JP2016187968A - Pneumatic tire - Google Patents

Pneumatic tire Download PDF

Info

Publication number
JP2016187968A
JP2016187968A JP2016154557A JP2016154557A JP2016187968A JP 2016187968 A JP2016187968 A JP 2016187968A JP 2016154557 A JP2016154557 A JP 2016154557A JP 2016154557 A JP2016154557 A JP 2016154557A JP 2016187968 A JP2016187968 A JP 2016187968A
Authority
JP
Japan
Prior art keywords
rubber layer
yarn
tire
layer
interface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016154557A
Other languages
Japanese (ja)
Other versions
JP6299817B2 (en
Inventor
和明 岸端
Kazuaki Kishihata
和明 岸端
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Rubber Co Ltd
Original Assignee
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Rubber Co Ltd filed Critical Yokohama Rubber Co Ltd
Priority to JP2016154557A priority Critical patent/JP6299817B2/en
Publication of JP2016187968A publication Critical patent/JP2016187968A/en
Application granted granted Critical
Publication of JP6299817B2 publication Critical patent/JP6299817B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Tires In General (AREA)
  • Tyre Moulding (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a pneumatic tire capable of effectively restraining blister failure by improving air dispersibility at vulcanization on the boundary faces of plural kinds of rubber layers to be integrally molded through a rolling or extrusion process.SOLUTION: In a pneumatic tire having a cap tread rubber layer 11A and under-tread rubber layer 11B molded integrally by extrusion, at least one thread 20 is disposed on a boundary face between the above layers 11A and 11B to extend in a tire circumferential direction. The breaking strength of the thread 20 is 100 N or less, and the implantation density of the thread 20 is 5 lines/50 mm or less. Besides, in the pneumatic tire having an inner liner layer 15 and tie rubber layer 16 molded integrally by rolling, at least one thread 20 is similarly disposed on the boundary face between the above layers 15 and 16 to extend in the tire circumferential direction.SELECTED DRAWING: Figure 2

Description

本発明は、圧延加工又は押出加工により一体的に成形される複数種類のゴム層を備えた空気入りタイヤに関し、更に詳しくは、これらゴム層の界面における加硫時のエア分散性を改善し、ブリスター故障を効果的に抑制することを可能にした空気入りタイヤに関する。   The present invention relates to a pneumatic tire provided with a plurality of types of rubber layers that are integrally molded by rolling or extrusion, more specifically, improving air dispersibility during vulcanization at the interface of these rubber layers, The present invention relates to a pneumatic tire that can effectively suppress a blister failure.

空気入りタイヤを加硫する際にブリスター故障と呼ばれる加硫故障を生じることがある。ブリスター故障は、ゴム中に含まれる水分や残留エアのほか、タイヤ成形時にタイヤ構成部材の端部に形成される段差に残留するエアが加硫時に局所的に集められ、それによって生じた気泡が加硫中に分散しきらずにブリスターとなってタイヤ内に残存した状態となる故障である。ゴム中に含まれる水分や残留エアは、加硫初期において無数に発泡するものの、その気泡の多くは加硫中にミクロ分散して消滅する。しかしながら、ミクロ分散時に加圧力が弱い部位では気泡が集約され、加硫終了後に再発泡してブリスターを形成することがある。   When vulcanizing a pneumatic tire, a vulcanization failure called a blister failure may occur. Blister failure is caused by the moisture and residual air contained in the rubber, as well as the air remaining at the steps formed at the ends of the tire components during tire molding, which is collected locally during vulcanization and the resulting bubbles are This is a failure that does not completely disperse during vulcanization but becomes a blister and remains in the tire. Moisture and residual air contained in the rubber foam innumerably in the early stages of vulcanization, but most of the bubbles disappear by being micro-dispersed during vulcanization. However, at the site where the pressure is weak at the time of micro-dispersion, bubbles are collected and may re-foam after vulcanization to form blisters.

ブリスター故障を抑制するために、タイヤ成形時にはタイヤ構成部材をステッチャーにより押圧してエアの分散を促進し、加硫時には金型内面に配設されたベントホールを介してエアの排出を行っているが、それだけではタイヤ内部に残留するエアを十分に排除することができない。   To suppress blister failure, tire components are pressed by a stitcher during tire molding to promote air dispersion, and during vulcanization, air is discharged through a vent hole provided on the inner surface of the mold. However, that alone cannot sufficiently eliminate the air remaining inside the tire.

これに対して、カーカス層とそれに隣接する部材との間にエア溜りが形成され易いという知見に基づいて、カーカス層の少なくとも一方の面にゴム被覆されていないエア吸収用の有機繊維コードを配置し、その有機繊維コードによりカーカス層とそれに隣接する部材との間に残留するエアを吸収し、加硫時にエア溜りが形成されるのを防止することが提案されている(例えば、特許文献1参照)。   On the other hand, based on the knowledge that an air reservoir is easily formed between the carcass layer and a member adjacent to the carcass layer, an organic fiber cord for air absorption that is not covered with rubber is disposed on at least one surface of the carcass layer. However, it has been proposed that the organic fiber cord absorbs air remaining between the carcass layer and a member adjacent thereto to prevent formation of an air pool during vulcanization (for example, Patent Document 1). reference).

