JP2016190208A - Method for recovering gypsum from waste water - Google Patents

Method for recovering gypsum from waste water Download PDF

Info

Publication number
JP2016190208A
JP2016190208A JP2015072001A JP2015072001A JP2016190208A JP 2016190208 A JP2016190208 A JP 2016190208A JP 2015072001 A JP2015072001 A JP 2015072001A JP 2015072001 A JP2015072001 A JP 2015072001A JP 2016190208 A JP2016190208 A JP 2016190208A
Authority
JP
Japan
Prior art keywords
waste water
gypsum
wastewater
electrical conductivity
ccx
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015072001A
Other languages
Japanese (ja)
Other versions
JP6432421B2 (en
Inventor
小西 正芳
Masayoshi Konishi
正芳 小西
壮 門野
So Kadono
壮 門野
卓子 森川
Takuko Morikawa
卓子 森川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Osaka Cement Co Ltd
Original Assignee
Sumitomo Osaka Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Osaka Cement Co Ltd filed Critical Sumitomo Osaka Cement Co Ltd
Priority to JP2015072001A priority Critical patent/JP6432421B2/en
Publication of JP2016190208A publication Critical patent/JP2016190208A/en
Application granted granted Critical
Publication of JP6432421B2 publication Critical patent/JP6432421B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Removal Of Specific Substances (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for recovering gypsum from waste water, in which gypsum can be prepared/recovered efficiently by effectively utilizing inorganic ions contained in various kinds of waste water, particularly by utilizing sulfate ion-containing waste water and calcium ion-containing waste water.SOLUTION: The method for recovering gypsum from waste water comprises the steps of: mixing the calcium ion-containing waste water A with the sulfate ion-containing waste water B to produce gypsum; and recovering the produced gypsum. It is desirable that a mixing ratio x is decided, when the waste water A is mixed with the waste water B, so that a difference (Ccx-Crx) between the calculated electrical conductivity Ccx of a liquid mixture of the waste water A with the waste water B and the measured electrical conductivity Crx thereof becomes maximum. The recovered gypsum is used when cement is produced.SELECTED DRAWING: Figure 3

Description

本発明は、排水からの石膏回収方法に関し、特に各種の排水中に含まれる硫酸イオンとカルシウムイオンとを有効利用して排水から石膏を得る、排水の石膏回収方法である。   The present invention relates to a method for collecting gypsum from wastewater, and in particular, is a method for collecting gypsum from wastewater to obtain gypsum from wastewater by effectively using sulfate ions and calcium ions contained in various types of wastewater.

一般に、セメント凝結調整に用いられる石膏としては,石炭火力発電所の排ガス処理により得られる排脱二水石膏や、硫酸と石灰を混合・反応させて調製される化学石膏、チタンを精練する工程から排出するチタン石膏等がある。   In general, gypsum used for cement setting adjustment includes exhausted dihydric gypsum obtained by treating exhaust gas from coal-fired power plants, chemical gypsum prepared by mixing and reacting sulfuric acid and lime, and a process of refining titanium. There are titanium gypsum to discharge.

石膏を回収する方法として、特開平11−207146号公報(特許文献1)には、石炭火力発電所から排出される排煙をスート混合排煙脱硫装置で処理して得られる排煙脱硫排水を蒸発濃縮した後に固液分離し、固体側で石膏を回収する方法が記載されている。   As a method for recovering gypsum, Japanese Patent Application Laid-Open No. 11-207146 (Patent Document 1) discloses a flue gas desulfurization drainage obtained by treating flue gas discharged from a coal-fired power plant with a soot mixed flue gas desulfurization device. A method is described in which solid-liquid separation is performed after evaporation and concentration, and the gypsum is recovered on the solid side.

また、特開2001−145818号公報(特許文献2)には、高硫黄含有燃料ボイラで燃焼した際に発生する排ガスを、脱硝装置で窒素酸化物を除去した後、電気集塵機で排ガス中のダストを除去し、脱硫装置で排ガス中の硫黄化合物をスラリ状のアルカリ中和剤で中和し、更に石膏回収装置で石膏として分離回収する方法が記載されている。   Japanese Patent Laid-Open No. 2001-145818 (Patent Document 2) describes exhaust gas generated when burned in a high-sulfur-containing fuel boiler, after removing nitrogen oxides with a denitration device, and then collecting dust in the exhaust gas with an electric dust collector. In which a sulfur compound in exhaust gas is neutralized with a slurry-like alkali neutralizing agent in a desulfurization apparatus, and further separated and recovered as gypsum in a gypsum recovery apparatus.

一方、各種排水は、環境基準に合致するように排水処理、例えば水処理が行われて放流されているのが実情であるが、排水中に含まれる無機塩については特段厳しい排水処理による濃度規制がなく、高塩濃度で放流されている。   On the other hand, various types of wastewater are actually discharged after being subjected to wastewater treatment, for example, water treatment so as to meet environmental standards, but the concentration of inorganic salts contained in wastewater is restricted by strict wastewater treatment. There is not, and it is discharged with high salt concentration.

例えば、廃硫酸は、産業廃棄物処理業者で、アルカリ(水酸化ナトリウム、水酸化カリウム、廃棄物のアルカリ等)によるアルカリ処理が施されて中和処理が行われ、浮遊物質が存在する場合にはフィルタープレス等で固液分離がなされ、また、有機物が存在する場合には生物処理等が行われて、無機イオンを含む形で排水されている。   For example, waste sulfuric acid is treated by an industrial waste disposal contractor when it is neutralized by alkali treatment (sodium hydroxide, potassium hydroxide, waste alkali, etc.), and there are suspended substances. Solid-liquid separation is performed with a filter press or the like, and when an organic substance is present, biological treatment or the like is performed, and the wastewater is drained in a form containing inorganic ions.

またセメント会社等においては、セメント製造の原料とするため焼却灰や飛灰等を受け入れて用いているが、該焼却灰や飛灰に含有される塩素はセメント製造プロセス上およびセメント規格上問題となるため、受け入れた焼却灰や飛灰を水洗処理している。飛灰を水洗処理した後の排水には、無機イオンが多く含まれており、これらの無機イオンが含まれた状態で放流されている。   Cement companies accept and use incinerated ash and fly ash as raw materials for cement production, but the chlorine contained in the incinerated ash and fly ash is a problem in the cement production process and in cement specifications. Therefore, the received incineration ash and fly ash are washed with water. The waste water after the fly ash is washed with water contains a large amount of inorganic ions, and is discharged in a state containing these inorganic ions.

