JP2016190261A - Mold flux for continuous casting - Google Patents

Mold flux for continuous casting Download PDF

Info

Publication number
JP2016190261A
JP2016190261A JP2015072348A JP2015072348A JP2016190261A JP 2016190261 A JP2016190261 A JP 2016190261A JP 2015072348 A JP2015072348 A JP 2015072348A JP 2015072348 A JP2015072348 A JP 2015072348A JP 2016190261 A JP2016190261 A JP 2016190261A
Authority
JP
Japan
Prior art keywords
sro
mold
mold flux
atomic
flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015072348A
Other languages
Japanese (ja)
Other versions
JP6424713B2 (en
Inventor
塚口 友一
Yuichi Tsukaguchi
友一 塚口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2015072348A priority Critical patent/JP6424713B2/en
Publication of JP2016190261A publication Critical patent/JP2016190261A/en
Application granted granted Critical
Publication of JP6424713B2 publication Critical patent/JP6424713B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method that effectively suppresses crystallization of a cast piece (solidifying shell) side of a flux film flowing and formed between a mold and the cast piece (solidifying shell).SOLUTION: Mold flux for continuous casting is characterized in that main crystal crystallized or precipitated in the mold flux solidified after being melted once is melilite solid solution between gehlenite and akermanite, and a portion of calcium contained in the melilite is replaced by strontium, and SrO/(CaO+SrO) defined in atomic%, namely, the SrO substitution ratio is in a range of 0.3-0.7, AlO/(AlO+MgO) is in a range of 0.4-0.8 and (CaO+SrO)/SiOis 1.1-2.0, and a solidification temperature is decreased by 70°C or more in the case of 10°C per minute in comparison with the case when a cooling speed is 2°C per minute.SELECTED DRAWING: None

Description

本発明は、鋼等の連続鋳造において、溶融金属中に巻き込まれにくい特性と、鋳型内の潤滑性という特性を兼備したモールドフラックスであり、特に鋳型内の潤滑性に優れたモールドフラックスに関するものである。   The present invention relates to a mold flux that has the characteristics of being difficult to be caught in molten metal in continuous casting of steel or the like and the lubricity in the mold, and particularly relates to a mold flux having excellent lubricity in the mold. is there.

鋳型内に添加されたモールドフラックスは、溶融して厚さ数mm〜十数mmの溶融層を形成する。溶融したモールドフラックスは、鋳型と鋳片(凝固シェル)との間に流入してフラックスフィルムを形成する。このフラックスフィルムの鋳型側は冷やされて凝固し、結晶を晶出もしくは析出(以下、晶/析出と略す。)する。   The mold flux added in the mold is melted to form a molten layer having a thickness of several mm to several tens of mm. The melted mold flux flows between the mold and the slab (solidified shell) to form a flux film. The mold side of the flux film is cooled and solidified to crystallize or precipitate crystals (hereinafter abbreviated as crystal / precipitate).

このようにして形成された結晶層は、輻射伝熱を遮蔽する等の作用により必要な緩冷却効果を発揮する。一方、フラックスフィルムの鋳片(凝固シェル)側の結晶化せずにガラス状態を保った領域は、鋳片と鋳型の間の摩擦抵抗を低減する効果を発揮する。   The crystal layer thus formed exhibits a necessary slow cooling effect by an action such as shielding radiant heat transfer. On the other hand, the region in which the glass film is kept without crystallization on the slab (solidified shell) side of the flux film exhibits the effect of reducing the frictional resistance between the slab and the mold.

すなわち鋳型内の潤滑性を良好に保つには、フラックスフィルム中に、ある程度のガラス相が残留することが求められる。   That is, in order to maintain good lubricity in the mold, a certain amount of glass phase is required to remain in the flux film.

