JP2016184494A - Tab lead material for film exterior package battery and manufacturing method for the same - Google Patents

Tab lead material for film exterior package battery and manufacturing method for the same Download PDF

Info

Publication number
JP2016184494A
JP2016184494A JP2015063845A JP2015063845A JP2016184494A JP 2016184494 A JP2016184494 A JP 2016184494A JP 2015063845 A JP2015063845 A JP 2015063845A JP 2015063845 A JP2015063845 A JP 2015063845A JP 2016184494 A JP2016184494 A JP 2016184494A
Authority
JP
Japan
Prior art keywords
plating layer
film
tab lead
plating
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015063845A
Other languages
Japanese (ja)
Other versions
JP6220359B2 (en
Inventor
篤志 児玉
Atsushi Kodama
篤志 児玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2015063845A priority Critical patent/JP6220359B2/en
Publication of JP2016184494A publication Critical patent/JP2016184494A/en
Application granted granted Critical
Publication of JP6220359B2 publication Critical patent/JP6220359B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a tab lead material for a film exterior package battery which is excellent in adhesion to a film exterior package body, anticorrosion, weldability and bendability, and also excellent in productivity, and a manufacturing method for the same.SOLUTION: In a tab lead material for a film exterior package battery which is connected to an electrode in a film exterior package battery 100 and taken out to the outside of the film exterior package battery, a first Ni-plated layer 1b is formed on the surface of a base material 1a made of Cu or Cu alloy, and a second Ni-plated layer 1c is formed on the first Ni-plated layer 1b. The first Ni-plated layer contains S of 800 mass ppm or less, and the second Ni-plated layer contains S of 1,000 to 25,000 mass ppm.SELECTED DRAWING: Figure 2

Description

本発明は、リチウムイオンポリマー電池や電気二重層キャパシタ等に好適に用いられるフィルム外装電池用タブリード材料及びその製造方法に関する。   The present invention relates to a tab lead material for a film-clad battery that is suitably used for a lithium ion polymer battery, an electric double layer capacitor, and the like, and a method for producing the same.

携帯機器等の電源として、リチウムイオン二次電池や電気二重層キャパシタ等(以下、これらをまとめて「電池」と称する)が用いられているが、これら電池の軽量化や薄型化がますます要望されている。このようなことから、電池の外装体として、金属ケースよりも軽量で薄いラミネートフィルムが用いられてきている。
このフィルム外装電池は、電極及び電解質を含む電池本体をフィルム外装体で密封して包装した構造になっている。そして、電池内部の電極(正極及び負極)に導電性のタブリードが接続され、この一対のタブリードがフィルム外装体の合わせ目のシール部から外部に露出して外部と電気的接続が可能となっている。
Lithium ion secondary batteries, electric double layer capacitors, etc. (hereinafter collectively referred to as “batteries”) are used as power sources for portable devices, etc., but these batteries are becoming increasingly lighter and thinner. Has been. For this reason, a laminate film that is lighter and thinner than a metal case has been used as a battery outer package.
This film-clad battery has a structure in which a battery body including an electrode and an electrolyte is sealed and packaged with a film-clad body. Then, conductive tab leads are connected to the electrodes (positive electrode and negative electrode) inside the battery, and the pair of tab leads are exposed to the outside from the sealing portion of the joint of the film outer package so that they can be electrically connected to the outside. Yes.

ところで、フィルム外装体の密封を維持するため、タブリードはフィルム外装体と隙間なく密着する必要があり、例えばタブリードとフィルム外装体の内面とは接着テープによって接着されている。また、タブリードは、電池内部で電解質に接触するため、電解質に対する耐食性が求められる。
このようなことから、リード線金属の表面に樹脂成分と金属塩とを含む処理液を噴霧して複合皮膜層を形成し、さらにその上に絶縁体を貼り合わせ、耐フッ酸性を向上させた技術が開示されている(特許文献1)。
By the way, in order to maintain the sealing of the film outer package, the tab lead needs to be in close contact with the film outer package without any gap. For example, the tab lead and the inner surface of the film outer package are bonded by an adhesive tape. Moreover, since the tab lead contacts the electrolyte inside the battery, corrosion resistance to the electrolyte is required.
For this reason, a treatment liquid containing a resin component and a metal salt is sprayed on the surface of the lead wire metal to form a composite coating layer, and an insulator is further bonded thereon to improve hydrofluoric acid resistance. A technique is disclosed (Patent Document 1).

