JP2016192322A - Secondary battery, and battery pack - Google Patents

Secondary battery, and battery pack Download PDF

Info

Publication number
JP2016192322A
JP2016192322A JP2015071839A JP2015071839A JP2016192322A JP 2016192322 A JP2016192322 A JP 2016192322A JP 2015071839 A JP2015071839 A JP 2015071839A JP 2015071839 A JP2015071839 A JP 2015071839A JP 2016192322 A JP2016192322 A JP 2016192322A
Authority
JP
Japan
Prior art keywords
negative electrode
electrode terminal
region
positive electrode
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015071839A
Other languages
Japanese (ja)
Other versions
JP6529806B2 (en
Inventor
陽平 室屋
Yohei Muroya
陽平 室屋
山内 康弘
Yasuhiro Yamauchi
康弘 山内
山田 雅一
Masakazu Yamada
雅一 山田
友和 山中
Tomokazu Yamanaka
友和 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2015071839A priority Critical patent/JP6529806B2/en
Publication of JP2016192322A publication Critical patent/JP2016192322A/en
Application granted granted Critical
Publication of JP6529806B2 publication Critical patent/JP6529806B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Battery Mounting, Suspending (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce influence of performing welding treatment in a secondary battery.SOLUTION: A negative collector 18 for electrically connecting a negative electrode to a negative electrode terminal, and an external conductive member 44 made of aluminium based metal and welded and connected to the negative terminal 40 are provided on the side of the negative electrode terminal 40 of a secondary battery 10. The negative electrode terminal 40 includes a flange part 80 disposed on the outer surface side of a sealing plate 20, and an annular insertion part 82 which is connected to one side of the flange part 80 and the tip side of which is connected to the negative electrode collector 18. The negative electrode terminal 40 has a first region 90 made of copper based metal and a second region 92 made of aluminum based metal, the annular insertion part 82 is formed by the first region 90, a boundary part between the first region 90 and the second region 92 is provided in the flange part 80, and the external conductive member 44 is welded to the second region 92.SELECTED DRAWING: Figure 5

Description

本発明は、二次電池及び複数の二次電池を接続した組電池に関する。   The present invention relates to a secondary battery and an assembled battery in which a plurality of secondary batteries are connected.

特許文献1は、角型のリチウムイオン二次電池では、正極の芯体としてアルミニウム系金属が用いられ、負極の芯体として銅系金属が汎用的に用いられると述べている。また、正極側に溶接される正極外部電極の材料には正極と同じアルミニウム系金属が用いられ、負極側に溶接される負極外部電極の材料には負極と同じ銅系金属が用いられると述べている。   Patent Document 1 states that in a rectangular lithium ion secondary battery, an aluminum-based metal is used as a positive electrode core, and a copper-based metal is generally used as a negative electrode core. In addition, it states that the same aluminum-based metal as the positive electrode is used for the positive electrode external electrode material welded to the positive electrode side, and the same copper-based metal as the negative electrode is used for the negative electrode external electrode material welded to the negative electrode side. Yes.

特開2013−157130号公報JP 2013-157130 A

本発明は、溶接を行うことによる影響を少なくできる二次電池及び組電池を提供することを目的とする。   An object of this invention is to provide the secondary battery and assembled battery which can reduce the influence by performing welding.

本発明に係る二次電池は、正極と負極とを有する電極体と、開口部を有し、電極体を収納する外装体と、外装体の開口部を封口する封口板と、封口板に取付けられ正極と電気的に接続される正極端子と、封口板に設けられた負極端子取付孔に負極側絶縁部材を介して挿入され、負極と電気的に接続される負極端子と、を備え、負極端子の側には、負極と負極端子との間を電気的に接続する負極集電体と、負極端子に接続されアルミニウム系金属で構成される外部導電部材と、が設けられ、負極集電体は、負極端子が挿入される集電体貫通孔を有し、負極端子は、負極端子取付孔の開孔面積よりも広い外形面積を有し封口板の外面側に配置されるフランジ部及び、フランジ部の一方の面に接続される挿入部であって負極端子取付孔と集電体貫通孔とに挿入され先端側が負極集電体に接続される挿入部を含み、銅系金属で構成される第1領域とアルミニウム系金属で構成される第2領域とを有し、挿入部が第1領域で構成され、第1領域と第2領域との間の境界部がフランジ部に設けられ、第2領域に外部導電部材が接続される。   A secondary battery according to the present invention includes an electrode body having a positive electrode and a negative electrode, an exterior body having an opening, housing the electrode body, a sealing plate for sealing the opening of the exterior body, and attached to the sealing plate A positive electrode terminal electrically connected to the positive electrode, and a negative electrode terminal inserted into a negative electrode terminal mounting hole provided in the sealing plate via a negative electrode side insulating member and electrically connected to the negative electrode. On the terminal side, a negative electrode current collector that is electrically connected between the negative electrode and the negative electrode terminal, and an external conductive member that is connected to the negative electrode terminal and made of an aluminum-based metal are provided. Has a current collector through-hole into which the negative electrode terminal is inserted, the negative electrode terminal has a wider outer area than the opening area of the negative electrode terminal mounting hole, and is disposed on the outer surface side of the sealing plate, and Insertion part connected to one surface of flange part, negative electrode terminal mounting hole and current collector through Including a first region composed of a copper-based metal and a second region composed of an aluminum-based metal, and the insertion unit is a first region. It is comprised by the area | region, the boundary part between 1st area | region and 2nd area | region is provided in a flange part, and an external conductive member is connected to 2nd area | region.

本発明に係る組電池は、上記二次電池を複数接続して構成される組電池であって、隣接する二次電池における一方側の二次電池の負極端子に一端部が接続された外部導電部材の他端部が他方側の二次電池の正極端子に接続される。   An assembled battery according to the present invention is an assembled battery configured by connecting a plurality of the secondary batteries, and an external conductive material having one end connected to a negative electrode terminal of one secondary battery in an adjacent secondary battery. The other end of the member is connected to the positive terminal of the secondary battery on the other side.

本発明に係る二次電池及び組電池は、溶接を行うことによる影響を少なくできる。   The secondary battery and the assembled battery according to the present invention can reduce the influence caused by welding.

本発明に係る実施の形態の二次電池の斜視図である。1 is a perspective view of a secondary battery according to an embodiment of the present invention. 図1の正極端子側についての平面図である。It is a top view about the positive electrode terminal side of FIG. 図2のA−A線に沿った断面図である。図3(a)は溶接処理前の状態を示す図で、(b)は溶接処理後の状態を示す図である。It is sectional drawing along the AA line of FIG. FIG. 3A is a diagram showing a state before the welding process, and FIG. 3B is a diagram showing a state after the welding process. 図1の負極端子側についての平面図である。It is a top view about the negative electrode terminal side of FIG. 図4のB−B線に沿った断面図である。図5(a)は溶接処理前の状態を示す図で、(b)は溶接処理後の状態を示す図である。It is sectional drawing along the BB line of FIG. FIG. 5A is a diagram showing a state before the welding process, and FIG. 5B is a diagram showing a state after the welding process. 図5(a)について負極端子の部分を抜き出した図である。It is the figure which extracted the part of the negative electrode terminal about Fig.5 (a). 負極端子についていくつかの変形例を示す図である。It is a figure which shows some modifications about a negative electrode terminal. 本発明に係る実施の形態の組電池について、隣接する2つの二次電池の接続状態を示す図である。It is a figure which shows the connection state of two adjacent secondary batteries about the assembled battery of embodiment which concerns on this invention.

以下に図面を用いて、本発明の実施の形態を詳細に説明する。以下で述べる材質、寸法、形状等は説明のための例示であって、二次電池の仕様に応じ、適宜変更が可能である。以下では、全ての図面において対応する要素には同一の符号を付し、重複する説明を省略する。   Embodiments of the present invention will be described below in detail with reference to the drawings. The materials, dimensions, shapes, and the like described below are examples for explanation, and can be appropriately changed according to the specifications of the secondary battery. In the following, corresponding elements in all drawings are denoted by the same reference numerals, and redundant description is omitted.