しかしながら、上述のようにカーカス層の少なくとも一方の面にゴム被覆されていないエア吸収用の有機繊維コードを配置した場合、カーカス層とそれに隣接する部材との間に残留するエアを吸収することは可能であるものの、ブリスター故障を必ずしも効果的に抑制することができないのが現状である。また、カーカス層の表面にゴム被覆されていないエア吸収用の有機繊維コードを配置した場合、その有機繊維コードがタイヤ成形工程において離脱したり、位置ずれを起こしたりする恐れもある。   However, when an organic fiber cord for air absorption that is not rubber-coated is disposed on at least one surface of the carcass layer as described above, it is possible to absorb the air remaining between the carcass layer and the adjacent members. Although it is possible, the current situation is that blister failure cannot always be effectively suppressed. Further, when an organic fiber cord for absorbing air that is not covered with rubber is disposed on the surface of the carcass layer, the organic fiber cord may be detached in the tire molding process or may be displaced.

国際公開第WO2013/035555号International Publication No. WO2013 / 035555

本発明の目的は、圧延加工又は押出加工により一体的に成形される複数種類のゴム層の界面における加硫時のエア分散性を改善し、ブリスター故障を効果的に抑制することを可能にした空気入りタイヤを提供することにある。   The object of the present invention is to improve air dispersibility during vulcanization at the interface of a plurality of types of rubber layers that are integrally molded by rolling or extrusion, and to effectively suppress blister failure. It is to provide a pneumatic tire.

上記目的を達成するための本発明の空気入りタイヤは、圧延加工又は押出加工により一体的に成形される複数種類のゴム層を備えた空気入りタイヤにおいて、前記複数種類のゴム層の界面に少なくとも1本の糸を配置したことを特徴とし、より具体的には、以下の(1)又は(2)の構成を有するものである。
(1)押出加工により一体的に成形されるキャップトレッドゴム層とアンダートレッドゴム層を備えた空気入りタイヤにおいて、前記キャップトレッドゴム層と前記アンダートレッドゴム層との界面に少なくとも1本の糸をタイヤ周方向に延在するように配置し、前記糸の破断強度が100N以下であり、前記糸の打ち込み密度が5本/50mm以下であることを特徴とする空気入りタイヤ。
(2)圧延加工により一体的に成形されるインナーライナー層とタイゴム層を備えた空気入りタイヤにおいて、前記インナーライナー層と前記タイゴム層との界面に少なくとも1本の糸をタイヤ周方向に延在するように配置し、前記糸の破断強度が100N以下であり、前記糸の打ち込み密度が5本/50mm以下であることを特徴とする空気入りタイヤ。
In order to achieve the above object, the pneumatic tire of the present invention is a pneumatic tire provided with a plurality of types of rubber layers integrally formed by rolling or extrusion, and at least at the interface of the plurality of types of rubber layers. One yarn is arranged, and more specifically, has the following configuration (1) or (2).
(1) In a pneumatic tire including a cap tread rubber layer and an under tread rubber layer that are integrally formed by extrusion, at least one yarn is provided at an interface between the cap tread rubber layer and the under tread rubber layer. A pneumatic tire characterized by being arranged to extend in a tire circumferential direction, wherein the breaking strength of the yarn is 100 N or less, and the thread driving density is 5 pieces / 50 mm or less.
(2) In a pneumatic tire including an inner liner layer and a tie rubber layer that are integrally formed by rolling, at least one yarn extends in the tire circumferential direction at the interface between the inner liner layer and the tie rubber layer. The pneumatic tire is characterized in that the yarn has a breaking strength of 100 N or less and a yarn driving density of 5 pieces / 50 mm or less.

本発明者は、加硫時に発生するブリスター故障について鋭意研究した結果、圧延加工又は押出加工により一体的に成形される複数種類のゴム層を備えた空気入りタイヤにおいて、これらゴム層の界面においてブリスター故障が生じ易いことを知見し、本発明に至ったのである。   As a result of earnest research on blister failures occurring during vulcanization, the present inventor has found that blisters are formed at the interfaces between these rubber layers in a pneumatic tire having a plurality of types of rubber layers that are integrally formed by rolling or extrusion. The present inventors have found out that a failure is likely to occur and have reached the present invention.

即ち、本発明では、圧延加工又は押出加工により一体的に成形される複数種類のゴム層の界面に少なくとも1本の糸を配置することにより、ゴム層の界面における加硫時のエア分散性を改善し、ブリスター故障を効果的に抑制することができる。しかも、圧延加工又は押出加工により一体的に成形される複数種類のゴム層の界面に糸を配置する場合、タイヤ成形工程において糸が離脱したり、位置ずれを起こしたりすることはないので、タイヤ成形工程を円滑に行うことができるという利点もある。   That is, in the present invention, air dispersibility at the time of vulcanization at the interface of the rubber layer is provided by disposing at least one yarn at the interface of the plurality of types of rubber layers that are integrally formed by rolling or extrusion. The blister failure can be effectively suppressed. In addition, when the yarn is arranged at the interface between a plurality of types of rubber layers that are integrally molded by rolling or extrusion, the tire does not detach or cause misalignment in the tire molding process. There is also an advantage that the molding process can be performed smoothly.

押出加工により一体的に成形されるキャップトレッドゴム層とアンダートレッドゴム層を備えた空気入りタイヤにおいては、キャップトレッドゴム層とアンダートレッドゴム層との界面に少なくとも1本の糸を配置することが好ましい。これにより、加硫時にキャップトレッドゴム層とアンダートレッドゴム層との界面に集まろうとするエアを糸により分散させることができる。   In a pneumatic tire including a cap tread rubber layer and an under tread rubber layer that are integrally formed by extrusion, at least one yarn may be disposed at the interface between the cap tread rubber layer and the under tread rubber layer. preferable. As a result, air that tends to collect at the interface between the cap tread rubber layer and the undertread rubber layer during vulcanization can be dispersed by the yarn.

