JP2016186422A - Temperature calibration method - Google Patents

Temperature calibration method Download PDF

Info

Publication number
JP2016186422A
JP2016186422A JP2015065758A JP2015065758A JP2016186422A JP 2016186422 A JP2016186422 A JP 2016186422A JP 2015065758 A JP2015065758 A JP 2015065758A JP 2015065758 A JP2015065758 A JP 2015065758A JP 2016186422 A JP2016186422 A JP 2016186422A
Authority
JP
Japan
Prior art keywords
temperature
resistance value
channel
heater
microchannel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015065758A
Other languages
Japanese (ja)
Inventor
小楠 誠
Makoto Ogusu
誠 小楠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2015065758A priority Critical patent/JP2016186422A/en
Publication of JP2016186422A publication Critical patent/JP2016186422A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a temperature calibration method of a minute flow channel device capable of correcting a calibration obtained by one calibration work to a proper calibration value.SOLUTION: The temperature calibration method includes the steps of: after feeding at least one type of reagent which emits a signal at a known temperature to a minute flow channel, calculating a relationship between time and temperature based on the signal of the reagent; estimating temperature of at least a neighboring flow channel at a point when the reagent signal in the minute flow channel as a target of the calibration is obtained; calculating a fluctuation portion in the resistance values from a temperature difference between the minute flow channel as the target and a fluctuation portion; correcting the calculated resistance value of the fluctuation portion with respect to the resistance value of the target minute flow channel; and calibrating the relationship between the temperature in the flow channel of the target minute flow channel and a resistance value of a resistance body by using resistance value after correction.SELECTED DRAWING: Figure 3

Description

本発明は、複数のヒータを内蔵するチップの温度校正方法に関する。   The present invention relates to a temperature calibration method for a chip incorporating a plurality of heaters.

近年、1枚のチップ上で化学・生化学分析に必要な全ての要素を組み込むマイクロトータルアナリシスシステム(μ‐TAS)と呼ばれる技術についての研究開発が盛んである。チップはマイクロ流路、温度制御機構、濃度調整機構、送液機構、反応検出機構などから構成され、一般にマイクロ流体デバイスと呼ばれている。   In recent years, research and development on a technology called a micro total analysis system (μ-TAS) that incorporates all elements necessary for chemical and biochemical analysis on a single chip has been active. The chip is composed of a micro flow path, a temperature control mechanism, a concentration adjustment mechanism, a liquid feeding mechanism, a reaction detection mechanism, and the like, and is generally called a microfluidic device.

その中でも特に、ヒトゲノムの1塩基多型(SNP)などの遺伝情報の検査を目的としたDNA分析デバイスに注目が集まっており、研究が盛んに行われている。   Among them, a DNA analysis device for examining genetic information such as a single nucleotide polymorphism (SNP) of the human genome has attracted attention, and research is being actively conducted.

DNAを分析する工程は2つある。(1)DNAを増幅する工程と(2)DNAを判定する工程である。   There are two steps for analyzing DNA. (1) a step of amplifying DNA and (2) a step of determining DNA.

(1)のDNAを増幅する工程では、PCR(Polymerase Chain Reaction)法が一般的に用いられる。これは増幅対象のDNAの一部に対して相補的なプライマと酵素等とを混合し、サーマルサイクルをかけることでDNAを増幅させる手法である。本工程では、正確かつ反応時間短縮のための高速な温度制御が要求される。そのため、マイクロ流路に近接してヒータが構成されるチップが好適である。   In the step of amplifying DNA of (1), a PCR (Polymerase Chain Reaction) method is generally used. This is a technique for amplifying DNA by mixing a primer complementary to a part of DNA to be amplified and an enzyme and applying a thermal cycle. This process requires high-speed temperature control that is accurate and shortens the reaction time. Therefore, a chip in which a heater is formed in the vicinity of the microchannel is preferable.

図10から図12にマイクロ流路に近接したヒータを内蔵したチップを説明するための構成例の図を示した。図10はチップの全景を示しており、図中101はマイクロ流路、102はヒータ、103は電極パット、104は電極パット103とヒータ102を結ぶリードである。   FIG. 10 to FIG. 12 show diagrams of configuration examples for explaining a chip incorporating a heater close to the micro flow path. FIG. 10 shows an overall view of the chip, in which 101 is a micro flow path, 102 is a heater, 103 is an electrode pad, and 104 is a lead connecting the electrode pad 103 and the heater 102.