従来、フラックスフィルム中に晶/析出する結晶として、最も一般的なカスピダイン(Cuspidine:3CaO・2SiO2・CaF2)やアケルマナイト(Akermanite:2CaO・MgO・2SiO2)、アケルマナイトとゲーレナイト(Gehlenite:2CaO・Al2O3・SiO2)の全率固溶体であるメリライト(Melilite)などが知られている。 Conventionally, the most common caspidine (Cuspidine: 3CaO · 2SiO 2 · CaF 2 ), akermanite (Akermanite: 2CaO · MgO · 2SiO 2 ), akermanite and gehlenite (Gehlenite: 2CaO · Mellilite, which is a solid solution of Al 2 O 3 · SiO 2 ), is known.

発明者は、アケルマナイトやメリライトを主な結晶相として利用するモールドフラックスを特許文献1、2で開示している。   The inventor discloses a mold flux using akermanite or melilite as a main crystal phase in Patent Documents 1 and 2.

さらに、発明者は、メリライト結晶系モールドフラックスにおいて、低フッ素濃度と高塩基度および潤滑性の3つを同時に満足するものを特許文献3で開示している。   Further, the inventor discloses in Patent Document 3 that a melilite crystal mold flux that simultaneously satisfies the three requirements of low fluorine concentration, high basicity, and lubricity.

特開2003−225744号公報JP 2003-225744 A 特開2005−40835号公報Japanese Patent Laid-Open No. 2005-40835 特開2010−125457号公報JP 2010-125457 A

発明者は、特許文献3で開示したSrOを含むメリライトを主な結晶に用いるモールドフラックスの潤滑性を最大化し、高い潤滑性が要求される鋼種への適用を可能とする研究開発を進めた結果、SrOを含むメリライトにおいて特異的に結晶化が抑制され、フラックスフィルム中にガラスが多く残留する組成領域を発見した。   As a result of the inventor's research and development that maximizes the lubricity of the mold flux that uses the merilite containing SrO disclosed in Patent Document 3 as the main crystal and that can be applied to steel types that require high lubricity. , SrO-containing melilite specifically suppressed crystallization, and found a composition region where a lot of glass remained in the flux film.

本発明は、発明者による上記発見により成されたものであり、高粘度でSiO2の活量が低いことから溶鋼中に巻き込まれにくいモールドフラックスにおいて、その潤滑性を特許文献3で開示したモールドフラックスと比較して飛躍的に高め、幅広い鋳造条件(溶鋼組成や鋳型サイズなど)への適用を容易ならしめることを目的とするものである。 The present invention has been made by the above discovery by the inventor, and is a mold flux disclosed in Patent Document 3 whose lubricity is high in a mold flux that is difficult to be caught in molten steel because of high viscosity and low SiO 2 activity. The purpose is to dramatically increase compared to flux and to facilitate application to a wide range of casting conditions (such as molten steel composition and mold size).

発明者は、一旦溶融した後に凝固したモールドフラックス中に晶/析出する主たる結晶が、ゲーレナイトとアケルマナイトとの全率固溶体であるメリライトであり、かつ、メリライトに含まれるカルシウムの一部がストロンチウムに置き代わっているモールドフラックスにおいて、特異的に結晶化が抑制され、凝固後にガラスが多く残留する組成領域を発見した。   The inventor has found that the main crystal which is crystallized / precipitated in the mold flux which has been once melted and solidified is melilite which is a total solid solution of gelenite and akermanite, and a part of calcium contained in melilite is placed in strontium. In the alternative mold flux, we found a composition region where crystallization was specifically suppressed and a lot of glass remained after solidification.

その組成領域は、具体的にはアケルマナイトとゲーレナイトの全率固溶体であるメリライトにおいて、その組成中におけるゲーレナイトの割合が4割よりも多く、かつ、CaOとSrOの総濃度に占めるSrOの割合(atomic組成比)が3割よりも大きい組成領域である。   Specifically, in the composition area, melilite, which is a solid solution of all akermanite and gehlenite, the proportion of gehlenite in the composition is more than 40%, and the proportion of SrO in the total concentration of CaO and SrO (atomic It is a composition region having a composition ratio (greater than 30%).