これまでの従来の石膏の回収方法は、いずれも廃棄処理される排水から石膏を調製する方法ではない。
また、無機イオンが多く含まれている排水が有効にリサイクルされることなく廃棄されている状況に鑑み、これらの排水を有効利用することが期待されている。
None of the conventional methods for collecting gypsum so far is a method for preparing gypsum from wastewater to be disposed of.
Moreover, in view of the situation where wastewater containing a large amount of inorganic ions is discarded without being effectively recycled, it is expected that these wastewater will be used effectively.

特開平11−207146号公報Japanese Patent Laid-Open No. 11-207146 特開2001−145818号公報JP 2001-145818 A

従って、本発明の目的は、上記問題を解決し、各種排水に含まれる無機イオンを有効利用し、特に、硫酸イオンが含まれる排水及びカルシウムイオンが含まれる排水を利用して、石膏を効率よく調製して回収することができる、排水からの石膏回収方法を提供することである。   Accordingly, the object of the present invention is to solve the above problems, effectively use inorganic ions contained in various wastewaters, and in particular, use wastewater containing sulfate ions and wastewater containing calcium ions to efficiently use gypsum. It is to provide a method for recovering gypsum from waste water that can be prepared and recovered.

上記課題を解決するため、本発明の排水からの石膏回収方法は、以下のような技術的特徴を備えている。   In order to solve the above problems, the method for recovering gypsum from wastewater of the present invention has the following technical features.

即ち、請求項1記載の排水からの石膏回収方法は、カルシウムイオンを含む排水Aと、硫酸イオンを含む排水Bとを混合することで石膏を生成し、生成した石膏を回収することを特徴とする、排水からの石膏回収方法である。
また、請求項2記載の排水からの石膏回収方法は、請求項1記載の排水からの石膏回収方法において、カルシウムイオンを含む排水Aはカルシウムイオン濃度が5000ppm以上であり、硫酸イオンを含む排水Bは硫酸イオン濃度が5000ppm以上であることを特徴とする、排水からの石膏回収方法である。
That is, the method for recovering gypsum from waste water according to claim 1 is characterized in that gypsum is produced by mixing waste water A containing calcium ions and waste water B containing sulfate ions, and the produced gypsum is recovered. This is a method for collecting gypsum from wastewater.
The gypsum recovery method from waste water according to claim 2 is the gypsum recovery method from waste water according to claim 1, wherein the waste water A containing calcium ions has a calcium ion concentration of 5000 ppm or more and the waste water B contains sulfate ions. Is a method for recovering gypsum from waste water, characterized in that the sulfate ion concentration is 5000 ppm or more.

請求項3記載の排水からの石膏回収方法は、請求項1又は2記載の排水からの石膏回収方法において、排水Aと排水Bとの混合割合は、電気伝導度C1(μS/cm)の排水A及び電気伝導度C2(μS/cm)の排水Bを混合割合xで混合した混合液の計算上の電気伝導度Ccxを、以下の式1より求め、
Ccx(μS/cm)=C1×(1−x)+C2×x・・・(式1)
(但し、式1中、混合割合(混合率)xは、x=排水Bの体積(cm)/(排水Aの体積(cm)+排水Bの体積(cm))、Ccx(μS/cm)は混合割合x時の計算上の電気伝導度を示す)、
混合割合x時の混合液の実測の電気伝導度Crx(μS/cm)を測定し、前記計算上の電気伝導度Ccxと前記実測の電気伝導度との差(Ccx−Crx)が最大となる混合割合で排水Aと排水Bとを混合することを特徴とする、排水からの石膏回収方法である。
The method for recovering gypsum from waste water according to claim 3 is the method for recovering gypsum from waste water according to claim 1 or 2, wherein the mixing ratio of waste water A and waste water B is waste water having electrical conductivity C1 (μS / cm). The calculated electrical conductivity Ccx of a mixed solution obtained by mixing A and the drainage B having an electric conductivity C2 (μS / cm) at a mixing ratio x is obtained from the following formula 1.
Ccx (μS / cm) = C1 × (1−x) + C2 × x (Expression 1)
(However, in Formula 1, the mixing ratio (mixing rate) x is x = volume of drainage B (cm 3 ) / (volume of drainage A (cm 3 ) + volume of drainage B (cm 3 ))), Ccx (μS / cm) indicates the calculated electrical conductivity when the mixing ratio is x),
The measured electrical conductivity Crx (μS / cm) of the mixed solution at the mixing ratio x is measured, and the difference (Ccx−Crx) between the calculated electrical conductivity Ccx and the measured electrical conductivity is maximized. A method for recovering gypsum from wastewater, characterized in that wastewater A and wastewater B are mixed at a mixing ratio.

請求項4記載の排水からの石膏回収方法は、請求項1〜3いずれかの項記載の排水からの石膏回収法において、排水は蒸発濃縮又は膜濃縮によりカルシウムイオン濃度及び/又は硫酸イオン濃度を高めてから混合し、また回収した石膏はセメント製造に用いることを特徴とする、排水からの石膏回収方法である。   The method for recovering gypsum from waste water according to claim 4 is the method for recovering gypsum from waste water according to any one of claims 1 to 3, wherein the waste water has a calcium ion concentration and / or a sulfate ion concentration by evaporative concentration or membrane concentration. This is a method for recovering gypsum from waste water, characterized in that the gypsum that is mixed after being raised and recovered is used for cement production.

本発明の排水からの石膏回収方法は、これまで放流廃棄されていた排水を有効に利用することができるとともに、該排水より石膏を効率良く調製して回収することが可能となる。
特に、回収された石膏を、セメント製造用の石膏として有効利用することで、セメント製造工程において使用料の多い石膏の供給資源としての有効利用の拡大を図ることができる。
The method for recovering gypsum from wastewater of the present invention can effectively use wastewater that has been discharged and discarded, and can efficiently prepare and recover gypsum from the wastewater.
In particular, by effectively using the collected gypsum as a gypsum for cement production, it is possible to expand the effective utilization as a supply resource for gypsum having a high usage fee in the cement production process.