図11は図10中のA−A’断面において、ヒータ102とマイクロ流路101の関係を説明する図である。ここで、図10ではマイクロ流路101が合計で8本あったが、以下では隣接するマイクロ流路間の影響による課題を説明するので代表して2つのチャネルを示した。マイクロ流路101とヒータ102は一定のピッチで並べられている。次に図12に実際の駆動方法を説明するために1つのチャネルのみ抜き出して上面図として示した。ヒータ102はリード104で電極パット103と接続されている。ヒータ102上にはマイクロ流路101が配置されており、ヒータ102のほぼ中央に位置する領域に観察領域105を設定する。観察領域105は概念上のもので、流路自体に観察領域105を弁別する構造を設けてはいない。観察領域105は不図示の観察系を用いてマイクロ流路101からの信号、例えば蛍光強度等を観察する領域であり、この領域の温度を正確に把握し制御する必要がある。ヒータ102として一般に金属を用い、通電による温度上昇に従って抵抗値も上昇する特性を有する。つまりヒータ102自身の抵抗値の変化を測定することにより、ヒータ102自身の温度をモニタすることができる。ヒータ102の両端には電圧降下測定用の電極106を配置しており、ヒータ102に印加する電位をモニタする四端子測定法によりヒータ102の抵抗値を安定して精度よく測定することができる。マイクロ流路101とヒータ102を隔てる絶縁層は厚みが1〜2μmと薄いため、マイクロ流路101の温度はヒータ102の温度に良好に追従していると考えられる。そして、ヒータ102の抵抗値を測定することでヒータ102は加熱の機能のみならず、温度測定の機能も有する。以後、特に断わりなくマイクロ流路の温度と表記した際には、観察領域105での温度を指すことにする。   FIG. 11 is a diagram for explaining the relationship between the heater 102 and the microchannel 101 in the A-A ′ cross section in FIG. 10. Here, there are a total of eight micro flow paths 101 in FIG. 10, but in the following, two channels are shown as representatives because problems due to the influence between adjacent micro flow paths will be described. The microchannel 101 and the heater 102 are arranged at a constant pitch. Next, in FIG. 12, only one channel is extracted and shown as a top view for explaining the actual driving method. The heater 102 is connected to the electrode pad 103 by a lead 104. A micro flow channel 101 is disposed on the heater 102, and an observation region 105 is set in a region located substantially at the center of the heater 102. The observation area 105 is conceptual, and a structure for discriminating the observation area 105 is not provided in the flow path itself. The observation area 105 is an area for observing a signal from the microchannel 101, such as fluorescence intensity, using an observation system (not shown), and it is necessary to accurately grasp and control the temperature of this area. Generally, a metal is used as the heater 102, and the resistance value increases as the temperature increases due to energization. That is, the temperature of the heater 102 itself can be monitored by measuring the change in the resistance value of the heater 102 itself. Electrodes 106 for voltage drop measurement are arranged at both ends of the heater 102, and the resistance value of the heater 102 can be stably and accurately measured by a four-terminal measurement method for monitoring the potential applied to the heater 102. Since the insulating layer separating the microchannel 101 and the heater 102 is as thin as 1 to 2 μm, it is considered that the temperature of the microchannel 101 follows the temperature of the heater 102 well. By measuring the resistance value of the heater 102, the heater 102 has not only a heating function but also a temperature measuring function. Hereinafter, the temperature in the observation region 105 is indicated when it is expressed as the temperature of the microchannel without particular notice.

微小流路中の温度の校正方法としては特許文献1の実施例中に開示された方法がある。   As a method for calibrating the temperature in the microchannel, there is a method disclosed in the example of Patent Document 1.

図15と16を用いて、特許文献1に示される、従来のヒータの温度校正方法について説明する。ヒータに用いる材料は、温度変化に対する抵抗値変化の直線性が良いことから白金がよく用いられる。実際に製造されたヒータはそれぞれに製造誤差を持つため、測定したヒータ抵抗値から精度よく流路温度を求めるためには、ヒータ102の設計値から推定されるTCR(温度抵抗係数:温度変化に対する抵抗変化の割合)を用いたのでは誤差が出るため、校正作業が必要である。校正作業には人工的に合成したDNA試薬がよく用いられる。すなわち、DNAに二重螺旋に組み込まれた際にのみ蛍光を発することができる蛍光試薬が市販されているが、これとDNAを混合した試薬を用いる。DNAの二重螺旋は温度が上昇するに従い徐々に結合が解かれ、二本鎖に分離する。二重螺旋の解離に従って蛍光強度は弱まり、二本鎖に分離したところで完全に消光する。この蛍光が消えて行く温度はDNAの結合強度に依存しており、人工DNAは既知の特定の温度で消光するように合成されている。図15はマイクロ流路101に2つの異なる温度(T1,T2)で蛍光が消光するように合成された2種類の人工DNA試薬を混合充填し、ヒータ102に印加する電圧を徐々に上昇させるとともに抵抗値変化を測定し、マイクロ流路101の温度(横軸)を上昇させながら蛍光強度の変化(縦軸)を記録した結果を示している。本校正作業後には校正作業によって求められた温度係数を用いることになる。図15を見てわかる通り、蛍光強度自体は温度が上昇すると発光効率が低下するため、緩やかに右下がりのカーブを描く。ここで、人工DNAの既知の解離温度T1とT2で急峻に蛍光強度が変化している部位がある。図15で得られた信号を温度に対して一回微分し、符号を反転したものが図16である。既知の解離温度T1、T2においてシャープな信号が得られている。T1、T2の信号が得られた時点の対応する抵抗値R1、R2を用いて抵抗値とマイクロ流路温度との関係を示す一次式の係数を求める。つまり、T1とT2の温度差とR1とR2の抵抗値差から一次式の傾きが、傾きを求めた後には一方の値を用いて切片を求めることができる。すなわち温度T[℃]と抵抗値R[Ω]の間には
T=K1×R+K2
K1=(T2−T1)/(R2−R1)
K2=(R2・T1−R1・T2)/(R2−R1)
が成立する。
A conventional heater temperature calibration method disclosed in Patent Document 1 will be described with reference to FIGS. 15 and 16. As a material used for the heater, platinum is often used because of its good linearity of resistance value change with respect to temperature change. Since each heater actually manufactured has a manufacturing error, in order to accurately obtain the flow path temperature from the measured heater resistance value, a TCR (temperature resistance coefficient: temperature change coefficient) estimated from the design value of the heater 102 is used. If the ratio of resistance change) is used, an error occurs, and calibration work is necessary. An artificially synthesized DNA reagent is often used for the calibration work. That is, a fluorescent reagent that can emit fluorescence only when it is incorporated into DNA in a double helix is commercially available. A reagent in which this is mixed with DNA is used. As the temperature rises, the DNA double helix is gradually broken and separated into double strands. The fluorescence intensity decreases as the double helix dissociates, and is completely quenched when separated into double strands. The temperature at which this fluorescence disappears depends on the binding strength of DNA, and artificial DNA is synthesized so that it is quenched at a specific known temperature. FIG. 15 shows that the microchannel 101 is mixed and filled with two types of artificial DNA reagents synthesized so that fluorescence is quenched at two different temperatures (T1, T2), and the voltage applied to the heater 102 is gradually increased. The result of measuring the change in resistance value and recording the change in fluorescence intensity (vertical axis) while increasing the temperature (horizontal axis) of the microchannel 101 is shown. After this calibration work, the temperature coefficient obtained by the calibration work is used. As can be seen from FIG. 15, the fluorescence intensity itself has a gently downward-sloping curve because the luminous efficiency decreases as the temperature increases. Here, there is a site where the fluorescence intensity changes sharply at known dissociation temperatures T1 and T2 of the artificial DNA. FIG. 16 shows the signal obtained by differentiating the signal obtained in FIG. 15 once with respect to the temperature and inverting the sign. Sharp signals are obtained at known dissociation temperatures T1 and T2. Using the corresponding resistance values R1 and R2 at the time when the signals of T1 and T2 are obtained, a coefficient of a linear expression indicating the relationship between the resistance value and the microchannel temperature is obtained. That is, after obtaining the slope of the linear equation from the temperature difference between T1 and T2 and the resistance value difference between R1 and R2, the intercept can be obtained using one of the values. That is, T = K1 × R + K2 between the temperature T [° C.] and the resistance value R [Ω].
K1 = (T2-T1) / (R2-R1)
K2 = (R2 / T1-R1 / T2) / (R2-R1)
Is established.