本発明は、発明者の上記発見を基になされたものであり、
一旦溶融した後に凝固したモールドフラックス中に晶/析出する主たる結晶が、ゲーレナイトとアケルマナイトとの全率固溶体メリライトであり、かつ、前記メリライトに含まれるカルシウムの一部がストロンチウムに置き代わっている連続鋳造用モールドフラックスにおいて、
メリライトの組成に占めるゲーレナイトの割合を高めとし、かつCaOとSrOとの割合がSrOリッチである組成の結晶を晶/析出する組成領域とすることを最も主要な特徴としている。
The present invention has been made based on the above discovery of the inventor,
Continuous casting in which the main crystal that is crystallized / precipitated in the mold flux that has been once melted and solidified is the total solid solution melilite of gelenite and akermanite, and a part of the calcium contained in the melilite is replaced by strontium For mold flux
The most important feature is that the composition ratio of crystallizing / precipitating a crystal having a composition in which the ratio of galenite in the composition of melilite is high and the ratio of CaO and SrO is rich in SrO is used.

ゲーレナイトとアケルマナイトとの全率固溶体メリライトは、ゲーレナイトとアケルマナイトの間の任意の組成をとりうる。そのメリライト組成に占めるゲーレナイトの割合が、ある値よりも高いということを、メリライトの組成に占めるゲーレナイトの割合が高めであると表現している。具体的には、atomic%で定義したAl2O3/(Al2O3+MgO)が0.4〜0.8の範囲にあることをいう。 The total solid solution melilite of gehlenite and akermanite can take any composition between gehlenite and akermanite. The fact that the proportion of gehlenite in the composition of melilite is higher than a certain value expresses that the proportion of gehlenite in the composition of melilite is higher. Specifically, it means that Al 2 O 3 / (Al 2 O 3 + MgO) defined by atomic% is in the range of 0.4 to 0.8.

atomic%で定義したAl2O3/(Al2O3+MgO)が0.4〜0.8の範囲にあるとは、アケルマナイトとゲーレナイトの全率固溶体であるメリライトにおいて、その組成が、まずはゲーレナイトの割合が4割よりも多いことを示し、さらにゲーレナイトの割合の上限値が8割であることを示している。全率固溶体であるメリライトの組成中におけるゲーレナイトの割合が、上限値である8割を超えるとメリライトの融点が上昇して潤滑性が悪化するからである。 Al 2 O 3 / (Al 2 O 3 + MgO) defined by atomic% is in the range of 0.4 to 0.8. The composition of melilite, which is a total solid solution of akermanite and gehlenite, is first galenite. It is shown that the ratio is more than 40%, and further, the upper limit value of the ratio of gehlenite is 80%. This is because if the ratio of gehlenite in the composition of melilite, which is a solid solution of all percentages, exceeds 80%, which is the upper limit, the melting point of melilite increases and the lubricity deteriorates.

MgOとAl2O3の濃度比がアケルマナイトとゲーレナイトの組成比の指標となるのは、アケルマナイトが2CaO・MgO・2SiO2という組成比でMgOを含みAl2O3を含まないのに対し、ゲーレナイトが2CaO・Al2O3・SiO2という組成比でAl2O3を含みMgOを含まないからである。 The concentration ratio of MgO and Al 2 O 3 is an indicator of the composition ratio of akermanite and gehlenite, whereas akermanite has a composition ratio of 2CaO · MgO · 2SiO 2 and contains MgO but does not contain Al 2 O 3. There is because not including MgO include Al 2 O 3 composition ratio of 2CaO · Al 2 O 3 · SiO 2.

また、CaOとSrOとの割合がSrOリッチである組成の結晶を晶/析出する組成領域とは、具体的には、atomic%で定義したSrO/(CaO+SrO)、すなわちSrO置換比が0.3〜0.7の範囲にあることをいう。   In addition, the composition region in which a crystal having a composition in which the ratio of CaO and SrO is rich in SrO is crystallized / precipitated is specifically SrO / (CaO + SrO) defined by atomic%, that is, the SrO substitution ratio is 0.3. It is in the range of -0.7.

atomic%で定義したSrO/(CaO+SrO)、すなわちSrO置換比が0.3〜0.7の範囲にあるとは、CaOとSrOの総濃度に占めるSrOの割合(atomic組成比)が3割よりも大きいことを表し、その割合の実施可能な上限が7割であることを含めて表している。SrO置換比が上限の7割を超えるとモールドフラックスが高価になってしまうからである。   SrO / (CaO + SrO) defined by atomic%, that is, the SrO substitution ratio is in the range of 0.3 to 0.7, the proportion of SrO in the total concentration of CaO and SrO (atomic composition ratio) is from 30% The upper limit that can be implemented is 70%. This is because if the SrO substitution ratio exceeds 70% of the upper limit, the mold flux becomes expensive.