本発明の一例の、カルシウムイオンを含む排水及び硫酸イオンを含む排水の混合率と二水石膏生成量との関係、及び、カルシウムイオンを含む排水及び硫酸イオンを含む排水の混合率と電気伝導度の差(計算上の電気伝導度Ccxと実測の電気伝導度Crxとの差(Ccx−Crx))との関係を示す図である。The relationship between the mixing rate of wastewater containing calcium ions and wastewater containing sulfate ions and the amount of dihydrate gypsum produced, and the mixing rate and electrical conductivity of wastewater containing calcium ions and wastewater containing sulfate ions, It is a figure which shows the relationship with the difference (The difference (Ccx-Crx) of calculated electrical conductivity Ccx and measured electrical conductivity Crx). 本発明の他の例の、カルシウムイオンを含む排水及び硫酸イオンを含む排水の混合率と二水石膏生成量との関係、及び、カルシウムイオンを含む排水及び硫酸イオンを含む排水の混合率と電気伝導度の差(計算上の電気伝導度Ccxと実測の電気伝導度Crxとの差(Ccx−Crx))との関係を示す図である。Other examples of the present invention, the relationship between the mixing rate of wastewater containing calcium ions and wastewater containing sulfate ions and the amount of dihydrate gypsum produced, and the mixing rate of wastewater containing calcium ions and wastewater containing sulfate ions and electricity It is a figure which shows the relationship with the difference of conductivity (The difference (Ccx-Crx) of calculated electrical conductivity Ccx and measured electrical conductivity Crx). 本発明の他の例の、カルシウムイオンを含む排水及び硫酸イオンを含む排水の混合率と二水石膏生成量との関係、及び、カルシウムイオンを含む排水及び硫酸イオンを含む排水の混合率と電気伝導度の差(計算上の電気伝導度Ccxと実測の電気伝導度Crxとの差(Ccx−Crx))との関係を示す図である。Other examples of the present invention, the relationship between the mixing rate of wastewater containing calcium ions and wastewater containing sulfate ions and the amount of dihydrate gypsum produced, and the mixing rate of wastewater containing calcium ions and wastewater containing sulfate ions and electricity It is a figure which shows the relationship with the difference of conductivity (The difference (Ccx-Crx) of calculated electrical conductivity Ccx and measured electrical conductivity Crx). 本発明の他の例の、カルシウムイオンを含む排水及び硫酸イオンを含む排水の混合率と二水石膏生成量との関係、及び、カルシウムイオンを含む排水及び硫酸イオンを含む排水の混合率と電気伝導度の差(計算上の電気伝導度Ccxと実測の電気伝導度Crxとの差(Ccx−Crx))との関係を示す図である。Other examples of the present invention, the relationship between the mixing rate of wastewater containing calcium ions and wastewater containing sulfate ions and the amount of dihydrate gypsum produced, and the mixing rate of wastewater containing calcium ions and wastewater containing sulfate ions and electricity It is a figure which shows the relationship with the difference of conductivity (The difference (Ccx-Crx) of calculated electrical conductivity Ccx and measured electrical conductivity Crx). 本発明の他の例の、カルシウムイオンを含む排水及び硫酸イオンを含む排水の混合率と二水石膏生成量との関係、及び、カルシウムイオンを含む排水及び硫酸イオンを含む排水の混合率と電気伝導度の差(計算上の電気伝導度Ccxと実測の電気伝導度Crxとの差(Ccx−Crx))との関係を示す図である。Other examples of the present invention, the relationship between the mixing rate of wastewater containing calcium ions and wastewater containing sulfate ions and the amount of dihydrate gypsum produced, and the mixing rate of wastewater containing calcium ions and wastewater containing sulfate ions and electricity It is a figure which shows the relationship with the difference of conductivity (The difference (Ccx-Crx) of calculated electrical conductivity Ccx and measured electrical conductivity Crx). 本発明の他の例の、カルシウムイオンを含む排水及び硫酸イオンを含む排水の混合率と二水石膏生成量との関係、及び、カルシウムイオンを含む排水及び硫酸イオンを含む排水の混合率と電気伝導度の差(計算上の電気伝導度Ccxと実測の電気伝導度Crxとの差(Ccx−Crx))との関係を示す図である。Other examples of the present invention, the relationship between the mixing rate of wastewater containing calcium ions and wastewater containing sulfate ions and the amount of dihydrate gypsum produced, and the mixing rate of wastewater containing calcium ions and wastewater containing sulfate ions and electricity It is a figure which shows the relationship with the difference of conductivity (The difference (Ccx-Crx) of calculated electrical conductivity Ccx and measured electrical conductivity Crx). 排水より回収された沈殿物を同定した粉末X線回析チャート図である。It is a powder X-ray diffraction chart which identified the deposit collect | recovered from the waste_water | drain.

本発明を、以下の実施形態により説明する。
本発明の排水からの石膏回収方法は、カルシウムイオンを含む排水Aと、硫酸イオンを含む排水Bとを混合することで石膏を生成し、生成した石膏を回収する、排水からの石膏回収方法である。
The present invention will be described by the following embodiments.
The method for recovering gypsum from wastewater of the present invention is a method for recovering gypsum from wastewater, which generates gypsum by mixing wastewater A containing calcium ions and wastewater B containing sulfate ions, and recovers the generated gypsum. is there.

本発明の排水は、無機イオン、具体的には硫酸イオンを含む排水及びカルシウムイオンを含む排水であれば、特に限定されず、各種工場、各種工程から排出される排水を使用することができる。
例えば、産業廃棄物回収業者は、上記したように廃棄物をアルカリで中和処理するが、その結果として、硫酸ナトリウムや硫酸カリウムを含む排水、即ち硫酸イオンを含む排水が発生する。また焼却灰や飛灰洗浄業者からは、塩化カルシウムを含む排水、即ちカルシウムイオンを含む排水が発生する。
本発明においては、これらのカルシウムイオンを含む排水や硫酸イオンを含む排水を好適に用いることができ、これにより、これまで廃棄処理されていた排水の有効利用を図ることが可能となる。
The wastewater of the present invention is not particularly limited as long as it is a wastewater containing inorganic ions, specifically sulfate ions and calcium ions, and wastewater discharged from various factories and various processes can be used.
For example, industrial waste collectors neutralize waste with alkali as described above. As a result, wastewater containing sodium sulfate or potassium sulfate, that is, wastewater containing sulfate ions is generated. Further, wastewater containing calcium chloride, that is, wastewater containing calcium ions, is generated from incineration ash and fly ash cleaning contractors.
In the present invention, wastewater containing these calcium ions and wastewater containing sulfate ions can be suitably used, thereby enabling effective use of wastewater that has been disposed of so far.

