174 ° C.). It is possible to easily disperse ITO particles and improve the optical properties of the coating film. Low-boiling solvents such as 2-butanone, 4-methyl-2-pentanone, ethanol, 2-propanol, 1-butanol, toluene, methanol, 1-propanol, ethyl acetate, butyl acetate, acetone, 2,4-pentanedione In addition, when one or more solvents selected from the group consisting of xylene and xylene are used in combination, the drying property can be improved more than when 3-methoxy-3-methyl-1-butanol is used alone.

本発明の第7の観点のITO導電膜形成用組成物では、フェノール系酸化防止剤又はヒンダードアミン系光安定剤を更に含むことにより、この組成物から作られたITO導電膜の高温下における表面抵抗率の変化を更に抑制することができる。   In the composition for forming an ITO conductive film according to the seventh aspect of the present invention, the surface resistance of the ITO conductive film made from this composition at a high temperature by further containing a phenol-based antioxidant or a hindered amine light stabilizer. The rate change can be further suppressed.

本発明の第8の観点のITO導電膜形成用組成物では、加水分解基を持つ有機ケイ素化合物と水とを更に含むことにより、組成物を加熱したときに加水分解基が水と反応して、シラノール基が一部発生する。このシラノール基が一部発生した有機ケイ素化合物は、シラノール基とITOとの結合力が生じるため、この組成物から作られたITO導電膜は高温高湿下において表面抵抗率の変化が更に抑制される。   In the composition for forming an ITO conductive film according to the eighth aspect of the present invention, by further including an organosilicon compound having a hydrolyzable group and water, the hydrolyzable group reacts with water when the composition is heated. Some silanol groups are generated. Since the organosilicon compound in which this silanol group is partially generated has a bonding force between the silanol group and ITO, the ITO conductive film made from this composition is further suppressed from changing the surface resistivity under high temperature and high humidity. The

本発明の第9の観点のITO導電膜形成用組成物では、所定の比表面積を有するITO粒子が所定量の有機ケイ素の加水分解物層で被覆されるため、ITO導電膜にしたときに、ITO粒子が本来有する導電性を損ねない範囲で、紫外線が照射されたときにITO粒子から生じるラジカルが前記加水分解物の被覆層により抑制される。   In the composition for forming an ITO conductive film according to the ninth aspect of the present invention, since ITO particles having a predetermined specific surface area are coated with a predetermined amount of a hydrolyzate layer of organosilicon, when the ITO conductive film is formed, Radicals generated from the ITO particles when irradiated with ultraviolet rays are suppressed by the hydrolyzate coating layer as long as the conductivity inherent in the ITO particles is not impaired.

本発明の第10の観点のITO導電膜では、所定の比表面積とL値を有するITO粒子が高い軟化点のテルペンフェノール樹脂中に均一に分散し、かつ所定量のITO粒子とITO粒子以外の成分を含むことにより、ITO導電膜の高温高湿下における表面抵抗率の変化を抑制でき、基材への密着性に優れ、良好な導電性と透明性を兼ね備えることができる。   In the ITO conductive film according to the tenth aspect of the present invention, ITO particles having a predetermined specific surface area and L value are uniformly dispersed in a terpene phenol resin having a high softening point, and other than predetermined amounts of ITO particles and ITO particles. By including a component, the change of the surface resistivity under high temperature and high humidity of an ITO electrically conductive film can be suppressed, it is excellent in the adhesiveness to a base material, and can have favorable electroconductivity and transparency.

本発明の第11の観点及び第14の観点のITO導電膜では、フェノール系酸化防止剤又はヒンダードアミン系光安定剤を更に含むことにより、ITO導電膜の高温下における表面抵抗率の変化を更に抑制することができる。   The ITO conductive film according to the eleventh aspect and the fourteenth aspect of the present invention further suppresses a change in surface resistivity at high temperatures of the ITO conductive film by further including a phenolic antioxidant or a hindered amine light stabilizer. can do.

本発明の第12の観点のITO導電膜では、加水分解基を持つ有機ケイ素化合物と水とを更に含むことにより、ITO導電膜の高温高温下における表面抵抗率の変化を更に抑制することができる。   In the ITO conductive film according to the twelfth aspect of the present invention, it is possible to further suppress the change in surface resistivity of the ITO conductive film at high temperature and high temperature by further containing an organosilicon compound having a hydrolyzable group and water. .

本発明の第13の観点のITO導電膜では、所定の比表面積を有するITO粒子が所定量の有機ケイ素の加水分解物で被覆され、高い軟化点のテルペンフェノール樹脂中に均一に分散し、かつ所定量のITO粒子とITO粒子以外の成分を含むことにより、ITO導電膜に紫外線が入射したときに、表面抵抗率の低下を抑制でき耐光性に優れ、かつ基材への密着性に優れ、良好な導電性と透明性を兼ね備えることができる。   In the ITO conductive film of the thirteenth aspect of the present invention, ITO particles having a predetermined specific surface area are coated with a predetermined amount of hydrolyzate of organosilicon, and uniformly dispersed in a terpene phenol resin having a high softening point, and By including a predetermined amount of ITO particles and components other than ITO particles, when ultraviolet light is incident on the ITO conductive film, it is possible to suppress a decrease in surface resistivity and excellent light resistance, and excellent adhesion to a substrate, It can have both good conductivity and transparency.

次に本発明を実施するための第1の形態を説明する。   Next, the 1st form for implementing this invention is demonstrated.

〔第1の形態のITO粒子〕
本発明の第1の形態のITO粒子は、42〜65m/gのBET法による比表面積と36以下のL値を有する。BET法による比表面積が42m/g未満であると、所望の表面抵抗率を有するITO導電膜にしたときのヘーズが高くなり膜の透明性が低くなる。ヘーズを低くするために第1の形態のITO粒子の膜中の含有量を減少させると、膜の所望の表面抵抗率が得られず膜の導電性が悪くなる。本来であれば、BET値が高いと、粒子が小さくなるため、透明性並びにヘーズの低減を図ることが可能であるけれども、BET法による比表面積が65m/gを超えると、所定の分散剤の添加量で樹脂に第1の形態のITO粒子を混合した場合、このITO粒子の樹脂への分散が不十分となり、かえって塗膜のヘーズが悪くなる不具合がある。この不具合を生じないようにヘーズを低減する目的で、65m/gを超えた第1の形態のITO粒子を用いた場合、このITO粒子を樹脂に分散するための分散剤量を増やす必要が生じる。分散剤を増加すると、膜の導電性が悪くなり、かつ基材への密着性が悪化する等の問題が発生する。このため、第1の形態のITO粒子のBET法による比表面積の上限値は65m/gに決められる。また所望の表面抵抗率を得るためにこのITO粒子の膜中の含有量を増大させると、第1の形態のITO導電膜形成用組成物を基材上に塗布したときにITO導電膜の基材への密着性が悪くなる。また第1の形態のITO粒子のL値が36を超えると、このITOの還元が不十分であるため、膜の表面抵抗率が高くなり膜の導電性が悪くなる。また粒子も大きくなるため、膜のヘーズが高くなり膜の透明性が低くなる。
[ITO particles in the first form]
The ITO particles according to the first embodiment of the present invention have a specific surface area according to the BET method of 42 to 65 m 2 / g and an L value of 36 or less. When the specific surface area according to the BET method is less than 42 m 2 / g, the haze is increased when the ITO conductive film having a desired surface resistivity is formed, and the transparency of the film is lowered. If the content of the ITO particles of the first form in the film is decreased in order to reduce the haze, the desired surface resistivity of the film cannot be obtained and the conductivity of the film is deteriorated. Originally, if the BET value is high, the particles become small, so that transparency and haze can be reduced. However, when the specific surface area by the BET method exceeds 65 m 2 / g, a predetermined dispersant is used. When the ITO particles of the first form are mixed with the resin in such an added amount, there is a problem that the dispersion of the ITO particles into the resin becomes insufficient and the haze of the coating film becomes worse. In order to reduce haze so as not to cause this problem, when the ITO particles of the first form exceeding 65 m 2 / g are used, it is necessary to increase the amount of the dispersant for dispersing the ITO particles in the resin. Arise. Increasing the dispersant causes problems such as poor film conductivity and poor adhesion to the substrate. For this reason, the upper limit of the specific surface area by the BET method of the ITO particles of the first form is determined to be 65 m 2 / g. Further, when the content of the ITO particles in the film is increased in order to obtain a desired surface resistivity, the base of the ITO conductive film is formed when the ITO conductive film forming composition of the first form is applied on the substrate. Adhesion to the material is poor. On the other hand, when the L value of the ITO particles of the first form exceeds 36, the ITO is not sufficiently reduced, so that the surface resistivity of the film is increased and the conductivity of the film is deteriorated. In addition, since the particles become large, the haze of the film increases and the transparency of the film decreases.

〔第1の形態のITO粒子の製造方法〕
第1の形態のITO粒子は、インジウムと錫の共沈水酸化物を焼成してインジウム錫酸化物粒子を製造する方法において、乾燥粉末が山吹色から柿色の色調を有するインジウム錫水酸化物を共沈させ、これを焼成して得られる。
[Method for Producing ITO Particles of First Form]
The first form of ITO particles is a method of producing indium tin oxide particles by firing coprecipitated hydroxides of indium and tin. It is obtained by precipitating and baking it.

具体的には、第1の形態のITO粒子は次の方法で製造される。先ず、スズ塩とインジウム塩とを所定の割合で秤量混合し、当該混合物を純水に溶解してスズ塩とインジウム塩との混合溶液とし、当該混合溶液とアルカリとを反応させる。溶液中のインジウムと錫はアルカリの存在下で沈殿し、インジウムと錫の共沈水酸化物が生成する。スズ及びインジウムの塩としては、塩酸塩、硫酸塩、又は硝酸塩などがある。例えば、スズ塩として2価錫化合物(SnCl・2HOなど)を、インジウム塩として三塩化インジウム(InCl)を用い、溶液のpHを4.0〜9.3、好ましくはpH6.0〜8.0、液温を5℃以上、好ましくは液温10℃〜80℃に調整する。これにより、乾燥粉末が山吹色から柿色の色調を有するインジウム錫の共沈水酸化物を沈殿させることができる。この山吹色から柿色の色調を有する水酸化物は、従来の白色のインジウム錫水酸化物よりも結晶性に優れている。 Specifically, the ITO particles of the first form are manufactured by the following method. First, a tin salt and an indium salt are weighed and mixed at a predetermined ratio, the mixture is dissolved in pure water to obtain a mixed solution of a tin salt and an indium salt, and the mixed solution and an alkali are reacted. Indium and tin in the solution are precipitated in the presence of alkali to form a coprecipitated hydroxide of indium and tin. Examples of the tin and indium salts include hydrochloride, sulfate, and nitrate. For example, a divalent tin compound (SnCl 2 .2H 2 O or the like) is used as a tin salt, and indium trichloride (InCl 3 ) is used as an indium salt, and the pH of the solution is 4.0 to 9.3, preferably pH 6.0. -8.0, and liquid temperature is adjusted to 5 degreeC or more, Preferably liquid temperature is 10 to 80 degreeC. Thereby, the co-precipitated hydroxide of indium tin having a dry powder having a color tone of a bright yellow color to an amber color can be precipitated. The hydroxide having a yellowish to dark blue color tone is superior in crystallinity to the conventional white indium tin hydroxide.

なお、4価の錫化合物(SnClなど)を用いると、白色の沈殿になり、山吹色から柿色の色調を有する沈殿にならない。また、溶液のpHが4.0よりも低く(酸性側)あるいは9.3よりも高い(アルカリ側)と薄い黄色を帯びた白色沈殿になり、山吹色から柿色の色調を有する沈殿にならない。4価の錫化合物による白色沈殿や上記薄黄白色沈殿は何れも山吹色から柿色の色調を有する沈殿に比べて結晶性が低く、これらの沈殿物を焼成しても本発明のような結晶性の高いITO粒子を得ることができない。また反応時のpHが4未満であると、後述するインジウム錫水酸化物の焼成時の温度が600℃であっても、L値が36を超えてしまう。 It notes that a tetravalent tin compound (such as SnCl 4), becomes a white precipitate, not a precipitate having a color tone of Kakiiro from bright yellow. Further, when the pH of the solution is lower than 4.0 (acidic side) or higher than 9.3 (alkaline side), a pale yellowish white precipitate is formed, and a precipitate having a yellowish to dark blue color tone is not formed. The white precipitation due to the tetravalent tin compound and the above pale yellowish white precipitation are both lower in crystallinity than the precipitation having a yellowish to amber color tone, and even if these precipitates are fired, the crystallinity as in the present invention High ITO particles cannot be obtained. Further, if the pH during the reaction is less than 4, the L value will exceed 36 even when the temperature during firing of indium tin hydroxide described later is 600 ° C.

反応時の液性をpH4.0〜9.3に調整するには、例えば、三塩化インジウム(InCl)と二塩化錫(SnCl・2HO)の混合水溶液を用い、この混合水溶液とアルカリ水溶液とを同時に水に滴下して上記pH範囲に調整するとよい。アルカリ水溶液としてはアンモニア水〔NH水〕、炭酸水素アンモニウム水〔NHHCO水〕などを用いるとよい。 In order to adjust the liquid property during the reaction to pH 4.0 to 9.3, for example, a mixed aqueous solution of indium trichloride (InCl 3 ) and tin dichloride (SnCl 2 .2H 2 O) is used. The aqueous alkaline solution may be simultaneously dropped into water to adjust the pH range. As the alkaline aqueous solution, ammonia water [NH 3 water], ammonium hydrogen carbonate water [NH 4 HCO 3 water] or the like may be used.