図1は、二次電池10の外観斜視図である。この二次電池10は有底筒状の直方体の外装体12を有する角型リチウムイオン電池である。二次電池10の内部には、正極と負極とがセパレータを介して積層巻回されて扁平形に成形された電極体14が、非水電解液を含んで収納される。図1には、直交するXYZの3方向を示した。Z方向は外装体12の軸方向で+Z方向が外装体12の開口側である。Y軸方向は外装体12の横方向で、正極端子側が+Y方向、負極端子側が−Y方向である。X方向は外装体12の厚さ方向である。   FIG. 1 is an external perspective view of the secondary battery 10. The secondary battery 10 is a prismatic lithium ion battery having a bottomed cylindrical rectangular parallelepiped casing 12. Inside the secondary battery 10, an electrode body 14 in which a positive electrode and a negative electrode are laminated and wound through a separator and formed into a flat shape is accommodated including a non-aqueous electrolyte. FIG. 1 shows three XYZ directions orthogonal to each other. The Z direction is the axial direction of the exterior body 12, and the + Z direction is the opening side of the exterior body 12. The Y-axis direction is the lateral direction of the exterior body 12, the positive electrode terminal side is the + Y direction, and the negative electrode terminal side is the -Y direction. The X direction is the thickness direction of the exterior body 12.

外装体12は、底部を有する角形の有底筒状であり、上部である+Z方向が開口する直方体の角型容器である。かかる外装体12には、金属材料を所定の形状に成形したものを用いる。外装体12に用いられる金属材料としては、アルミニウム系金属(アルミニウム、アルミニウム主体のアルミニウム合金)あるいは鉄系金属(鉄、鉄主体の鉄合金)等が好ましい。   The exterior body 12 is a rectangular bottomed cylindrical shape having a bottom part, and is a rectangular parallelepiped container having an opening in the + Z direction which is an upper part. As the exterior body 12, a metal material formed into a predetermined shape is used. As the metal material used for the exterior body 12, an aluminum-based metal (aluminum, an aluminum alloy mainly composed of aluminum) or an iron-based metal (iron, an iron alloy mainly composed of iron) is preferable.

図1において破線で示す電極体14は、正極と負極とがセパレータを介して積層巻回されて扁平形に成形されたもので、扁平形成形体の+Y方向の端部に正極集電体16が接続され、−Y方向の端部に負極集電体18が接続される。   An electrode body 14 indicated by a broken line in FIG. 1 is formed by laminating and winding a positive electrode and a negative electrode through a separator, and is formed into a flat shape. The negative electrode current collector 18 is connected to the end portion in the -Y direction.

正極は、正極芯体としての金属箔の両面に正極活物質層が形成されたものである。正極芯体としては、アルミニウム系金属箔を用いることが好ましい。アルミニウム系金属とは、アルミニウムまたはアルミニウムが主体のアルミニウム合金である。正極活物質はリチウムイオンの吸蔵と排出が可能なリチウム遷移金属酸化物を含有する。負極は、負極芯体としての金属箔の両面に負極活物質層が形成されたものである。負極芯体としては銅系金属箔を用いることが好ましい。銅系金属とは、銅または銅が主体の銅合金である。負極活物質は、炭素質材料である。セパレータはイオン透過性の材料で構成される。   The positive electrode has a positive electrode active material layer formed on both surfaces of a metal foil as a positive electrode core. As the positive electrode core, an aluminum metal foil is preferably used. The aluminum-based metal is aluminum or an aluminum alloy mainly composed of aluminum. The positive electrode active material contains a lithium transition metal oxide capable of inserting and extracting lithium ions. The negative electrode has a negative electrode active material layer formed on both surfaces of a metal foil as a negative electrode core. It is preferable to use a copper-based metal foil as the negative electrode core. The copper-based metal is copper or a copper alloy mainly composed of copper. The negative electrode active material is a carbonaceous material. The separator is made of an ion permeable material.

非水電解液は、非水溶媒としてエチレンカーボネート(EC)、エチルメチルカーボネート(EMC)、ジメチルカーボネート(DMC)等を用い、これにヘキサフルオロリン酸リチウム(LiPF6)を電解質塩として添加したものである。 The non-aqueous electrolyte uses ethylene carbonate (EC), ethyl methyl carbonate (EMC), dimethyl carbonate (DMC), etc. as a non-aqueous solvent, to which lithium hexafluorophosphate (LiPF 6 ) is added as an electrolyte salt. It is.

上記の組成物質は、説明のための例示であり、リチウムイオン二次電池の仕様により、これ以外の組成物質を用いることができる。   The above compositional materials are illustrative examples, and other compositional materials can be used depending on the specifications of the lithium ion secondary battery.

電極体14は、正極とセパレータと負極とを積層し、巻回して扁平加工される。正極集電体16は、電極体14の+Y方向端部に露出する正極芯体に接続される導電性リード端子材である。正極集電体16は、アルミニウム系金属板を加工したものを用いる。正極集電体16と正極芯体との間の接続手段には、溶接を用いる。負極集電体18は、電極体14の−Y方向端部に露出する負極芯体に接続される導電性リード端子材である。負極集電体18は、銅系金属板を加工したものを用いる。負極集電体18と負極芯体との間の接続手段には、溶接を用いる。   The electrode body 14 is formed by laminating a positive electrode, a separator, and a negative electrode, and winding and flattening. The positive electrode current collector 16 is a conductive lead terminal material connected to the positive electrode core body exposed at the + Y direction end of the electrode body 14. As the positive electrode current collector 16, an aluminum metal plate processed is used. Welding is used as a connection means between the positive electrode current collector 16 and the positive electrode core. The negative electrode current collector 18 is a conductive lead terminal material connected to the negative electrode core body exposed at the −Y direction end of the electrode body 14. As the negative electrode current collector 18, a copper-based metal plate processed is used. Welding is used as a connection means between the negative electrode current collector 18 and the negative electrode core.

封口板20は、外装体12の開口を塞ぐ蓋板である。封口板20と外装体12とは溶接によって一体化され、内部空間に、電極体14、正極集電体16、負極集電体18等が収納される。封口板20には、外装体12と封口板20によって形成された内部空間の圧力が閾値圧力を超えるときに内部圧を開放するガス排出弁22と、電極体14等が収納された内部空間に非水電解液を注入する注液穴とその封止栓24とが設けられる。かかる封口板20は、所定の形状に加工されたアルミニウム板が用いられる。封口板20と外装体12との一体化手段としては溶接が用いられる。   The sealing plate 20 is a lid plate that closes the opening of the exterior body 12. The sealing plate 20 and the exterior body 12 are integrated by welding, and the electrode body 14, the positive electrode current collector 16, the negative electrode current collector 18 and the like are accommodated in the internal space. The sealing plate 20 includes a gas discharge valve 22 that opens the internal pressure when the pressure in the internal space formed by the exterior body 12 and the sealing plate 20 exceeds a threshold pressure, and an internal space in which the electrode body 14 and the like are stored. A liquid injection hole for injecting a non-aqueous electrolyte and its sealing plug 24 are provided. As the sealing plate 20, an aluminum plate processed into a predetermined shape is used. As an integration means of the sealing plate 20 and the exterior body 12, welding is used.

封口板20の+Y方向の端部側に設けられる正極端子30は、二次電池10におけるプラス電極端子である。正極端子30は、樹脂製の正極側絶縁部材32を介して封口板20と電気的に絶縁される。正極端子30は、封口板20に設けられた正極端子取付孔に挿入されて正極集電体16と電気的に接続される。正極端子30には電池外部側において外部導電部材34が接続されている。そして、外部導電部材34において正極端子30が接続された位置からずれた位置にボルト36が接続されている。正極端子30と正極集電体16との間の接続等の詳細については後述する。   The positive electrode terminal 30 provided on the end portion side in the + Y direction of the sealing plate 20 is a positive electrode terminal in the secondary battery 10. The positive electrode terminal 30 is electrically insulated from the sealing plate 20 through a positive electrode-side insulating member 32 made of resin. The positive electrode terminal 30 is inserted into a positive electrode terminal mounting hole provided in the sealing plate 20 and is electrically connected to the positive electrode current collector 16. An external conductive member 34 is connected to the positive electrode terminal 30 on the battery outer side. A bolt 36 is connected to a position shifted from the position where the positive electrode terminal 30 is connected in the external conductive member 34. Details of the connection between the positive electrode terminal 30 and the positive electrode current collector 16 will be described later.