上記無機イオンを含む排水に規制物質が含まれている場合には、排水に水処理等の規制物質を除去する処理を行った後の排水を用いることができるが、排水から石膏を回収した後に水処理等の規制物質を除去する処理を行ってもよい。
特に規制物質が重金属等であった場合には、本発明の方法により回収された石膏を用いて製造するセメントの品質に影響を及ぼすため、なるべく排水から重金属等の規制物質を除去する処理を行なった後の排水を用いることが望ましい。
When regulated substances are contained in the wastewater containing inorganic ions, the wastewater after treatment to remove regulated substances such as water treatment can be used in the wastewater, but after collecting gypsum from the drainage You may perform the process which removes controlled substances, such as water treatment.
In particular, when the regulated substances are heavy metals, etc., in order to affect the quality of the cement produced using the gypsum recovered by the method of the present invention, a treatment to remove the regulated substances such as heavy metals from the waste water is performed as much as possible. It is desirable to use the drainage after

次いで、カルシウムイオンを含む排水Aと、硫酸イオンを含む排水Bとを混合することで石膏を生成させる。
該混合により生成される石膏の生成効率を向上させるため、カルシウムイオンを含む排水Aはカルシウムイオン濃度が5000ppm以上であり、硫酸イオンを含む排水Bは硫酸イオン濃度が5000ppm以上であることが、排水からの石膏を効率良く回収できる点から望ましい。
Next, gypsum is generated by mixing waste water A containing calcium ions and waste water B containing sulfate ions.
In order to improve the production efficiency of gypsum produced by the mixing, the waste water A containing calcium ions has a calcium ion concentration of 5000 ppm or more, and the waste water B containing sulfate ions has a sulfate ion concentration of 5000 ppm or more. It is desirable from the viewpoint that gypsum from can be efficiently recovered.

カルシウムイオンを含む排水Aのカルシウムイオン濃度を5000ppm以上とし、硫酸イオンを含む排水Bの硫酸イオン濃度の5000ppm以上とするために、排水A及び排水Bは、蒸発濃縮又は膜濃縮により排水中のカルシウムイオン濃度や硫酸イオン濃度を高めて用いることが望ましい。   In order to set the calcium ion concentration of the waste water A containing calcium ions to 5000 ppm or more and the sulfate ion concentration of the waste water B containing sulfate ions to 5000 ppm or more, the waste water A and the waste water B are calcium in the waste water by evaporation concentration or membrane concentration. It is desirable to increase the ion concentration or sulfate ion concentration.

上記排水に含まれるカルシウムイオン濃度や硫酸イオン濃度により、石膏を調製するための排水Aと排水Bの混合割合は変化するため、含有される各種イオン濃度を予め分析し、生成される沈殿物である石膏が最も効率的に行える混合割合で、排水Aと排水Bとを混合することが好ましい。   The mixing ratio of waste water A and waste water B for preparing gypsum varies depending on the calcium ion concentration and sulfate ion concentration contained in the waste water. It is preferable to mix the waste water A and the waste water B at a mixing ratio at which a certain gypsum can be most efficiently performed.

かかる最適混合の制御方法としては、電気伝導度を用いることが可能である。
排水Aと排水Bのそれぞれの排水に含まれるカルシウム濃度や硫酸イオン濃度は一定ではなく変化する。そのため電気伝導度の測定を行い、石膏沈殿が最も効率的に行える混合割合を決定することが望ましい。
As a method for controlling such optimum mixing, electric conductivity can be used.
The calcium concentration and sulfate ion concentration contained in each drainage of the drainage A and drainage B are not constant but change. Therefore, it is desirable to measure the electrical conductivity and determine the mixing ratio at which gypsum precipitation is most efficient.

具体的には、排水Aと排水Bの電気伝導度C1、C2をそれぞれ測定する。この2つの測定値から、排水Aと排水Bとの混合割合x時の電気伝導度を下記式1により求める。
Ccx=C1×(1−x)+C2×x・・・式1
但し、上記式中において、
混合割合x=排水Bの体積/(排水Aの体積+排水Bの体積)
混合割合xの時の計算上の電気伝導度:Ccx
混合割合xの時の実測の電気伝導度:Crx
を示す。
次いで、排水Aと排水Bとを混合した後の混合液の実際の電気伝導度をCrxとして測定し、上記計算上の電気伝導度Ccxと実測した混合液の電気伝導度Crxより(Ccx−Crx)を算出し、該算出値が最大となるように、排水Aと排水Bとの混合割合を制御することで、生成される石膏沈殿物の量を最大となるように制御することが可能となる。
Specifically, the electrical conductivities C1 and C2 of the drainage A and the drainage B are measured. From these two measured values, the electrical conductivity at the mixing ratio x of the waste water A and the waste water B is obtained by the following formula 1.
Ccx = C1 × (1-x) + C2 × x Equation 1
However, in the above formula,
Mixing ratio x = volume of waste water B / (volume of waste water A + volume of waste water B)
Calculated electrical conductivity at mixing ratio x: Ccx
Measured electrical conductivity at mixing ratio x: Crx
Indicates.
Next, the actual electrical conductivity of the mixed liquid after mixing the drainage A and the drainage B is measured as Crx. From the calculated electrical conductivity Ccx and the measured electrical conductivity Crx of the mixed liquid (Ccx−Crx ), And by controlling the mixing ratio of the drainage A and the drainage B so that the calculated value is maximized, it is possible to control the amount of the gypsum precipitate generated to be maximized. Become.

排水Aと排水Bとを混合させて石膏を生成させるための混合後の反応時間については、特に限定されず、上記した電気伝導度を継続的に測定し、電気伝導度がある値で安定となった時を反応終了の目安とすることができる。これは、生成される石膏沈殿に伴い混合液の電気伝導度は小さくなるが、生成する石膏結晶成長が終了すると電気伝導度もある値で安定するからであり、この安定値を反応終了の目安とすることが可能となる。   The reaction time after mixing for mixing the waste water A and the waste water B to produce gypsum is not particularly limited, and the above-described electrical conductivity is continuously measured, and the electrical conductivity is stable at a certain value. The time when the reaction has ended can be used as a measure of the end of the reaction. This is because the electric conductivity of the mixed solution decreases with the gypsum precipitation produced, but the electric conductivity stabilizes at a certain value when the gypsum crystal growth to be produced is completed. It becomes possible.

また、反応時間については、排水Aと排水Bの2つの液を混合してから、石膏の析出が完了するまでに要する時間は例えば数分から数時間である。石膏の析出量が少ない場合には、より長い時間を要する傾向にある。かかる反応時間は短いほうが処理能力的に有利となり、該反応時間を短くする方法としては、種結晶を排水混合液に入れる方法があげられる。
また、混合方式は、バッチ処理でも連続処理でもどちらでも構わない。
Moreover, about reaction time, after mixing two liquids, the waste_water | drain A and the waste_water | drain B, the time required for the precipitation of gypsum to be completed is several minutes to several hours, for example. When the amount of gypsum deposited is small, a longer time tends to be required. A shorter reaction time is advantageous in terms of throughput, and a method for shortening the reaction time includes a method of putting seed crystals in a wastewater mixture.
The mixing method may be either batch processing or continuous processing.