上記共沈インジウム錫水酸化物を生成した後、この共沈物を純水で洗浄し、上澄み液の電気伝導度が200μS/cm以下、好ましくは20μS/cm以下になるまで洗浄(以下、傾斜洗浄という。)した後に固液分離して上記共沈物を回収する。上澄み液の電気電導度が200μS/cmより高いと塩素等の不純物が十分に除去されておらず、高純度のインジウム錫酸化物粒子を得ることができない。   After the coprecipitated indium tin hydroxide is formed, the coprecipitate is washed with pure water, and washed until the electrical conductivity of the supernatant is 200 μS / cm or less, preferably 20 μS / cm or less (hereinafter referred to as a gradient). The coprecipitate is recovered by solid-liquid separation after washing. When the electrical conductivity of the supernatant is higher than 200 μS / cm, impurities such as chlorine are not sufficiently removed, and high-purity indium tin oxide particles cannot be obtained.

上記インジウム錫水酸化物を、第1の形態では、次の3つの方法で製造することができる。
(a−1) 第1の方法では、先ず固液分離したインジウム錫水酸化物を、窒素ガス雰囲気下で、100〜120℃、1晩で乾燥した後、270〜800℃、30分〜6時間で焼成する。次いで焼成により得られた酸化物を、アルコールの表面処理液に入れて含浸させた後、窒素ガス雰囲気下、150〜600℃で加熱して表面改質処理する。
(b−1) 第2の方法では、先ず固液分離したインジウム錫水酸化物を、アルコールの表面処理液を含浸させる。次いで表面処理液を含浸させたインジウム錫水酸化物を、窒素ガス雰囲気下で、270〜600℃で加熱して乾燥と焼成を連続して行い、表面改質処理を一度にする。
(c−1) 第3の方法では、先ず固液分離したインジウム錫水酸化物を、大気雰囲気下で、100〜120℃、1晩で乾燥した後、270〜650℃、30分〜6時間で焼成する。次いで焼成により得られた酸化物を、アルコールの表面処理液に入れて含浸させた後、窒素ガス雰囲気下、150〜600℃で加熱して表面改質処理する。
上記第1及び第2の方法で、窒素ガス雰囲気下で熱処理するのは、高温の大気雰囲気下で焼成したものをアルコールの表面処理液に含浸させた後に、窒素ガス雰囲気下で処理しても、還元が進みにくく、Lab表色系において、L値36を超えるITO粒子になるためである。そのため、第3の方法では、大気焼成温度は、650℃以下とした。
In the first embodiment, the indium tin hydroxide can be produced by the following three methods.
(a-1) In the first method, first, solid-liquid separated indium tin hydroxide is dried at 100 to 120 ° C. overnight under a nitrogen gas atmosphere, and then 270 to 800 ° C., 30 minutes to 6 Bake in time. Next, the oxide obtained by firing is impregnated in an alcohol surface treatment solution, and then subjected to a surface modification treatment by heating at 150 to 600 ° C. in a nitrogen gas atmosphere.
(b-1) In the second method, first, solid-liquid separated indium tin hydroxide is impregnated with an alcohol surface treatment solution. Next, the indium tin hydroxide impregnated with the surface treatment liquid is heated at 270 to 600 ° C. in a nitrogen gas atmosphere, and dried and fired continuously to perform the surface modification treatment once.
(c-1) In the third method, first, solid-liquid-separated indium tin hydroxide is dried at 100 to 120 ° C. overnight in an air atmosphere, and then 270 to 650 ° C., 30 minutes to 6 hours. Bake with. Next, the oxide obtained by firing is impregnated in an alcohol surface treatment solution, and then subjected to a surface modification treatment by heating at 150 to 600 ° C. in a nitrogen gas atmosphere.
In the first and second methods, the heat treatment is performed in a nitrogen gas atmosphere even after the surface treatment liquid of alcohol is impregnated with a material fired in a high-temperature air atmosphere and then treated in a nitrogen gas atmosphere. This is because the reduction is difficult to proceed, and in the Lab color system, ITO particles exceeding the L value 36 are obtained. Therefore, in the third method, the atmospheric firing temperature is set to 650 ° C. or lower.

上記の3つの方法で得られた凝集体は、いずれも粉砕してほぐすことによりインジウム錫酸化物となる。即ち、上記処理によってインジウム錫水酸化物は表面改質されたインジウム錫酸化物粒子(ITO粒子)となる。こうして得られた第1の形態のITO粒子は、42〜65m/gのBET法による比表面積と、Lab表色系において、L値36以下、a<0、b<0の濃い青色を帯びた色調を有する。このITO粒子は微細であり、かつ結晶性が高いため、樹脂に混合して被膜やシートを形成したときに、高い透明性を有し、かつ優れた導電性が得られる。 Aggregates obtained by the above three methods are all crushed and loosened to become indium tin oxide. In other words, indium tin hydroxide becomes surface-modified indium tin oxide particles (ITO particles) by the above treatment. The ITO particles of the first form thus obtained have a specific surface area by the BET method of 42 to 65 m 2 / g and a dark blue color with an L value of 36 or less, a <0, b <0 in the Lab color system. Have a different color tone. Since the ITO particles are fine and have high crystallinity, when mixed with a resin to form a film or sheet, the ITO particles have high transparency and excellent conductivity.

上記第1及び第2の製造方法において、焼成温度が270℃未満では水酸化物のままであり酸化物にならない。また焼成温度が800℃を超えるとITO粒子間同士が焼結するため、比表面積が42m/g未満になってしまう。 In the said 1st and 2nd manufacturing method, if a calcination temperature is less than 270 degreeC, it will remain a hydroxide and will not become an oxide. On the other hand, when the firing temperature exceeds 800 ° C., the ITO particles are sintered with each other, so that the specific surface area becomes less than 42 m 2 / g.

第1又は第3の製造方法において、焼成のみ行い、アルコールによる還元処理をしないと、仮に600℃で焼成しても、ITO粒子のBET法による比表面積が65m/g以下であっても、L値が36を超えてしまう。 In the first or third production method, only firing is performed and no reduction treatment with alcohol is performed. Even if firing at 600 ° C., the specific surface area of the ITO particles by the BET method is 65 m 2 / g or less, The L value exceeds 36.

〔第1の形態のITO導電膜形成用組成物の製造方法〕
上記の方法で得られた第1の形態のITO粒子をバインダ樹脂と有機溶媒と混合して、第1の形態のITO導電膜形成用組成物を調製する。このとき、分散剤を混合してもよい。分散剤を混合することにより、塗膜にしたときの透明性が更に向上する。この組成物は、組成物100質量%中、第1の形態のITO粒子を3〜45質量%、好ましくは4〜40質量%含むように、またその固形分100質量%中、第1の形態のITO粒子以外の成分を10〜52質量%、好ましくは15〜35質量%含むように調製される。上記の方法で得られた第1の形態のITO粒子の含有量が3質量%未満では、この組成物から作られた第1の形態のITO導電膜の導電性が高くならない。また45質量%を超えると、組成物が増粘するなど経時安定性が悪くなるとともに、バインダ樹脂が相対的に不足し、第1の形態のITO粒子の粒子間の接着力が低下し、第1の形態のITO導電膜の表面抵抗率が悪化する。また第1の形態のITO粒子以外の成分が10質量%未満では、第1の形態のITO導電膜の高温高湿下における表面抵抗率の上昇を抑制できず、また基材に対する密着性が十分に得られない。また52質量%を超えると、組成物が増粘するなど経時安定性が悪くなるとともに、第1の形態のITO導電膜の表面抵抗率が悪くなり、導電性が得にくくなる。
[Method for Producing Composition for Forming ITO Conductive Film of First Form]
The first form of ITO particles obtained by the above method is mixed with a binder resin and an organic solvent to prepare an ITO conductive film forming composition of the first form. At this time, a dispersant may be mixed. By mixing the dispersant, the transparency when formed into a coating film is further improved. This composition contains 3 to 45% by weight, preferably 4 to 40% by weight, of the first form of ITO particles in 100% by weight of the composition, and in the solid content of 100% by weight of the first form. It is prepared so that it may contain 10-52 mass%, preferably 15-35 mass% of components other than ITO particles. When the content of the ITO particles of the first form obtained by the above method is less than 3% by mass, the conductivity of the ITO conductive film of the first form made from this composition does not increase. On the other hand, if it exceeds 45% by mass, the composition becomes thicker and the stability with time deteriorates, the binder resin is relatively insufficient, and the adhesion between the particles of the ITO particles of the first form is reduced. The surface resistivity of the ITO conductive film of 1 form deteriorates. In addition, if the component other than the ITO particles of the first form is less than 10% by mass, the increase of the surface resistivity of the ITO conductive film of the first form under high temperature and high humidity cannot be suppressed, and the adhesion to the substrate is sufficient. I can't get it. On the other hand, if it exceeds 52% by mass, the stability with time deteriorates, for example, the composition thickens, and the surface resistivity of the ITO conductive film of the first form deteriorates, making it difficult to obtain conductivity.

この組成物の固形分である第1の形態のバインダ樹脂としては、エチルセルロース及び130〜160℃の軟化点を有するテルペンフェノール樹脂を含む。テルペンフェノール樹脂の軟化点が130℃未満であると、第1の形態のITO導電膜の使用条件が60℃以上の高温になった場合、表面抵抗率の変化を抑制することが困難になる。また160℃を超えるテルペンフェノール樹脂は入手困難である。エチルセルロースとテルペンフェノール樹脂の質量比は、エチルセルロース:テルペンフェノール樹脂=10〜80:90〜20であることが好ましく、20〜50:80〜50であることが更に好ましい。エチルセルロースの質量比が10未満であってテルペンフェノール樹脂の質量比が90を超えると、スクリーン印刷時に、ペーストの粘度を上げることが難しくなり、スクリーン印刷性が悪くなる不具合があり、エチルセルロースの質量比が80を超えてテルペンフェノール樹脂の質量比が20未満であると、第1の形態のITO導電膜の基材への密着性が低下する不具合がある。テルペンフェノール樹脂は、アリゾナケミカル社製SylvaliteTP7042(軟化点:145℃),荒川化学工業社製タマノル803L(軟化点:140〜160℃)、901(軟化点:120〜135℃)、ヤスハラケミカル社製YSポリスターT160(軟化点:160℃),145(軟化点:145℃),T130(軟化点:130℃),U130(軟化点:130℃),S145(軟化点:145℃),G150(軟化点:150℃),K140(軟化点:140℃),TH130(軟化点:130℃)等が挙げられる。   As binder resin of the 1st form which is solid content of this composition, terpene phenol resin which has ethyl cellulose and a 130-160 degreeC softening point is included. When the softening point of the terpene phenol resin is lower than 130 ° C., it becomes difficult to suppress the change in surface resistivity when the use condition of the ITO conductive film of the first embodiment is a high temperature of 60 ° C. or higher. Also, terpene phenol resins exceeding 160 ° C. are difficult to obtain. The mass ratio of ethyl cellulose to terpene phenol resin is preferably ethyl cellulose: terpene phenol resin = 10-80: 90-20, and more preferably 20-50: 80-50. When the mass ratio of ethyl cellulose is less than 10 and the mass ratio of terpene phenol resin exceeds 90, it is difficult to increase the viscosity of the paste during screen printing, and there is a problem that the screen printability is deteriorated. Is more than 80 and the mass ratio of the terpene phenol resin is less than 20, there is a problem that the adhesion of the ITO conductive film of the first embodiment to the substrate is lowered. The terpene phenol resin is Sylvalite TP7042 (softening point: 145 ° C.) manufactured by Arizona Chemical Co., Ltd. Tamanoru 803L (softening point: 140-160 ° C.) manufactured by Arakawa Chemical Industries, 901 (softening point: 120-135 ° C.), YS manufactured by Yasuhara Chemical Co., Ltd. Polystar T160 (softening point: 160 ° C), 145 (softening point: 145 ° C), T130 (softening point: 130 ° C), U130 (softening point: 130 ° C), S145 (softening point: 145 ° C), G150 (softening point) : 150 ° C), K140 (softening point: 140 ° C), TH130 (softening point: 130 ° C), and the like.