封口板20の−Y方向の端部側に設けられる負極端子40は、二次電池10におけるマイナス電極端子である。負極端子40は、樹脂製の負極側絶縁部材42を介して封口板20と電気的に絶縁される。負極端子40は、封口板20に設けられた負極端子取付孔に挿入されて負極集電体18と電気的に接続される。負極端子40には電池外部側において外部導電部材44が接続されている。そして、外部導電部材44において負極端子40が接続された位置からずれた位置にボルト46が接続されている。負極端子40と負極集電体18との間の接続等の詳細については後述する。   The negative electrode terminal 40 provided on the end side in the −Y direction of the sealing plate 20 is a negative electrode terminal in the secondary battery 10. The negative electrode terminal 40 is electrically insulated from the sealing plate 20 via a resin negative electrode side insulating member 42. The negative electrode terminal 40 is inserted into a negative electrode terminal mounting hole provided in the sealing plate 20 and is electrically connected to the negative electrode current collector 18. An external conductive member 44 is connected to the negative electrode terminal 40 on the battery outer side. A bolt 46 is connected to a position shifted from the position where the negative electrode terminal 40 is connected in the external conductive member 44. Details of the connection between the negative electrode terminal 40 and the negative electrode current collector 18 will be described later.

次に、封口板20に正極端子30と負極端子40とを取付ける内容について、図2から図6を用いて詳細に述べる。   Next, the contents of attaching the positive electrode terminal 30 and the negative electrode terminal 40 to the sealing plate 20 will be described in detail with reference to FIGS.

最初に正極端子30側の接続構造について図2と図3を用いて説明し、次に、負極端子40側の接続構造等について図4から図7を用いて説明する。   First, the connection structure on the positive electrode terminal 30 side will be described with reference to FIGS. 2 and 3, and the connection structure on the negative electrode terminal 40 side will be described with reference to FIGS. 4 to 7.

図2は、二次電池10の上面図のうち、正極端子30周りを抜き出した図である。図2では、後述する負極端子40周りの図と比較しやすいように、X軸、Y軸の方向を図1と逆にした。図2には封口板20、正極端子30、正極側の絶縁部材32、正極側の外部導電部材34、正極側のボルト36が示される。図3は、図2のA−A線に沿った断面図である。図3(a)は正極端子30と外部導電部材34の溶接処理前の状態を示し、(b)は溶接処理後の状態を示す。   FIG. 2 is a diagram in which the periphery of the positive electrode terminal 30 is extracted from the top view of the secondary battery 10. In FIG. 2, the directions of the X-axis and the Y-axis are reversed from those in FIG. FIG. 2 shows a sealing plate 20, a positive terminal 30, a positive-side insulating member 32, a positive-side external conductive member 34, and a positive-side bolt 36. 3 is a cross-sectional view taken along line AA in FIG. 3A shows a state before the welding process of the positive electrode terminal 30 and the external conductive member 34, and FIG. 3B shows a state after the welding process.

図3(a)において、封口板20に設けられる正極端子取付孔50は、正極端子30が挿入される孔である。封口板20において、正極端子取付孔50の外周側に沿って凹部21が設けられる。凹部21には、絶縁部材32の一部が配置される。なお、凹部21は必須の構成ではない。また、絶縁部材32は必ずしも凹部21内に配置する必要はない。   In FIG. 3A, the positive terminal mounting hole 50 provided in the sealing plate 20 is a hole into which the positive terminal 30 is inserted. In the sealing plate 20, a recess 21 is provided along the outer peripheral side of the positive electrode terminal mounting hole 50. A part of the insulating member 32 is disposed in the recess 21. The recess 21 is not an essential configuration. Further, the insulating member 32 is not necessarily arranged in the recess 21.

正極集電体16に設けられる集電体貫通孔52は、正極端子30が挿入される孔である。正極端子取付孔50と集電体貫通孔52は、組立時には、2つの孔の中心軸が互いに位置合わせされる。   The current collector through hole 52 provided in the positive electrode current collector 16 is a hole into which the positive electrode terminal 30 is inserted. The positive electrode terminal mounting hole 50 and the current collector through-hole 52 are aligned with each other at the center axes of the two holes during assembly.

正極端子30は、フランジ部60と、フランジ部60の−Z側の面である一方の面に接続される環状の挿入部62とを含む。フランジ部60は、正極端子取付孔50の開孔面積よりも広い外形面積を有し、正極端子30において封口板20の外面側に配置される鍔状の部分である。フランジ部60の外径は、封口板20に設けられる凹部21の内径よりも小さい寸法である。環状の挿入部62は、正極端子30において、正極端子取付孔50と集電体貫通孔52に挿入される部分である。なお、フランジ部60と環状の挿入部62との間の境界を一点鎖線で示した。以下の図においても同様である。   The positive electrode terminal 30 includes a flange portion 60 and an annular insertion portion 62 connected to one surface which is the −Z side surface of the flange portion 60. The flange portion 60 has a larger outer area than the opening area of the positive electrode terminal mounting hole 50, and is a bowl-shaped portion arranged on the outer surface side of the sealing plate 20 in the positive electrode terminal 30. The outer diameter of the flange portion 60 is smaller than the inner diameter of the recess 21 provided in the sealing plate 20. The annular insertion portion 62 is a portion that is inserted into the positive terminal mounting hole 50 and the current collector through hole 52 in the positive terminal 30. In addition, the boundary between the flange part 60 and the cyclic | annular insertion part 62 was shown with the dashed-dotted line. The same applies to the following drawings.

フランジ部60の+Z側の面である他方の面に設けられる突起部64は、正極端子30と正極側の外部導電部材34とを溶接するときの溶接端部である。突起部64は、円環状に連続して設けられる。これに代えて、円環状に配置された複数の突起部64を設けてもよい。あるいは、上面に凹部を有さない柱状とすることもできる。   The protrusion 64 provided on the other surface which is the + Z side surface of the flange portion 60 is a welding end when welding the positive electrode terminal 30 and the external conductive member 34 on the positive electrode side. The protrusion 64 is continuously provided in an annular shape. Instead of this, a plurality of projections 64 arranged in an annular shape may be provided. Or it can also be set as the column shape which does not have a recessed part in an upper surface.

挿入部62の先端部66は、正極集電体16上で拡径されて正極集電体16上にカシメられている。これにより、正極端子30及び正極集電体16が封口板20に固定接続される。なお、カシメられた先端部66と正極集電体16を更に溶接接続することが好ましい。また、挿入部62は必ずしも環状である必要はなく、凹部を有さない柱状とすることもできる。   The distal end portion 66 of the insertion portion 62 is expanded on the positive electrode current collector 16 and crimped on the positive electrode current collector 16. As a result, the positive electrode terminal 30 and the positive electrode current collector 16 are fixedly connected to the sealing plate 20. In addition, it is preferable that the crimped tip 66 and the positive electrode current collector 16 are further connected by welding. Moreover, the insertion part 62 does not necessarily need to be annular, and may be a columnar shape having no recess.

集電体側絶縁体54は、正極集電体16と封口板20との間を電気的に絶縁する絶縁部材である。集電体側絶縁体54は、図3(a)に示すように、正極集電体16の電極体14側の面である−Z側面と、集電体貫通孔52の内壁面を除いて正極集電体16の外周面を覆う。集電体側絶縁体54は、樹脂部品で構成することができる。これに代えて正極集電体16の所定の外周面を樹脂コーティングしてもよい。   The current collector 54 is an insulating member that electrically insulates between the positive electrode current collector 16 and the sealing plate 20. As shown in FIG. 3A, the current collector-side insulator 54 is a positive electrode except for the −Z side surface that is the surface on the electrode body 14 side of the positive electrode current collector 16 and the inner wall surface of the current collector through hole 52. The outer peripheral surface of the current collector 16 is covered. The current collector-side insulator 54 can be formed of a resin component. Alternatively, a predetermined outer peripheral surface of the positive electrode current collector 16 may be resin-coated.