特開2013−51969号公報JP 2013-51969 A

しかしながら、上記従来の校正方法にはマイクロ流体デバイス特有の課題があった。すなわち、あるチャネルのマイクロ流路は直下のヒータからの熱の供給のみで加熱されるだけでなく、近接して配置した隣接チャネルのヒータからの熱の流入の影響を受けていることである。より具体的に説明すると、校正前にはヒータの抵抗値およびTCRの製造ばらつきがある、すなわち先の係数K1,K2がチャネル毎にばらついている可能性がある。校正前にはこれらの数値が正確には不明であるため、校正中のヒータ温度を正確に把握できず、各チャネルの温度を厳密に同じ温度で制御できない。すなわち隣接するチャネルのヒータの温度が揃っていない状態で、図15の抵抗値と蛍光強度変化の関係を求めることになる。ここで例えばn番目と(n+1)番目のチャネルのヒータ抵抗値のばらつきによる発熱量のばらつきがあった場合、ヒータ内の温度分布が隣接チャネルのヒータとの温度差により異なった分布となる。図17(a),(b),(c)は隣接チャネルの温度が異なった場合の、熱量分布の違いを模式的にあらわした図である。実線の□は注目しているn番目のヒータ、点線の□はその両隣の(n−1)番目と(n+1)番目のヒータ面を示し、夫々のヒータが発熱し伝搬することによる熱量の分布をグレイスケールの等高線で示している。(a)は3つのチャネルを同じ温度で駆動している場合、(b)は(n−1)番目と(n+1)番目のチャネルをn番目のチャネルよりも低い温度で駆動している場合、(c)は(n−1)番目と(n+1)番目のチャネルをn番目のチャネルよりも高い温度で駆動している場合を示している。ヒータ内の温度分布は、自身の発熱による熱量に加えて隣接ヒータからの熱量により決まる、すなわち図17(a),(b),(c)からわかるように、隣接チャネルとの温度差によってn番目のヒータの横方向の温度分布とヒータ長手方向の端部近傍の温度分布が変化する。本構成では流路内の温度をヒータの温度変化による抵抗値変化で観測するが、ヒータ内の温度分布が変わるとそれに伴いヒータ内の抵抗値分布が変化するため、同じ抵抗値に観測されても、温度分布によって観察領域の温度が一義的に決まらないことを示している。従って従来の校正技術で温度と抵抗値の関係(校正値)を求め、その校正値に基づいてヒータを駆動すると、隣接チャネルとの温度差が校正作業時の温度差と異なる可能性があり、ヒータ抵抗値と流路温度との関係に誤差を残していた。これに対して、取得した校正値を使用して再度校正作業を行い、校正値の変動が規程値内に納まるまで繰返すことにより適正な校正値を求めることは可能であるが、校正作業時間が長時間化してしまう問題があった。従って本発明の課題は、一回の校正作業で得た校正値を適正な校正値に補正することを課題とする。   However, the above-described conventional calibration method has problems specific to microfluidic devices. That is, the micro flow path of a certain channel is not only heated only by the supply of heat from the heater immediately below, but also affected by the inflow of heat from the heaters of adjacent channels arranged in close proximity. More specifically, there is a manufacturing variation in the resistance value of the heater and the TCR before calibration, that is, the coefficients K1 and K2 may vary from channel to channel. Since these values are not exactly known before calibration, the heater temperature during calibration cannot be accurately grasped, and the temperature of each channel cannot be controlled at exactly the same temperature. That is, the relationship between the resistance value and the fluorescence intensity change in FIG. 15 is obtained in a state where the heater temperatures of adjacent channels are not uniform. Here, for example, when there is a variation in the amount of heat generated due to a variation in the heater resistance values of the nth and (n + 1) th channels, the temperature distribution in the heater is different depending on the temperature difference with the heater of the adjacent channel. 17A, 17B, and 17C are diagrams schematically showing the difference in heat distribution when the temperatures of adjacent channels are different. The solid line □ indicates the n-th heater of interest, and the dotted line □ indicates the (n−1) -th and (n + 1) -th heater surfaces adjacent to each other, and the distribution of the amount of heat due to the heat generation and propagation of each heater Is indicated by gray scale contour lines. (A) when three channels are driven at the same temperature, (b) when (n-1) th and (n + 1) th channels are driven at a lower temperature than the nth channel, (C) shows a case where the (n−1) th and (n + 1) th channels are driven at a higher temperature than the nth channel. The temperature distribution in the heater is determined by the amount of heat from the adjacent heater in addition to the amount of heat generated by itself, that is, as can be seen from FIGS. 17 (a), (b), and (c), n The temperature distribution in the lateral direction of the second heater and the temperature distribution in the vicinity of the end in the heater longitudinal direction change. In this configuration, the temperature in the flow path is observed by the change in resistance value due to the temperature change of the heater. However, if the temperature distribution in the heater changes, the resistance value distribution in the heater changes accordingly. This also indicates that the temperature in the observation region is not uniquely determined by the temperature distribution. Therefore, if the relationship between the temperature and resistance value (calibration value) is obtained with the conventional calibration technique and the heater is driven based on the calibration value, the temperature difference between adjacent channels may be different from the temperature difference during calibration work. An error was left in the relationship between the heater resistance value and the flow path temperature. On the other hand, it is possible to obtain the correct calibration value by repeating the calibration work using the acquired calibration value and repeating until the fluctuation of the calibration value falls within the regulation value. There was a problem that it took a long time. Accordingly, an object of the present invention is to correct a calibration value obtained by one calibration operation to an appropriate calibration value.