特開2011−081992号公報JP 2011-081992 A

しかしながら、特許文献1記載の技術の場合、樹脂を含んだ処理液を噴霧する工程や、その後に乾燥硬化する工程などが必要となり、生産性が低下したり製造工程が複雑になるという問題がある。また、樹脂を含む複合皮膜層がリード線金属の接点部や端子部に塗着すると、接点部の電気接続性や端子部の溶接性が低下する。このため、接点部や端子部をマスキングしたり、余分な皮膜を剥離、研磨する必要が生じ、生産性がさらに低下するおそれがある。
さらに、タブリードを電池内部に引き回したり、電池を携帯機器内に収容する際に電池外部のタブリードを曲げることがあり、タブリードにはある程度の曲げ性が要求されるが、特許文献1記載の技術の場合、リードを曲げると複合皮膜層がひび割れたり脱落する可能性がある。
一方、タブリードとしてNiが用いられているが、Niは高価であるため、Cu又はCu合金に代替することが考えられる。しかしながら、Cu又はCu合金はNiに比べて溶接性が劣ることが判明した。
However, in the case of the technique described in Patent Document 1, there is a problem that a step of spraying a treatment liquid containing a resin, a step of drying and curing after that, and the like are required, resulting in a decrease in productivity and a complicated manufacturing process. . Moreover, when the composite coating layer containing resin is applied to the contact portion or terminal portion of the lead wire metal, the electrical connectivity of the contact portion and the weldability of the terminal portion are reduced. For this reason, it is necessary to mask the contact portion and the terminal portion, or to peel off and polish an excessive film, which may further reduce the productivity.
Further, the tab lead may be routed inside the battery or the tab lead outside the battery may be bent when the battery is accommodated in the portable device. The tab lead is required to have a certain degree of bendability. In this case, bending the lead may cause the composite coating layer to crack or fall off.
On the other hand, Ni is used as the tab lead. However, since Ni is expensive, it is conceivable to replace it with Cu or a Cu alloy. However, it has been found that Cu or Cu alloys have poor weldability compared to Ni.

従って、本発明の目的は、フィルム外装体との密着性、耐食性、溶接性及び曲げ性に優れると共に、生産性にも優れたフィルム外装電池用タブリード材料及びその製造方法を提供することにある。   Accordingly, an object of the present invention is to provide a tab lead material for a film-clad battery and a method for producing the same, which are excellent in adhesion with a film outer package, corrosion resistance, weldability, and bendability and also in productivity.

本発明者らは種々検討した結果、Cu又はCu合金からなる基材の表面にNiめっき層を2層めっきし、そのうち上層側のNiめっき層中のS濃度を高くすることで、上層側のNiめっき層が優先的に腐食され、下層側のNiめっき層の耐食性を確保できることを見出した。
上記の目的を達成するために、本発明のフィルム外装電池用タブリード材料は、フィルム外装電池の内部の電極に接続されると共に該フィルム外装電池の外部に取り出されるフィルム外装電池用タブリード材料であって、Cu又はCu合金からなる基材の表面に第1Niめっき層が形成され、その上に第2Niめっき層が形成されてなり、前記第1Niめっき層が800質量ppm以下のSを含み、かつ前記第2Niめっき層が1000〜25000質量ppmのSを含む。
As a result of various studies, the present inventors have plated the surface of the substrate made of Cu or Cu alloy with two Ni plating layers, and by increasing the S concentration in the upper Ni plating layer, the upper layer side It has been found that the Ni plating layer is preferentially corroded and the corrosion resistance of the lower Ni plating layer can be secured.
In order to achieve the above object, a tab lead material for a film-clad battery according to the present invention is a tab lead material for a film-clad battery that is connected to an electrode inside the film-clad battery and taken out of the film-clad battery. A first Ni plating layer is formed on the surface of a substrate made of Cu or Cu alloy, a second Ni plating layer is formed thereon, the first Ni plating layer contains 800 ppm by mass or less of S, and The second Ni plating layer contains 1000 to 25000 mass ppm of S.

前記第1Niめっき層の厚みが0.2〜7.0μm、かつ前記第2Niめっき層の厚みが0.2〜2.0μmであることが好ましい。
前記第2Niめっき層の表面に、厚みが1〜10nmの3価Crの化成処理膜が形成されてなることが好ましい。
It is preferable that the thickness of the first Ni plating layer is 0.2 to 7.0 μm and the thickness of the second Ni plating layer is 0.2 to 2.0 μm.
Preferably, a trivalent Cr chemical conversion film having a thickness of 1 to 10 nm is formed on the surface of the second Ni plating layer.

本発明のフィルム外装電池用タブリード材料の製造方法は、フィルム外装電池の内部の電極に接続されると共に該フィルム外装電池の外部に取り出されるフィルム外装電池用タブリード材料の製造方法であって、Cu又はCu合金からなる基材の表面に、800質量ppm以下のSを含む第1Niめっき層をめっきした後、1000〜25000質量ppmのSを含む第2Niめっき層をめっきする。   The method for producing a tab lead material for a film-clad battery according to the present invention is a method for producing a tab lead material for a film-clad battery that is connected to an electrode inside the film-clad battery and is taken out of the film-clad battery, After plating the surface of the base material made of Cu alloy with the first Ni plating layer containing 800 mass ppm or less of S, the second Ni plating layer containing 1000 to 25000 mass ppm of S is plated.