封口板側絶縁体56は、封口板20の正極端子取付孔50と正極端子30の外周面との間を電気的に絶縁する絶縁部材である。封口板側絶縁体56は、図3(a)に示すように、正極端子取付孔50の外周側に設けられる凹部21の底面と、正極端子30のフランジ部60の−Z側の面である一方の面との間等に沿って配置される。封口板側絶縁体56は、樹脂部品で構成することができる。これに代えて正極端子30の所定の外周面を樹脂コーティングしてもよい。   The sealing plate side insulator 56 is an insulating member that electrically insulates between the positive terminal mounting hole 50 of the sealing plate 20 and the outer peripheral surface of the positive terminal 30. As shown in FIG. 3A, the sealing plate side insulator 56 is a bottom surface of the recess 21 provided on the outer peripheral side of the positive electrode terminal mounting hole 50 and a surface on the −Z side of the flange portion 60 of the positive electrode terminal 30. It arrange | positions along between one surface. The sealing board side insulator 56 can be comprised with a resin component. Instead of this, a predetermined outer peripheral surface of the positive electrode terminal 30 may be resin-coated.

正極側の外部導電部材34は、アルミニウム系金属の板部材である。正極側のボルト36は、隣接する角型二次電池の端子間を電気的に接続するバスバーを締結するために用いられる。正極側の外部導電部材34の−Y側の端部にボルト取付部を設けてボルト36を固定し、+Y側の端部を正極端子30と溶接処理によって接続する。このように、正極端子30とボルト36の位置をずらすことにより、ボルト36により外部導電部材34にバスバーを締結する際、トルクが正極端子30に直接加わることを防止できる。これにより、正極端子30と封口板20の間の密封性の低下や、正極端子30と正極集電体16の接続部の損傷等が防止できる。   The external conductive member 34 on the positive electrode side is an aluminum metal plate member. The bolt 36 on the positive electrode side is used to fasten a bus bar that electrically connects terminals of adjacent rectangular secondary batteries. A bolt mounting portion is provided at the −Y side end of the positive electrode side external conductive member 34 to fix the bolt 36, and the + Y side end portion is connected to the positive electrode terminal 30 by a welding process. Thus, by shifting the positions of the positive electrode terminal 30 and the bolt 36, it is possible to prevent torque from being directly applied to the positive electrode terminal 30 when the bus bar is fastened to the external conductive member 34 by the bolt 36. Thereby, the fall of the sealing performance between the positive electrode terminal 30 and the sealing board 20, the damage of the connection part of the positive electrode terminal 30 and the positive electrode electrical power collector 16, etc. can be prevented.

なお、上記では、正極端子30は封口板20と電気的に絶縁される構造としたが、場合によっては、正極端子30と封口板20を電気的に接続されたものとしてもよい。   In the above description, the positive terminal 30 is electrically insulated from the sealing plate 20. However, depending on the case, the positive terminal 30 and the sealing plate 20 may be electrically connected.

図3(b)は、図3(a)の状態から突起部64と外部導電部材34との間を溶接処理した後の状態を示す図である。溶接処理は、高エネルギ線を照射するレーザ溶接を用いる。これに代えて抵抗溶接等の溶接手段を用いてもよい。ナゲット70は、突起部64と正極側の外部導電部材34との間の溶接によって形成された溶接部である。ナゲット70の形成は、突起部64の高さの範囲内で行われることが好ましい。これによって、樹脂部品等である封口板側絶縁体56に溶接の熱の影響が及ぶことを抑制でき、封口板側絶縁体56の熱変形や特性変化を抑制できる。   FIG. 3B is a diagram showing a state after performing a welding process between the protruding portion 64 and the external conductive member 34 from the state of FIG. The welding process uses laser welding that irradiates high energy rays. Instead of this, welding means such as resistance welding may be used. The nugget 70 is a welded portion formed by welding between the protruding portion 64 and the external conductive member 34 on the positive electrode side. The nugget 70 is preferably formed within the height of the protrusion 64. Thereby, it is possible to suppress the influence of the heat of welding on the sealing plate side insulator 56 which is a resin component or the like, and it is possible to suppress thermal deformation and characteristic change of the sealing plate side insulator 56.

アルミニウム系金属の正極端子30は、+Z側の端部でアルミニウム系金属製である正極側の外部導電部材34と溶接処理される。このように、正極端子30側での溶接処理は、アルミニウム系金属同士で行われ、異種金属接触による腐食が生じない。また、アルミニウム系金属の融点は比較的低いので、アルミニウム系金属間の溶接によって発生する熱も比較的少なく、アルミニウム系金属は銅系金属に比べ熱伝導性が低いので、溶接によって樹脂部品等である絶縁部材32、集電体側絶縁体54、封口板側絶縁体56に与える影響も少ない。   The positive electrode terminal 30 made of aluminum metal is welded to the positive electrode-side external conductive member 34 made of aluminum metal at the end on the + Z side. Thus, the welding process on the positive electrode terminal 30 side is performed between aluminum-based metals, and corrosion due to contact with different metals does not occur. In addition, since the melting point of aluminum-based metals is relatively low, heat generated by welding between aluminum-based metals is relatively low, and aluminum-based metals have lower thermal conductivity than copper-based metals. There is little influence on the insulating member 32, the current collector side insulator 54, and the sealing plate side insulator 56.

図4は、二次電池10の上面図のうち、負極端子40周りを抜き出した図である。図4のX軸、Y軸の方向は図1と同じである。図1に示すように、正極端子30周りと負極端子40周りとは、Y軸に沿って左右対称形である。したがって、図4は、X軸、Y軸方向が逆であることを除けば、図2と同じである。図4には封口板20、負極端子40、負極側の絶縁部材42、負極側の外部導電部材44、負極側のボルト46が示される。図5は、図4のB−B線に沿った断面図である。図5(a)は負極端子40と外部導電部材44の溶接処理前の状態を示し、(b)は溶接処理後の状態を示す。   FIG. 4 is a view in which the periphery of the negative electrode terminal 40 is extracted from the top view of the secondary battery 10. The directions of the X axis and the Y axis in FIG. 4 are the same as those in FIG. As shown in FIG. 1, the periphery of the positive electrode terminal 30 and the periphery of the negative electrode terminal 40 are symmetrical with respect to the Y axis. Therefore, FIG. 4 is the same as FIG. 2 except that the X-axis and Y-axis directions are opposite. FIG. 4 shows a sealing plate 20, a negative electrode terminal 40, a negative electrode-side insulating member 42, a negative electrode-side external conductive member 44, and a negative electrode-side bolt 46. FIG. 5 is a sectional view taken along line BB in FIG. FIG. 5A shows a state before the welding process of the negative electrode terminal 40 and the external conductive member 44, and FIG. 5B shows a state after the welding process.

図5を図3と比較すると、負極端子40側における要素で、正極端子30側における要素と異なるのは、負極端子40である。   Comparing FIG. 5 with FIG. 3, the element on the negative electrode terminal 40 side is different from the element on the positive electrode terminal 30 side in the negative electrode terminal 40.

負極端子取付孔51は、正極端子取付孔50と同じ内容であり、負極集電体18に設けられる集電体貫通孔53は、正極集電体16に設けられる集電体貫通孔52と同じ内容である。凹部21も正極側で説明した内容と同じである。   The negative electrode terminal mounting hole 51 has the same contents as the positive electrode terminal mounting hole 50, and the current collector through hole 53 provided in the negative electrode current collector 18 is the same as the current collector through hole 52 provided in the positive electrode current collector 16. Content. The concave portion 21 is the same as that described on the positive electrode side.

負極側の集電体側絶縁体55は、正極側の集電体側絶縁体54と同じ内容である。負極側の封口板側絶縁体57は、正極側の封口板側絶縁体56と同じ内容である。   The current collector-side insulator 55 on the negative electrode side has the same contents as the current collector-side insulator 54 on the positive electrode side. The negative electrode side sealing plate side insulator 57 has the same contents as the positive electrode side sealing plate side insulator 56.

負極側の外部導電部材44は正極側の外部導電部材34と同様に、アルミニウム系金属の板部材である。負極側のボルト46は、正極側のボルト36と同じ内容である。   The external conductive member 44 on the negative electrode side is an aluminum-based metal plate member, like the external conductive member 34 on the positive electrode side. The negative side bolt 46 has the same contents as the positive side bolt 36.