本願に掛かる発明は、校正信号取得時の隣接チャネルの温度差を推定することにより、一回の校正作業で取得した校正データの抵抗値を補正し、補正したデータを実動作時の温度制御に使用することを特徴とする。   The invention according to the present application corrects the resistance value of calibration data acquired in one calibration operation by estimating the temperature difference between adjacent channels at the time of calibration signal acquisition, and uses the corrected data for temperature control during actual operation. It is characterized by using.

本願の発明によれば、校正前の状態であっても隣接チャネルの影響を校正後の状態に揃えることで誤差を抑制した校正をすることができる。   According to the invention of the present application, even in a state before calibration, calibration with suppressed errors can be performed by aligning the influence of adjacent channels with the state after calibration.

n番目の流路の温度を50℃、70℃または90℃に制御した際の、隣接する(n+1)番目の流路とn番目の流路の間の温度差とn番目のヒータに投入されたエネルギーの変化の関係に関するシミュレーション結果を示す。When the temperature of the nth channel is controlled to 50 ° C., 70 ° C. or 90 ° C., the temperature difference between the (n + 1) th channel adjacent to the nth channel and the nth heater is supplied. The simulation results on the relationship between the energy changes are shown. 隣接流路の温度偏差が与える影響に関するシミュレーション結果を示す。The simulation result regarding the influence which the temperature deviation of an adjacent flow path gives is shown. ヒータ両端の見誤りの大きさが、(n+1)番目のチャネルとの温度偏差に応じて常に一定の関係があることを示すシミュレーション結果を示す。The simulation result which shows that the magnitude | size of the misunderstanding of both ends of a heater always has a fixed relationship according to the temperature deviation with the (n + 1) th channel is shown. 本実施例の校正作業で用いた人工DNAの信号を示す図である。It is a figure which shows the signal of the artificial DNA used in the calibration work of a present Example. 蛍光信号強度の変化を時間について一回微分した信号である。It is a signal obtained by differentiating the change of the fluorescence signal intensity once with respect to time. 図5の一部を拡大した図である。It is the figure which expanded a part of FIG. 説明の為の模式図である。It is a schematic diagram for description. 実測に基づくデータを示す。Data based on actual measurements are shown. 本発明の補正の有無のそれぞれの場合の蛍光信号のピーク時の温度誤差を示すグラフである。It is a graph which shows the temperature error at the time of the peak of the fluorescence signal in each case of the presence or absence of the correction | amendment of this invention. マイクロ流路に近接したヒータを内蔵したチップを説明するための図である。It is a figure for demonstrating the chip | tip which incorporated the heater adjacent to the microchannel. 図10中のA−A’断面において、ヒータ102とマイクロ流路101の関係を説明する図である。FIG. 11 is a diagram for explaining a relationship between a heater 102 and a micro flow channel 101 in the A-A ′ cross section in FIG. 10. マイクロ流路に近接したヒータを内蔵したチップを説明する1つのチャネルを抜き出した図である。It is the figure which extracted one channel explaining the chip | tip which incorporated the heater adjacent to the microchannel. 校正用の人工DNAの温度と蛍光強度の関係を示すグラフである。It is a graph which shows the relationship between the temperature of the artificial DNA for calibration, and fluorescence intensity. 図13のグラフを微分し、符号を反転したグラフである。14 is a graph obtained by differentiating the graph of FIG. 13 and inverting the sign. 抵抗値と蛍光強度変化の関係を示す図である。It is a figure which shows the relationship between resistance value and a fluorescence intensity change. 抵抗値と蛍光強度変化の微分値の関係を示す図である。It is a figure which shows the relationship between a resistance value and the differential value of a fluorescence intensity change. 熱量分布の違いを説明するための模式図である。It is a schematic diagram for demonstrating the difference in heat quantity distribution.