さらに、上記のMgOとAl2O3の濃度比の規定に加え、atomic%で定義した(CaO+SrO)/SiO2が1.1〜2.0であるとき、特異的に結晶化が抑制され凝固後にガラスが多く残留するというのが、本発明の基幹を成す発見である。 Furthermore, in addition to the regulation of the concentration ratio of MgO and Al 2 O 3 described above, when (CaO + SrO) / SiO 2 defined by atomic% is 1.1 to 2.0, crystallization is specifically suppressed and solidified. It is a discovery that forms the basis of the present invention that a lot of glass remains later.

Atomic%で定義した(CaO+SrO)/SiO2が1.1よりも小さい場合には、それに加え、SiO2活量の増大によって溶鋼との界面の張力が低下し、溶鋼中に巻き込まれやすくなってしまうからである。一方、atomic%で定義した(CaO+SrO)/SiO2が2.0よりも大きいと、結晶化抑制作用が失われるからである。 When (CaO + SrO) / SiO 2 defined by atomic% is smaller than 1.1, in addition to this, the tension at the interface with the molten steel decreases due to the increase in the SiO 2 activity, and it becomes easy to get caught in the molten steel. Because it ends up. On the other hand, if (CaO + SrO) / SiO 2 defined by atomic% is larger than 2.0, the crystallization inhibiting action is lost.

特異的に結晶化が抑制されるという特徴は、冷却速度が毎分2℃の場合に比べ毎分10℃の場合に凝固温度が70℃以上低下するときに現れる。結晶化抑制作用が最も強く現れる時、冷却速度が毎分10℃の条件ではガラス状に凝固し、凝固温度が定義できない場合がある。その場合には、毎分2℃と毎分10℃における凝固温度差は無限大ということになる。そういった理由から、毎分2℃と毎分10℃における凝固温度差の上限値は無限大である。   The characteristic that crystallization is specifically suppressed appears when the solidification temperature decreases by 70 ° C. or more when the cooling rate is 10 ° C./min, compared to when the cooling rate is 2 ° C./min. When the crystallization inhibitory action appears most strongly, it may solidify in a glassy state at a cooling rate of 10 ° C. per minute, and the solidification temperature may not be defined. In that case, the solidification temperature difference between 2 ° C. and 10 ° C. per minute is infinite. For these reasons, the upper limit value of the solidification temperature difference at 2 ° C./min and 10 ° C./min is infinite.

結晶化を促進したモールドフラックスの場合、冷却速度が毎分2℃の場合に対し毎分10℃の場合の凝固温度低下は20〜40℃程度である。それに対し、冷却速度が毎分2℃の場合に対し毎分10℃の場合の凝固温度が70℃以上低下するモールドフラックスは、結晶化せずにガラス状のまま凝固する傾向が強い。すなわち、鋳造中、フラックスフィルム中にガラスが多く残留し、鋳型内の潤滑性が良好に保たれるのである。   In the case of mold flux that promotes crystallization, the solidification temperature drop is about 20 to 40 ° C. when the cooling rate is 2 ° C. and 10 ° C. per minute. On the other hand, the mold flux in which the solidification temperature is reduced by 70 ° C. or more when the cooling rate is 2 ° C. per minute is higher than the case where the solidification temperature is 10 ° C./min. That is, during casting, a lot of glass remains in the flux film, and the lubricity in the mold is kept good.

上記本発明は、鋳型と鋳片(凝固シェル)との間に流入して形成されたフラックスフィルムの鋳片(凝固シェル)側の結晶化を効果的に抑制することができる。   The present invention can effectively suppress crystallization on the slab (solidified shell) side of the flux film formed by flowing between the mold and the slab (solidified shell).