特に、アンダートレッドゴム層の外端位置からタイヤセンターラインまでの距離Aに対して、キャップトレッドゴム層とアンダートレッドゴム層との界面の外端位置から距離Aの30%に相当する領域に糸を配置することが好ましい。タイヤショルダー部は加硫初期のミクロ分散時における加圧力が弱いため気泡が形成され易いが、上記領域Aに糸を配置することでブリスター故障を効果的に抑制することができる。   In particular, the thread is in a region corresponding to 30% of the distance A from the outer end position of the interface between the cap tread rubber layer and the under tread rubber layer with respect to the distance A from the outer end position of the under tread rubber layer to the tire center line. Is preferably arranged. Since the tire shoulder portion is weak in the pressure applied at the time of micro-dispersion at the initial stage of vulcanization, air bubbles are easily formed. However, by arranging the yarn in the region A, blister failure can be effectively suppressed.

押出加工により一体的に成形されるトレッドゴム層とエッジゴム層を備えた空気入りタイヤにおいては、トレッドゴム層とエッジゴム層との界面に少なくとも1本の糸を配置することが好ましい。これにより、加硫時にトレッドゴム層とエッジゴム層との界面に集まろうとするエアを糸により分散させることができる。タイヤショルダー部は加硫初期のミクロ分散時における加圧力が弱いため気泡が形成され易いが、上記部位に糸を配置することでブリスター故障を効果的に抑制することができる。   In a pneumatic tire provided with a tread rubber layer and an edge rubber layer that are integrally formed by extrusion, it is preferable to dispose at least one yarn at the interface between the tread rubber layer and the edge rubber layer. As a result, air that tends to collect at the interface between the tread rubber layer and the edge rubber layer during vulcanization can be dispersed by the yarn. The tire shoulder portion is weak in the pressure applied at the time of micro-dispersion at the initial stage of vulcanization, so that bubbles are likely to be formed. However, the blister failure can be effectively suppressed by arranging the yarn in the above-mentioned part.

押出加工により一体的に成形されるサイドゴム層とリムクッションゴム層を備えた空気入りタイヤにおいては、サイドゴム層とリムクッションゴム層との界面に少なくとも1本の糸を配置することが好ましい。これにより、加硫時にサイドゴム層とリムクッションゴム層との界面に集まろうとするエアを糸により分散させることができる。リムクッション部は加硫初期のミクロ分散時における加圧力が弱いため気泡が形成され易いが、上記部位に糸を配置することでブリスター故障を効果的に抑制することができる。   In a pneumatic tire including a side rubber layer and a rim cushion rubber layer that are integrally formed by extrusion, it is preferable to dispose at least one yarn at the interface between the side rubber layer and the rim cushion rubber layer. As a result, air that tends to collect at the interface between the side rubber layer and the rim cushion rubber layer during vulcanization can be dispersed by the yarn. Since the rim cushion portion is weak in the pressure applied at the time of micro dispersion at the initial stage of vulcanization, bubbles are likely to be formed. However, it is possible to effectively suppress blister failure by arranging the yarn at the above-mentioned part.

圧延加工により一体的に成形されるインナーライナー層とタイゴム層を備えた空気入りタイヤにおいては、インナーライナー層とタイゴム層との界面に少なくとも1本の糸を配置することが好ましい。これにより、加硫時にインナーライナー層とタイゴム層との界面に集まろうとするエアを糸により分散させることができる。   In a pneumatic tire provided with an inner liner layer and a tie rubber layer that are integrally formed by rolling, it is preferable to dispose at least one yarn at the interface between the inner liner layer and the tie rubber layer. As a result, air that tends to collect at the interface between the inner liner layer and the tie rubber layer during vulcanization can be dispersed by the yarn.

本発明において、糸はタイヤ周方向に延在するように配置することが好ましい。押出工程や圧延工程で糸を挿入する場合、その糸を押出方向又は圧延方向に沿って延在させることで糸の連続的な挿入を容易に行うことができる。その結果として、糸がタイヤ周方向に配向した構造が得られる。また、糸をタイヤ周方向に延在するように配置した場合、ゴム層の層間に残留するエアをタイヤ周方向に沿って効果的に分散させることができる。   In the present invention, the yarn is preferably arranged so as to extend in the tire circumferential direction. When inserting a thread | yarn by an extrusion process or a rolling process, the continuous insertion of a thread | yarn can be performed easily by extending the thread | yarn along an extrusion direction or a rolling direction. As a result, a structure in which the yarn is oriented in the tire circumferential direction is obtained. Moreover, when arrange | positioning so that a thread | yarn may extend in a tire circumferential direction, the air which remains between the layers of a rubber layer can be disperse | distributed effectively along a tire circumferential direction.

糸の破断強度は100N以下であることが好ましい。この糸はエア分散性の改善を目的とするものであって補強部材ではないので、その破断強度の上限値を規制することでゴム層の挙動に対する影響を最小限に抑制することができる。   The breaking strength of the yarn is preferably 100 N or less. Since this yarn is intended to improve air dispersibility and is not a reinforcing member, the influence on the behavior of the rubber layer can be minimized by regulating the upper limit value of the breaking strength.

糸の打ち込み密度は5本/50mm以下であることが好ましい。この糸はエア分散性の改善を目的とするものであって補強部材ではないため、その打ち込み密度の上限値を規制することでゴム層の挙動に対する影響を最小限に抑制することができる。   The thread driving density is preferably 5 pieces / 50 mm or less. Since this yarn is intended to improve air dispersibility and is not a reinforcing member, the influence on the behavior of the rubber layer can be minimized by restricting the upper limit value of the driving density.