本発明は、微小流路デバイスの温度校正方法を提供する。本発明の微小流路デバイスは複数の微小流路を有する。本発明の温度校正方法においては、該複数の微小流路と、さらに微小流路毎に近接する抵抗体を設け、該抵抗体に電流を流して微小流路の温度を上昇させて前記抵抗体の抵抗値から温度を算出する。   The present invention provides a temperature calibration method for a microchannel device. The microchannel device of the present invention has a plurality of microchannels. In the temperature calibration method of the present invention, the resistor is provided by providing the plurality of microchannels and a resistor adjacent to each microchannel, and passing a current through the resistor to raise the temperature of the microchannel. Calculate the temperature from the resistance value.

本発明の温度校正方法においては、少なくとも1種類の既知の温度で信号を発する試薬を微小流路に投入し、既知のレートで温度を高め、前記試薬から信号が発せられた抵抗値を前記温度と見なす。そして、本発明の温度校正方法は各微小流路に対して試薬の信号を基に時間と温度の関係を求める工程と、校正の対象とする微小流路の試薬信号が得られた時点の少なくとも隣接流路の温度を推定する工程と、対象とする微小流路と隣接する微小流路の温度差から抵抗値変動分を得る工程と、得られた抵抗値変動分を対象とする微小流路の抵抗値に対して補正する工程と、補正後の抵抗値を用いて対象とする微小流路の流路内温度と抵抗体抵抗値の関係を校正する工程とを有する。   In the temperature calibration method of the present invention, at least one kind of reagent that emits a signal at a known temperature is introduced into the microchannel, the temperature is increased at a known rate, and the resistance value from which the signal is emitted from the reagent is determined as the temperature. Is considered. The temperature calibration method of the present invention includes a step of obtaining a relationship between time and temperature based on a reagent signal for each microchannel, and at least a point in time when a reagent signal of the microchannel to be calibrated is obtained. A step of estimating the temperature of the adjacent flow channel, a step of obtaining a resistance value variation from a temperature difference between the target micro flow channel and the adjacent micro flow channel, and a micro flow channel targeted for the obtained resistance value variation And a step of calibrating the relationship between the temperature in the channel of the target microchannel and the resistance value of the resistor using the corrected resistance value.

また、本発明の温度校正方法においては、特に好ましくは、微小流路中の試薬の信号を取得する領域において、領域中の流路の長さよりも抵抗体が長い。   In the temperature calibration method of the present invention, it is particularly preferable that the resistor is longer than the length of the channel in the region in the region where the reagent signal in the microchannel is acquired.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

以下に実施例を示し、本発明をさらに具体的に説明する。   The following examples illustrate the present invention more specifically.

発明者はマイクロ流路に近接したヒータを有するマイクロデバイスの熱挙動について鋭意検討を進めた結果、隣接チャネル間の温度差とヒータ抵抗値の間に有用な関係があることを理解するに至った。   As a result of diligent investigation on the thermal behavior of a microdevice having a heater close to the microchannel, the inventor has come to understand that there is a useful relationship between the temperature difference between adjacent channels and the heater resistance value. .

図1はn番目の流路の温度を50℃、70℃または90℃に制御した際の、隣接する(n+1)番目の流路とn番目の流路の間の温度差とn番目のヒータに投入されたエネルギーの変化の関係をシミュレーションによってグラフ化したものである。横軸は(n+1)番目の流路のn番目流路の温度を基準にした温度偏差、縦軸は対応するn番目のヒータに投入されるエネルギーを示している。三角で示す記号は50℃制御時、四角で示す記号は70℃制御時、ひし形で示す記号は90℃制御時の結果である。なお、縦軸は検討を行った範囲における最大パワーで規格化した値で示している。グラフから分かる通り、n番目の流路を一定温度に制御している時、(n+1)番目の流路の温度がn番目の流路より高い場合は、n番目のヒータに投入するエネルギーは抑えられている。逆に(n+1)番目の流路の温度がn番目の流路より低い場合には、n番目のヒータには多いエネルギーが投入されている。このことはn番目の流路の温度は、直近のヒータの温度だけでは決まらず、隣接する(n+1)番目のヒータの発熱量にも影響されていることを示している。   FIG. 1 shows the temperature difference between the (n + 1) th channel and the nth channel and the nth heater when the temperature of the nth channel is controlled to 50 ° C., 70 ° C. or 90 ° C. This is a graph of the relationship between changes in the energy input to. The horizontal axis indicates the temperature deviation based on the temperature of the nth flow path of the (n + 1) th flow path, and the vertical axis indicates the energy input to the corresponding nth heater. Symbols indicated by triangles are results at 50 ° C. control, symbols indicated by squares are results at 70 ° C. control, and symbols indicated by diamonds are results at 90 ° C. control. The vertical axis indicates the value normalized with the maximum power in the examined range. As can be seen from the graph, when the temperature of the (n + 1) th channel is higher than that of the nth channel when the nth channel is controlled at a constant temperature, the energy input to the nth heater is suppressed. It has been. Conversely, when the temperature of the (n + 1) th channel is lower than that of the nth channel, a large amount of energy is input to the nth heater. This indicates that the temperature of the nth channel is not determined only by the temperature of the latest heater but is also influenced by the heat generation amount of the adjacent (n + 1) th heater.