本発明においては特に規定しないが、冷却速度が毎分2℃の場合の凝固温度の絶対値は1180℃以下であることが、潤滑性向上の観点から望ましい。   Although not specified in the present invention, it is desirable from the viewpoint of improving lubricity that the absolute value of the solidification temperature when the cooling rate is 2 ° C. per minute is 1180 ° C. or less.

本発明において、凝固温度の絶対値を特に規定しないのは、通常、冷却速度が毎分2℃の場合に比べ毎分10℃の場合に凝固温度が70℃以上低下するという規定を満たすとき、自ずと冷却速度が毎分2℃の場合の凝固温度の絶対値は1180℃以下という条件も満たされるからである。   In the present invention, the absolute value of the solidification temperature is not particularly specified when the cooling rate is 10 ° C./min compared to the case where the cooling rate is 2 ° C./min. This is because the absolute value of the solidification temperature when the cooling rate is 2 ° C. per minute naturally satisfies the condition of 1180 ° C. or less.

上記本発明においては、TiO2濃度を2atomic%以下とすることが望ましい。TiO2濃度が2atomic%を超えると、副次的な結晶として高融点のペロヴスカイト(CaO・TiO2)が晶/析出し、結晶化抑制の効果が損なわれてしまうからである。TiO2濃度のさらに望ましい上限は1atomic%以下である。 In the present invention, the TiO 2 concentration is desirably 2 atomic% or less. This is because, when the TiO 2 concentration exceeds 2 atomic%, high melting point perovskite (CaO · TiO 2 ) crystallizes / precipitates as a secondary crystal, and the effect of suppressing crystallization is impaired. A more desirable upper limit of the TiO 2 concentration is 1 atomic% or less.

本発明では、鋳型と鋳片(凝固シェル)との間に流入して形成されたフラックスフィルムの鋳片(凝固シェル)側の結晶化を効果的に抑制することができるので、特許文献3で開示したモールドフラックスに対し潤滑性が飛躍的に高まり、幅広い鋳造条件(溶鋼組成や鋳型サイズなど)への適用が容易になる。   In the present invention, since crystallization on the slab (solidified shell) side of the flux film formed by flowing between the mold and the slab (solidified shell) can be effectively suppressed. Lubricity is dramatically improved with respect to the disclosed mold flux, and application to a wide range of casting conditions (such as molten steel composition and mold size) is facilitated.

本発明では、特許文献3で開示したモールドフラックスに対し潤滑性を飛躍的に高めるという目的を、メリライトの組成に占めるゲーレナイトの割合を高めとし、かつCaOとSrOとの割合がSrOリッチである組成の結晶を晶/析出する組成領域とすることで実現した。   In the present invention, a composition in which the ratio of gehlenite in the composition of melilite is increased and the ratio of CaO and SrO is rich in SrO for the purpose of dramatically improving the lubricity with respect to the mold flux disclosed in Patent Document 3. This was realized by making the crystal of the crystal / crystallized composition region.

以下、本発明の効果を確認するために行った試験結果について説明する。
試験は、内面が85mm×500mmのサイズの鋳型を有する試験連続鋳造機を用いて、組成が、mass%で、0.05%C、0.01%Si、0.3%Mn、0.01%P、0.01%S、0.01%sol.Alの低炭素鋼を2.0m/minの引抜き速度で鋳造することにより行った。
Hereinafter, the results of tests conducted to confirm the effects of the present invention will be described.
The test was performed using a test continuous casting machine having a mold with an inner surface of 85 mm × 500 mm, and the composition was mass%, 0.05% C, 0.01% Si, 0.3% Mn, 0.01 The low carbon steel of% P, 0.01% S, 0.01% sol.Al was cast at a drawing speed of 2.0 m / min.

本発明の実施例および比較例を下記表1に示す。
下記表1中の凝固温度差は、冷却速度が毎分10℃の場合の凝固温度と、毎分2℃の場合の凝固温度との差を示す。
Examples and comparative examples of the present invention are shown in Table 1 below.
The difference in solidification temperature in Table 1 below indicates the difference between the solidification temperature when the cooling rate is 10 ° C. per minute and the solidification temperature when the cooling rate is 2 ° C. per minute.