本発明の実施形態からなる空気入りタイヤを示す子午線半断面図である。It is a meridian half section view showing a pneumatic tire according to an embodiment of the present invention. 界面に糸が挿入されたトレッドゴム層とエッジゴム層を示す断面図である。It is sectional drawing which shows the tread rubber layer and edge rubber layer in which the thread | yarn was inserted in the interface. 界面に糸が挿入されたサイドゴム層とリムクッションゴム層を示す断面図である。It is sectional drawing which shows the side rubber layer and rim cushion rubber layer in which the thread | yarn was inserted in the interface. 界面に糸が挿入されたインナーライナー層とタイゴム層を示す断面図である。It is sectional drawing which shows the inner liner layer and tie rubber layer in which the thread | yarn was inserted in the interface.

以下、本発明の構成について添付の図面を参照しながら詳細に説明する。図1は本発明の実施形態からなる空気入りタイヤを示し、図2〜図4は該空気入りタイヤの構成部材を示すものである。なお、図1はタイヤセンターラインCLの一方側の部分のみを示しているが、この空気入りタイヤはタイヤセンターラインCLの他方側にも対応する構造を有している。   Hereinafter, the configuration of the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 shows a pneumatic tire according to an embodiment of the present invention, and FIGS. 2 to 4 show components of the pneumatic tire. Although FIG. 1 shows only a portion on one side of the tire center line CL, this pneumatic tire has a structure corresponding to the other side of the tire center line CL.

図1において、1はトレッド部、2はサイドウォール部、3はビード部である。左右一対のビード部3,3間にはタイヤ径方向に延びる複数本の補強コードを含む2層のカーカス層4が装架され、そのカーカス層4の端部がビードコア5の廻りにタイヤ内側から外側に折り返されている。ビードコア5の外周上には高硬度のゴム組成物からなるビードフィラー6が配置され、該ビードフィラー6がカーカス層4により包み込まれている。   In FIG. 1, 1 is a tread portion, 2 is a sidewall portion, and 3 is a bead portion. Between the pair of left and right bead portions 3, 3, a two-layer carcass layer 4 including a plurality of reinforcing cords extending in the tire radial direction is mounted, and an end portion of the carcass layer 4 extends around the bead core 5 from the inside of the tire. It is folded outside. A bead filler 6 made of a rubber composition having a high hardness is disposed on the outer periphery of the bead core 5, and the bead filler 6 is wrapped by the carcass layer 4.

トレッド部1におけるカーカス層4の外周側には複数層のベルト層7が埋設されている。これらベルト層7はタイヤ周方向に対して傾斜する複数本の補強コードを含み、かつ層間で補強コードが互いに交差するように配置されている。   A plurality of belt layers 7 are embedded on the outer peripheral side of the carcass layer 4 in the tread portion 1. These belt layers 7 include a plurality of reinforcing cords inclined with respect to the tire circumferential direction, and are arranged so that the reinforcing cords cross each other between the layers.

トレッド部1におけるベルト層7の外周側にはトレッドゴム層11が配置されている。このトレッドゴム層11は、タイヤ外表面に露出するキャップトレッドゴム層11Aと、該キャップトレッドゴム層11Aのタイヤ径方向内側に位置するアンダートレッドゴム層11Bとから構成されている。また、トレッドゴム層11のタイヤ幅方向の両外側にはそれぞれエッジゴム層12が配置されている。これらキャップトレッドゴム層11Aとアンダートレッドゴム層11Bとエッジゴム層12は押出加工により一体的に成形され、しかる後に一体的なタイヤ構成部材(図2参照)としてタイヤ成形工程に供される。   A tread rubber layer 11 is disposed on the outer peripheral side of the belt layer 7 in the tread portion 1. The tread rubber layer 11 includes a cap tread rubber layer 11A exposed on the outer surface of the tire and an under tread rubber layer 11B located on the inner side in the tire radial direction of the cap tread rubber layer 11A. Further, edge rubber layers 12 are disposed on both outer sides of the tread rubber layer 11 in the tire width direction. The cap tread rubber layer 11A, the under tread rubber layer 11B, and the edge rubber layer 12 are integrally formed by extrusion, and then used for the tire forming process as an integral tire constituent member (see FIG. 2).

また、サイドウォール部2におけるカーカス層4のタイヤ幅方向外側にはサイドゴム層13が配置され、ビード部3にはサイドゴム層13に隣接するリムクッションゴム層14が配置されている。これらサイドゴム層13とリムクッションゴム層14は押出加工により一体的に成形され、しかる後に一体的なタイヤ構成部材(図3参照)としてタイヤ成形工程に供される。   A side rubber layer 13 is disposed outside the carcass layer 4 in the tire width direction in the sidewall portion 2, and a rim cushion rubber layer 14 adjacent to the side rubber layer 13 is disposed in the bead portion 3. The side rubber layer 13 and the rim cushion rubber layer 14 are integrally formed by an extrusion process, and thereafter used as an integral tire constituent member (see FIG. 3) for the tire forming step.

更に、タイヤ内面にはカーカス層4に沿ってインナーライナー層15とタイゴム層16との積層体が配置されている。インナーライナー層15はタイヤ内面に露出し、タイゴム層16はカーカス層4とインナーライナー層15との間に介在している。これらインナーライナー層15とタイゴム層16は圧延加工により一体的に成形され、しかる後に一体的なタイヤ構成部材(図4参照)としてタイヤ成形工程に供される。   Further, a laminated body of an inner liner layer 15 and a tie rubber layer 16 is disposed along the carcass layer 4 on the inner surface of the tire. The inner liner layer 15 is exposed on the inner surface of the tire, and the tie rubber layer 16 is interposed between the carcass layer 4 and the inner liner layer 15. The inner liner layer 15 and the tie rubber layer 16 are integrally formed by rolling, and are then used as an integral tire component (see FIG. 4) for the tire forming step.