なお、ボルト46の−Z方向側である下方側において、封口板20と負極側の絶縁部材42とが互いに嵌合する部分43が設けられる。この嵌合する部分43を設けることで、ボルト46において他の部材との間で締結処理が行われるときに、負極端子40にトルクが懸ることを抑制できる。正極端子30側の図3では、この嵌合する部分の図示を省略したが、負極端子40側と同様に、ボルト36の下方側において、封口板20と正極側の絶縁部材32が互いに嵌合する部分を設けることが好ましい。   In addition, a portion 43 where the sealing plate 20 and the insulating member 42 on the negative electrode side are fitted to each other is provided on the lower side which is the −Z direction side of the bolt 46. By providing the fitting portion 43, it is possible to suppress the torque from being applied to the negative terminal 40 when a fastening process is performed between the bolt 46 and another member. In FIG. 3 on the positive electrode terminal 30 side, illustration of the fitting portion is omitted, but the sealing plate 20 and the positive electrode side insulating member 32 are fitted to each other on the lower side of the bolt 36 similarly to the negative electrode terminal 40 side. It is preferable to provide a portion to perform.

このように、負極端子40を除いて、他の要素は、正極端子30側の対応する要素と同じ内容であるので、これ以上の説明を省略する。   Thus, except for the negative electrode terminal 40, the other elements have the same contents as the corresponding elements on the positive electrode terminal 30 side, and thus further description is omitted.

負極端子40は、フランジ部80と、フランジ部80の−Z側の面である一方の面に接続される環状の挿入部82とを含む。フランジ部80は、負極端子取付孔51の開孔面積よりも広い外形面積を有し、負極端子40において封口板20の外面側に配置される鍔状の部分である。フランジ部80の外径は、封口板20に設けられる凹部21の内径よりも小さい寸法である。環状の挿入部82は、負極端子40において、負極端子取付孔51と集電体貫通孔53に挿入される部分である。なお、凹部21は必須の構成ではない。   The negative electrode terminal 40 includes a flange portion 80 and an annular insertion portion 82 connected to one surface which is a surface on the −Z side of the flange portion 80. The flange portion 80 has a larger outer area than the opening area of the negative electrode terminal mounting hole 51, and is a flange-shaped portion disposed on the outer surface side of the sealing plate 20 in the negative electrode terminal 40. The outer diameter of the flange portion 80 is smaller than the inner diameter of the recess 21 provided in the sealing plate 20. The annular insertion portion 82 is a portion that is inserted into the negative electrode terminal mounting hole 51 and the current collector through hole 53 in the negative electrode terminal 40. The recess 21 is not an essential configuration.

負極端子40は、材質面の構造が正極端子30と大きく異なる。負極端子40は、銅系金属で構成される第1領域90と、アルミニウム系金属で構成される第2領域92とを有する。なお、負極端子40の表面にニッケルメッキ等の金属メッキを施してもよい。フランジ部80は、第1領域90と第2領域92とが積層された構造を有する。フランジ部80の+Z側の面である他方の面側がアルミニウム系金属の第2領域92で、−Z側の面である一方の面側が銅系金属の第1領域である。フランジ部80の一方の面側の銅系金属の第1領域90に接続されて環状の挿入部82が形成される。環状の挿入部82は、銅系金属の第1領域90で構成される。   The negative electrode terminal 40 is significantly different from the positive electrode terminal 30 in terms of material structure. The negative terminal 40 has a first region 90 made of a copper-based metal and a second region 92 made of an aluminum-based metal. The surface of the negative electrode terminal 40 may be subjected to metal plating such as nickel plating. The flange portion 80 has a structure in which a first region 90 and a second region 92 are laminated. The other surface side that is the + Z side surface of the flange portion 80 is the second region 92 of the aluminum-based metal, and the one surface side that is the surface of the −Z side is the first region of the copper-based metal. An annular insertion portion 82 is formed by being connected to the copper-based metal first region 90 on one surface side of the flange portion 80. The annular insertion portion 82 is configured by a first region 90 made of copper-based metal.

図6は、負極電極40を抜き出して示す図である。ただし、先端部86をカシメる前の状態である。第1領域90と第2領域92との間の境界部Cは、フランジ部80に設けられる。境界部Cは、フランジ部80の厚さ方向であるZ方向に沿って、フランジ部80の+Z側の面である一方の面から−Z側の面である他方の面に向かって、フランジ部80の厚さt0の5割以下の部分に設けられることが好ましい。換言すれば、フランジ部80の厚さt0の5割以下の厚さt1がアルミニウム系金属の第2領域92であり、5割以上の厚さt2が銅系金属の第1領域90である。これにより、境界部Cを突起部84から適当に離れた位置とすることができる。なお、境界部Cは、フランジ部80の厚さ方向であるZ方向に沿って、フランジ部80の+Z側の面である一方の面から−Z側の面である他方の面に向かって、フランジ部80の厚さt0の2割以上4割以下とすることがより好ましい。 FIG. 6 is a view showing the negative electrode 40 extracted. However, this is the state before the tip 86 is crimped. A boundary portion C between the first region 90 and the second region 92 is provided in the flange portion 80. The boundary portion C extends along the Z direction, which is the thickness direction of the flange portion 80, from one surface that is the + Z side surface of the flange portion 80 toward the other surface that is the −Z side surface. It is preferable to be provided in a portion equal to or less than 50% of the thickness t 0 of 80. In other words, a second region 92 thickness t 5 percent or less in thickness t 1 of 0 is an aluminum-based metal of the flange portion 80, the first region 90 of the thickness t 2 is 5% or more of copper metal It is. As a result, the boundary C can be appropriately separated from the protrusion 84. The boundary portion C extends from one surface that is the + Z side surface of the flange portion 80 toward the other surface that is the −Z side surface along the Z direction that is the thickness direction of the flange portion 80. More preferably, the thickness t 0 of the flange portion 80 is 20% to 40%.

特に、溶接ナゲット74全体を突起部84内に納め、即ち、溶接ナゲット74がフランジ部80に達しないようにし、フランジ部80の厚さt0に対する厚さt1の割合を2割以上4割以下とすることが好ましい。このような構成であると、外部導電部材44と負極端子40を溶接する際に生じる熱の封口板側絶縁体57への悪影響を抑制し、且つ負極端子40の導電性をより向上させることが可能となる。 In particular, the entire weld nugget 74 is accommodated in the protrusion 84, that is, the weld nugget 74 does not reach the flange 80, and the ratio of the thickness t 1 to the thickness t 0 of the flange 80 is 20% to 40%. The following is preferable. With such a configuration, it is possible to suppress the adverse effect of heat generated when welding the external conductive member 44 and the negative electrode terminal 40 on the sealing plate-side insulator 57 and further improve the conductivity of the negative electrode terminal 40. It becomes possible.

図7は、負極電極40における第1領域90と第2領域92の形状についてのいくつかの変形例を示す図である。   FIG. 7 is a diagram illustrating some modified examples of the shapes of the first region 90 and the second region 92 in the negative electrode 40.

図7(a)は、フランジ部80の外周側100において、第2領域92の外径を第1領域90の外径より小さくし、第1領域90を最外径側とした例である。即ち、フランジ部80における第2領域92の側面が第1領域90により覆われた状態となっている。逆に(b)は外周側101で第2領域92の外径を第1領域90の外径より大きくし、第2領域92を最外径側とした例である。即ち、フランジ部80における第1領域90の側面が第2領域92により覆われた状態となっている。これらの例を用いることで、フランジ部80の外周側において第1領域90と第2領域92の間の密着性が向上し、境界部Cにおける損傷発生を抑制できる。   FIG. 7A shows an example in which the outer diameter of the second region 92 is smaller than the outer diameter of the first region 90 on the outer peripheral side 100 of the flange portion 80, and the first region 90 is on the outermost diameter side. That is, the side surface of the second region 92 in the flange portion 80 is covered with the first region 90. Conversely, (b) is an example in which the outer diameter of the second region 92 is larger than the outer diameter of the first region 90 on the outer peripheral side 101, and the second region 92 is the outermost diameter side. That is, the side surface of the first region 90 in the flange portion 80 is covered with the second region 92. By using these examples, the adhesion between the first region 90 and the second region 92 on the outer peripheral side of the flange portion 80 is improved, and the occurrence of damage at the boundary portion C can be suppressed.

図7(c)は、フランジ部80の中央領域102において、第1領域90を第2領域92の側に突き出した例である。逆に(d)は、中央領域103において、第2領域92を第1領域90の側に突き出した例である。これらの例を用いることで、フランジ部80の中央部において第1領域90と第2領域92の間の密着性が向上する。(c)においては、導電性の高い第1領域90の割合を大きくできるため、負極端子40の電気抵抗が低減される。   FIG. 7C shows an example in which the first region 90 protrudes toward the second region 92 in the central region 102 of the flange portion 80. Conversely, (d) is an example in which the second region 92 protrudes toward the first region 90 in the central region 103. By using these examples, the adhesion between the first region 90 and the second region 92 is improved at the center of the flange portion 80. In (c), since the ratio of the 1st area | region 90 with high electroconductivity can be enlarged, the electrical resistance of the negative electrode terminal 40 is reduced.