また、下記表1中の潤滑性は、前記試験鋳造した際の鋳型内の摩擦抵抗を測定し、その値が実施例Aに対して10%未満しか増加しない場合は甲、10%以上で20%未満増加した場合は乙、20%以上増加した場合は丙と判定した。   In addition, the lubricity in Table 1 below is determined by measuring the frictional resistance in the mold at the time of the test casting, and when the value increases by less than 10% with respect to Example A, the upper is 10% or more and 20%. If it increased by less than%, it was determined to be B, and if it increased by 20% or more, it was determined to be 丙.

また、下記表1中のフラックスの巻込み欠陥は、前記試験鋳造によって得られた鋳片長辺の表層10mmを長辺の全幅500mm×引抜き方向に100mm切り出し、酸溶解した後の残渣を調査し、直径80μm以上の球状介在物数をカウントした結果を表した指標で、実施例Aに対し、2倍未満の場合を甲、2倍以上で5倍未満の場合を乙、5倍以上の場合を丙と判定した。   Moreover, the entrainment defect of the flux in the following Table 1 investigates the residue after the surface layer 10 mm of the long side of the slab obtained by the test casting is cut out 100 mm in the full width 500 mm × drawing direction and dissolved in the acid, An index representing the result of counting the number of spherical inclusions having a diameter of 80 μm or more. In Example A, the case of less than 2 times the case A, the case of 2 times or more and less than 5 times the case of B, the case of 5 times or more Judged as 丙.

Figure 2016190261
Figure 2016190261

表1中のA〜Dは本発明の実施例であり、実施例A〜Cは請求項1及び2の要件を満たす実施例、実施例Dは請求項1の要件のみを満たす実施例である。   A to D in Table 1 are examples of the present invention, Examples A to C are examples that satisfy the requirements of claims 1 and 2, and Example D is an example that satisfies only the requirements of claim 1. .

請求項1及び2の要件を満たす実施例A〜Cは、連続鋳造に用いた際に、溶鋼中に巻き込まれにくい特性を有するとともに、フラックスフィルムの結晶化が抑制され潤滑性に優れている。   Examples A to C satisfying the requirements of claims 1 and 2 have characteristics that are difficult to be caught in molten steel when used for continuous casting, and are excellent in lubricity because crystallization of the flux film is suppressed.

また、実施例Dは、請求項2の要件を満たさないので、ペロヴスカイトが晶/析出して潤滑性をやや低下させたものの、本発明の効果が発揮された例である。   Further, Example D is an example in which the effect of the present invention was exhibited although the perovskite crystallized / precipitated and the lubricity was slightly lowered because the requirement of claim 2 was not satisfied.

一方、表1中のE〜Hは、本発明の請求項1で規定する要件を満たさない比較例である。   On the other hand, E to H in Table 1 are comparative examples that do not satisfy the requirements defined in claim 1 of the present invention.

比較例Eは、atomic%で定義したSrO/(CaO+SrO)、すなわちSrO置換比が小さく、比較例Fは、atomic%で定義したAl2O3/(Al2O3+MgO)が小さくアケルマナイト寄りの組成であり、本発明の請求項1で規定する要件を満たさないので、フラックスフィルムの結晶化が過度に促進され、鋳型内の潤滑性に劣った例である。これらの比較例E,Fにおいては、冷却速度が毎分2℃の場合に比べ、毎分10℃の場合に凝固温度がそれほど大きくは低下せず、結晶化の抑制効果が不十分であった。 In Comparative Example E, SrO / (CaO + SrO) defined in atomic%, that is, the SrO substitution ratio is small, and in Comparative Example F, Al 2 O 3 / (Al 2 O 3 + MgO) defined in atomic% is small and close to akermanite. Since it is a composition and does not satisfy the requirements defined in claim 1 of the present invention, crystallization of the flux film is excessively promoted and the lubricity in the mold is inferior. In these comparative examples E and F, the solidification temperature did not decrease so much when the cooling rate was 10 ° C. per minute compared with the case where the cooling rate was 2 ° C. per minute, and the effect of suppressing crystallization was insufficient. .