さらに隣接流路の温度偏差が与える影響についてシミュレーションにより調べた結果、次のことが分かった。図2はn番目のヒータの幅方向中央部の温度についてヒータの長手方向に沿って分布を調べた結果である。横軸はヒータ長手方向の位置を示しており、縦軸はn番目と(n+1)番目の流路のそれぞれの観察領域105が同じ90℃で長手方向の温度分布も同一のプロファイルとなっている時のn番目のヒータの温度分布を基準にして、破線は(n+1)番目の流路が5℃高い場合のn番目のヒータとの温度差、実線は(n+1)番目の流路が5℃低い場合のn番目のヒータとの温度差の分布を示している。観察領域105は同じ温度であるが、ヒータの端部に近いところでは温度分布に差が現れている。   Furthermore, as a result of examining the influence of the temperature deviation of the adjacent channel by simulation, the following was found. FIG. 2 shows the result of examining the distribution in the longitudinal direction of the heater for the temperature at the center in the width direction of the nth heater. The abscissa indicates the position in the heater longitudinal direction, and the ordinate indicates the same profile for the observation regions 105 of the nth and (n + 1) th flow paths at the same 90 ° C. and the longitudinal temperature distribution. With reference to the temperature distribution of the nth heater at the time, the broken line is the temperature difference from the nth heater when the (n + 1) th flow path is 5 ° C higher, and the solid line is 5 ° C for the (n + 1) th flow path The distribution of the temperature difference with the n-th heater when the temperature is low is shown. Although the observation region 105 has the same temperature, a difference appears in the temperature distribution near the end of the heater.

この温度分布に応じてヒータの抵抗値分布も変化する。すなわち、ヒータの全体の抵抗値を測定して温度モニタしている場合、観察領域は一定の温度が示されるが、実際の温度は(n+1)番目の流路の温度に応じて、流路内に分布が生じていることを示している。   The resistance value distribution of the heater also changes according to this temperature distribution. That is, when the overall resistance value of the heater is measured and the temperature is monitored, the observation region shows a constant temperature, but the actual temperature is in the flow path according to the temperature of the (n + 1) th flow path. Indicates that a distribution occurs.

このように、値としては一定の抵抗値として観測されていながら、実際に流路内で温度分布に差を生じているとき、このバラツキを抵抗値で示した値を「見誤り」と呼ぶこととする。   In this way, when a value is observed as a constant resistance value, but there is actually a difference in the temperature distribution in the flow path, the value indicating this variation as a resistance value is referred to as a “mistake”. And

検討を進めた結果、ヒータ両端の見誤りの大きさは制御する温度目標値に関わらず、(n+1)番目のチャネルとの温度偏差に応じて常に一定の関係があることを見出した。その関係をグラフ化したものが図3である。横軸に(n+1)番目の流路の温度偏差、縦軸にn番目のヒータでの抵抗値の見誤り値を示した。   As a result of investigations, it was found that the magnitude of the misunderstanding at both ends of the heater always has a constant relationship according to the temperature deviation from the (n + 1) th channel, regardless of the temperature target value to be controlled. FIG. 3 is a graph showing the relationship. The horizontal axis shows the temperature deviation of the (n + 1) th flow path, and the vertical axis shows the error value of the resistance value at the nth heater.

尚、ここまでの説明では常に片側の隣接チャネルとの関係を議論してきた。相互作用は両側の隣接チャネルとの間で生じるため、補正は両側のチャネルに対して行う必要がある。また、更に1つのチャネルを超えた隣接チャネルも最隣接チャネルと比較して影響は弱まるものの、温度差に応じて補正できると、より精度が向上するものと考える。   In the description so far, the relationship with the adjacent channel on one side has always been discussed. Since the interaction occurs between adjacent channels on both sides, correction must be made on the channels on both sides. Further, although the influence of adjacent channels exceeding one channel is weaker than that of the most adjacent channel, it can be considered that accuracy can be improved if correction can be made according to the temperature difference.

次に実際に観測された数字を例示しながら、本発明の温度校正方法について説明する。図4と5は本実施例の校正作業で用いた人工DNAの信号に関する図である。図4、5と図13、14は、同じ実験に基づく結果だが、図13、14では横軸が温度で示されている一方、図4、5は時間で示されている点において異なる。   Next, the temperature calibration method of the present invention will be described with reference to actually observed numbers. 4 and 5 are diagrams relating to the artificial DNA signal used in the calibration work of this embodiment. FIGS. 4 and 5 and FIGS. 13 and 14 are based on the same experiment but differ in that in FIGS. 13 and 14, the horizontal axis is indicated by temperature, while FIGS. 4 and 5 are indicated by time.

図4は蛍光強度をグラフ化したものである。本図で用いられた人工DNAは70℃と90℃で融解するよう設計・製作された。図4の横軸は一定温度勾配で加熱した際の時間を、縦軸は蛍光の輝度についても規格化した値を示す。   FIG. 4 is a graph showing the fluorescence intensity. The artificial DNA used in this figure was designed and manufactured to melt at 70 ° C and 90 ° C. The horizontal axis in FIG. 4 indicates the time when heating is performed at a constant temperature gradient, and the vertical axis indicates a value normalized with respect to the luminance of the fluorescence.

図5は蛍光信号強度の変化を時間について一回微分した信号を示す。図6は図5の一部を拡大したものである。微分カーブのピークを比較すると、n番目のチャネルに対して(n+1)番目のチャネルは少し後の時間にピークがずれている。   FIG. 5 shows a signal obtained by differentiating the change in the fluorescence signal intensity once with respect to time. FIG. 6 is an enlarged view of a part of FIG. Comparing the peaks of the differential curves, the peak of the (n + 1) th channel is shifted slightly later than the nth channel.