第1の形態のITO導電膜形成用組成物に含まれる第1の形態の分散剤は、第1の形態のITO粒子100質量部に対して1〜10質量部含まれることが好ましい。この第1の形態の分散剤の例としては、顔料を安定して微粒子分散できるものであれば、任意の顔料用分散剤を用いることができる。具体的には、ポリオキシエチレンスチレン化フェニルエーテル硫酸アンモニウム、ポリオキシアルキレンデシルエーテル硫酸ナトリウム、ポリオキシエチレントリデシルエーテル硫酸ナトリウム、ポリオキシエチレンイソデシルエーテル硫酸アンモニウム、ポリオキシエチレンラウリルエーテル硫酸ナトリウム、ポリオキシエチレンラウリルエーテル硫酸アンモニウム、ポリオキシエチレンアルキルエーテル硫酸ナトリウム、ポリオキシエチレンオレイルセチルエーテル硫酸アンモニウム、ポリオキシエチレンオレイルセチルエーテル硫酸ナトリウム等のアルキルエーテル硫酸塩、アルキル硫酸エステル塩、アルキルベンゼンスルホン酸塩、アルキルフタレンスルフォン酸塩、ポリオキシエチレンアルキルエーテルリン酸エステル、ポリオキシエチレンアルキルエーテルリン酸エステル、ポリオキシエチレンラウリルエーテルリン酸エステル、ポリオキシエチレンアルキルエーテルリン酸塩、ポリオキシエチレントリデシルエーテルリン酸エステル、ポリオキシエチレンスチレン化フェニルエーテルリン酸エステル等のアルキルリン酸エステル塩、ポリオキシエチレンアルキルエーテル酢酸塩、ポリオキシエチレンラウリルエーテル酢酸ナトリウム等のアルキルエーテル酢酸塩、ラウリルスルホコハク酸二ナトリウムポリオキシエチレンアルキルスルホコハク酸二ナトリウム、ポリオキシエチレンスルホコハク酸ラウリル二ナトリウム、ポリオキシエチレンアルキルスルホコハク酸塩等のアルキルコハク酸塩、ポリカルボン酸型高分子等の陰イオン性界面活性剤、アミンオキサイド等の陽イオン性界面活性剤、オキシエチレンブロックコポリマー、ポリオキシエチレンアルキルアミド等の非イオン性界面活性剤などの界面活性剤が挙げられる。分散剤の含有量が1質量部未満では、第1の形態のITO導電膜形成用組成物の分散が不十分となり、塗膜の透明性が不十分になりやすい。また10質量部を超えると、第1の形態のITO導電膜の導電性と塗膜の密着性に悪影響を及ぼしやすい。   It is preferable that 1-10 mass parts of the dispersing agent of the 1st form contained in the composition for ITO electrically conductive film formation of a 1st form is contained with respect to 100 mass parts of ITO particles of a 1st form. As an example of the dispersant in the first form, any pigment dispersant can be used as long as it can stably disperse the pigment in fine particles. Specifically, polyoxyethylene styrenated phenyl ether ammonium sulfate, polyoxyalkylene decyl ether sodium sulfate, polyoxyethylene tridecyl ether sodium sulfate, polyoxyethylene isodecyl ether ammonium sulfate, polyoxyethylene lauryl ether sodium sulfate, polyoxyethylene Alkyl ether sulfates such as ammonium lauryl ether sulfate, sodium polyoxyethylene alkyl ether sulfate, ammonium polyoxyethylene oleyl cetyl ether sulfate, sodium polyoxyethylene oleyl cetyl ether sulfate, alkyl sulfate esters, alkyl benzene sulfonates, alkyl phthalene sulfonic acids Salt, polyoxyethylene alkyl ether phosphate, polyoxy Alkyl phosphoric acid such as ethylene alkyl ether phosphate, polyoxyethylene lauryl ether phosphate, polyoxyethylene alkyl ether phosphate, polyoxyethylene tridecyl ether phosphate, polyoxyethylene styrenated phenyl ether phosphate Ester salt, polyoxyethylene alkyl ether acetate, alkyl ether acetate such as sodium polyoxyethylene lauryl ether acetate, disodium lauryl sulfosuccinate polyoxyethylene alkyl sulfosuccinate disodium, polyoxyethylene sulfosuccinate disodium lauryl, polyoxy Alkyl succinates such as ethylene alkyl sulfosuccinates, anionic surfactants such as polycarboxylic acid type polymers, amine oxides Cationic surfactants, polyoxyethylene block copolymers, surfactants, such as non-ionic surfactants such as polyoxyethylene alkyl amides. When the content of the dispersant is less than 1 part by mass, the dispersion of the ITO conductive film forming composition of the first form becomes insufficient, and the transparency of the coating film tends to be insufficient. Moreover, when it exceeds 10 mass parts, it will have a bad influence on the electroconductivity of the ITO electrically conductive film of a 1st form, and the adhesiveness of a coating film.

第1の形態のITO導電膜形成用組成物に含まれる第1の形態の有機溶媒は、有機溶媒として3−メトキシ−3−メチル−1−ブタノールを用いる。3−メトキシ−3−メチル−1−ブタノールは、比較的高沸点でありながら、水溶性であるため、第1の形態のITO粒子を分散することが容易であり、塗膜の光学特性向上を図ることが可能である。しかしながら、第1の形態のITO導電膜形成用組成物がスクリーン印刷用ペーストの場合、3−メトキシ−3−メチル−1−ブタノール単独であると、乾燥速度が速いため、何枚も膜を形成すると、膜の表面抵抗率の均一性に難が生じてくるため、高沸点溶媒のブチルカルビトールアセテートもしくはα−テルピネオールを組み合わせて用いる。第1の形態のITO導電膜形成用組成物が塗料の場合は、速乾性を求められるため、沸点の低い、2−ブタノン、4−メチル−2−ペンタノン、エタノール、2−プロパノール、1−ブタノール、トルエン、メタノール、1-プロパノール、酢酸エチル、酢酸ブチル、アセトン、2,4−ペンタンジオン、キシレン等と3−メトキシ−3−メチル−1−ブタノール、を組み合わせて用いる。   As the organic solvent of the first form contained in the ITO conductive film forming composition of the first form, 3-methoxy-3-methyl-1-butanol is used as the organic solvent. Since 3-methoxy-3-methyl-1-butanol has a relatively high boiling point and is water-soluble, it is easy to disperse the ITO particles of the first form and improve the optical properties of the coating film. It is possible to plan. However, when the composition for forming an ITO conductive film according to the first embodiment is a paste for screen printing, if 3-methoxy-3-methyl-1-butanol is used alone, the drying speed is high, so that many films are formed. Then, since the uniformity of the surface resistivity of the film becomes difficult, a high boiling point solvent butyl carbitol acetate or α-terpineol is used in combination. When the composition for forming an ITO conductive film according to the first embodiment is a paint, quick drying is required, so that 2-butanone, 4-methyl-2-pentanone, ethanol, 2-propanol, and 1-butanol have low boiling points. , Toluene, methanol, 1-propanol, ethyl acetate, butyl acetate, acetone, 2,4-pentanedione, xylene and the like and 3-methoxy-3-methyl-1-butanol are used in combination.

有機溶媒の添加量は、組成物100質量%中、50〜95質量%であることが好ましい。有機溶媒の添加量が多ければ、組成物は塗料用組成物となり、少なければペースト用組成物となる。   The addition amount of the organic solvent is preferably 50 to 95% by mass in 100% by mass of the composition. When the amount of the organic solvent added is large, the composition becomes a coating composition, and when it is small, the composition becomes a paste composition.

第1の形態のITO導電膜形成用組成物は、フェノール系酸化防止剤又はヒンダードアミン系光安定剤を更に含むことが好ましい。フェノール系酸化防止剤としては、ADEKA社、製品名AO−20、AO−30、AO−40、AO−60、AO−80等が挙げられる。またヒンダードアミン系光安定剤としては、ADEKA社、製品名LA−52、LA−57、LA−63、LA−72等が挙げられる。フェノール系酸化防止剤又はヒンダードアミン系光安定剤を更に含むことにより、この組成物から作られたITO導電膜の高温下における表面抵抗率の変化を更に抑制することができる。このために、フェノール系酸化防止剤又はヒンダードアミン系光安定剤の添加量は、組成物の固形分100質量%中、0.1〜5質量%であることが好ましい。   It is preferable that the composition for forming an ITO conductive film according to the first embodiment further includes a phenolic antioxidant or a hindered amine light stabilizer. Examples of the phenolic antioxidant include ADEKA, product names AO-20, AO-30, AO-40, AO-60, AO-80 and the like. Examples of the hindered amine light stabilizer include ADEKA, product names LA-52, LA-57, LA-63, and LA-72. By further including a phenolic antioxidant or a hindered amine light stabilizer, it is possible to further suppress the change in surface resistivity of the ITO conductive film made from this composition at a high temperature. For this reason, it is preferable that the addition amount of a phenolic antioxidant or a hindered amine light stabilizer is 0.1-5 mass% in 100 mass% of solid content of a composition.

第1の形態のITO導電膜形成用組成物は、加水分解基を持つ有機ケイ素化合物と水を更に含むことが更に好ましい。加水分解基を持つ有機ケイ素化合物を単独で添加した場合、高温高湿下において所定時間経過した後の表面抵抗率変化がより大きくなるのに対して、水を添加することで、高温高湿下において所定時間経過した後の表面抵抗率の変化を抑制することができ、かつ、基材との密着性をより改善することができる。加水分解基を持つ有機ケイ素化合物としては、ビニルトリメトキシシラン(信越化学工業社、製品名KBM−1003)、3−グリシドキシプロピルトリメトキシラン(信越化学工業社、製品名KBM−403)、3−メタクリロキシプロピルメチルジメトキシシラン(信越化学工業社、製品名KBM−503)、3−メルカプトプロピルトリメトキシシラン(信越化学工業社、製品名KBM−803)、メチルトリエトキシシラン(信越化学工業社、製品名KBE−13)等が挙げられる。また、予め、加水分解基を持つ有機ケイ素化合物に水を添加して、有機ケイ素化合物を加水分解重合したシラン化合物(三菱マテリアル電子化成社、製品名SB−10A)等が挙げられる。   More preferably, the composition for forming an ITO conductive film of the first embodiment further includes an organosilicon compound having a hydrolyzable group and water. When an organosilicon compound having a hydrolyzable group is added alone, the surface resistivity change after a predetermined time has elapsed under high temperature and high humidity, but by adding water, The change in the surface resistivity after elapse of a predetermined time can be suppressed, and the adhesion with the substrate can be further improved. As the organosilicon compound having a hydrolyzable group, vinyltrimethoxysilane (Shin-Etsu Chemical Co., Ltd., product name KBM-1003), 3-glycidoxypropyltrimethoxylane (Shin-Etsu Chemical Co., Ltd., product name KBM-403), 3-methacryloxypropylmethyldimethoxysilane (Shin-Etsu Chemical Co., Ltd., product name KBM-503), 3-mercaptopropyltrimethoxysilane (Shin-Etsu Chemical Co., Ltd., product name KBM-803), methyltriethoxysilane (Shin-Etsu Chemical Co., Ltd.) And product name KBE-13). Moreover, the silane compound (Mitsubishi Materials Electronics Chemicals, product name SB-10A) etc. which added water to the organosilicon compound which has a hydrolysis group beforehand, and hydrolyzed the organosilicon compound is mentioned.

前記ITO粒子以外の成分中、加水分解基を持つ有機ケイ素化合物と水を更に含むことにより、この組成物から作られたITO導電膜の高温高湿下における表面抵抗率の変化を更に抑制することができる。このために、加水分解基を持つ有機ケイ素化合物の添加量は、組成物の固形分100質量中、5〜52質量%であることが好ましい。水の添加量は、加水分解基を持つ有機ケイ素化合物に含まれる加水分解基が例えばメトキシ基もしくはエトキシ基であり、この加水分解基のモル数に対して、0.05〜0.7倍モル数であることが好ましい。0.05倍モル数未満であると、加水分解が不十分であり、表面抵抗率の経時変化を抑制しにくくなる。一方、0.7倍モル数を超えると、膜にしたときの表面抵抗率が増大し、かつヘーズが増大しやすくなる。また、水を添加するため、水と相溶性のない有機溶媒を選択していると、よりヘーズが増大するため、3−メトキシ−3−メチル−1−ブタノール等の水と相溶性のある溶媒を用いていると、ヘーズ増大を減少させることができる。   By further including an organosilicon compound having a hydrolyzable group and water in the components other than the ITO particles, further suppressing the change in surface resistivity of the ITO conductive film made from this composition under high temperature and high humidity. Can do. For this reason, it is preferable that the addition amount of the organosilicon compound which has a hydrolysis group is 5-52 mass% in 100 mass of solid content of a composition. The amount of water added is such that the hydrolyzable group contained in the organosilicon compound having a hydrolyzable group is, for example, a methoxy group or an ethoxy group, and 0.05 to 0.7 times the mol of the hydrolyzable group. It is preferably a number. If it is less than 0.05 times the number of moles, hydrolysis is insufficient and it becomes difficult to suppress the temporal change in surface resistivity. On the other hand, when the number of moles exceeds 0.7 times, the surface resistivity when formed into a film increases and haze tends to increase. In addition, when an organic solvent that is incompatible with water is selected because water is added, the haze increases, and thus a solvent compatible with water such as 3-methoxy-3-methyl-1-butanol. If h is used, haze increase can be reduced.

第1の形態のITO導電膜形成用組成物の調製手順は、先ず第1の形態のITO粒子を有機溶媒に加えて、分散剤を使用する場合には、分散剤を溶解した有機溶媒に第1の形態のITO粒子を加えて、湿式ビーズミル等を用いて、このITO粒子の分散した粒子径が所望の粒子径になるまで、ITO粒子を分散させてITO分散液を作製する。分散濃度は限定されないが、ITOとして10〜75質量%である。10質量%未満であると、生産性が悪く、かつ、後工程のペースト作製時に、樹脂溶液等を混合した際、高濃度のペーストを作製することが不可能となる。また、75質量%を超えると、ITO粒子を分散させることが困難となり、生産性が悪くなる。一方、バインダ樹脂は上記ITO粒子を分散させた有機溶媒と同じか、若しくは別の有機溶媒に入れて混合し、この有機溶媒を40〜80℃の温度で加熱することによりバインダ樹脂を溶解して樹脂溶液を調製する。最後にこの樹脂溶液とITO分散液とフェノール系酸化防止剤、ヒンダードアミン系光安定剤又は加水分解基を持つ有機ケイ素化合物と水などの添加剤とを混合し、この混合物を自転公転ミキサー、2本ロール、プラネタリーミキサー、ボールミル、ホモジナイザー、超音波分散機、3本ロール、ヘンシェルミキサー等の装置で40〜80℃の温度で加熱した状態で撹拌、混練、分散することにより、第1の形態のITO導電膜形成用組成物が得られる。   The preparation procedure of the composition for forming an ITO conductive film of the first form is as follows. First, when the ITO particles of the first form are added to an organic solvent and a dispersant is used, the first is added to the organic solvent in which the dispersant is dissolved. The ITO particles in the form 1 are added, and the ITO particles are dispersed using a wet bead mill or the like until the dispersed particle size of the ITO particles reaches a desired particle size, thereby producing an ITO dispersion. Although a dispersion | distribution density | concentration is not limited, it is 10-75 mass% as ITO. If it is less than 10% by mass, the productivity is poor, and it becomes impossible to produce a high-concentration paste when a resin solution or the like is mixed at the time of producing a paste in a subsequent process. Moreover, when it exceeds 75 mass%, it will become difficult to disperse | distribute ITO particle | grains and productivity will worsen. Meanwhile, the binder resin is the same as the organic solvent in which the ITO particles are dispersed or mixed in another organic solvent, and the binder resin is dissolved by heating the organic solvent at a temperature of 40 to 80 ° C. Prepare a resin solution. Finally, this resin solution, ITO dispersion liquid, phenolic antioxidant, hindered amine light stabilizer or organosilicon compound having a hydrolyzing group and an additive such as water are mixed, and this mixture is mixed with a revolving mixer. By stirring, kneading, and dispersing in a state of being heated at a temperature of 40 to 80 ° C. with an apparatus such as a roll, a planetary mixer, a ball mill, a homogenizer, an ultrasonic dispersing machine, a three roll, a Henschel mixer, etc. An ITO conductive film forming composition is obtained.