排水Aと排水Bとを混合して石膏を生成する反応時のpH、温度、種晶反応時のpHについては特に制限されるものではないが、排水A及び排水Bはともに放流されるものであることから、排水基準内であり、pH5.0〜9.0とすることが望ましい。   There are no particular restrictions on the pH, temperature, and pH at the time of the seed crystal reaction when the waste water A and the waste water B are mixed to produce gypsum, but both the waste water A and the waste water B are discharged. Therefore, it is within the drainage standard, and it is desirable to set the pH to 5.0 to 9.0.

反応温度についても特に制限するものではないが,反応温度を56℃以上とすると、回収される石膏の形態が、二水石膏から無水石膏に変化することとなる。
回収される石膏が二水石膏でも無水石膏であっても、セメント用石膏として何ら問題なく利用できるが、設備的・熱エネルギー的に常温で反応させることが好ましい。
The reaction temperature is not particularly limited, but when the reaction temperature is 56 ° C. or higher, the recovered gypsum form changes from dihydrate gypsum to anhydrous gypsum.
Regardless of whether the recovered gypsum is dihydrate gypsum or anhydrous gypsum, it can be used without any problem as cement gypsum, but it is preferable to react at room temperature in terms of equipment and thermal energy.

このようにして排水混合液中に沈殿物として生成された石膏の回収のため、固液分離操作を実施する。
その際には、石膏の粒子径が大きいほど濾過性能が高く生産性が高いため、石膏の粒子径については30μm以上、より好ましくは50μm以上、より好ましくは100μm以上とすることが望ましい。
In this way, a solid-liquid separation operation is performed to recover the gypsum generated as a precipitate in the wastewater mixture.
At that time, the larger the gypsum particle size, the higher the filtration performance and the higher the productivity. Therefore, the gypsum particle size is preferably 30 μm or more, more preferably 50 μm or more, and even more preferably 100 μm or more.

固液分離操作は、公知の任意の方法を適用することができる。
例えば、遠心分離装置、フィルタープレス、ベルトプレス等の手段を用いて固液分離することができ、特に含水率の調整が行いやすい、遠心分離装置を好適に適用することができる。
Any known method can be applied to the solid-liquid separation operation.
For example, solid-liquid separation can be performed using means such as a centrifugal separator, a filter press, and a belt press, and a centrifugal separator that can easily adjust the moisture content can be suitably applied.

また、得られた石膏沈殿物を脱水したものは、ケーキ内部に含まれる濾液をなくすために、水による洗浄を行うことが好ましい。
回収する石膏の含水率に関しては、特に限定されない。例えば、遠心分離装置を適用した場合には、遠心力・時間により含水率の調整が可能であるが、5質量%未満となると、屋外にストックした場合、風などにより粉塵が舞う恐れがあるため、好ましくは5質量%以上、より好ましくは8質量%以上のものを回収することが望ましい。また、20質量%を超えると、回収した石膏がべたべたとするようになりハンドリングが悪くなる場合があるので、20質量%以下、望ましくは15質量%以下とすることが好ましい。
Moreover, what dehydrated the obtained gypsum deposit is preferably washed with water in order to eliminate the filtrate contained in the cake.
It does not specifically limit regarding the moisture content of the gypsum to collect | recover. For example, when a centrifugal separator is applied, the moisture content can be adjusted by centrifugal force and time. However, if it is less than 5% by mass, there is a risk of dust flying due to wind etc. when stocked outdoors. Preferably, it is desirable to recover those having 5% by mass or more, more preferably 8% by mass or more. On the other hand, if it exceeds 20% by mass, the collected gypsum becomes sticky and handling may be deteriorated. Therefore, it is preferably 20% by mass or less, and preferably 15% by mass or less.

このようにして回収された石膏は、セメント製造用に有効に用いることができる。本発明により回収された石膏を用いて製造されたセメントモルタルやコンクリートは、従来の一般に用いられる石膏を用いて製造されたセメントモルタルやコンクリートと比較して、凝結性の劣化や強度の低下を招くものではなく、セメント製造用石膏として良好に用いることが可能である。   The gypsum collected in this way can be used effectively for cement production. The cement mortar and concrete manufactured using the gypsum recovered according to the present invention causes a deterioration in setting property and a decrease in strength as compared with cement mortar and concrete manufactured using conventional gypsum. It can be used favorably as a gypsum for cement production.

以下、本発明を実施例により説明する。
飛灰洗浄水を水処理して得られた飛灰洗浄処理排水を排水A(溶液1〜3)とし、産業廃棄物処理業者が産業廃棄物にアルカリ処理を施して中和した中和処理排水を排水B(溶液4〜5)として、各溶液1〜5に含まれる無機イオンの量を測定した。
その結果をそれぞれ表1及び表2に示す。
Hereinafter, the present invention will be described with reference to examples.
Neutralized wastewater obtained by treating fly ash washing water as wastewater A (Solutions 1 to 3) and neutralizing industrial waste with alkali treatment. Was the waste water B (solutions 4 to 5), and the amount of inorganic ions contained in each of the solutions 1 to 5 was measured.
The results are shown in Table 1 and Table 2, respectively.

Figure 2016190208
Figure 2016190208

Figure 2016190208
Figure 2016190208

排水A(各溶液1〜3)それぞれと、排水B(溶液4)とを種々の混合率で混合し、生成した沈殿物を回収して、生成量を計量した。
なお、排水Aの溶液1と排水Bの溶液4との混合を実験1、排水Aの溶液2と排水Bの溶液4との混合を実験2、排水Aの溶液3と排水Bの溶液4との混合を実験3とした。
その結果を図1〜図3に示す。
また、排水A(各溶液1〜3)それぞれと、排水B(溶液5)とを種々の混合率で混合し、生成した沈殿物を回収して、生成量を計量した。
なお、排水Aの溶液1と排水Bの溶液5との混合を実験4、排水Aの溶液2と排水Bの溶液5との混合を実験5、排水Aの溶液3と排水Bの溶液5との混合を実験6とした。
その結果を図4〜図6に示す。
Each of the waste water A (each solution 1 to 3) and the waste water B (solution 4) were mixed at various mixing ratios, the generated precipitates were collected, and the amount produced was measured.
In addition, the mixing of the waste water A solution 1 and the waste water B solution 4 was performed in Experiment 1, the mixing of the waste water A solution 2 and the waste water B solution 4 in Experiment 2, the waste water A solution 3 and the waste water B solution 4 Was mixed as Experiment 3.
The results are shown in FIGS.
Moreover, each waste_water | drain A (each solution 1-3) and waste_water | drain B (solution 5) were mixed with various mixing rates, the produced | generated deposits were collect | recovered, and the production amount was measured.
In addition, the mixing of the waste water A solution 1 and the waste water B solution 5 was performed in Experiment 4, the mixing of the waste water A solution 2 and the waste water B solution 5 in Experiment 5, the waste water A solution 3 and the waste water B solution 5 This was designated as Experiment 6.
The results are shown in FIGS.