また、比較例Gは、atomic%で定義した(CaO+SrO)/SiO2が本発明の請求項1で規定する要件よりも低いので、SrOが含まれていないにもかかわらず、鋳型内の潤滑性は優れるものの、SiO2活量が高いので溶鋼中への巻込みが多く発生した。 In Comparative Example G, (CaO + SrO) / SiO 2 defined in atomic% is lower than the requirement defined in claim 1 of the present invention. Although excellent, the SiO 2 activity was high, and many entanglements in the molten steel occurred.

また、比較例Hは、一旦溶融した後に凝固したモールドフラックス中に晶/析出する主たる結晶がカスピダインであるので本発明の請求項1で規定する要件を満たさない例である。カスピダインが主たる結晶となった場合、本発明で規定する他の要件を満たしても結晶化を抑制することができないので、比較例Hにおいては低級酸化物であるB2O3を添加して結晶化を抑制した。その結果、溶鋼との界面の張力が低下し、モールドフラックスの巻き込みが発生し易くなった。 Further, Comparative Example H is an example that does not satisfy the requirement defined in claim 1 of the present invention because the main crystal that is crystallized / precipitated in the mold flux that has been once melted and then solidified is caspodyne. When caspidine is the main crystal, crystallization cannot be suppressed even if the other requirements specified in the present invention are satisfied. Therefore, in Comparative Example H, B 2 O 3 which is a lower oxide is added to crystal. Suppression was suppressed. As a result, the tension at the interface with the molten steel decreased, and the mold flux was likely to occur.

本発明の目的は、界面張力と粘度が高く溶鋼中に巻込まれにくいモールドフラックスにおいて、鋳型内の潤滑性を十分に高めることにある。それゆえ、界面張力低下を引き起こすFeOやMnO、B2O3などの低級酸化物の濃度が低いことが好ましいのは言うまでもない。具体的には、これら低級酸化物の濃度は、1.5atomic%以下であることが望ましい。 An object of the present invention is to sufficiently enhance the lubricity in a mold in a mold flux that has high interfacial tension and viscosity and is difficult to be wound into molten steel. Therefore, it goes without saying that it is preferable that the concentration of lower oxides such as FeO, MnO, and B 2 O 3 that cause a decrease in interfacial tension is low. Specifically, the concentration of these lower oxides is desirably 1.5 atomic% or less.

本発明は上記の例に限らず、各請求項に記載された技術的思想の範疇であれば、適宜実施の形態を変更しても良いことは言うまでもない。   The present invention is not limited to the above example, and it goes without saying that the embodiments may be changed as appropriate within the scope of the technical idea described in each claim.

Claims (2)

一旦溶融した後に凝固したモールドフラックス中に晶出もしくは析出する主たる結晶が、ゲーレナイト(Gehlenite)とアケルマナイト(Akermanite)との全率固溶体メリライト(Melilite)であり、かつ、前記メリライトに含まれるカルシウムの一部がストロンチウムに置き代わっている連続鋳造用モールドフラックスにおいて、
atomic%で定義したSrO/(CaO+SrO)すなわちSrO置換比が0.3〜0.7の範囲、atomic%で定義したAl2O3/(Al2O3+MgO)が0.4〜0.8の範囲、atomic%で定義した(CaO+SrO)/SiO2が1.1〜2.0であり、
冷却速度が毎分2℃の場合に比べ毎分10℃の場合に凝固温度が70℃以上低下することを特徴とする連続鋳造用モールドフラックス。
The main crystal that crystallizes or precipitates in the mold flux that has solidified after being melted is the total solid solution melilite of Gehlenite and Akermanite, and one of the calcium contained in the melilite. In mold flux for continuous casting where the part is replaced by strontium,
SrO / (CaO + SrO) defined by atomic%, that is, SrO substitution ratio is in the range of 0.3 to 0.7, Al 2 O 3 / (Al 2 O 3 + MgO) defined by atomic% is 0.4 to 0.8 (CaO + SrO) / SiO 2 defined by atomic%, 1.1 to 2.0,
A mold flux for continuous casting, wherein the solidification temperature decreases by 70 ° C. or more when the cooling rate is 10 ° C./min, compared to 2 ° C./min.
TiO2濃度が2atomic%以下であることを特徴とする請求項1に記載の連続鋳造用モールドフラックス。 The mold flux for continuous casting according to claim 1, wherein the TiO 2 concentration is 2 atomic% or less.
JP2015072348A 2015-03-31 2015-03-31 Mold flux for continuous casting Active JP6424713B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015072348A JP6424713B2 (en) 2015-03-31 2015-03-31 Mold flux for continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015072348A JP6424713B2 (en) 2015-03-31 2015-03-31 Mold flux for continuous casting