次に本発明を実施するための第2の形態を説明する。   Next, a second mode for carrying out the present invention will be described.

〔第2の形態のITO粒子〕
本発明の第2の形態のITO粒子は、上述した第1の形態のITO粒子を有機ケイ素の加水分解物で被覆して製造される。上述したように本発明の第1の形態のITO粒子が42〜65m/gのBET法による比表面積を有するのに対して、この第2の形態のITO粒子は、50〜70m/g、好ましくは55〜65m/gのBET法による比表面積を有する。BET法による比表面積が50m/g未満であると、導電膜にした際のヘーズが高くなる不具合がある。BET法による比表面積が70m/gを超えると、紫外線照射に対して表面抵抗率の変化を改善できない不具合がある。第2の形態のITO粒子では有機ケイ素の加水分解物の被覆量が被覆前のITO粒子100質量部に対して0.5〜15質量部、好ましくは1〜10質量部である。被覆量が0.5質量部未満では、紫外線が照射されたときのITO導電膜の光劣化を防ぐことができず、15質量部を超えると、ITO導電膜の導電性が失われる。被覆前のITO粒子の等電点はpH7前後であり、被覆後のITO粒子の等電点はpH2前後である。また被覆前のITO粒子の体積抵抗率は5Ωcm以下であり、被覆後のITO粒子の体積抵抗率は100〜50000Ωcmである。
[Second form of ITO particles]
The ITO particles according to the second aspect of the present invention are produced by coating the ITO particles according to the first aspect described above with a hydrolyzate of organosilicon. Against ITO particles of the first aspect of the present invention as described above have a specific surface area by the BET method of 42~65m 2 / g, ITO particles of this second embodiment, 50 to 70 m 2 / g The specific surface area by the BET method is preferably 55 to 65 m 2 / g. If the specific surface area by the BET method is less than 50 m 2 / g, there is a problem that haze is increased when a conductive film is formed. If the specific surface area by the BET method exceeds 70 m 2 / g, there is a problem that the change in surface resistivity cannot be improved with respect to ultraviolet irradiation. In the ITO particles of the second form, the coating amount of the hydrolyzate of organosilicon is 0.5 to 15 parts by mass, preferably 1 to 10 parts by mass with respect to 100 parts by mass of the ITO particles before coating. If the coating amount is less than 0.5 parts by mass, photodegradation of the ITO conductive film when irradiated with ultraviolet rays cannot be prevented, and if it exceeds 15 parts by mass, the conductivity of the ITO conductive film is lost. The isoelectric point of the ITO particles before coating is around pH 7, and the isoelectric point of the ITO particles after coating is around pH 2. The volume resistivity of the ITO particles before coating is 5 Ωcm or less, and the volume resistivity of the ITO particles after coating is 100 to 50000 Ωcm.

〔第2の形態のITO粒子の製造方法〕
第2の形態のITO粒子は、次の3つの方法で製造することができる。
(a−2)有機ケイ素の加水分解物であるシリカゾルゲル液に上述した第1の形態のITO粒子を含浸させる。シリカゾルゲル液に含浸したITO粒子を乾燥し、乾燥物を粉砕して有機ケイ素の加水分解物で被覆されたITO粒子を得る。この方法では、被覆前のITO粒子100質量部に対する有機ケイ素の加水分解物の被覆量は、シリカゾルゲル液中のシリカ質量と含浸させるITO粒子の質量の比率を調整することにより0.5〜15質量部に調整される。
(b−2)上述した第1の形態のITO粒子を乾式攪拌装置で攪拌しながら、有機ケイ素の加水分解物であるシリカゾルゲル液を噴霧する。シリカゾルゲル液を噴霧したITO粒子を乾燥し、乾燥物を粉砕して有機ケイ素の加水分解物で被覆されたITO粒子を得る。この方法では、被覆前のITO粒子100質量部に対する有機ケイ素の加水分解物の被覆量は、噴霧するシリカゾルゲル液中のシリカ質量と含浸させるITO粒子の質量の比率を調整することにより0.5〜15質量部に調整される。
(c−2)ケイ素アルコキシドを加温して蒸気を発生させ、上述した第1の形態のITO粒子にその蒸気を所定の時間接触させる。前記蒸気を接触したITO粒子乾燥し、乾燥物を粉砕して有機ケイ素の加水分解物で被覆されたITO粒子を得る。この方法では、被覆前のITO粒子100質量部に対する有機ケイ素の加水分解物の被覆量は、ケイ素アルコキシドを加温する温度(ケイ素アルコキシドの蒸発量)とITO粒子に接触させる時間を調整することにより0.5〜15質量部に調整される。
[Method for Producing ITO Particles of Second Form]
The ITO particles of the second form can be produced by the following three methods.
(A-2) A silica sol-gel solution that is a hydrolyzate of organosilicon is impregnated with the ITO particles of the first form described above. The ITO particles impregnated in the silica sol-gel solution are dried, and the dried product is pulverized to obtain ITO particles coated with the hydrolyzate of organosilicon. In this method, the coating amount of the hydrolyzate of organosilicon with respect to 100 parts by mass of the ITO particles before coating is adjusted to 0.5 to 15 by adjusting the ratio of the silica mass in the silica sol-gel solution and the mass of the ITO particles to be impregnated. It is adjusted to the mass part.
(B-2) The silica sol-gel solution which is a hydrolyzate of organosilicon is sprayed while stirring the ITO particles of the first form described above with a dry stirrer. The ITO particles sprayed with the silica sol-gel solution are dried, and the dried product is pulverized to obtain ITO particles coated with the hydrolyzate of organosilicon. In this method, the coating amount of the organosilicon hydrolyzate with respect to 100 parts by mass of the ITO particles before coating is adjusted to 0.5 by adjusting the ratio of the silica mass in the silica sol-gel solution to be sprayed and the mass of the ITO particles to be impregnated. It is adjusted to ˜15 parts by mass.
(C-2) The silicon alkoxide is heated to generate vapor, and the vapor is brought into contact with the ITO particles of the first form described above for a predetermined time. The ITO particles in contact with the vapor are dried, and the dried product is pulverized to obtain ITO particles coated with the hydrolyzate of organosilicon. In this method, the coating amount of the hydrolyzate of organosilicon with respect to 100 parts by mass of the ITO particles before coating is adjusted by adjusting the temperature at which the silicon alkoxide is heated (evaporation amount of silicon alkoxide) and the time for contacting the ITO particles. It is adjusted to 0.5 to 15 parts by mass.

上記(a−2)〜(c−2)の方法における乾燥は、大気又は窒素雰囲気下で行う。大気雰囲気下で乾燥を行う場合、乾燥温度は150〜200℃の範囲に設定する。200℃を超えるとITO粒子が酸化され、ITO導電膜にしたときに導電膜が黄色味かかった膜となり好ましくない。また150℃未満では、ITO導電膜にしたときのITO導電膜の耐光性が悪化する。窒素雰囲気下で乾燥を行う場合、乾燥温度は150〜700℃の範囲に設定する。700℃を超えると、ITO導電膜にしたときに導電膜のヘーズが高くなり、導電膜の透明性に劣る。また150℃未満では、ITO導電膜にしたときのITO導電膜の耐光性が悪化する。   Drying in the above methods (a-2) to (c-2) is performed in air or a nitrogen atmosphere. When drying in an air atmosphere, the drying temperature is set in the range of 150 to 200 ° C. If the temperature exceeds 200 ° C., the ITO particles are oxidized, and when the ITO conductive film is formed, the conductive film becomes a yellowish film. Moreover, if it is less than 150 degreeC, the light resistance of an ITO electrically conductive film when it is set as an ITO electrically conductive film will deteriorate. When drying is performed in a nitrogen atmosphere, the drying temperature is set in the range of 150 to 700 ° C. When the temperature exceeds 700 ° C., the haze of the conductive film increases when the ITO conductive film is formed, and the transparency of the conductive film is poor. Moreover, if it is less than 150 degreeC, the light resistance of an ITO electrically conductive film when it is set as an ITO electrically conductive film will deteriorate.

上記(a−2)及び(b−2)の方法で用いる有機ケイ素の加水分解物は、テトラメトキシシラン又はテトラエトキシシラン、テトラブトキシシラン、テトラアセトキシシラン等のケイ素アルコキシド等のアルコール溶液に、水と硝酸と必要に応じてグリコールエーテルの有機溶媒との混合物を添加して加温・攪拌することにより調製される。テトラメトキシシラン又はテトラエトキシシラン、テトラブトキシシラン、テトラアセトキシシラン等は、導電膜にしたときに紫外線光に対して導電膜の抵抗変化が小さく好ましい。この有機ケイ素の加水分解物は、具体的には、先ず、ケイ素アルコキシドとしてのテトラメトキシシラン又はテトラエトキシシラン1質量部に対して、1.0〜100.0質量部となる量のエタノール、イソプロパノール(IPA)、プロピレングリコールモノメチルエーテル(PGME)等の有機溶媒を添加して、好ましくは30〜40℃の温度で5〜20分間撹拌することにより第1液を調製する。一方、この第1液とは別に、上記ケイ素アルコキシド1質量部に対して、水を0.5〜5.0質量部、硝酸を0.005〜1.0質量部の割合で添加し、30〜40℃の温度で5〜20分間攪拌することにより第2液を調製する。次に、上記調製した第1液を、ウォーターバス等を用いて好ましくは30〜80℃の温度に保持してから、第1液に第2液を添加し、上記温度を保持した状態で好ましくは30〜180分間撹拌する。これにより、上記ケイ素アルコキシドの加水分解物が調製される。   The organosilicon hydrolyzate used in the above methods (a-2) and (b-2) is prepared by adding water to an alcohol solution such as tetramethoxysilane or silicon alkoxide such as tetraethoxysilane, tetrabutoxysilane, or tetraacetoxysilane. It is prepared by adding a mixture of nitric acid and, if necessary, an organic solvent of glycol ether and heating and stirring. Tetramethoxysilane, tetraethoxysilane, tetrabutoxysilane, tetraacetoxysilane, or the like is preferable because the resistance change of the conductive film with respect to ultraviolet light is small when the conductive film is formed. Specifically, this hydrolyzate of organosilicon is, first, ethanol and isopropanol in an amount of 1.0 to 100.0 parts by mass with respect to 1 part by mass of tetramethoxysilane or tetraethoxysilane as silicon alkoxide. An organic solvent such as (IPA) or propylene glycol monomethyl ether (PGME) is added, and the first liquid is preferably prepared by stirring at a temperature of 30 to 40 ° C. for 5 to 20 minutes. On the other hand, separately from the first liquid, 0.5 to 5.0 parts by mass of water and 0.005 to 1.0 parts by mass of nitric acid are added to 1 part by mass of the silicon alkoxide. The second liquid is prepared by stirring at a temperature of -40 ° C for 5-20 minutes. Next, the first liquid prepared as described above is preferably maintained at a temperature of 30 to 80 ° C. using a water bath or the like, and then the second liquid is added to the first liquid, preferably in a state where the temperature is maintained. Stir for 30-180 minutes. Thereby, the hydrolyzate of the silicon alkoxide is prepared.

〔第2の形態のITO導電膜形成用組成物の製造方法〕
上記の方法で得られた第2の形態のITO粒子を第1の形態のバインダ樹脂と第1の形態の有機溶媒と混合して、第2の形態のITO導電膜形成用組成物を調製する。この調製方法は、第2の形態のITO粒子を用いる以外、第1の形態のITO導電膜形成用組成物の調製方法と同じであるため、繰り返しの説明を省略する。
[Method for Producing Composition for Forming ITO Conductive Film of Second Form]
The ITO particles of the second form obtained by the above method are mixed with the binder resin of the first form and the organic solvent of the first form to prepare the ITO conductive film forming composition of the second form. . Since this preparation method is the same as the preparation method of the ITO conductive film forming composition of the first form except that the ITO particles of the second form are used, repeated description is omitted.

〔ITO導電膜の形成方法〕
ITO導電膜は、例えば、基材であるポリエチレンテレフタレート(PET)等のフィルム上に、上記得られた第1の形態又は第2の形態のITO導電膜形成用組成物を、スクリーン印刷法、バーコート法、ダイコート法、ドクターブレード、スピン法等により塗布した後に、80〜130℃の温度で乾燥させることにより、形成される。
[Method for forming ITO conductive film]
The ITO conductive film is formed by, for example, applying the ITO conductive film forming composition of the first or second form obtained above on a film such as polyethylene terephthalate (PET) as a base material by a screen printing method, a bar After coating by a coating method, a die coating method, a doctor blade, a spin method or the like, it is formed by drying at a temperature of 80 to 130 ° C.

次に本発明の実施例を比較例とともに詳しく説明する。   Next, examples of the present invention will be described in detail together with comparative examples.