なお、表1に示す排水Aの溶液1と排水Bの溶液4とを混合することにより得られた生成沈殿物を40℃で乾燥した後、粉末X線回析(ブルカー社製、D8 ADVANCE)により解析して該乾燥沈殿物の同定を行った。
その結果を図7に示す。
図7のチャートより、得られた沈殿物は二水石膏であることが明らかとなった。
また、同様に排水Aの溶液2又は3と排水Bの溶液4との混合から得られた各沈殿物、また排水Aの各溶液1〜3と排水Bの溶液5との混合から得られた各沈殿物も、上記と同様にして粉末X線回析(ブルカー社製、D8 ADVANCE)により解析して該乾燥沈殿物の同定を行ったところ、二水石膏であることが明らかとなった。
従って、各排水Aと各排水Bとをそれぞれ混合することにより、二水石膏が得られることがわかった。
In addition, after drying the produced | generated deposit obtained by mixing the solution 1 of the waste_water | drain A shown in Table 1 and the solution 4 of the waste_water | drain B at 40 degreeC, powder X-ray diffraction (The Bruker company make, D8 ADVANCE) The dry precipitate was identified by analysis.
The result is shown in FIG.
From the chart of FIG. 7, it was revealed that the obtained precipitate was dihydrate gypsum.
Similarly, each precipitate obtained from the mixing of the solution 2 or 3 of the waste water A and the solution 4 of the waste water B, and also obtained from the mixing of the solutions 1 to 3 of the waste water A and the solution 5 of the waste water B. Each precipitate was also analyzed by powder X-ray diffraction (D8 ADVANCE, manufactured by Bruker) in the same manner as described above, and the dry precipitate was identified.
Therefore, it turned out that dihydrate gypsum is obtained by mixing each waste_water | drain A and each waste_water | drain B, respectively.

また、各排水に含まれるカルシウム濃度、硫酸イオン濃度により、各排水の混合割合は変化するため、該排水に含まれる各種イオン濃度を分析測定しておき、生成する石膏が最も効率的に生成する混合割合で混合することが望ましく、その最適混合の制御方法として、電気伝導度を用いた。
排水Aの溶液1と排水Bの溶液4とを混合する場合を代表例として、以下に具体的に説明する。
排水Aの溶液1の電気伝導度を、TOADKK社製のポータブル電気伝導度計(CM−31P)を用いて測定し、その値をC1とする。一方の排水Bの溶液4の電気伝導度を、同様にして測定し、その値をC2とする。なお、溶液1のC1は、76100μS/cmであり、溶液4のC2は、105300μS/cmであった。
In addition, since the mixing ratio of each drainage varies depending on the calcium concentration and sulfate ion concentration contained in each wastewater, various ion concentrations contained in the wastewater are analyzed and measured, and the generated gypsum is generated most efficiently. It is desirable to mix at a mixing ratio, and electric conductivity was used as a method for controlling the optimum mixing.
The case where the solution 1 of the waste water A and the solution 4 of the waste water B are mixed will be specifically described below as a representative example.
The electric conductivity of the solution 1 of the waste water A is measured using a portable electric conductivity meter (CM-31P) manufactured by TOADKK, and the value is C1. The electrical conductivity of the solution 4 of one waste water B is measured in the same manner, and the value is defined as C2. In addition, C1 of the solution 1 was 76100 μS / cm, and C2 of the solution 4 was 105300 μS / cm.

得られた排水Aの溶液1の電気伝導度C1(μS/cm)と、排水Bの溶液4の電気伝導度C2(μS/cm)との2つの測定値から、溶液1と溶液4とを混合割合xで混合した混合液の電気伝導度Ccxを、以下の式1より求めた。
Ccx(μS/cm)=C1×(1−x)+C2×x・・・(式1)
但し、式1中、
混合割合(混合率)x=排水Bの溶液4の体積(cm)/(排水Aの溶液1の体積(cm)+排水Bの溶液4の体積(cm))
Ccx(μS/cm):混合割合x時の計算上の電気伝導度
を示す。
From the two measured values of the electric conductivity C1 (μS / cm) of the solution 1 of the waste water A and the electric conductivity C2 (μS / cm) of the solution 4 of the waste water B, the solution 1 and the solution 4 are obtained. The electric conductivity Ccx of the mixed liquid mixed at the mixing ratio x was obtained from the following formula 1.
Ccx (μS / cm) = C1 × (1−x) + C2 × x (Expression 1)
However, in Formula 1,
Mixing ratio (mixing rate) x = volume of wastewater B solution 4 (cm 3 ) / (volume of wastewater A solution 1 (cm 3 ) + volume of wastewater B solution 4 (cm 3 ))
Ccx (μS / cm): Shows the calculated electrical conductivity when the mixing ratio is x.

次いで、種々の混合割合x時の混合液の実測の電気伝導度Crx(μS/cm)を測定し、次いで、電気伝導度の差(Ccx−Crx)を求めた。
その結果を図1に示す。
Next, the measured electrical conductivity Crx (μS / cm) of the mixed solution at various mixing ratios x was measured, and then the difference in electrical conductivity (Ccx−Crx) was obtained.
The result is shown in FIG.

同様にして、排水Aの溶液2〜溶液3と排水Bの溶液4とを混合した場合の電気伝導度の差:(Ccx−Crx)をそれぞれ図2〜3に、また排水Aの溶液1〜3と排水Bの溶液5とを混合した場合の電気伝導度の差(Ccx−Crx)をそれぞれ図4〜6に示す。
なお、溶液2のC1は77700μS/cm、溶液3のC1は61500μS/cm、溶液5のC2は70100μS/cmであった。
Similarly, the difference in electrical conductivity when the solutions 2 to 3 of the waste water A and the solution 4 of the waste water B are mixed: (Ccx−Crx) is shown in FIGS. 4 and 6 show the difference in electric conductivity (Ccx-Crx) when 3 and the solution 5 of the waste water B are mixed.
C1 of Solution 2 was 77700 μS / cm, C1 of Solution 3 was 61500 μS / cm, and C2 of Solution 5 was 70100 μS / cm.