Publications (2)

Publication Number Publication Date
JP2016190261A true JP2016190261A (en) 2016-11-10
JP6424713B2 JP6424713B2 (en) 2018-11-21

Family

ID=57246018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015072348A Active JP6424713B2 (en) 2015-03-31 2015-03-31 Mold flux for continuous casting

Country Status (1)

Country Link
JP (1) JP6424713B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017080767A (en) * 2015-10-27 2017-05-18 新日鐵住金株式会社 Mold powder for continuous casting and continuous casting method of molten metal

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010125457A (en) * 2008-11-25 2010-06-10 Sumitomo Metal Ind Ltd Mold flux for continuous casting
JP2016019994A (en) * 2014-07-15 2016-02-04 新日鐵住金株式会社 Mold flux for continuous casting

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010125457A (en) * 2008-11-25 2010-06-10 Sumitomo Metal Ind Ltd Mold flux for continuous casting
JP2016019994A (en) * 2014-07-15 2016-02-04 新日鐵住金株式会社 Mold flux for continuous casting

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017080767A (en) * 2015-10-27 2017-05-18 新日鐵住金株式会社 Mold powder for continuous casting and continuous casting method of molten metal

Also Published As

Publication number Publication date
JP6424713B2 (en) 2018-11-21

Similar Documents

Publication Publication Date Title
JP4483662B2 (en) Mold flux for continuous casting of steel.
JP5370929B2 (en) Mold flux for continuous casting of steel
JP6269831B2 (en) Mold flux and continuous casting method for continuous casting of Ti-containing subperitectic steel
JP4708055B2 (en) Mold powder for continuous casting of steel
JP5708690B2 (en) Mold flux for continuous casting of steel
JP5704030B2 (en) Mold flux for continuous casting of steel
WO2016038725A1 (en) Mold flux for continuous casting of steel
JP6674093B2 (en) Mold powder for continuous casting of steel and continuous casting method
JP5585347B2 (en) Mold powder for continuous casting of steel
JP4513737B2 (en) Mold flux for continuous casting of steel
JP4665785B2 (en) Mold powder for continuous casting of steel
JP5142294B2 (en) Mold flux for continuous casting and continuous casting method
JP6354411B2 (en) Mold flux for continuous casting
JP5168104B2 (en) Mold flux for continuous casting
JP6424713B2 (en) Mold flux for continuous casting
JP5136994B2 (en) Continuous casting method of steel using mold flux
JP2008238221A (en) Powder for continuous casting
JP2004358485A (en) Mold flux for continuous casting of steel
JP5835153B2 (en) Mold flux for continuous casting of steel and continuous casting method
JP6510342B2 (en) Continuous casting powder for Al-containing steel and continuous casting method
JP2003326342A (en) Mold powder for continuous casting of steel
JP3399378B2 (en) Mold powder for continuous casting of steel and continuous casting method
JP6769344B2 (en) Continuous casting method of mold powder and steel for continuous casting
JP5447118B2 (en) High Si high Al steel continuous casting powder and continuous casting method
JP4626522B2 (en) Mold powder for continuous casting and continuous casting method for plain steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180925

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181008

R151 Written notification of patent or utility model registration

Ref document number: 6424713

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350