図7は説明の為の模式図である。左側の実線の丸で囲んだ点では、流路の観察領域105における、人工DNAの信号ピークがT1であり、このとき、時間がt1であったことを示す。右側の実線の丸で囲まれた点は、(n+1)番目の流路から温度がT1になったことを示すシグナルが時間t2に観測されたことを示す。時間t2の際、n番目の流路は、既にT1よりも高い温度になっている。逆の見方をすると、n番目の流路が温度T1であるとき、(n+1)番目の流路は温度T1よりも低い温度であったことを示している(破線の丸)。このような状態では抵抗値は見誤りを含むことになる。   FIG. 7 is a schematic diagram for explanation. A point surrounded by a solid circle on the left side indicates that the signal peak of the artificial DNA in the observation region 105 of the flow path is T1, and at this time, the time is t1. A point surrounded by a solid circle on the right side indicates that a signal indicating that the temperature has reached T1 is observed at time t2 from the (n + 1) th flow path. At time t2, the nth flow path is already at a temperature higher than T1. In other words, when the nth channel is at temperature T1, the (n + 1) th channel is at a temperature lower than temperature T1 (dotted circle). In such a state, the resistance value includes an error.

そこで、本発明においては、補正作業は流路の温度を時間の関数として記述して、n番目の流路のデータを補正する際に、隣接する(n+1),(n−1)番目の流路の温度を推定し、推定した温度偏差から求まる抵抗値の読み取り誤差を補正する。   Therefore, in the present invention, the correction operation describes the temperature of the flow path as a function of time, and corrects the data of the nth flow path to correct the (n + 1) th and (n-1) th flow adjacent to each other. Estimate the temperature of the road and correct the reading error of the resistance value obtained from the estimated temperature deviation.

図8は実際に観測されたデータを示す。このデータにおいて人工DNAは70℃と90℃で信号を出す試薬が用いられている。「ピークが観測された時間」は各チャネルにおいて、人工DNAの蛍光ピークが観測された時間を示す。T1は70℃、T2は90℃である。   FIG. 8 shows actually observed data. In this data, artificial DNA uses a reagent that gives a signal at 70 ° C. and 90 ° C. “Time when peak was observed” indicates the time when the fluorescence peak of the artificial DNA was observed in each channel. T1 is 70 ° C. and T2 is 90 ° C.

各流路について得られたピークの時間から、流路温度の時間に対する一次関数の式を求め、n番目のチャネルがピークシグナルを示した時間(70℃では27.23597秒、90℃では47.38929秒)での流路温度をその一次関数に当てはめることによって求めた。その結果、例えば、n番目の流路が70℃の時、(n−1)番目の流路は同時刻に70.06654℃、(n+1)番目の流路は70.23280℃であったと分かる。このことから、n番目の流路が70℃の時、(n−1)番目のチャネルとは0.06654℃、(n+1)番目のチャネルとは0.23280℃の温度偏差があったことが分かる。   From the peak time obtained for each flow path, an expression of a linear function with respect to the time of the flow path temperature is obtained, and the time when the n-th channel shows a peak signal (27.23597 seconds at 70 ° C., 47. The flow path temperature at 38929 seconds) was obtained by fitting it to its linear function. As a result, for example, when the n-th flow path is 70 ° C., the (n−1) -th flow path is 70.06654 ° C. and the (n + 1) -th flow path is 70.23280 ° C. at the same time. . From this, when the n-th flow path is 70 ° C., the (n−1) -th channel has a temperature deviation of 0.06654 ° C. and the (n + 1) -th channel has a temperature deviation of 0.23280 ° C. I understand.

本実施例での流路ディメンジョンでは隣接流路の温度差に対応する抵抗値の見誤り量は、
dR=−0.0015dT+0.0006
と分かっているので温度偏差を抵抗値の見誤り量に換算する。
In the flow channel dimension in this example, the amount of error in the resistance value corresponding to the temperature difference between the adjacent flow channels is
dR = −0.0015 dT + 0.0006
Since the temperature deviation is known, the temperature deviation is converted into an error in the resistance value.

補正量は両隣の影響を合計し、蛍光信号のピークが観測された時点での抵抗値に補正を加える。補正された抵抗値と人工DNAが示す既知の流路内温度から、流路内温度とヒータ抵抗値との関係式の係数を求める。   The correction amount adds up the effects of both sides and corrects the resistance value when the peak of the fluorescence signal is observed. From the corrected resistance value and the known channel temperature indicated by the artificial DNA, a coefficient of a relational expression between the channel temperature and the heater resistance value is obtained.

校正作業を8つのチャネルを持つチップに対して、補正有りと補正無しで比較した。補正無しで流路内温度とヒータ抵抗値との関係式を求めて、確認の為の校正作業を実施した。校正後の蛍光信号のピークは既知の温度に観測されるはずであるが、いくらかの誤差を持っている。並行して同じデータを本発明の補正方法を用いて補正し、流路内温度とヒータ抵抗値の関係を求めた。図9は横軸に補正無しで校正した際の、二度目の校正作業で観測された蛍光信号のピーク時の温度誤差を横軸に、本発明の補正を行って校正した場合の蛍光信号のピーク時の温度誤差を縦軸にグラフを描いた。本発明の補正方法によって誤差が低減されている様子が分かる。   The calibration work was compared with and without correction for a chip with 8 channels. A calibration work for confirmation was performed by obtaining a relational expression between the flow path temperature and the heater resistance value without correction. The peak of the fluorescent signal after calibration should be observed at a known temperature, but has some error. In parallel, the same data was corrected using the correction method of the present invention, and the relationship between the channel temperature and the heater resistance value was determined. In FIG. 9, the horizontal axis represents the temperature error at the peak of the fluorescence signal observed in the second calibration operation when calibrated without correction, and the horizontal axis represents the fluorescence signal when calibrated by performing the correction of the present invention. The temperature error at the peak is plotted on the vertical axis. It can be seen that the error is reduced by the correction method of the present invention.