上記空気入りタイヤにおいて、圧延加工又は押出加工により一体的に成形される複数種類のゴム層(例えば、キャップトレッドゴム層11A、アンダートレッドゴム層11B、エッジゴム層12、サイドゴム層13、リムクッションゴム層14、インナーライナー層15、タイゴム層16)の界面に少なくとも1本の糸20(図2〜図4参照)が配置されている。   In the pneumatic tire, a plurality of types of rubber layers (for example, cap tread rubber layer 11A, under tread rubber layer 11B, edge rubber layer 12, side rubber layer 13, rim cushion rubber layer, which are integrally formed by rolling or extruding. 14, at least one thread 20 (see FIGS. 2 to 4) is disposed at the interface between the inner liner layer 15 and the tie rubber layer 16).

このように構成される空気入りタイヤを加硫する場合、タイヤ成形工程を経て成形された未加硫状態のタイヤを金型内に投入し、ブラダーによりタイヤ内側から圧力を掛けながら加熱する。その際、加硫初期においてタイヤ内部に残留する水分やエアが発泡するが、その気泡の多くは加硫中にミクロ分散して消滅する。しかしながら、ミクロ分散時に加圧力が弱い部位では気泡が局所的に集まろうとする。これに対して、圧延加工又は押出加工により一体的に成形される複数種類のゴム層の界面に少なくとも1本の糸20を配置することにより、ゴム層の界面における加硫時のエア分散性を改善し、ブリスター故障を効果的に抑制することができる。しかも、圧延加工又は押出加工により一体的に成形される複数種類のゴム層の界面に糸20を配置する場合、タイヤ成形工程において糸20が離脱したり、位置ずれを起こしたりすることはないので、タイヤ成形工程を円滑に行うことができる。   In the case of vulcanizing the pneumatic tire configured as described above, an unvulcanized tire molded through the tire molding process is put into a mold and heated while applying pressure from the inside of the tire by a bladder. At that time, moisture and air remaining inside the tire are foamed at the initial stage of vulcanization, but most of the bubbles are dispersed microscopically during vulcanization and disappear. However, bubbles tend to gather locally at a site where the applied pressure is weak during micro-dispersion. On the other hand, by disposing at least one yarn 20 at the interface of a plurality of types of rubber layers that are integrally formed by rolling or extrusion, the air dispersibility during vulcanization at the interface of the rubber layer is improved. The blister failure can be effectively suppressed. In addition, when the yarn 20 is disposed at the interface between a plurality of types of rubber layers that are integrally molded by rolling or extrusion, the yarn 20 does not come off or cause a displacement in the tire molding process. The tire molding process can be performed smoothly.

以下、より具体的な構造について説明する、押出加工により一体的に成形されるキャップトレッドゴム層11Aとアンダートレッドゴム層11Bを備える場合、図2に示すように、キャップトレッドゴム層11Aとアンダートレッドゴム層11Bとの界面に少なくとも1本の糸20を配置すると良い。図2において、糸20はタイヤ周方向に延在し、タイヤ周方向の全域に存在するように配置されている。これにより、加硫時にキャップトレッドゴム層11Aとアンダートレッドゴム層11Bとの界面に集まろうとするエアを糸20によりタイヤ周方向に分散させることができる。   Hereinafter, when a cap tread rubber layer 11A and an under tread rubber layer 11B that are integrally formed by extrusion are described, a more specific structure will be described. As shown in FIG. 2, the cap tread rubber layer 11A and the under tread are provided. At least one thread 20 may be disposed at the interface with the rubber layer 11B. In FIG. 2, the yarn 20 extends in the tire circumferential direction and is disposed so as to exist in the entire region in the tire circumferential direction. As a result, air that tends to collect at the interface between the cap tread rubber layer 11A and the undertread rubber layer 11B during vulcanization can be dispersed in the tire circumferential direction by the yarn 20.

特に、アンダートレッドゴム層11Bの外端位置からタイヤセンターラインCLまでの距離Aに対して、キャップトレッドゴム層11Aとアンダートレッドゴム層11Bとの界面の外端位置から距離Aの30%に相当する領域Xに糸20を選択的に配置すると良い。タイヤショルダー部は加硫初期のミクロ分散時における加圧力が弱いため気泡が形成され易いが、上記領域Aに糸20を配置することでブリスター故障を効果的に抑制することができる。ここで、領域Xから外れた位置に糸20を配置することも可能であるが、糸20を距離Aの30%に相当する領域Xに選択的に配置した場合、エアの分散を最も効果的に行うことができる。なお、距離A及び領域Xはキャップトレッドゴム層11Aとアンダートレッドゴム層11Bを平面上に展開した状態で特定されるものとする。   In particular, the distance A from the outer end position of the undertread rubber layer 11B to the tire center line CL corresponds to 30% of the distance A from the outer end position of the interface between the cap tread rubber layer 11A and the undertread rubber layer 11B. The yarn 20 may be selectively disposed in the region X to be used. Since the tire shoulder portion is weak in the pressure applied at the time of micro-dispersion at the initial stage of vulcanization, bubbles are easily formed. However, by arranging the yarn 20 in the region A, blister failure can be effectively suppressed. Here, it is possible to arrange the yarn 20 at a position deviating from the region X. However, when the yarn 20 is selectively arranged in the region X corresponding to 30% of the distance A, air dispersion is most effective. Can be done. The distance A and the region X are specified in a state where the cap tread rubber layer 11A and the under tread rubber layer 11B are spread on a plane.