〔16種類の第1の形態のITO粒子の製造〕
塩化インジウム水溶液と、二塩化錫とを混合し、この混合水溶液とアンモニア水溶液を、水に同時に滴下し、pHを調整して反応させる。生成した沈殿をイオン交換水によって繰り返し傾斜洗浄を行った。上澄み液の電気伝導度が20μS/cm以下になったところで、沈殿物(In/Sn共沈水酸化物)を濾別し、共沈インジウム錫水酸化物を得た。固液分離したインジウム錫水酸化物を、上述した第1〜第3の方法により、表面改質処理し、表1に示すように、16種類(No.1〜No.16)の第1の形態のITO粒子を得た。なお、No.16のITO粒子は窒素雰囲気下で焼成して得られ、それ以外のNo.1〜No.15のITO粒子は大気雰囲気下で焼成して得られた。
[Manufacturing of 16 kinds of first form ITO particles]
An aqueous solution of indium chloride and tin dichloride are mixed, and the mixed aqueous solution and an aqueous ammonia solution are added dropwise to water at the same time to adjust the pH and react. The generated precipitate was repeatedly washed with ion-exchange water. When the electrical conductivity of the supernatant became 20 μS / cm or less, the precipitate (In / Sn coprecipitated hydroxide) was filtered off to obtain coprecipitated indium tin hydroxide. The solid-liquid separated indium tin hydroxide was subjected to surface modification treatment by the first to third methods described above, and as shown in Table 1, 16 types (No. 1 to No. 16) of the first The resulting ITO particles were obtained. The No. 16 ITO particles were obtained by firing in a nitrogen atmosphere, and the other No. 1 to No. 15 ITO particles were obtained by firing in an air atmosphere.

例えば、No.1のITO粒子は次の方法で製造した。先ず原料の三塩化インジウム(InCl)水溶液(In金属18g含有)50mLと、原料の二塩化錫(SnCl・2HO)3.6gとを混合し、この混合水溶液とアンモニア(NH)水溶液を、水500mlに同時に滴下し、pH7に調整し、30℃の液温で30分間反応させた。次いで生成した沈殿をイオン交換水によって繰り返し傾斜洗浄を行った。上澄み液の電気伝導度が20μS/cm以下になったところで、沈殿物(In/Sn共沈水酸化物)を濾別し、乾燥粉末の色調が柿色を有する共沈インジウム錫水酸化物を得た。固液分離したインジウム錫水酸化物を110℃で一晩乾燥した後、大気中550℃で3時間焼成し、凝集体を粉砕してほぐし、山吹色を有するITO粒子約25gを得た。上記ITO粉25gを、無水エタノールと蒸留水を混合した表面処理液(混合比率はエタノール95重量部に対して蒸留水5重量部)に入れて含浸させた後、ガラスシャーレに入れて窒素ガス雰囲気下、330℃にて2時間加熱して表面改質処理してITO粒子を得た。 For example, No. 1 ITO particles were produced by the following method. First, 50 mL of a raw material indium trichloride (InCl 3 ) aqueous solution (containing 18 g of In metal) and 3.6 g of a raw material tin dichloride (SnCl 2 .2H 2 O) were mixed, and this mixed aqueous solution and ammonia (NH 3 ). The aqueous solution was simultaneously added dropwise to 500 ml of water, adjusted to pH 7, and reacted at a liquid temperature of 30 ° C. for 30 minutes. Subsequently, the produced precipitate was repeatedly washed with ion-exchanged water by tilting. When the electrical conductivity of the supernatant liquid became 20 μS / cm or less, the precipitate (In / Sn coprecipitated hydroxide) was filtered off to obtain a coprecipitated indium tin hydroxide having an amber color tone of the dry powder. . The solid-liquid separated indium tin hydroxide was dried at 110 ° C. overnight, then calcined in the atmosphere at 550 ° C. for 3 hours, and the aggregate was pulverized and loosened to obtain about 25 g of ITO particles having a bright color. 25 g of the above ITO powder was impregnated in a surface treatment liquid (mixing ratio of 5 parts by weight of distilled water with respect to 95 parts by weight of ethanol) mixed with absolute ethanol and distilled water, and then placed in a glass petri dish and a nitrogen gas atmosphere Then, the particles were heated at 330 ° C. for 2 hours and surface-modified to obtain ITO particles.

このNo.1のITO粒子の製造方法に準じて、原料と、反応時のpHと、反応時の温度と、焼成条件である温度と、改質条件であるアルコール還元温度をNo.1のそれらと変更してNo.2〜No.16のITO粒子を得た。得られたNo.1〜No.16の16種類のITO粒子について、BET法による比表面積とL値を測定した。   According to this No. 1 production method of ITO particles, the raw materials, the pH during the reaction, the temperature during the reaction, the temperature as the firing condition, and the alcohol reduction temperature as the reforming condition are those of No. 1. Thus, ITO particles No. 2 to No. 16 were obtained. With respect to the obtained 16 kinds of ITO particles No. 1 to No. 16, the specific surface area and L value by the BET method were measured.

No.1〜No.16の16種類の第1の形態のITO粒子のBET法による比表面積は柴田科学社の装置(SA-1100)を用いて測定し、L値はスガ試験機社のカラーコンピュータ(SM-T)を用いて測定した。これらの測定結果も表1に示す。   The specific surface area of the 16 kinds of ITO particles of No. 1 to No. 16 in the first form by the BET method was measured using a device (SA-1100) manufactured by Shibata Kagakusha, and the L value was the color of Suga Test Instruments. Measurement was performed using a computer (SM-T). These measurement results are also shown in Table 1.

〔21種類の第1の形態のITO分散液の調製〕
表2に示すように、3種類の有機溶媒に上記No.1〜No.16の16種類の第1の形態のITO粒子のいずれかと、ポリオキシエチレンアルキルエーテルリン酸エステルからなる分散剤を加えて、湿式ビーズミルにより分散して、A〜Uの21種類のITO分散液を調製した。なお、表2において、MMBは3−メトキシ−3−メチル−1−ブタノールを、BCAブチルカルビトールアセテートを、α−Tはα−テルピネオールをそれぞれ意味する。
[Preparation of 21 types of ITO dispersion liquids in the first embodiment]
As shown in Table 2, one of the 16 types of ITO particles of No. 1 to No. 16 in the first form and a dispersant composed of polyoxyethylene alkyl ether phosphate are added to three types of organic solvents. Then, 21 types of ITO dispersions A to U were prepared by dispersing with a wet bead mill. In Table 2, MMB means 3-methoxy-3-methyl-1-butanol, BCA butyl carbitol acetate, and α-T means α-terpineol.

〔14種類の第1の形態の樹脂溶液の調製〕
表3に示すように、上記ITO分散液と同じ3種類の有機溶媒を用意し、バインダ樹脂としてのエチルセルロースとテルペンフェノール樹脂を、それぞれ、上記有機溶媒に入れて混合し、これを60℃の温度で加熱することによりバインダ樹脂を溶解して14種類の第1の形態の樹脂溶液を調製した。テルペンフェノール樹脂は前述したヤスハラケミカル社製の品番のものを使用した。
[Preparation of 14 types of resin solutions of the first form]
As shown in Table 3, the same three types of organic solvents as the ITO dispersion liquid were prepared, and ethyl cellulose and terpene phenol resin as binder resins were mixed in the organic solvent, and the mixture was mixed at a temperature of 60 ° C. The binder resin was dissolved by heating at 14 to prepare 14 types of resin solutions of the first form. The terpene phenol resin of the product number made by Yashara Chemical Co., Ltd. was used.

〔実施例1〜37と比較例1〜7の第1の形態のITO導電膜形成用組成物の調製〕
表4及び表5に示すように、14種類の第1の形態の樹脂溶液をそれぞれ希釈溶液で希釈し、25質量%の樹脂溶液にした後で、その中から所定の樹脂溶液を選定し、21種類のITO分散液の中から所定のITO分散液を選定し、選定した樹脂溶液と選定したITO分散液にフェノール系酸化防止剤、ヒンダードアミン系光安定剤、加水分解基を持つ有機ケイ素化合物、水若しくは水とレベリング材(ビックケミ−ジャパン製BYK−313)からなる添加剤を混合し、自転公転ミキサーで攪拌分散することにより、実施例1〜37と比較例1〜7の第1の形態のITO導電膜形成用組成物の調製した。表4及び表5に示す「MEK」はメチルエチルケトンであり、「BCA」はブチルカルビトールアセテートで、「EtOH」はエタノールである。また表4及び表5では、加水分解基を持つ有機ケイ素化合物を含むITO導電膜形成用組成物の例として、実施例20〜32、35〜37と比較例7をそれぞれ示している。表4及び表5に示す「モル比」は有機ケイ素化合物に含まれる加水分解基のモル数に対する水のモル数の割合をモル比で表したものである。なお、実施例35〜37と比較例7ではITO粒子以外の成分中、水を含まないため、このモル比はゼロである。
[Preparation of Composition for Forming ITO Conductive Film of Examples 1 to 37 and Comparative Examples 1 to 7]
As shown in Table 4 and Table 5, after diluting each of the 14 types of resin solutions of the first form with a diluting solution to make a resin solution of 25% by mass, a predetermined resin solution is selected from among them, A predetermined ITO dispersion liquid is selected from 21 types of ITO dispersion liquids, the selected resin solution and the selected ITO dispersion liquid are phenolic antioxidants, hindered amine light stabilizers, organosilicon compounds having hydrolyzing groups, By mixing water or water and an additive composed of a leveling material (BYK-313 manufactured by Big Chemi-Japan) and stirring and dispersing with a rotation and revolution mixer, Examples 1 to 37 and Comparative Examples 1 to 7 of the first form An ITO conductive film forming composition was prepared. “MEK” shown in Tables 4 and 5 is methyl ethyl ketone, “BCA” is butyl carbitol acetate, and “EtOH” is ethanol. In Tables 4 and 5, Examples 20 to 32, 35 to 37, and Comparative Example 7 are shown as examples of the composition for forming an ITO conductive film containing an organosilicon compound having a hydrolyzable group, respectively. The “molar ratio” shown in Tables 4 and 5 represents the ratio of the number of moles of water to the number of moles of hydrolyzable groups contained in the organosilicon compound. In Examples 35 to 37 and Comparative Example 7, the components other than ITO particles do not contain water, so this molar ratio is zero.

〔実施例、比較例の組成分中の第1の形態の固形分の割合、ITO粒子及びITO粒子以外の割合〕
表4及び表5から実施例1〜37と比較例1〜7の組成分中の第1の形態の固形分の割合、ITO粒子及びITO粒子以外の割合をまとめた。これらの割合を表6及び表7に示す。
[Example, ratio of solid content of first form in composition of comparative example, ratio other than ITO particles and ITO particles]
From Tables 4 and 5, the proportions of the solid content of the first form in the compositions of Examples 1 to 37 and Comparative Examples 1 to 7, and the proportions other than ITO particles and ITO particles are summarized. These ratios are shown in Tables 6 and 7.

〔実施例、比較例の組成分中のITO粒子及びITO粒子以外の割合、ITO粒子の物性、バインダ樹脂、分散剤の割合〕
表4及び表5から実施例1〜37と比較例1〜7の組成分中のITO粒子及びITO粒子以外の割合、ITO粒子の物性、バインダ樹脂、分散剤の割合をまとめた。これらの割合を表8及び表9に示す。
[Examples, proportions other than ITO particles and ITO particles in the composition of the comparative example, the properties of the ITO particles, the binder resin, the proportion of the dispersant]
From Tables 4 and 5, the proportions other than ITO particles and ITO particles in the compositions of Examples 1 to 37 and Comparative Examples 1 to 7, the physical properties of the ITO particles, the proportions of the binder resin, and the dispersant are summarized. These ratios are shown in Tables 8 and 9.

〔第1の形態のITO導電膜の形成と印刷性の評価〕
実施例1〜37と比較例1〜7で得られた44種類の第1の形態のITO導電膜形成用組成物から組成物毎に第1の形態のITO導電膜を基材上に形成した。具体的にはこれらの組成物を、スクリーン印刷機(ミタニマイクロニクス社製、型番MEC-2400)を用いて、ポリエチレンテレフタレート(PET)のフィルム基材上と厚さ1mmのガラス上に40mm×40mmのサイズにそれぞれ印刷した。印刷後、大気雰囲気下、130℃で5分間乾燥することにより、44種類のITO導電膜を得た。このときの印刷性を評価した。印刷性の評価は、上記スクリーン印刷機により、印刷したときに印刷後の滲みの程度及びスクリーンの目詰まりの程度を目視により判定した。印刷後の滲み及びスクリーンの目詰まりを生じないものを「良好」とし、印刷後の滲みを生じるものを「やや不良」とし、スクリーンの目詰まりを生じるものを「不良」とした。この結果を表10及び表11に示す。
[Formation of ITO conductive film of first form and evaluation of printability]
The ITO electrically conductive film of the 1st form was formed on the base material for every composition from 44 types of ITO electrically conductive film formation compositions of the 1st form obtained in Examples 1-37 and Comparative Examples 1-7. . Specifically, these compositions were applied to a 40 mm × 40 mm film on a polyethylene terephthalate (PET) film substrate and 1 mm thick glass using a screen printer (manufactured by Mitani Micronics, model number MEC-2400). Each printed in size. After printing, 44 kinds of ITO conductive films were obtained by drying at 130 ° C. for 5 minutes in an air atmosphere. The printability at this time was evaluated. For evaluation of printability, the screen printer was used to visually determine the degree of bleeding after printing and the degree of clogging of the screen. Those that did not cause bleeding after printing and clogging of the screen were evaluated as “good”, those that generated bleeding after printing were defined as “slightly defective”, and those that generated screen clogging were determined as “defective”. The results are shown in Table 10 and Table 11.

〔第1の形態のITO導電膜の評価〕
上記方法で形成された44種類の第1の形態のITO導電膜について、次の項目の評価試験を行った。
[Evaluation of ITO Conductive Film of First Form]
The 44 types of ITO conductive films of the first embodiment formed by the above method were subjected to the following evaluation tests.

(1) 基材への密着性
フィルム基材上のITO導電膜に対して、碁盤目法(JISK5600-5-6に準拠)によって基材への密着性を調べた。なお、密着性試験においては、100個の碁盤目のうち、試験後に剥がれずに残存したマス目の数を分子に示し、その密着性の評価とした。具体的には100個のマス目がすべて残存した場合、100/100で表し、20マス目が剥がれて80マス目が残存した場合、80/100で表す。これらの結果を表10及び表11に示す。
(1) Adhesiveness to base material Adhesiveness to the base material was examined by a cross-cut method (based on JISK5600-5-6) for the ITO conductive film on the film base material. In the adhesion test, out of 100 grids, the number of cells remaining without peeling after the test was indicated in the molecule, and the adhesion was evaluated. Specifically, when all 100 squares remain, it is expressed as 100/100, and when the 20th square is peeled and the 80th square remains, it is expressed as 80/100. These results are shown in Table 10 and Table 11.