図7(e)は、フランジ部80から挿入部82が延びる接続領域104において、挿入部82の上端部の径を広げた例である。これにより、フランジ部80と挿入部82との接続領域104における電気抵抗が低減され、機械的強度が向上する。   FIG. 7E shows an example in which the diameter of the upper end portion of the insertion portion 82 is increased in the connection region 104 where the insertion portion 82 extends from the flange portion 80. Thereby, the electrical resistance in the connection area | region 104 of the flange part 80 and the insertion part 82 is reduced, and mechanical strength improves.

再び図5(a)に戻り、フランジ部80の+Z側の面に設けられる突起部84は、負極端子40と負極側の外部導電部材44とを溶接するときの溶接端部である。突起部84は、円環状に連続して設けられる。これに代えて、円環状に配置された複数の突起部84を設けてもよい。あるいは上面に凹部を有さない柱状とすることもできる。突起部84は、アルミニウム系金属からなる第2領域92とし、負極側の外部導電部材44もアルミニウム系金属とする。   Returning to FIG. 5A again, the protrusion 84 provided on the surface on the + Z side of the flange 80 is a weld end when the negative electrode terminal 40 and the negative electrode-side external conductive member 44 are welded. The protrusion 84 is continuously provided in an annular shape. Instead of this, a plurality of projections 84 arranged in an annular shape may be provided. Or it can also be set as the column shape which does not have a recessed part in an upper surface. The protrusion 84 is a second region 92 made of an aluminum-based metal, and the negative electrode-side external conductive member 44 is also an aluminum-based metal.

挿入部82の−Z側先端部に設けられる先端部86は、負極集電体18上で拡径されて負極集電体18上にカシメられる。先端部86は、所定の厚さで円環状に連続して突出する。これに代えて、円環状に配置された複数の先端部86を設けてもよい。先端部86は、銅系金属からなる第1領域90とする。なお、カシメられた先端部86と負極集電体18を更に溶接接続することが好ましい。   The distal end portion 86 provided at the −Z side distal end portion of the insertion portion 82 is expanded in diameter on the negative electrode current collector 18 and is crimped on the negative electrode current collector 18. The tip 86 protrudes continuously in an annular shape with a predetermined thickness. It may replace with this and may provide a plurality of tip parts 86 arranged in an annular shape. The distal end portion 86 is a first region 90 made of a copper-based metal. In addition, it is preferable to further weld and connect the crimped tip portion 86 and the negative electrode current collector 18.

図5(b)は、図5(a)の状態から負極端子40と外部導電部材44を溶接処理した後の状態を示す図である。溶接処理は、レーザ溶接が用いられる。これに代えて抵抗溶接等他の溶接手段を用いてもよい。ナゲット74は、突起部84と負極側の外部導電部材44との間の溶接によって形成された溶接部である。   FIG. 5B is a diagram illustrating a state after the negative electrode terminal 40 and the external conductive member 44 are welded from the state of FIG. Laser welding is used for the welding process. Instead of this, other welding means such as resistance welding may be used. The nugget 74 is a welded portion formed by welding between the protrusion 84 and the external conductive member 44 on the negative electrode side.

負極端子40は、+Z側の端部でアルミニウム系金属の突起部84を用いてアルミニウム系金属の負極側の外部導電部材44と溶接処理される。これにより、負極端子40と負極側の外部導電部材44との間の接続がより強固となり、信頼性の高い二次電池10となる。   The negative electrode terminal 40 is welded to the external conductive member 44 on the negative electrode side of the aluminum-based metal using the projection 84 of the aluminum-based metal at the end on the + Z side. Thereby, the connection between the negative electrode terminal 40 and the external conductive member 44 on the negative electrode side becomes stronger, and the secondary battery 10 with high reliability is obtained.

負極端子40における第1領域90と第2領域92との間の境界部Cは、封口板20の+Z側の面である外面よりもさらに+Z側であり、非水電解液に曝されることがない。したがって、負極の電位が低い値となっても、第2領域92を構成するアルミニウム系金属と非水電解液に含まれるリチウムが合金化することを確実に防止できる。   The boundary portion C between the first region 90 and the second region 92 in the negative electrode terminal 40 is further on the + Z side than the outer surface that is the + Z side surface of the sealing plate 20 and is exposed to the nonaqueous electrolyte. There is no. Therefore, even if the potential of the negative electrode becomes a low value, it is possible to reliably prevent the aluminum-based metal constituting the second region 92 and lithium contained in the non-aqueous electrolyte from alloying.

また、アルミニウム系金属の融点は比較的低いので、アルミニウム系金属間の溶接によって発生する熱も比較的少ない。さらにアルミニウム系金属は銅系金属に比べ熱伝導性が低いので、溶接時に発生する熱が負極端子40を伝わり樹脂部品等である負極側の封口板側絶縁部材57に悪影響を与えることを抑制できる。   In addition, since the melting point of the aluminum-based metal is relatively low, heat generated by welding between the aluminum-based metals is also relatively small. Furthermore, since the aluminum-based metal has lower thermal conductivity than the copper-based metal, it is possible to suppress the heat generated during welding from being transmitted through the negative electrode terminal 40 and adversely affecting the negative-side sealing plate-side insulating member 57 such as a resin component. .

第1領域90と第2領域92との間の境界部Cは、カシメ処理が行われる箇所である先端部86から離れた位置にあるので、境界部Cにカシメ処理による応力が加わることを抑制できる。   Since the boundary portion C between the first region 90 and the second region 92 is located at a position away from the distal end portion 86 where the caulking process is performed, the stress due to the caulking process is prevented from being applied to the boundary portion C. it can.

銅系金属はアルミニウム系金属よりも機械的強度が高い。負極端子40において、封口板20及び負極集電体18を挟み込む部分(フランジ部80の下面部、挿入部82、及び先端部86)が銅系金属により構成されるため、負極端子40及び負極集電体18がより強固に封口板20に固定接続される。   Copper-based metals have higher mechanical strength than aluminum-based metals. In the negative electrode terminal 40, the portions (the lower surface portion of the flange portion 80, the insertion portion 82, and the tip portion 86) that sandwich the sealing plate 20 and the negative electrode current collector 18 are made of copper-based metal. The electric body 18 is fixedly connected to the sealing plate 20 more firmly.

なお、封口板側絶縁部材57は、フランジ部80の下面と封口板20の上面の間に配置される本体部57aと、本体部57aの周縁部に形成される周壁57bを備える。そして、境界部Cが周壁57bの上端部よりも下方に位置する。これにより、境界部Cが周壁57bにより覆われた状態となっている。このような構成によると、結露等により水分が負極端子近傍に生じた場合、銅系金属からなる部分とアルミニウム系金属からなる部分に跨って水滴ないし水膜が存在する状態となることを防止できる。よって、アルミニウム系金属からなる部分の腐食を抑制できる。   The sealing plate side insulating member 57 includes a main body portion 57a disposed between the lower surface of the flange portion 80 and the upper surface of the sealing plate 20, and a peripheral wall 57b formed at the peripheral edge portion of the main body portion 57a. And the boundary part C is located below rather than the upper end part of the surrounding wall 57b. Thereby, the boundary C is covered with the peripheral wall 57b. According to such a configuration, when moisture is generated in the vicinity of the negative electrode terminal due to condensation or the like, it is possible to prevent water droplets or a water film from being present across the copper metal part and the aluminum metal part. . Therefore, corrosion of a portion made of an aluminum metal can be suppressed.