また、押出加工により一体的に成形されるトレッドゴム層11とエッジゴム層12を備える場合、図2に示すように、上記と同様にトレッドゴム層11とエッジゴム層12との界面に少なくとも1本の糸20を配置すると良い。これにより、加硫時にトレッドゴム層11とエッジゴム層12との界面に集まろうとするエアを糸20によりタイヤ周方向に分散させることができる。タイヤショルダー部は加硫初期のミクロ分散時における加圧力が弱いため気泡が形成され易いが、上記部位に糸20を配置することでブリスター故障を効果的に抑制することができる。なお、トレッドゴム層11は互いに異なるゴム組成物からなるキャップトレッドゴム層11Aとアンダートレッドゴム層11Bとの積層体であっても良く、或いは、単一種類のゴム組成物から構成されるものであっても良い。   Further, when the tread rubber layer 11 and the edge rubber layer 12 are integrally formed by extrusion, as shown in FIG. 2, at least one interface is formed at the interface between the tread rubber layer 11 and the edge rubber layer 12 as described above. It is preferable to arrange the thread 20. As a result, air that tends to collect at the interface between the tread rubber layer 11 and the edge rubber layer 12 during vulcanization can be dispersed in the tire circumferential direction by the yarn 20. Since the tire shoulder portion is weak in the pressure applied at the time of micro dispersion at the initial stage of vulcanization, bubbles are likely to be formed, but the blister failure can be effectively suppressed by disposing the yarn 20 at the above-mentioned site. The tread rubber layer 11 may be a laminate of a cap tread rubber layer 11A and an under tread rubber layer 11B made of different rubber compositions, or may be composed of a single type of rubber composition. There may be.

更に、押出加工により一体的に成形されるサイドゴム層13とリムクッションゴム層14を備える場合、図3に示すように、サイドゴム層13とリムクッションゴム層14との界面に少なくとも1本の糸20を配置すると良い。図3において、糸20はタイヤ周方向に延在し、タイヤ周方向の全域に存在するように配置されている。これにより、加硫時にサイドゴム層13とリムクッションゴム層14との界面に集まろうとするエアを糸20によりタイヤ周方向に分散させることができる。リムクッション部は加硫初期のミクロ分散時における加圧力が弱いため気泡が形成され易いが、上記部位に糸20を配置することでブリスター故障を効果的に抑制することができる。   Further, when the side rubber layer 13 and the rim cushion rubber layer 14 that are integrally formed by extrusion are provided, as shown in FIG. 3, at least one thread 20 is provided at the interface between the side rubber layer 13 and the rim cushion rubber layer 14. It is good to place. In FIG. 3, the yarn 20 extends in the tire circumferential direction and is disposed so as to exist in the entire region in the tire circumferential direction. As a result, air that tends to collect at the interface between the side rubber layer 13 and the rim cushion rubber layer 14 during vulcanization can be dispersed in the tire circumferential direction by the yarn 20. Since the rim cushion portion is weak in the pressure applied at the time of micro-dispersion at the initial stage of vulcanization, bubbles are likely to be formed, but the blister failure can be effectively suppressed by arranging the yarn 20 at the above-mentioned site.

また、圧延加工により一体的に成形されるインナーライナー層15とタイゴム層16を備える場合、図4に示すように、インナーライナー層15とタイゴム層16との界面に少なくとも1本の糸20を配置すると良い。図4において、糸20はタイヤ周方向に延在し、タイヤ周方向の全域に存在するように配置されている。これにより、加硫時にインナーライナー層15とタイゴム層16との界面に集まろうとするエアを糸20によりタイヤ周方向に分散させることができる。   Further, when the inner liner layer 15 and the tie rubber layer 16 that are integrally formed by rolling are provided, as shown in FIG. 4, at least one yarn 20 is disposed at the interface between the inner liner layer 15 and the tie rubber layer 16. Good. In FIG. 4, the thread | yarn 20 is arrange | positioned so that it may extend in the tire circumferential direction and may exist in the whole region of a tire circumferential direction. As a result, air that tends to collect at the interface between the inner liner layer 15 and the tie rubber layer 16 during vulcanization can be dispersed in the tire circumferential direction by the yarn 20.

上記空気入りタイヤにおいて、糸20はタイヤ周方向に延在するように配置することが望ましいが、他の配置とすることも可能である。押出工程や圧延工程において糸20を挿入する場合、その糸20を押出方向又は圧延方向に沿って延在させることで糸20の連続的な挿入を容易に行うことができる。その結果として、糸20がタイヤ周方向に配向した構造が得られる。   In the pneumatic tire described above, it is desirable to arrange the yarn 20 so as to extend in the tire circumferential direction, but other arrangements are also possible. When inserting the thread | yarn 20 in an extrusion process or a rolling process, the continuous insertion of the thread | yarn 20 can be easily performed by extending the thread | yarn 20 along an extrusion direction or a rolling direction. As a result, a structure in which the yarn 20 is oriented in the tire circumferential direction is obtained.

糸20の破断強度は100N以下、より好ましくは、1N〜5Nであると良い。この糸20はエア分散性の改善を目的とするものであって補強部材ではないので、その破断強度の上限値を規制することでゴム層の挙動に対する影響を最小限に抑制することができる。糸20の破断強度が大き過ぎるとタイヤ成形工程に悪影響を及ぼす恐れがある。   The breaking strength of the yarn 20 is 100 N or less, more preferably 1N to 5N. Since the yarn 20 is intended to improve air dispersibility and is not a reinforcing member, the influence on the behavior of the rubber layer can be minimized by regulating the upper limit value of the breaking strength. If the breaking strength of the yarn 20 is too large, the tire forming process may be adversely affected.