図1〜6より、電気伝導度の差:(Ccx−Crx)と石膏の生成量とは相関関係があることがわかる。従って、排水Aと排水Bとから石膏を効率よく回収するためには、かかる電気伝導度の差(Ccx−Crx)が最大になるような混合比で配合すれば、排液からの石膏の回収が極めて有効に実施することが可能となる。   1 to 6, it can be seen that there is a correlation between the difference in electrical conductivity: (Ccx−Crx) and the amount of gypsum produced. Therefore, in order to efficiently recover gypsum from waste water A and waste water B, if the mixture ratio is such that the difference in electrical conductivity (Ccx-Crx) is maximized, the gypsum is recovered from the waste liquid. Can be implemented very effectively.

また、排水Aの溶液2と排水Bの溶液4(実験例2)、排水Aの溶液3と排水Bの溶液4(実験例3)とを、それぞれ体積混合比6:4(x=0.4)でバッチ混合し、生成沈殿した石膏を固液分離により回収した。   Further, the wastewater A solution 2 and the wastewater B solution 4 (experimental example 2), the wastewater A solution 3 and the wastewater B solution 4 (experimental example 3), respectively, have a volume mixing ratio of 6: 4 (x = 0.0). Batch mixing was performed in 4), and the gypsum formed and precipitated was recovered by solid-liquid separation.

上記回収した石膏を用いて試製セメント(実施例1及び実施例2)を製造した。
具体的には、まずセメントクリンカとして、住友大阪セメント株式会社製の普通ポルトランドセメントクリンカを用い、得られるセメント中のSO量が2質量%となるように、回収した石膏を添加して、次いでボールミルにてブレーン比表面積が3400cm/gとなるように調整して試製セメント(実施例1及び実施例2)を製造した。
A trial cement (Example 1 and Example 2) was produced using the recovered gypsum.
Specifically, first, using ordinary Portland cement clinker manufactured by Sumitomo Osaka Cement Co., Ltd. as the cement clinker, the recovered gypsum was added so that the amount of SO 3 in the resulting cement was 2% by mass, and then Trial cements (Example 1 and Example 2) were produced by adjusting the Blaine specific surface area to 3400 cm 2 / g with a ball mill.

なお、比較例のために、石炭火力発電所の排脱無水石膏を用いて、上記と同様にしてセメント(比較例1)を調製した。
得られた各セメントに、JIS R 5205に準じて、各材齢3日、7日、28日における圧縮強さ試験と、凝結試験を実施した。
その結果を表3に示す。
In addition, as a comparative example, a cement (Comparative Example 1) was prepared in the same manner as described above using the drained anhydrous gypsum of a coal-fired power plant.
Each obtained cement was subjected to a compressive strength test and a setting test according to JIS R 5205 at each material age of 3, 7, and 28 days.
The results are shown in Table 3.

Figure 2016190208
Figure 2016190208

上記表3の結果から、本発明により回収した石膏を用いて製造したセメントモルタルは、比較例と同等の圧縮強度及び凝結時間を有しており、得られるモルタルの強度や凝結時間には、特に影響を与えておらす、セメントの製造に有効に用いることができることが確認された。   From the results in Table 3 above, the cement mortar produced using the gypsum recovered according to the present invention has a compressive strength and setting time equivalent to those of the comparative example, and the strength and setting time of the resulting mortar are particularly It was confirmed that it can be used effectively in the production of cement, which has an effect.

本発明の排水からの石膏回収方法は、カルシウムイオンを含む排水と硫酸イオンを含む排水とを有効利用することに適用できるとともに、得られた石膏をセメント製造に有効に利用することが可能である。   The method for recovering gypsum from wastewater according to the present invention can be applied to effectively use wastewater containing calcium ions and wastewater containing sulfate ions, and the obtained gypsum can be used effectively for cement production. .

Claims (4)

カルシウムイオンを含む排水Aと、硫酸イオンを含む排水Bとを混合することで石膏を生成し、生成した石膏を回収することを特徴とする、排水からの石膏回収方法。   A method for recovering gypsum from waste water, wherein gypsum is generated by mixing waste water A containing calcium ions and waste water B containing sulfate ions, and the generated gypsum is recovered. 請求項1記載の排水からの石膏回収方法において、カルシウムイオンを含む排水Aはカルシウムイオン濃度が5000ppm以上であり、硫酸イオンを含む排水Bは硫酸イオン濃度が5000ppm以上であることを特徴とする、排水からの石膏回収方法。   The method for recovering gypsum from waste water according to claim 1, wherein the waste water A containing calcium ions has a calcium ion concentration of 5000 ppm or more, and the waste water B containing sulfate ions has a sulfate ion concentration of 5000 ppm or more. Gypsum recovery method from wastewater. 請求項1又は2記載の排水からの石膏回収方法において、排水Aと排水Bとの混合割合は、電気伝導度C1(μS/cm)の排水A及び電気伝導度C2(μS/cm)の排水Bを混合割合xで混合した混合液の計算上の電気伝導度Ccxを、以下の式1より求め、
Ccx(μS/cm)=C1×(1−x)+C2×x・・・(式1)
(但し、式1中、混合割合(混合率)xはx=排水Bの体積(cm)/(排水Aの体積(cm)+排水Bの体積(cm))、Ccx(μS/cm)は混合割合x時の計算上の電気伝導度を示す)、
混合割合x時の混合液の実測の電気伝導度Crx(μS/cm)を測定し、前記計算上の電気伝導度Ccxと前記実測の電気伝導度Crxとの差(Ccx−Crx)が最大となる混合割合で排水Aと排水Bとを混合することを特徴とする、排水からの石膏回収方法。
3. The method for recovering gypsum from wastewater according to claim 1 or 2, wherein the mixing ratio of wastewater A and wastewater B is wastewater A having electrical conductivity C1 (μS / cm) and wastewater having electrical conductivity C2 (μS / cm). The calculated electrical conductivity Ccx of the mixed liquid in which B is mixed at the mixing ratio x is obtained from the following formula 1,
Ccx (μS / cm) = C1 × (1−x) + C2 × x (Expression 1)
(However, in Formula 1, the mixing ratio (mixing ratio) x is x = volume of drainage B (cm 3 ) / (volume of drainage A (cm 3 ) + volume of drainage B (cm 3 ))), Ccx (μS / cm) indicates the calculated electrical conductivity when the mixing ratio is x),
The measured electrical conductivity Crx (μS / cm) of the mixed liquid at the mixing ratio x is measured, and the difference (Ccx−Crx) between the calculated electrical conductivity Ccx and the measured electrical conductivity Crx is the maximum. A method for recovering gypsum from waste water, characterized in that waste water A and waste water B are mixed at a mixing ratio.
請求項1〜3いずれかの項記載の排水からの石膏回収法において、排水は蒸発濃縮又は膜濃縮によりカルシウムイオン濃度及び/又は硫酸イオン濃度を高めてから混合し、また回収した石膏はセメント製造に用いることを特徴とする、排水からの石膏回収方法。   The method for recovering gypsum from wastewater according to any one of claims 1 to 3, wherein the wastewater is mixed after increasing the calcium ion concentration and / or sulfate ion concentration by evaporative concentration or membrane concentration, and the recovered gypsum is produced by cement. A method for recovering gypsum from waste water, characterized in that it is used in a waste water.
JP2015072001A 2015-03-31 2015-03-31 Gypsum recovery method from wastewater Active JP6432421B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015072001A JP6432421B2 (en) 2015-03-31 2015-03-31 Gypsum recovery method from wastewater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015072001A JP6432421B2 (en) 2015-03-31 2015-03-31 Gypsum recovery method from wastewater