(2) 透明性
ガラス基材に成膜した膜を、ヘーズメータ(スガ試験機製、型番HZ-2)を用いて全光線透過率とヘーズを求め、ITO導電膜の透明性を測定した。尚、表に記載の全光線透過率は、基材込みの数値であり、基材のみの全光線透過率は、89%、同ヘーズは、0.03%であった。これらの結果を表10及び表11に示す。
(2) Transparency A film formed on a glass substrate was measured for total light transmittance and haze using a haze meter (manufactured by Suga Test Instruments, model number HZ-2), and the transparency of the ITO conductive film was measured. The total light transmittance shown in the table is a numerical value including the base material, the total light transmittance of the base material alone was 89%, and the haze was 0.03%. These results are shown in Table 10 and Table 11.

(3) 導電性と高温高湿下における表面抵抗率の変化
三菱化学アナリテック製ハイレスタ(型番:MCP−HT450)を用いて、ガラス基材に作製した直後のITO導電膜の表面抵抗率(初期の抵抗率)を測定し、導電性を評価した。その後、耐熱試験としては85℃に調整された室内に24時間保管した後、初期抵抗率を測定した箇所と同一箇所の表面抵抗率の変化率を下記の式に基づいて求めた。
変化率(%)= [(加熱後表面抵抗率−初期表面抵抗率)/ 初期表面抵抗率]×100
また耐湿試験としては相対湿度90%で温度60℃に調整された室内に24時間保管した後、初期抵抗率を測定した箇所と同一箇所の表面抵抗率を測定し、その変化率を下記の式に基づいて求めた。
変化率(%)= [(加湿後表面抵抗率−初期表面抵抗率)/ 初期表面抵抗率]×100
これらの結果を表12及び表13に示す。
(3) Change in conductivity and surface resistivity under high temperature and high humidity Using Hiresta (model number: MCP-HT450) manufactured by Mitsubishi Chemical Analytech, surface resistivity of ITO conductive film immediately after it was fabricated on a glass substrate (initial The resistivity was measured and the conductivity was evaluated. Then, as a heat resistance test, after storing for 24 hours in a room adjusted to 85 ° C., the rate of change in surface resistivity at the same location as the location where the initial resistivity was measured was determined based on the following formula.
Rate of change (%) = [(surface resistivity after heating−initial surface resistivity) / initial surface resistivity] × 100
In addition, as a moisture resistance test, after storing in a room adjusted to a temperature of 60 ° C. and a relative humidity of 90% for 24 hours, the surface resistivity at the same location as the location where the initial resistivity was measured was measured, and the rate of change was expressed by the following equation: Based on.
Rate of change (%) = [(surface resistivity after humidification−initial surface resistivity) / initial surface resistivity] × 100
These results are shown in Tables 12 and 13.

(4) ITO導電膜の組成分析
ITO導電膜の組成を分析は、ITOの近赤外吸収があるため、FT−IRにて測定が不可能であった。そのため、ITOを除いた成分の塗料を作製し、塗料をガラスに成膜し、堀場製作所製のFT−IRにて測定した。まず、実施例1の組成から、ITOを除いた溶液を作製し、この溶液のFT−IRを測定した。次に、この溶液をスクリーン印刷でガラスに成膜し、溶媒を除去した膜のFT−IRを測定した。溶液と膜のエチルセルロースとテルペンフェノール樹脂のピーク比が同一であることを確認し、仕込みの組成と膜の組成が同一であることを確認できた。
(4) Composition analysis of ITO conductive film Analysis of the composition of the ITO conductive film was impossible to measure by FT-IR because of the near infrared absorption of ITO. Therefore, a paint having components excluding ITO was prepared, the paint was formed on glass, and measured with FT-IR manufactured by Horiba. First, a solution in which ITO was removed from the composition of Example 1 was prepared, and FT-IR of this solution was measured. Next, this solution was deposited on glass by screen printing, and the FT-IR of the film from which the solvent was removed was measured. It was confirmed that the peak ratio of ethyl cellulose and terpene phenol resin in the solution and the film was the same, and it was confirmed that the charged composition and the film composition were the same.

Figure 2016194031
Figure 2016194031

Figure 2016194031
Figure 2016194031

Figure 2016194031
Figure 2016194031

Figure 2016194031
Figure 2016194031

Figure 2016194031
Figure 2016194031

Figure 2016194031
Figure 2016194031

Figure 2016194031
Figure 2016194031

Figure 2016194031
Figure 2016194031

Figure 2016194031
Figure 2016194031

Figure 2016194031
Figure 2016194031

Figure 2016194031
Figure 2016194031

Figure 2016194031
Figure 2016194031

Figure 2016194031
Figure 2016194031

表10〜表13から明らかなように、比較例1では、組成物の固形分100質量%中、ITO粒子以外の割合が60.0質量%(表7)と高かったため、組成物のスクリーン印刷性に劣った。また組成物100質量%中、ITO粒子の割合が0.8質量%(表7)と低くかったため、ITO導電膜の初期の表面抵抗率が非常に大きく導電性に劣っていた。   As is clear from Tables 10 to 13, in Comparative Example 1, the ratio of the composition other than ITO particles was as high as 60.0% by mass (Table 7) in 100% by mass of the solid content of the composition. Inferior. Moreover, since the ratio of ITO particle | grains was as low as 0.8 mass% (Table 7) in 100 mass% of compositions, the initial surface resistivity of the ITO electrically conductive film was very large, and it was inferior to electroconductivity.

比較例2では、テルペンフェノール樹脂を含有しない(表9)ため、ITO導電膜の基材への密着性が非常に悪かった。またITO粒子の比表面積が40m/g(表9)と低くく、またITO粒子のL値が39.0(表9)と高かったため、初期の表面抵抗率が非常に大きく導電性に劣っていた。 In Comparative Example 2, since the terpene phenol resin was not contained (Table 9), the adhesion of the ITO conductive film to the base material was very poor. Moreover, since the specific surface area of ITO particles was as low as 40 m 2 / g (Table 9) and the L value of ITO particles was as high as 39.0 (Table 9), the initial surface resistivity was very large and the conductivity was poor. It was.

比較例3では、テルペンフェノール樹脂を含有しない(表9)ため、ITO導電膜の基材への密着性が非常に悪く、またITO粒子のL値が37.2(表9)であるため、初期の表面抵抗率が大きく導電性に劣っていた。   In Comparative Example 3, since the terpene phenol resin is not contained (Table 9), the adhesion of the ITO conductive film to the base material is very poor, and the L value of the ITO particles is 37.2 (Table 9). The initial surface resistivity was large and the conductivity was poor.

比較例4では、ITO粒子の比表面積が30m/g(表9)と低いため、ITO導電膜のヘーズがやや大きく透明性に劣っていた。 In Comparative Example 4, since the specific surface area of the ITO particles was as low as 30 m 2 / g (Table 9), the haze of the ITO conductive film was somewhat large and the transparency was poor.

比較例5では、ITO粒子のL値が68.0(表9)であるため、初期の表面抵抗率が大きく導電性に劣っていた。また、エチルセルロースとテルペンフェノール樹脂の比率にて、エチルセルロースの割合が5質量%(表9)と少ないため、スクリーン印刷性に劣っていた。   In Comparative Example 5, since the L value of the ITO particles was 68.0 (Table 9), the initial surface resistivity was large and the conductivity was poor. Moreover, since the ratio of ethylcellulose was as small as 5 mass% (Table 9) in the ratio of ethylcellulose and terpene phenol resin, it was inferior to screen printability.

比較例6では、ITO粒子の比表面積が85m/g(表9)と高いため、ITO導電膜の全光線透過率が低く、ヘーズが大きく透明性に劣った。またITO粒子のL値が73.5(表9)であるため、初期の表面抵抗率が大きく導電性に劣っていた。 In Comparative Example 6, since the specific surface area of the ITO particles was as high as 85 m 2 / g (Table 9), the total light transmittance of the ITO conductive film was low, the haze was large, and the transparency was poor. Further, since the L value of the ITO particles was 73.5 (Table 9), the initial surface resistivity was large and the conductivity was poor.

比較例7においては、テルペンフェノール樹脂の軟化点が110℃(表9)と低いため、85℃の耐熱試験においても、表面抵抗率の変化が大きかった(表13)。更に、分散剤添加量がITO粒子に対して25質量部(表5、表2)と多いため、密着性においても劣り、高い表面抵抗率を示した。   In Comparative Example 7, since the softening point of the terpene phenol resin was as low as 110 ° C. (Table 9), the change in surface resistivity was large even in the heat resistance test at 85 ° C. (Table 13). Furthermore, since the additive amount of the dispersant was as large as 25 parts by mass (Tables 5 and 2) with respect to the ITO particles, the adhesion was inferior and high surface resistivity was exhibited.

実施例35〜37では、水の添加無しの加水分解基を含有する有機ケイ素化合物のみであるため、ITO導電膜の初期の表面抵抗率に対する加湿後の表面抵抗率の変化率がそれ程小さくなく、ITO導電膜の耐湿性に優れていなかった(表13)。   In Examples 35 to 37, since only the organosilicon compound containing a hydrolyzable group without addition of water, the rate of change in surface resistivity after humidification relative to the initial surface resistivity of the ITO conductive film is not so small. The ITO conductive film was not excellent in moisture resistance (Table 13).

これに対して、実施例1〜34の組成物は、粘度を高くすることが可能であるエチルセルロースと、ブチルカルビトールアセテート又はα−テルピネオールの高沸点溶媒を含む組成物であることから、スクリーン性に優れていた。更に、ペースト組成物100質量%中、ITO粒子を3〜45質量%含み、前記組成物の固形分100質量%中、前記ITO粒子以外の成分を10〜52質量%含み、前記ITO粒子が42〜65m/gのBET法による比表面積と36以下のL値を有し、前記バインダ樹脂が130〜160℃の軟化点を有するテルペンフェノール樹脂を含み、前記エチルセルロースと前記テルペンフェノール樹脂の質量比がエチルセルロース:テルペンフェノール樹脂=10〜80:90〜20であり、分散剤を前記液ITO粒子100質量部に対して1〜15質量部をみたしていることから、ITO導電膜の基材への密着性、透明性、導電性、耐熱耐湿性に優れていた。特に、実施例14〜19の組成物は、フェノール系酸化防止剤又はヒンダードアミン系光安定剤を含有することで、耐熱性の向上を図ることができた。特に、実施例20〜33の組成物は、加水分解基を含有する有機ケイ素化合物と水を含むことにより、水を含まない実施例35〜37と比較して、格段に耐湿性並びに密着性に優れていた。 On the other hand, since the compositions of Examples 1 to 34 are compositions containing ethyl cellulose capable of increasing the viscosity and a high boiling point solvent of butyl carbitol acetate or α-terpineol, screen properties It was excellent. Further, in 100% by mass of the paste composition, 3-45% by mass of ITO particles are contained. In the solid content of 100% by mass of the composition, 10% to 52% by mass of components other than the ITO particles are contained. A terpene phenol resin having a specific surface area by BET method of ~ 65 m 2 / g and an L value of 36 or less, wherein the binder resin has a softening point of 130 to 160 ° C., and a mass ratio of the ethyl cellulose to the terpene phenol resin Is ethyl cellulose: terpene phenol resin = 10-80: 90-20, and 1-15 parts by mass of the dispersant is seen with respect to 100 parts by mass of the liquid ITO particles. It was excellent in adhesion, transparency, conductivity, and heat and humidity resistance. In particular, the compositions of Examples 14 to 19 were able to improve heat resistance by containing a phenolic antioxidant or a hindered amine light stabilizer. In particular, the compositions of Examples 20 to 33 are much more resistant to moisture and adhesion by containing an organosilicon compound containing a hydrolyzable group and water, compared to Examples 35 to 37 that do not contain water. It was excellent.

〔6種類の第2の形態のITO粒子の製造〕
6種類の有機ケイ素の加水分解物を被覆したITO粒子(以下、被覆ITO粒子という。)をすべて上述した(a−2)の方法により作製した(No.17〜No.22)。
[Manufacture of six types of ITO particles in the second form]
All the ITO particles (hereinafter referred to as coated ITO particles) coated with six types of organosilicon hydrolysates were prepared by the method (a-2) described above (No. 17 to No. 22).

No.17の被覆ITO粒子:テトラエトキシシラン1.7g(SiO換算量でITO粒子に対して0.5質量部)、エタノール130gを25℃で撹拌混合し、硝酸0.1g、水3.4gを25℃で撹拌混合した液を添加し、60℃の温度で1時間加熱撹拌した。室温まで冷却した上記液に、ITO粒子100gを添加し、1時間、撹拌混合した後、スラリー中の液体分を加熱し蒸発させた。これによりNo.17の被覆ITO粒子を得た。 Coated ITO particles of No. 17: 1.7 g of tetraethoxysilane (0.5 parts by mass in terms of SiO 2 with respect to ITO particles) and 130 g of ethanol are stirred and mixed at 25 ° C., 0.1 g of nitric acid, water 3. A solution obtained by stirring and mixing 4 g at 25 ° C. was added, and the mixture was heated and stirred at a temperature of 60 ° C. for 1 hour. To the liquid cooled to room temperature, 100 g of ITO particles were added and stirred for 1 hour, and then the liquid in the slurry was heated and evaporated. As a result, No. 17 coated ITO particles were obtained.