Claims (2)

複数の微小流路を有する微小流路デバイスの温度校正方法であって、複数の微小流路および微小流路毎に近接する抵抗体を設け、抵抗体に電流を流して微小流路の温度を上昇させて前記抵抗体の抵抗値から温度を算出することを特徴とする微小流路デバイスの温度校正方法であって、
少なくとも1種類の既知の温度で信号を発する試薬を微小流路に投入し、既知のレートで温度を高め、前記試薬から信号が発せられた抵抗値を前記温度と見なすことを特徴とし、
各微小流路に対して試薬の信号を基に時間と温度の関係を求める工程と、
校正の対象とする微小流路の試薬信号が得られた時点の少なくとも隣接流路の温度を推定する工程と、
対象とする微小流路と隣接する微小流路の温度差から抵抗値変動分を得る工程と、
得られた抵抗値変動分を対象とする微小流路の抵抗値に対して補正する工程と、
補正後の抵抗値を用いて対象とする微小流路の流路内温度と抵抗体抵抗値の関係を校正する工程とを有することを特徴とする微小流路デバイスの温度校正方法。
A temperature calibration method for a micro-channel device having a plurality of micro-channels, wherein a plurality of micro-channels and a resistor adjacent to each micro-channel are provided, and a current is passed through the resistor to control the temperature of the micro-channel. A temperature calibration method for a microchannel device, characterized in that the temperature is calculated from the resistance value of the resistor by raising the temperature,
At least one kind of reagent that emits a signal at a known temperature is introduced into the microchannel, the temperature is increased at a known rate, and the resistance value at which a signal is emitted from the reagent is regarded as the temperature,
Obtaining a relationship between time and temperature based on a reagent signal for each microchannel;
Estimating the temperature of at least the adjacent channel when the reagent signal of the microchannel to be calibrated is obtained;
Obtaining a resistance value variation from a temperature difference between a target microchannel and an adjacent microchannel;
Correcting the obtained resistance value variation for the resistance value of the micro-channel,
A method for calibrating a temperature of a micro-channel device, comprising a step of calibrating a relationship between a temperature in a micro-channel of a target micro-channel and a resistance value of resistance using a corrected resistance value.
微小流路デバイス中の微小流路中の試薬の信号を取得する領域において、領域中の流路の長さよりも抵抗体が長いことを特徴とする、請求項1の温度校正方法。   The temperature calibration method according to claim 1, wherein the resistor is longer than the length of the channel in the region in the region for acquiring the reagent signal in the microchannel in the microchannel device.
JP2015065758A 2015-03-27 2015-03-27 Temperature calibration method Pending JP2016186422A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015065758A JP2016186422A (en) 2015-03-27 2015-03-27 Temperature calibration method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015065758A JP2016186422A (en) 2015-03-27 2015-03-27 Temperature calibration method

Publications (1)

Publication Number Publication Date
JP2016186422A true JP2016186422A (en) 2016-10-27

Family

ID=57203166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015065758A Pending JP2016186422A (en) 2015-03-27 2015-03-27 Temperature calibration method

Country Status (1)

Country Link
JP (1) JP2016186422A (en)

Similar Documents

Publication Publication Date Title
JP6159252B2 (en) Thermal calibration
Yin et al. Ultrafast multiplexed detection of SARS-CoV-2 RNA using a rapid droplet digital PCR system
JP5205802B2 (en) Real-time PCR device
JP5533008B2 (en) Nucleic acid amplification equipment
CN106047687B (en) Ribonucleic acid chain type polymerize amplified reaction detection device and its method for carrying out DNA concentration detection
US20130084572A1 (en) Calibrations and controls for droplet-based assays
EP3231861B1 (en) Nucleic acid amplification with mathematical calculation of the assay result
TWI527905B (en) Method of snp detection by using gene detection technique in bead-based microfluidics
WO2013091472A1 (en) Method and device for performing polymerase chain reaction under constant heat reservoir
EP1964610B1 (en) Nucleic acid amplifier
US20140295424A1 (en) Isolation and Enrichment of Nucleic Acids on Microchip
Lam et al. Loop-mediated isothermal amplification of a single DNA molecule in polyacrylamide gel-based microchamber
CN103635568A (en) Nucleic acid amplification apparatus and nucleic acid analysis apparatus
Yang et al. Use of multiplex polymerase chain reactions to indicate the accuracy of the annealing temperature of thermal cycling
JP2009517075A (en) Real-time PCR monitoring using intrinsic imaging without labeling
Kim et al. PID temperature control system-based microfluidic PCR chip for genetic analysis
US20140011184A1 (en) Positive Controls
US6022141A (en) Apparatus and method for remote temperature measurements
JP2015114265A (en) Micro fluid device and measured temperature compensation method thereof
Heap et al. PCR amplification using electrolytic resistance for heating and temperature monitoring
JP2016186422A (en) Temperature calibration method
CN109536384B (en) Digital PCR system for rapid absolute quantification of nucleic acid and application thereof
Nagai et al. Portable microfluidic system for rapid genetic testing
US20150165438A1 (en) Microfluidic device and temperature control method for microfluidic device
Wang et al. Towards a portable microchip system with integrated thermal control and polymer waveguides for real‐time PCR

Legal Events

Date Code Title Description
RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20171214

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180126