上記の二次電池10を複数接続して組電池を構成することができる。図8は、組電池110のうち、隣接して配置される2つの二次電池112,114における接続方法を示す平面図である。ここでは、隣接する2つの二次電池112,114のうちの一方側の二次電池112の負極端子40と、他方側の二次電池114の正極端子30とがX方向に沿って向かい合うように配置される。負極端子40と正極端子30とを接続するには、バスバー116を用いる。バスバー116は、外部導電部材の1種である。バスバー116は、アルミニウム系金属で形成される。換言すると、隣接する二次電池112,114における一方側の二次電池112の負極端子40に一端部が溶接接続された外部導電部材としてのバスバー116の他端部が、他方側の二次電池114の正極端子30に溶接接続される。これを繰り返すことによって、二次電池10を予め定めた所定数で直列接続された組電池110とすることができる。   An assembled battery can be configured by connecting a plurality of the secondary batteries 10 described above. FIG. 8 is a plan view showing a connection method in two secondary batteries 112 and 114 arranged adjacent to each other in the assembled battery 110. Here, the negative electrode terminal 40 of the secondary battery 112 on one side of the two adjacent secondary batteries 112 and 114 and the positive electrode terminal 30 of the secondary battery 114 on the other side face each other along the X direction. Be placed. A bus bar 116 is used to connect the negative terminal 40 and the positive terminal 30. The bus bar 116 is a kind of external conductive member. Bus bar 116 is formed of an aluminum-based metal. In other words, the other end of the bus bar 116 as an external conductive member whose one end is welded to the negative electrode terminal 40 of the secondary battery 112 on one side of the adjacent secondary batteries 112 and 114 is the secondary battery on the other side. 114 is connected to the positive terminal 30 by welding. By repeating this, it is possible to obtain the assembled battery 110 in which the secondary batteries 10 are connected in series in a predetermined number.

図8では複数の二次電池10を互いに直列接続する場合を述べたが、複数の二次電池10を互いに並列接続するときは、互いに隣接する2つの二次電池112,114のそれぞれの正極端子30同士を正極側バスバーである外部導電部材で順次接続し、それぞれの負極端子40同士を負極側バスバーである外部導電部材で順次接続する。   Although the case where the plurality of secondary batteries 10 are connected in series is described in FIG. 8, when the plurality of secondary batteries 10 are connected in parallel to each other, the respective positive terminals of the two secondary batteries 112 and 114 adjacent to each other. 30 are sequentially connected by an external conductive member that is a positive electrode side bus bar, and the negative electrode terminals 40 are sequentially connected by an external conductive member that is a negative electrode side bus bar.

10,112,114 二次電池、12 外装体、14 電極体、16 正極集電体、18 負極集電体、20 封口板、21 凹部、22 ガス排出弁、24 封止栓、30 正極端子、32 (正極側)絶縁部材、34 (正極側)外部導電部材、36 (正極側)ボルト、40 負極端子、42 (負極側)絶縁部材、43 嵌合する部分、44 (負極側)外部導電部材、46 (負極側)ボルト、50 正極端子取付孔、51 負極端子取付孔、52 (正極)集電体貫通孔、53 (負極)集電体貫通孔、54 (正極)集電体側絶縁体、55 (負極)集電体側絶縁体、56 (正極側)封口板側絶縁体、57 (負極側)封口板側絶縁体、60 (正極端子の)フランジ部、62 (正極端子の)挿入部、64 (正極端子の)突起部、66 (正極端子の)先端部、70,74 ナゲット、80 (負極端子の)フランジ部、82 (負極端子の)挿入部、84 (負極端子の)突起部、86 (負極端子の)先端部、90 第1領域、92 第2領域、100,101 外周側、102,103 中央領域、104 接続領域、110 組電池、116 バスバー。   10, 112, 114 Secondary battery, 12 exterior body, 14 electrode body, 16 positive current collector, 18 negative current collector, 20 sealing plate, 21 recess, 22 gas discharge valve, 24 sealing plug, 30 positive terminal, 32 (positive electrode side) insulating member, 34 (positive electrode side) external conductive member, 36 (positive electrode side) bolt, 40 negative electrode terminal, 42 (negative electrode side) insulating member, 43 fitting portion, 44 (negative electrode side) external conductive member 46 (negative electrode side) bolt, 50 positive electrode terminal mounting hole, 51 negative electrode terminal mounting hole, 52 (positive electrode) current collector through hole, 53 (negative electrode) current collector through hole, 54 (positive electrode) current collector side insulator, 55 (negative electrode) current collector side insulator, 56 (positive electrode side) sealing plate side insulator, 57 (negative electrode side) sealing plate side insulator, 60 (positive electrode terminal) flange portion, 62 (positive electrode terminal) insertion portion, 64 (positive terminal) projection, 66 ( The tip part of the pole terminal, 70, 74 nugget, 80 (negative electrode terminal) flange part, 82 (negative electrode terminal) insertion part, 84 (negative electrode terminal) projection part, 86 (negative electrode terminal) tip part, 90th 1 region, 92 2nd region, 100, 101 outer peripheral side, 102, 103 center region, 104 connection region, 110 assembled battery, 116 bus bar.

Claims (8)

正極と負極とを有する電極体と、
開口部を有し、前記電極体を収納する外装体と、
前記外装体の前記開口部を封口する封口板と、
前記封口板に取付けられ前記正極と電気的に接続される正極端子と、
前記封口板に設けられた負極端子取付孔に負極側絶縁部材を介して挿入され、前記負極と電気的に接続される負極端子と、
を備え、
前記負極端子の側には、
前記負極と前記負極端子との間を電気的に接続する負極集電体と、
前記負極端子に接続されアルミニウム系金属で構成される外部導電部材と、
が設けられ、
前記負極集電体は、前記負極端子が挿入される集電体貫通孔を有し、
前記負極端子は、
前記負極端子取付孔の開孔面積よりも広い外形面積を有し前記封口板の外面側に配置されるフランジ部及び、前記フランジ部の一方の面に接続される挿入部であって前記負極端子取付孔と前記集電体貫通孔とに挿入され先端側が前記負極集電体に接続される挿入部を含み、
銅系金属で構成される第1領域とアルミニウム系金属で構成される第2領域とを有し、
前記挿入部が前記第1領域で構成され、前記第1領域と前記第2領域との間の境界部が前記フランジ部に設けられ、前記第2領域に前記外部導電部材が接続される、二次電池。
An electrode body having a positive electrode and a negative electrode;
An exterior body having an opening and containing the electrode body;
A sealing plate for sealing the opening of the exterior body;
A positive electrode terminal attached to the sealing plate and electrically connected to the positive electrode;
A negative electrode terminal inserted into a negative electrode terminal mounting hole provided in the sealing plate via a negative electrode side insulating member, and electrically connected to the negative electrode;
With
On the negative terminal side,
A negative electrode current collector that electrically connects the negative electrode and the negative electrode terminal;
An external conductive member made of an aluminum-based metal connected to the negative electrode terminal;
Is provided,
The negative electrode current collector has a current collector through-hole into which the negative electrode terminal is inserted,
The negative terminal is
A flange portion having an outer area larger than an opening area of the negative electrode terminal mounting hole and disposed on an outer surface side of the sealing plate, and an insertion portion connected to one surface of the flange portion, the negative electrode terminal Including an insertion portion inserted into the mounting hole and the current collector through-hole and connected to the negative electrode current collector on the tip side;
A first region composed of a copper-based metal and a second region composed of an aluminum-based metal;
The insertion portion is configured by the first region, a boundary portion between the first region and the second region is provided in the flange portion, and the external conductive member is connected to the second region; Next battery.
前記フランジ部の他方の面に突起部が形成される、請求項1に記載の二次電池。   The secondary battery according to claim 1, wherein a protrusion is formed on the other surface of the flange portion. 前記フランジ部の前記突起部と前記外部導電部材とが接続される、請求項2に記載の二次電池。   The secondary battery according to claim 2, wherein the protruding portion of the flange portion is connected to the external conductive member. 前記境界部は、前記フランジ部の厚さ方向において前記フランジ部の前記他方の面から前記一方の面に向かって前記フランジ部の厚さの2割以上4割以下の部分に設けられる、請求項1から3のいずれか1に記載の二次電池。   The boundary portion is provided in a portion of 20 to 40% of the thickness of the flange portion from the other surface of the flange portion toward the one surface in the thickness direction of the flange portion. The secondary battery according to any one of 1 to 3. 前記外部導電部材を介して前記負極端子と接続されるボルト部を有する、請求項1から4のいずれか1に記載の二次電池。   The secondary battery according to claim 1, further comprising a bolt portion connected to the negative electrode terminal via the external conductive member. 前記接続は、溶接接続である、請求項1から5のいずれか1に記載の二次電池。   The secondary battery according to claim 1, wherein the connection is a welding connection. 前記負極側絶縁部材は、前記フランジ部と前記封口板の間に配置される本体部と、前記本体部の周縁部に設けられる周壁を有し、
前記境界部は前記周壁の上端よりも下方に配置される請求項1から6のいずれか1に記載の二次電池。
The negative electrode side insulating member has a main body portion disposed between the flange portion and the sealing plate, and a peripheral wall provided at a peripheral edge portion of the main body portion,
The secondary battery according to claim 1, wherein the boundary portion is disposed below an upper end of the peripheral wall.
請求項1から4,6及び7のいずれか1に記載の二次電池を複数接続して構成される組電池であって、
隣接する前記二次電池における一方側の前記二次電池の負極端子に一端部が接続された外部導電部材の他端部が他方側の前記二次電池の正極端子に接続される、組電池。
An assembled battery configured by connecting a plurality of the secondary batteries according to any one of claims 1 to 4, 6, and 7,
An assembled battery in which the other end portion of the external conductive member having one end connected to the negative electrode terminal of the secondary battery on one side in the adjacent secondary battery is connected to the positive electrode terminal of the secondary battery on the other side.
JP2015071839A 2015-03-31 2015-03-31 Secondary battery and assembled battery Active JP6529806B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015071839A JP6529806B2 (en) 2015-03-31 2015-03-31 Secondary battery and assembled battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015071839A JP6529806B2 (en) 2015-03-31 2015-03-31 Secondary battery and assembled battery