No.18の被覆ITO粒子:テトラメトキシシラン7.6g(SiO換算量でITO粒子に対して3.0質量部)、エタノール50gを25℃で撹拌混合し、硝酸0.1g、水7.6gを25℃で撹拌混合した液を添加し、60℃の温度で1時間加熱撹拌した。ITO粒子100gを撹拌機で撹拌しながら、上記液を少量ずつ滴下しながら、全量添加した。回収後、液体分を加熱し蒸発させた。これによりNo.18の被覆ITO粒子を得た。 No. 18 coated ITO particles: 7.6 g of tetramethoxysilane (3.0 parts by mass with respect to the ITO particles in terms of SiO 2 ) and 50 g of ethanol were stirred and mixed at 25 ° C., 0.1 g of nitric acid, water 7. A solution obtained by stirring and mixing 6 g at 25 ° C. was added, and the mixture was heated and stirred at a temperature of 60 ° C. for 1 hour. While stirring 100 g of ITO particles with a stirrer, the above liquid was added dropwise little by little. After recovery, the liquid was heated and evaporated. As a result, No. 18 coated ITO particles were obtained.

No.19の被覆ITO粒子:テトラブトキシシランを37.4g(SiO換算量でITO粒子に対して7.0質量部)、エタノール120g、硝酸3.0g、水15.0にて、No.17の被覆ITO粒子の作製方法と同様にして、No.19の被覆ITO粒子を得た。 No. 19 coated ITO particles: 37.4 g of tetrabutoxysilane (7.0 parts by mass with respect to ITO particles in terms of SiO 2 ), ethanol 120 g, nitric acid 3.0 g, water 15.0, No. 19 In the same manner as in the production method of the 17 coated ITO particles, No. 19 coated ITO particles were obtained.

No.20の被覆ITO粒子:テトラエトキシシランを34.7g(SiO換算量でITO粒子に対して10.0質量部)、エタノール150g、硝酸3.0g、水18.0にて、No.17の被覆ITO粒子の作製方法と同様にして、No.20の被覆ITO粒子を得た。 No. 20 coated ITO particles: 34.7 g of tetraethoxysilane (10.0 parts by mass with respect to ITO particles in terms of SiO 2 ), ethanol 150 g, nitric acid 3.0 g, water 18.0, No. 20 In the same manner as in the method for preparing 17 coated ITO particles, No. 20 coated ITO particles were obtained.

No.21の被覆ITO粒子:テトラエトキシシランの3〜5量体を29.4g(SiO換算量でITO粒子に対して15.0質量部)、エタノール150g、硝酸3.0g、水18.0にて、No.17の被覆ITO粒子の作製方法と同様にして、No.21の被覆ITO粒子を得た。 Coated ITO particles of No. 21: 29.4 g (15.0 parts by mass with respect to ITO particles in terms of SiO 2 ) of tetraethoxysilane 3-5 pentamer, ethanol 150 g, nitric acid 3.0 g, water 18. At 0, the coated ITO particles No. 21 were obtained in the same manner as the production method of the coated ITO particles No. 17.

No.22の被覆ITO粒子:テトラエトキシシランの3〜5量体を39.2g(SiO換算量でITO粒子に対して20.0質量部)、エタノール150g、硝酸3.0g、水18.0にて、No.17の被覆ITO粒子の作製方法と同様にして、No.22の被覆ITO粒子を得た。 Coated ITO particles of No. 22: 39.2 g of tetraethoxysilane trimer to pentamer (20.0 parts by mass with respect to ITO particles in terms of SiO 2 ), ethanol 150 g, nitric acid 3.0 g, water 18. At 0, the coated ITO particles of No. 22 were obtained in the same manner as the production method of the coated ITO particles of No. 17.

上記方法で得られたNo.17〜No.22の被覆ITO粒子を表14に示す雰囲気下及び温度で、それぞれ4時間乾燥した。得られた被覆ITO粒子のBET法による比表面積を柴田科学社の装置(SA-1100)を用いて測定した。この測定結果を表14に示す。また、得られた被覆ITO粒子中のSi量をICPで測定し、仕込み値と同じであることを確認した。   The coated ITO particles No. 17 to No. 22 obtained by the above method were dried for 4 hours under the atmosphere and temperature shown in Table 14, respectively. The specific surface area by BET method of the obtained coated ITO particles was measured using an apparatus (SA-1100) manufactured by Shibata Kagaku. The measurement results are shown in Table 14. Further, the amount of Si in the obtained coated ITO particles was measured by ICP and confirmed to be the same as the charged value.

〔6種類の第2の形態のITO分散液の調製〕
表15に示すように、有機溶媒の3−メトキシ−3−メチル−1−ブタノール(MMB)に上記No.17〜No.22の6種類の第2の形態の被覆ITO粒子のいずれかと、ポリオキシエチレンアルキルエーテルリン酸エステルからなる分散剤を加えて、湿式ビーズミルにより分散して、V〜AAの6種類のITO分散液を調製した。
[Preparation of Six Kinds of ITO Dispersions in the Second Form]
As shown in Table 15, the organic solvent 3-methoxy-3-methyl-1-butanol (MMB) is coated with any one of the six types of coated ITO particles of No. 17 to No. 22 described above, A dispersant composed of oxyethylene alkyl ether phosphate was added and dispersed by a wet bead mill to prepare six types of ITO dispersions V to AA.

〔実施例38〜43と比較例8の第2の形態のITO導電膜形成用組成物の調製〕
第1の形態の樹脂溶液mと、上記6種類の第2の形態の分散液と、希釈媒体としてのブチルカルビトールアセテート(BCA)とを表16に示す割合で混合し、自転公転ミキサーで攪拌分散することにより、実施例38〜43と比較例8の第2の形態のITO導電膜形成用組成物を調製した。実施例43では、添加剤としてフェノール系酸化防止剤のADEKA社製の製品名AO−20を表16に示す割合で添加した。
[Preparation of Composition for Forming ITO Conductive Film of Second Form of Examples 38 to 43 and Comparative Example 8]
The resin solution m of the first form, the six kinds of dispersion liquids of the second form, and butyl carbitol acetate (BCA) as a dilution medium are mixed at a ratio shown in Table 16 and stirred with a rotation and revolution mixer. The composition for ITO conductive film formation of the 2nd form of Examples 38-43 and the comparative example 8 was prepared by disperse | distributing. In Example 43, the product name AO-20 manufactured by ADEKA, which is a phenolic antioxidant, was added as an additive at a ratio shown in Table 16.

〔実施例、比較例の組成分中の第2の形態の固形分の割合、ITO粒子及びITO粒子以外の割合〕
実施例38〜43と比較例8の組成分中の第2の形態の固形分の割合、ITO粒子及びITO粒子以外の割合をまとめた。これらの割合を表17に示す。
[Example, ratio of solid content of second form in composition of comparative example, ratio other than ITO particles and ITO particles]
The ratio of the solid content of the second form in the compositions of Examples 38 to 43 and Comparative Example 8, and the ratios other than ITO particles and ITO particles are summarized. These ratios are shown in Table 17.

〔実施例、比較例の組成分中のITO粒子及びITO粒子以外の割合、ITO粒子の物性、バインダ樹脂、分散剤の割合〕
実施例38〜43と比較例8の組成分中のITO粒子及びITO粒子以外の割合、ITO粒子の物性、バインダ樹脂、分散剤の割合をまとめた。これらの割合を表18に示す。
[Examples, proportions other than ITO particles and ITO particles in the composition of the comparative example, the properties of the ITO particles, the binder resin, the proportion of the dispersant]
The proportions of the compositions of Examples 38 to 43 and Comparative Example 8 other than ITO particles and ITO particles, the physical properties of the ITO particles, the binder resin, and the proportion of the dispersant were summarized. These ratios are shown in Table 18.

〔第2の形態のITO導電膜の形成と組成物の印刷性と第2の形態のITO導電膜の評価〕
実施例38〜43と比較例8で得られた7種類の第2の形態のITO導電膜形成用組成物から組成物毎に第2の形態のITO導電膜を第1の形態と同じ方法で基材上に形成し、第1の形態と同様に組成物の印刷性と、第2の形態のITO導電膜の基材への密着性、透明性、及び導電性と高温高湿下における表面抵抗率の変化の評価を行った。高温下における表面抵抗率の変化率は、85℃に調整された室内に72時間保管した後で、第1の形態と同様に求めた。また高湿下における表面抵抗率の変化率は、相対湿度90%で温度60℃に調整された室内に72時間保管した後で、第1の形態と同様に求めた。それ以外の項目の評価方法は第1の形態の評価方法と同じである。これらの結果を表19及び表20に示す。
[Formation of ITO Conductive Film of Second Form, Printability of Composition, and Evaluation of ITO Conductive Film of Second Form]
From the seven types of ITO conductive film forming compositions of the second form obtained in Examples 38 to 43 and Comparative Example 8, the ITO conductive film of the second form is formed for each composition in the same manner as the first form. Printability of the composition formed on the base material as in the first form, adhesion of the ITO conductive film of the second form to the base material, transparency, and conductivity and the surface under high temperature and high humidity The change in resistivity was evaluated. The rate of change in surface resistivity at high temperatures was determined in the same manner as in the first embodiment after 72 hours of storage in a room adjusted to 85 ° C. The rate of change in surface resistivity under high humidity was determined in the same manner as in the first embodiment after 72 hours of storage in a room adjusted to a temperature of 60 ° C. with a relative humidity of 90%. The evaluation method for other items is the same as the evaluation method of the first embodiment. These results are shown in Table 19 and Table 20.

〔第2の形態のITO導電膜の耐光性の評価〕
上記方法で形成された7種類の第2の形態のITO導電膜の耐光性について評価した。具体的には、基材上に形成されたITO導電膜を相対湿度50%で温度63℃に調整された室内に置き、このITO導電膜に紫外線照射装置(岩崎電気製、アイ スーパーUVテスター SUV-W16)を用いて、照度0.15W/cm、積算光量270J/cmの紫外線を30分間照射した。照射前の初期の表面抵抗率と照射後の表面抵抗率を測定し、その変化率を下記の式に基づいて求めた。
変化率(%)= [(UV照射後表面抵抗率−初期表面抵抗率)/ 初期表面抵抗率]×100
この結果を表21に示す。
[Evaluation of Light Resistance of ITO Conductive Film of Second Form]
The light resistance of the seven types of ITO conductive films of the second form formed by the above method was evaluated. Specifically, an ITO conductive film formed on a base material is placed in a room adjusted to a temperature of 63 ° C. with a relative humidity of 50%, and an ultraviolet irradiation device (Isuperki UV Tester SUV, manufactured by Iwasaki Electric Co., Ltd.) is applied to the ITO conductive film. -W16), an ultraviolet ray having an illuminance of 0.15 W / cm 2 and an integrated light amount of 270 J / cm 2 was irradiated for 30 minutes. The initial surface resistivity before irradiation and the surface resistivity after irradiation were measured, and the rate of change was determined based on the following equation.
Rate of change (%) = [(surface resistivity after UV irradiation−initial surface resistivity) / initial surface resistivity] × 100
The results are shown in Table 21.

Figure 2016194031
Figure 2016194031

Figure 2016194031
Figure 2016194031

Figure 2016194031
Figure 2016194031

Figure 2016194031
Figure 2016194031

Figure 2016194031
Figure 2016194031

Figure 2016194031
Figure 2016194031

Figure 2016194031
Figure 2016194031

Figure 2016194031
Figure 2016194031

表14〜表21から明らかなように、比較例8では、有機ケイ素の加水分解物の被覆量を20.0質量部(表14)のNo.22のITO粒子を用いてITO分散液を作製し、かつそのITO粒子の比表面積が80m/g(表18)であったため、その分散液で得られたITO導電膜の透明性評価である全光線透過率が85.0%(表19)と低く、またヘーズが3.0%と高かった。また、初期の表面抵抗率は、ハイレスタの測定レンジを超えており(表20、21)中には「Over」と記載。)導電性を発現できなかった。 As is apparent from Tables 14 to 21, in Comparative Example 8, an ITO dispersion liquid was prepared using No. 22 ITO particles having an organic silicon hydrolyzate covering amount of 20.0 parts by mass (Table 14). In addition, since the specific surface area of the ITO particles was 80 m 2 / g (Table 18), the total light transmittance, which is the transparency evaluation of the ITO conductive film obtained from the dispersion, was 85.0% (Table 19). ) And haze was as high as 3.0%. Moreover, the initial surface resistivity exceeds the measurement range of Hiresta (Tables 20 and 21), and is described as “Over”. ) Electrical conductivity could not be expressed.

これに対して、実施例38〜43の組成物は、粘度を高くすることが可能であるエチルセルロースと、ブチルカルビトールアセテート又はα−テルピネオールの高沸点溶媒を含む組成物であることから、スクリーン性に優れていた。更に、ペースト組成物100質量%中、ITO粒子を14.0〜31.5質量%含み、前記組成物の固形分100質量%中、前記ITO粒子以外の成分を10.0〜30質量%含み、前記ITO粒子が50〜70m/gのBET法による比表面積を有し、前記バインダ樹脂が160℃の軟化点を有するテルペンフェノール樹脂を含み、前記エチルセルロースと前記テルペンフェノール樹脂の質量比がエチルセルロース:テルペンフェノール樹脂=30:70又は20:80であり、分散剤を前記液ITO粒子100質量部に対して5質量部であることから、実施例35〜40の組成物から作られたITO導電膜の基材への密着性、透明性、導電性、耐熱耐湿性に優れていた。特に、これらの実施例38〜43の組成物から作られたITO導電膜の紫外線照射前後の変化率が−10%以内であり、耐光性に優れていた。 On the other hand, the compositions of Examples 38 to 43 are compositions containing ethyl cellulose capable of increasing the viscosity and a high boiling point solvent of butyl carbitol acetate or α-terpineol. It was excellent. Furthermore, in 100% by mass of the paste composition, 14.0 to 31.5% by mass of ITO particles are contained, and in a solid content of 100% by mass of the composition, components other than the ITO particles are contained in an amount of 10.0 to 30% by mass. The ITO particles have a specific surface area according to the BET method of 50 to 70 m 2 / g, the binder resin contains a terpene phenol resin having a softening point of 160 ° C., and the mass ratio of the ethyl cellulose to the terpene phenol resin is ethyl cellulose. : Terpene phenol resin = 30: 70 or 20:80, and the dispersant is 5 parts by mass with respect to 100 parts by mass of the liquid ITO particles. Therefore, the ITO conductive material made from the compositions of Examples 35 to 40 The film was excellent in adhesion to the substrate, transparency, conductivity, and heat and humidity resistance. In particular, the ITO conductive film made from the compositions of Examples 38 to 43 had a change rate within −10% before and after UV irradiation, and was excellent in light resistance.