糸20の構成材料は特に限定されるものではないが、例えば、ナイロン、ポリエステル、レーヨン等の合成繊維の他、綿等の天然繊維を使用することができる。また、糸20の総繊度は25dtex〜170dtexの範囲にあると良い。これにより、破断強度を低くすると共に、良好なエア分散性を確保することができる。   Although the constituent material of the thread | yarn 20 is not specifically limited, Natural fibers, such as cotton other than synthetic fibers, such as nylon, polyester, and rayon, can be used, for example. The total fineness of the yarn 20 is preferably in the range of 25 dtex to 170 dtex. As a result, the breaking strength can be lowered and good air dispersibility can be ensured.

糸20の打ち込み密度は5本/50mm以下であると良い。この糸20はエア分散性の改善を目的とするものであって補強部材ではないため、その打ち込み密度の上限値を規制することでゴム層の挙動に対する影響を最小限に抑制することができる。糸20の打ち込み密度が大き過ぎるとタイヤ成形工程に悪影響を及ぼす恐れがある。なお、糸20の打ち込み密度は糸20の相互間隔から特定される。例えば、糸20の相互間隔がPmmであるとき、糸20の打ち込み密度(本/50mm)は50/Pとなる。また、各界面における糸20の打ち込み本数が1本である場合、その打ち込み密度は5本/50mm以下であるものと見做す。   The driving density of the yarn 20 is preferably 5 pieces / 50 mm or less. Since the yarn 20 is intended to improve air dispersibility and is not a reinforcing member, the influence on the behavior of the rubber layer can be minimized by restricting the upper limit value of the driving density. If the driving density of the yarn 20 is too large, the tire forming process may be adversely affected. The driving density of the yarn 20 is specified from the mutual interval of the yarn 20. For example, when the mutual interval between the yarns 20 is P mm, the driving density (lines / 50 mm) of the yarns 20 is 50 / P. Further, when the number of driven yarns 20 at each interface is one, the driven density is considered to be 5/50 mm or less.

タイヤサイズ225/65R17の空気入りタイヤにおいて、キャップトレッドゴム層とアンダートレッドゴム層との界面に2本の糸を配置し、トレッドゴム層とエッジゴム層との界面に2本の糸を配置し、サイドゴム層とリムクッションゴム層との界面に1本の糸を配置し、インナーライナー層とタイゴム層との界面に8本の糸を配置した実施例1のタイヤを製作した。また、上記ゴム層の各界面に糸を配置しなかったこと以外は実施例1と同じ構造を有する従来例1のタイヤを製作した。   In a pneumatic tire of tire size 225 / 65R17, two yarns are arranged at the interface between the cap tread rubber layer and the under tread rubber layer, and two yarns are arranged at the interface between the tread rubber layer and the edge rubber layer, A tire of Example 1 was manufactured in which one thread was disposed at the interface between the side rubber layer and the rim cushion rubber layer, and eight threads were disposed at the interface between the inner liner layer and the tie rubber layer. Further, a tire of Conventional Example 1 having the same structure as Example 1 was manufactured except that no yarn was arranged at each interface of the rubber layer.

実施例1において、アンダートレッドゴム層の外端位置からタイヤセンターラインまでの距離Aに対して、キャップトレッドゴム層とアンダートレッドゴム層との界面の外端位置から距離Aの30%に相当する領域に糸を選択的に配置した。糸としては、綿繊維からなり、総繊度が29.5dtexである糸を使用した。この糸の破断強度は1Nである。   In Example 1, the distance A from the outer end position of the undertread rubber layer to the tire center line corresponds to 30% of the distance A from the outer end position of the interface between the cap tread rubber layer and the undertread rubber layer. A thread was selectively placed in the area. As the yarn, a yarn made of cotton fiber and having a total fineness of 29.5 dtex was used. The breaking strength of this yarn is 1N.

実施例1及び従来例1のタイヤをそれぞれ96本ずつ加硫し、加硫後に各タイヤにおけるブリスター故障の有無を検査し、ブリスター故障の発生率を求めた。その結果、実施例1のタイヤでは、従来例1との対比において、ショルダー部、リムクッション部、タイヤ内面の各部位においてブリスター故障の発生が減少していた。そして、実施例1におけるブリスター故障の発生率は従来例1におけるブリスター故障の発生率の約14%であった。   Each of the 96 tires of Example 1 and Conventional Example 1 was vulcanized, and after vulcanization, the presence or absence of blister failure in each tire was inspected to determine the incidence of blister failure. As a result, in the tire of Example 1, the occurrence of blister failure was reduced in each part of the shoulder portion, the rim cushion portion, and the tire inner surface in comparison with Conventional Example 1. The occurrence rate of blister failure in Example 1 was about 14% of the occurrence rate of blister failure in Conventional Example 1.

1 トレッド部
2 サイドウォール部
3 ビード部
4 カーカス層
5 ビードコア
6 ビードフィラー
7 ベルト層
11 トレッドゴム層
11A キャップトレッドゴム層
11B アンダートレッドゴム層
12 エッジゴム層
13 サイドゴム層
14 リムクッションゴム層
15 インナーライナー層
16 タイゴム層
20 糸
CL タイヤセンターライン
DESCRIPTION OF SYMBOLS 1 Tread part 2 Side wall part 3 Bead part 4 Carcass layer 5 Bead core 6 Bead filler 7 Belt layer 11 Tread rubber layer 11A Cap tread rubber layer 11B Under tread rubber layer 12 Edge rubber layer 13 Side rubber layer 14 Rim cushion rubber layer 15 Inner liner layer 16 Tie rubber layer 20 Thread CL Tire center line

Claims (2)