Publications (2)

Publication Number Publication Date
JP2016190208A true JP2016190208A (en) 2016-11-10
JP6432421B2 JP6432421B2 (en) 2018-12-05

Family

ID=57245942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015072001A Active JP6432421B2 (en) 2015-03-31 2015-03-31 Gypsum recovery method from wastewater

Country Status (1)

Country Link
JP (1) JP6432421B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110040892A (en) * 2018-05-28 2019-07-23 内蒙古久科康瑞环保科技有限公司 High slat-containing wastewater, distilled ammonia wastewater Combined Treatment technique of zero discharge and system
CN113603127A (en) * 2021-08-18 2021-11-05 江苏一夫科技股份有限公司 Method for concentrated sulfuric acid treatment of calcium chloride wastewater and co-production of chemical gypsum
CN115159879A (en) * 2022-05-26 2022-10-11 龙佰集团股份有限公司 Rod-shaped titanium gypsum and preparation method thereof
CN115650277A (en) * 2022-11-04 2023-01-31 四川华一众创新材料有限公司 Comprehensive utilization method of titanium gypsum

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000051649A (en) * 1998-08-07 2000-02-22 Ishikawajima Harima Heavy Ind Co Ltd Method for removing sox in exhaust gas
JP2000107559A (en) * 1998-10-01 2000-04-18 Chiyoda Engineering Kk Fly ash and flue gas treatment method
JP2004035937A (en) * 2002-07-02 2004-02-05 Taiheiyo Cement Corp Method of recovering chloride from aqueous solution

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000051649A (en) * 1998-08-07 2000-02-22 Ishikawajima Harima Heavy Ind Co Ltd Method for removing sox in exhaust gas
JP2000107559A (en) * 1998-10-01 2000-04-18 Chiyoda Engineering Kk Fly ash and flue gas treatment method
JP2004035937A (en) * 2002-07-02 2004-02-05 Taiheiyo Cement Corp Method of recovering chloride from aqueous solution

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110040892A (en) * 2018-05-28 2019-07-23 内蒙古久科康瑞环保科技有限公司 High slat-containing wastewater, distilled ammonia wastewater Combined Treatment technique of zero discharge and system
CN113603127A (en) * 2021-08-18 2021-11-05 江苏一夫科技股份有限公司 Method for concentrated sulfuric acid treatment of calcium chloride wastewater and co-production of chemical gypsum
CN115159879A (en) * 2022-05-26 2022-10-11 龙佰集团股份有限公司 Rod-shaped titanium gypsum and preparation method thereof
CN115650277A (en) * 2022-11-04 2023-01-31 四川华一众创新材料有限公司 Comprehensive utilization method of titanium gypsum
CN115650277B (en) * 2022-11-04 2024-01-23 四川华一众创新材料有限公司 Comprehensive utilization method of titanium gypsum

Also Published As

Publication number Publication date
JP6432421B2 (en) 2018-12-05

Similar Documents

Publication Publication Date Title
JP6432421B2 (en) Gypsum recovery method from wastewater
Donatello et al. Production of technical grade phosphoric acid from incinerator sewage sludge ash (ISSA)
KR102093004B1 (en) Method for comprehensive recovery of magnesium-containing smelting wastewater
US8603344B2 (en) Method and apparatus for removing metal from waste water
CN112850745B (en) Method for recycling waste incineration fly ash
CN113105138B (en) Treatment method and system for water washing and dechlorination of waste incineration fly ash and evaporation, quality separation and crystallization of water washing liquid
CN105565573A (en) Device and method for desulfurization waste water zero discharge treatment
CN110127918B (en) Zero-discharge treatment method and device for acidic flue gas washing wastewater
JP2021121434A (en) Method for treating wastewater
CN109665495B (en) Combined resource utilization method of high-salinity wastewater and bypass ash of washed fly ash
CN113245342B (en) Resource treatment method and treatment system for waste incineration fly ash water washing salt making based on seed crystal method
CN101817650A (en) Method for treating incinerated fly ash of domestic garbage with cooperation of cement kiln
CN103588240B (en) A kind of green utilization method of dirty acid
CN108672472A (en) It is sintered semi-dry desulphurization ash processing method
CN113353956A (en) System and method for co-processing fly ash by washing and desalting and combining with cement kiln
CN105417795A (en) Desulfurization waste water zero discharging treatment process for coal-fired power plant
CN113333441B (en) Fly ash treatment system
JP2010253440A (en) Method of manufacturing composition for environmental cleanup, composition for environmental cleanup and environmental cleanup method
CN210505911U (en) System for preparing nano magnesium oxide powder by taking desulfurization wastewater as raw material
WO2023033039A1 (en) Calcium carbonate generation method and system
JP2004299962A (en) Method for removing fluorine in gypsum
CN216073085U (en) Household garbage incineration fly ash recycling treatment system
CN109133122A (en) A method of nanometer magnesia powder is prepared by raw material of desulfurization wastewater
JP4756415B2 (en) Gas processing method
CN212532613U (en) Desulfurization waste water zero release processing apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180724

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181009

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181022

R150 Certificate of patent or registration of utility model

Ref document number: 6432421

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150