Claims (14)

ITO粒子とバインダ樹脂と有機溶媒とを含むITO導電膜形成用組成物において、
前記組成物100質量%中、前記ITO粒子を3〜45質量%含み、前記組成物の固形分100質量%中、前記ITO粒子以外の成分を10〜52質量%含み、
前記ITO粒子が42〜65m/gのBET法による比表面積と36以下のL値を有し、
前記バインダ樹脂がエチルセルロース及び130〜160℃の軟化点を有するテルペン
フェノール樹脂を含む
ことを特徴とするITO導電膜形成用組成物。
In the composition for forming an ITO conductive film containing ITO particles, a binder resin, and an organic solvent,
In 100% by mass of the composition, the ITO particles are included in an amount of 3 to 45% by mass. In the solid content of 100% by mass of the composition, the components other than the ITO particles are included in an amount of 10 to 52% by mass.
The ITO particles have a specific surface area according to the BET method of 42 to 65 m 2 / g and an L value of 36 or less,
The composition for forming an ITO conductive film, wherein the binder resin contains ethyl cellulose and a terpene phenol resin having a softening point of 130 to 160 ° C.
前記エチルセルロースと前記テルペンフェノール樹脂の質量比がエチルセルロース:テルペンフェノール樹脂=10〜80:90〜20である請求項1記載のITO導電膜形成用組成物。   2. The composition for forming an ITO conductive film according to claim 1, wherein a mass ratio between the ethyl cellulose and the terpene phenol resin is ethyl cellulose: terpene phenol resin = 10-80: 90-20. 分散剤を前記液ITO粒子100質量部に対して1〜15質量部更に含む請求項1又は2記載のITO導電膜形成用組成物。   The composition for ITO electrically conductive film formation of Claim 1 or 2 which further contains 1-15 mass parts of dispersing agents with respect to 100 mass parts of said liquid ITO particle | grains. スクリーン印刷用ペースト又は塗料に用いられる請求項1ないし3いずれか1項に記載のITO導電膜形成用組成物。   The composition for ITO electrically conductive film formation of any one of Claim 1 thru | or 3 used for the paste for screen printing, or a coating material. 前記スクリーン印刷用ペーストに用いられる場合、前記有機溶媒が3−メトキシ−3−メチル−1−ブタノールと、ブチルカルビトールアセテート又はα−テルピネオールの溶媒とからなる請求項4記載のITO導電膜形成用組成物。   When used for the screen printing paste, the organic solvent comprises 3-methoxy-3-methyl-1-butanol and a solvent of butyl carbitol acetate or α-terpineol. Composition. 前記塗料に用いられる場合、前記有機溶媒が3−メトキシ−3−メチル−1−ブタノールと、2−ブタノン、4−メチル2−ペンタノン、エタノール、2−プロパノール、1−ブタノール、トルエン、メタノール、1-プロパノール、酢酸エチル、酢酸ブチル、アセトン、2,4-ペンタンジオン及びキシレンからなる群より選ばれた1種又は2種以上の溶媒とからなる請求項4記載のITO導電膜形成用組成物。   When used in the paint, the organic solvent is 3-methoxy-3-methyl-1-butanol, 2-butanone, 4-methyl 2-pentanone, ethanol, 2-propanol, 1-butanol, toluene, methanol, 1 The composition for forming an ITO conductive film according to claim 4, comprising one or more solvents selected from the group consisting of -propanol, ethyl acetate, butyl acetate, acetone, 2,4-pentanedione and xylene. フェノール系酸化防止剤又はヒンダードアミン系光安定剤を、前記組成物の固形分100質量%中、0.1〜5質量%更に含む請求項1ないし6いずれか1項に記載のITO導電膜形成用組成物。   7. The ITO conductive film formation according to claim 1, further comprising 0.1 to 5% by mass of a phenolic antioxidant or a hindered amine light stabilizer in a solid content of 100% by mass of the composition. Composition. 加水分解基を持つ有機ケイ素化合物と水とを更に含み、前記有機ケイ素化合物の含有量が前記組成物の固形分100質量中、5〜52質量%であり、前記水の含有量が、前記加水分解基を持つ有機ケイ素化合物に含まれる加水分解基がメトキシ基もしくはエトキシ基であり、この加水分解基のモル数に対して、0.05〜0.7倍モル数である請求項1ないし7いずれか1項に記載のITO導電膜形成用組成物。   An organic silicon compound having a hydrolyzable group and water, wherein the content of the organic silicon compound is 5 to 52% by mass in 100% by mass of the solid content of the composition, and the water content is The hydrolyzable group contained in the organosilicon compound having a decomposable group is a methoxy group or an ethoxy group, and the mol number is 0.05 to 0.7 times the mol number of the hydrolyzed group. The composition for forming an ITO conductive film according to any one of the above items. 前記ITO粒子が有機ケイ素の加水分解物で被覆され、前記有機ケイ素の加水分解物で被覆されたITO粒子のBET法による比表面積が50〜70m/gであり、前記有機ケイ素の加水分解物の被覆量が被覆前の前記ITO粒子100質量部に対して0.5〜15質量部である請求項1ないし7いずれか1項に記載のITO導電膜形成用組成物。 The ITO particles are coated with an organosilicon hydrolyzate, and the ITO particles coated with the organosilicon hydrolyzate have a specific surface area of 50 to 70 m 2 / g by the BET method, and the organosilicon hydrolyzate The composition for forming an ITO conductive film according to any one of Claims 1 to 7, wherein the coating amount is 0.5 to 15 parts by mass with respect to 100 parts by mass of the ITO particles before coating. 42〜65m/gのBET法による比表面積と36以下のL値を有するITO粒子が130〜160℃の軟化点を有するテルペンフェノール樹脂中に均一に分散してなり、膜中、前記ITO粒子を48〜90質量%、前記ITO粒子以外の成分を10〜52質量%含むITO導電膜。 ITO particles having a specific surface area of 42 to 65 m 2 / g BET method and an L value of 36 or less are uniformly dispersed in a terpene phenol resin having a softening point of 130 to 160 ° C. An ITO conductive film containing 48 to 90% by mass and 10 to 52% by mass of components other than the ITO particles. 前記ITO粒子以外の成分中、フェノール系酸化防止剤又はヒンダードアミン系光安定剤を、前記組成物の固形分100質量%中、0.1〜5質量%更に含む請求項10記載のITO導電膜。   The ITO electrically conductive film of Claim 10 which further contains 0.1-5 mass% in 100 mass% of solid content of the said composition in a component other than the said ITO particle | grains in phenolic antioxidant or a hindered amine light stabilizer. 前記ITO粒子以外の成分中、加水分解基を持つ有機ケイ素化合物と水とを更に含み、前記有機ケイ素化合物の含有量が前記組成物の固形分100質量中、5〜52質量%であり、前記水の含有量が、前記加水分解基を持つ有機ケイ素化合物に含まれる加水分解基がメトキシ基もしくはエトキシ基であり、この加水分解基のモル数に対して、0.05〜0.7倍モル数である請求項10記載のITO導電膜形成用組成物。   In the components other than the ITO particles, further comprising an organosilicon compound having a hydrolyzable group and water, and the content of the organosilicon compound is 5 to 52% by mass in 100 mass of the solid content of the composition, The water content is such that the hydrolyzable group contained in the organosilicon compound having a hydrolyzable group is a methoxy group or an ethoxy group, and 0.05 to 0.7 times mol per mol of the hydrolyzable group. The composition for forming an ITO conductive film according to claim 10, which is a number. 50〜70m/gのBET法による比表面積を有する、有機ケイ素の加水分解物で被覆されたITO粒子が130〜160℃の軟化点を有するテルペンフェノール樹脂中に均一に分散してなり、膜中、前記有機ケイ素の加水分解物で被覆されたITO粒子を70〜90質量%、前記有機ケイ素の加水分解物で被覆されたITO粒子以外の成分を10〜30質量%含み、前記有機ケイ素の加水分解物の被覆量が被覆前の前記ITO粒子100質量部に対して0.5〜15質量部であるITO導電膜。 An ITO particle coated with a hydrolyzate of organosilicon having a specific surface area of 50 to 70 m 2 / g by the BET method is uniformly dispersed in a terpene phenol resin having a softening point of 130 to 160 ° C. Medium containing 70 to 90% by mass of ITO particles coated with the hydrolyzate of organosilicon and 10 to 30% by mass of components other than ITO particles coated with the hydrolyzate of organosilicon. The ITO electrically conductive film whose coating amount of a hydrolyzate is 0.5-15 mass parts with respect to 100 mass parts of said ITO particles before coating. 前記有機ケイ素の加水分解物で被覆されたITO粒子以外の成分中、フェノール系酸化防止剤又はヒンダードアミン系光安定剤を更に含む請求項13記載のITO導電膜。   The ITO electrically conductive film of Claim 13 which further contains a phenolic antioxidant or a hindered amine light stabilizer in components other than the ITO particle | grains coat | covered with the hydrolyzate of the said organosilicon.
JP2015121859A 2015-03-31 2015-06-17 Composition for forming ITO conductive film and ITO conductive film Active JP6530644B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015072136 2015-03-31
JP2015072136 2015-03-31

Publications (2)

Publication Number Publication Date
JP2016194031A true JP2016194031A (en) 2016-11-17
JP6530644B2 JP6530644B2 (en) 2019-06-12

Family

ID=57323534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015121859A Active JP6530644B2 (en) 2015-03-31 2015-06-17 Composition for forming ITO conductive film and ITO conductive film

Country Status (1)

Country Link
JP (1) JP6530644B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021106718A1 (en) * 2019-11-25 2021-06-03 東洋インキScホールディングス株式会社 Dispersion of tin-doped indium oxide particles, composition for shaping, and shaped object

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006073836A (en) * 2004-09-02 2006-03-16 Kyocera Chemical Corp Ceramic electronic component and conductive paste therefor
JP2012091953A (en) * 2010-10-26 2012-05-17 Mitsubishi Materials Corp Indium tin oxide powder and method for producing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006073836A (en) * 2004-09-02 2006-03-16 Kyocera Chemical Corp Ceramic electronic component and conductive paste therefor
JP2012091953A (en) * 2010-10-26 2012-05-17 Mitsubishi Materials Corp Indium tin oxide powder and method for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021106718A1 (en) * 2019-11-25 2021-06-03 東洋インキScホールディングス株式会社 Dispersion of tin-doped indium oxide particles, composition for shaping, and shaped object
JP2021084050A (en) * 2019-11-25 2021-06-03 東洋インキScホールディングス株式会社 Tin-doped indium oxide particle dispersion, molding composition and molding

Also Published As

Publication number Publication date
JP6530644B2 (en) 2019-06-12

Similar Documents

Publication Publication Date Title
KR101568561B1 (en) Indium tin oxide powder, method for producing same, dispersion, paint, and functional thin film
KR101568629B1 (en) Antimony-doped tin oxide powder and process for manufacturing same
KR20140042797A (en) Conductive member, method for producing same, touch panel, and solar cell
KR20140042798A (en) Conductive member, method for producing same, touch panel and solar cell
EP2130797B1 (en) Silica porous body, laminate and composition for optical use, and method for producing silica porous body
EP3726538B1 (en) Conductive paste
KR20170030532A (en) Metal oxide particle dispersion, composition containing metal oxide particles, coating film, and display device
JP5646671B2 (en) Conductive member, manufacturing method thereof, touch panel, and solar cell
JP6866104B2 (en) Conductors, their manufacturing methods, and devices containing them
KR20150116396A (en) Low refractive composition, method for producing the same, and transparent conductive film
JP6295224B2 (en) Far-infrared reflective film, dispersion for forming far-infrared reflective film, method for producing far-infrared reflective film, far-infrared reflective glass and window
CN101157826B (en) Coating liquid for forming translucent electrically conductive film, translucent electrically conductive film, and dispersive-type electroluminescent device
JP6559509B2 (en) Antimony-doped tin oxide conductive film forming composition and antimony-doped tin oxide conductive film
JP6626709B2 (en) ITO conductive film and paint for forming the ITO conductive film
JP2016194031A (en) Composition for ito conductive film formation and ito conductive film
TWI772599B (en) Coating composition, conductive film, and liquid crystal display panel
JP6530673B2 (en) Composition for forming phosphorus-doped tin oxide conductive film and phosphorus-doped tin oxide conductive film
JP2010272514A (en) Conductive oxide particulate dispersion composition, conductive paint composition, and conductive film
JP2011222453A (en) Base material with conductive film
EP2599751B1 (en) Indium tin oxide powder, production method therefor, and a transparent conductive composition
JP2009203282A (en) Coating material for forming transparent antistatic film, transparent antistatic film using it, and transparent base material with transparent antistatic film
JP2011093754A (en) Antimony pentoxide based complex oxide fine particle, coating liquid for forming transparency coating film containing the fine particle, and base material with transparency coating film
JP5885507B2 (en) Indium tin oxide powder and method for producing the same
CN109575760A (en) The manufacturing method of transparent and electrically conductive film, the coating composition for being used to form transparent and electrically conductive film and transparent and electrically conductive film
JPWO2019150638A1 (en) Transparent conductive film and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180604

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190517

R150 Certificate of patent or registration of utility model

Ref document number: 6530644

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250