Publications (2)

Publication Number Publication Date
JP2016192322A true JP2016192322A (en) 2016-11-10
JP6529806B2 JP6529806B2 (en) 2019-06-12

Family

ID=57247001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015071839A Active JP6529806B2 (en) 2015-03-31 2015-03-31 Secondary battery and assembled battery

Country Status (1)

Country Link
JP (1) JP6529806B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020035694A (en) * 2018-08-31 2020-03-05 三洋電機株式会社 Secondary battery
JP2020095837A (en) * 2018-12-11 2020-06-18 トヨタ自動車株式会社 Manufacturing method for secondary cell
CN111384355A (en) * 2018-12-27 2020-07-07 三洋电机株式会社 Secondary battery and battery pack
WO2020241412A1 (en) * 2019-05-24 2020-12-03 株式会社オートネットワーク技術研究所 Inter-terminal connection structure
CN112838334A (en) * 2019-11-08 2021-05-25 丰田自动车株式会社 Sealed battery
CN114204230A (en) * 2020-09-17 2022-03-18 泰星能源解决方案有限公司 Terminal, secondary battery having the same, and method for manufacturing the same
JP2022088806A (en) * 2020-12-03 2022-06-15 プライムプラネットエナジー&ソリューションズ株式会社 Secondary battery and assembled battery
CN114843670A (en) * 2021-02-02 2022-08-02 泰星能源解决方案有限公司 Electrode terminal and use thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010097769A (en) * 2008-10-15 2010-04-30 Mitsubishi Heavy Ind Ltd Battery terminal, secondary battery, method for manufacturing battery terminal, and method for manufacturing secondary battery
JP2013182724A (en) * 2012-02-29 2013-09-12 Sanyo Electric Co Ltd Square type secondary battery
WO2014076817A1 (en) * 2012-11-16 2014-05-22 日立ビークルエナジー株式会社 Unit cell and battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010097769A (en) * 2008-10-15 2010-04-30 Mitsubishi Heavy Ind Ltd Battery terminal, secondary battery, method for manufacturing battery terminal, and method for manufacturing secondary battery
JP2013182724A (en) * 2012-02-29 2013-09-12 Sanyo Electric Co Ltd Square type secondary battery
WO2014076817A1 (en) * 2012-11-16 2014-05-22 日立ビークルエナジー株式会社 Unit cell and battery

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110875462A (en) * 2018-08-31 2020-03-10 三洋电机株式会社 Secondary battery
JP7368080B2 (en) 2018-08-31 2023-10-24 三洋電機株式会社 secondary battery
CN110875462B (en) * 2018-08-31 2023-12-26 三洋电机株式会社 secondary battery
JP2020035694A (en) * 2018-08-31 2020-03-05 三洋電機株式会社 Secondary battery
JP7054454B2 (en) 2018-12-11 2022-04-14 トヨタ自動車株式会社 How to manufacture a secondary battery
JP2020095837A (en) * 2018-12-11 2020-06-18 トヨタ自動車株式会社 Manufacturing method for secondary cell
CN111384355B (en) * 2018-12-27 2024-01-09 三洋电机株式会社 Secondary battery and battery pack
US11424517B2 (en) 2018-12-27 2022-08-23 Sanyo Electric Co., Ltd. Secondary cell and battery pack
JP7296208B2 (en) 2018-12-27 2023-06-22 三洋電機株式会社 Secondary battery and assembled battery
JP2020107464A (en) * 2018-12-27 2020-07-09 三洋電機株式会社 Secondary battery and battery pack
CN111384355A (en) * 2018-12-27 2020-07-07 三洋电机株式会社 Secondary battery and battery pack
JP6824515B1 (en) * 2019-05-24 2021-02-03 株式会社オートネットワーク技術研究所 Terminal-to-terminal connection structure
WO2020241412A1 (en) * 2019-05-24 2020-12-03 株式会社オートネットワーク技術研究所 Inter-terminal connection structure
US11942657B2 (en) 2019-05-24 2024-03-26 Autonetworks Technologies, Ltd. Inter-terminal connection structure
CN112838334A (en) * 2019-11-08 2021-05-25 丰田自动车株式会社 Sealed battery
CN112838334B (en) * 2019-11-08 2023-08-04 丰田自动车株式会社 Sealed battery
CN114204230A (en) * 2020-09-17 2022-03-18 泰星能源解决方案有限公司 Terminal, secondary battery having the same, and method for manufacturing the same
CN114204230B (en) * 2020-09-17 2023-11-14 泰星能源解决方案有限公司 Terminal, secondary battery provided with same, and method for manufacturing same
JP2022088806A (en) * 2020-12-03 2022-06-15 プライムプラネットエナジー&ソリューションズ株式会社 Secondary battery and assembled battery
JP7414701B2 (en) 2020-12-03 2024-01-16 プライムプラネットエナジー&ソリューションズ株式会社 Secondary batteries and assembled batteries
JP7296996B2 (en) 2021-02-02 2023-06-23 プライムプラネットエナジー&ソリューションズ株式会社 Electrode terminal and its use
JP2022118648A (en) * 2021-02-02 2022-08-15 プライムプラネットエナジー&ソリューションズ株式会社 Electrode terminal and utilization thereof
CN114843670A (en) * 2021-02-02 2022-08-02 泰星能源解决方案有限公司 Electrode terminal and use thereof

Also Published As

Publication number Publication date
JP6529806B2 (en) 2019-06-12

Similar Documents

Publication Publication Date Title
JP6529806B2 (en) Secondary battery and assembled battery
US20230178788A1 (en) Cap assembly for secondary battery, secondary battery and battery module
JP5606851B2 (en) Battery and battery module
KR101244738B1 (en) Rechargeable battery having resistance member
JP5980511B2 (en) Secondary battery and manufacturing method thereof
JP5525904B2 (en) Secondary battery
JP5255606B2 (en) Secondary battery
JP5383759B2 (en) Secondary battery
JP5539910B2 (en) Secondary battery
KR101274859B1 (en) Secondary Battery And Assembling Method thereof
JP7296208B2 (en) Secondary battery and assembled battery
KR101264495B1 (en) Secondary Battery And Battery Pack having thereof
JP7368080B2 (en) secondary battery
JP5282070B2 (en) Secondary battery
KR102071435B1 (en) Energy storage device and conductive member
JP2012009319A (en) Secondary battery and battery pack
JP6460417B2 (en) Battery manufacturing method
JP6044454B2 (en) Power storage module
JP5592844B2 (en) Electricity storage element
JP2019067544A (en) Secondary battery and manufacturing method thereof
JP6048341B2 (en) Terminal structure
KR102371195B1 (en) Rechargeable Mattery And Rechargeable battery Module Using The Same
JP2017059346A (en) Secondary battery and batty pack
JP6601116B2 (en) Terminal structure, power storage cell, and power storage module
JP6149692B2 (en) Terminal structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190416

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190515

R150 Certificate of patent or registration of utility model

Ref document number: 6529806

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150