押出加工により一体的に成形されるキャップトレッドゴム層とアンダートレッドゴム層を備えた空気入りタイヤにおいて、前記キャップトレッドゴム層と前記アンダートレッドゴム層との界面に少なくとも1本の糸をタイヤ周方向に延在するように配置し、前記糸の破断強度が100N以下であり、前記糸の打ち込み密度が5本/50mm以下であることを特徴とする空気入りタイヤ。   In a pneumatic tire including a cap tread rubber layer and an under tread rubber layer that are integrally formed by extrusion, at least one yarn is provided in the tire circumferential direction at an interface between the cap tread rubber layer and the under tread rubber layer. The pneumatic tire is characterized in that the yarn has a breaking strength of 100 N or less and a yarn driving density of 5 pieces / 50 mm or less. 圧延加工により一体的に成形されるインナーライナー層とタイゴム層を備えた空気入りタイヤにおいて、前記インナーライナー層と前記タイゴム層との界面に少なくとも1本の糸をタイヤ周方向に延在するように配置し、前記糸の破断強度が100N以下であり、前記糸の打ち込み密度が5本/50mm以下であることを特徴とする空気入りタイヤ。   In a pneumatic tire including an inner liner layer and a tie rubber layer that are integrally formed by rolling, at least one yarn extends in the tire circumferential direction at an interface between the inner liner layer and the tie rubber layer. A pneumatic tire is provided, wherein the yarn has a breaking strength of 100 N or less and a yarn driving density of 5 pieces / 50 mm or less.
JP2016154557A 2016-08-05 2016-08-05 Pneumatic tire Active JP6299817B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016154557A JP6299817B2 (en) 2016-08-05 2016-08-05 Pneumatic tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016154557A JP6299817B2 (en) 2016-08-05 2016-08-05 Pneumatic tire

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2015064851A Division JP6015798B2 (en) 2015-03-26 2015-03-26 Pneumatic tire

Publications (2)

Publication Number Publication Date
JP2016187968A true JP2016187968A (en) 2016-11-04
JP6299817B2 JP6299817B2 (en) 2018-03-28

Family

ID=57240644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016154557A Active JP6299817B2 (en) 2016-08-05 2016-08-05 Pneumatic tire

Country Status (1)

Country Link
JP (1) JP6299817B2 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0671781A (en) * 1992-04-08 1994-03-15 Bridgestone Corp Method for producing pneumatic radial tire
JP2001121905A (en) * 1999-10-27 2001-05-08 Sumitomo Rubber Ind Ltd Tubeless tire
JP2002526311A (en) * 1998-10-02 2002-08-20 ソシエテ ド テクノロジー ミシュラン Radial tire crown reinforcement
JP2009274359A (en) * 2008-05-15 2009-11-26 Yokohama Rubber Co Ltd:The Pneumatic tire manufacturing method and pneumatic tire
JP2012131031A (en) * 2010-11-24 2012-07-12 Sumitomo Rubber Ind Ltd Pneumatic tire and production method thereof
JP2012158156A (en) * 2011-02-02 2012-08-23 Sumitomo Rubber Ind Ltd Method for manufacturing pneumatic tire
JP2012158064A (en) * 2011-01-31 2012-08-23 Sumitomo Rubber Ind Ltd Method for manufacturing pneumatic tire
JP2013180652A (en) * 2012-03-01 2013-09-12 Bridgestone Corp Tire
WO2014171462A1 (en) * 2013-04-15 2014-10-23 株式会社ブリヂストン Tire and method for producing tire
JP2015042512A (en) * 2013-08-26 2015-03-05 住友ゴム工業株式会社 Pneumatic tire

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0671781A (en) * 1992-04-08 1994-03-15 Bridgestone Corp Method for producing pneumatic radial tire
JP2002526311A (en) * 1998-10-02 2002-08-20 ソシエテ ド テクノロジー ミシュラン Radial tire crown reinforcement
JP2001121905A (en) * 1999-10-27 2001-05-08 Sumitomo Rubber Ind Ltd Tubeless tire
JP2009274359A (en) * 2008-05-15 2009-11-26 Yokohama Rubber Co Ltd:The Pneumatic tire manufacturing method and pneumatic tire
JP2012131031A (en) * 2010-11-24 2012-07-12 Sumitomo Rubber Ind Ltd Pneumatic tire and production method thereof
JP2012158064A (en) * 2011-01-31 2012-08-23 Sumitomo Rubber Ind Ltd Method for manufacturing pneumatic tire
JP2012158156A (en) * 2011-02-02 2012-08-23 Sumitomo Rubber Ind Ltd Method for manufacturing pneumatic tire
JP2013180652A (en) * 2012-03-01 2013-09-12 Bridgestone Corp Tire
WO2014171462A1 (en) * 2013-04-15 2014-10-23 株式会社ブリヂストン Tire and method for producing tire
JP2015042512A (en) * 2013-08-26 2015-03-05 住友ゴム工業株式会社 Pneumatic tire

Also Published As

Publication number Publication date
JP6299817B2 (en) 2018-03-28

Similar Documents

Publication Publication Date Title
JP6260598B2 (en) Pneumatic tire and manufacturing method thereof
JP6015798B2 (en) Pneumatic tire
JP6299817B2 (en) Pneumatic tire
JP6152867B2 (en) Method and apparatus for manufacturing rubber extruded member
JP6743571B2 (en) Pneumatic tire manufacturing method
JP6798119B2 (en) Pneumatic tires and their manufacturing methods
JP6164268B2 (en) Pneumatic tire and manufacturing method thereof
JP6152866B2 (en) Rubber rolling member manufacturing method and manufacturing apparatus
JP6743563B2 (en) Pneumatic tire and manufacturing method thereof
JP6593076B2 (en) Steel cord, pneumatic tire and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170725

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180212

R150 Certificate of patent or registration of utility model

Ref document number: 6299817

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250