本発明のフィルム外装電池用タブリード材料の製造方法において、前記第1Niめっき層の厚みを0.2〜7.0μm、かつ前記第2Niめっき層の厚みを0.2〜2.0μmとすることが好ましい。
前記第2Niめっき層の表面に、厚みが1〜10nmの3価Crの化成処理膜を形成することが好ましい。
In the method for producing a tab lead material for a film-clad battery according to the present invention, the thickness of the first Ni plating layer may be 0.2 to 7.0 μm, and the thickness of the second Ni plating layer may be 0.2 to 2.0 μm. preferable.
It is preferable to form a trivalent Cr chemical conversion film having a thickness of 1 to 10 nm on the surface of the second Ni plating layer.

本発明によれば、フィルム外装体との密着性、耐食性、溶接性及び曲げ性に優れると共に、生産性にも優れたフィルム外装電池用タブリード材料が得られる。   ADVANTAGE OF THE INVENTION According to this invention, while being excellent in adhesiveness with a film exterior body, corrosion resistance, weldability, and bendability, the tab lead material for film exterior batteries excellent in productivity is obtained.

タブリードを備えたフィルム外装電池を示す斜視図である。It is a perspective view which shows the film-clad battery provided with the tab lead. 図1のA−A線に沿う断面図である。It is sectional drawing which follows the AA line of FIG. 実施例1の試料の腐食試験後の外観を示す図である。It is a figure which shows the external appearance after the corrosion test of the sample of Example 1. FIG. 比較例1の試料の腐食試験後の外観を示す図である。It is a figure which shows the external appearance after the corrosion test of the sample of the comparative example 1.

以下、本発明の実施形態について説明する。
図1は、タブリード1を備えたフィルム外装電池100を示す斜視図、図2は図1のA−A線に沿う断面図である。
図1に示すように、フィルム外装電池100は、電極及び電解質を含む電池本体(図示せず)をフィルム外装体5で熱融着等により密封して包装した構造になっている。そして、電池内部の電極(正極及び負極)に導電性の一対のタブリード1が接続され、各タブリード1がフィルム外装体5の合わせ目のシール部5aから外部に露出して外部と電気的接続が可能となっている。又、図1のフィルム外装電池100は、非水電解質と、所定の活物質が塗布された正極及び負極と、セパレータとを電池本体とするリチウムイオン電池となっているが、電解質及び一対の電極を有し、電気エネルギーを蓄えて放出できるものであれば良く、電気二重層キャパシタ等を用いることもできる。
Hereinafter, embodiments of the present invention will be described.
FIG. 1 is a perspective view showing a film-clad battery 100 having a tab lead 1, and FIG. 2 is a cross-sectional view taken along the line AA in FIG.
As shown in FIG. 1, the film-clad battery 100 has a structure in which a battery body (not shown) including an electrode and an electrolyte is sealed and packaged with a film-clad body 5 by heat fusion or the like. Then, a pair of conductive tab leads 1 are connected to the electrodes (positive electrode and negative electrode) inside the battery, and each tab lead 1 is exposed to the outside from the seam seal portion 5a of the film outer package 5 to be electrically connected to the outside. It is possible. 1 is a lithium ion battery having a non-aqueous electrolyte, a positive electrode and a negative electrode coated with a predetermined active material, and a separator as a battery main body. The electrolyte and the pair of electrodes In other words, an electric double layer capacitor or the like can be used.

正極としては、例えば正極活性物質をアルミニウム等の正極集電材に塗布したものを用いることができる。負極としては、例えば負極活性物質をCu等の負極集電材に塗布したものを用いることができる。
電解質としては、例えば有機溶媒等の非水溶媒にリチウム塩を配合した、液状、ゲル状および高分子ポリマー状の各種非水電解質を用いることができる。
フィルム外装体5としては、例えば金属箔の少なくとも片面に樹脂フィルムを積層したラミネートフィルムを用いることができる。金属箔としては、水を透過しないニッケル、銅、アルミニウム、ステンレス等の箔を用いることができる。樹脂フィルムとしては、ナイロン、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレートなどの熱融着フィルムを用いることができる。なお、少なくともタブリード1側のフィルム外装体5は、タブリード1と絶縁を図るために金属箔が露出していない樹脂フィルム側とする必要がある。通常は、金属箔の両面に樹脂フィルムを積層する。
As the positive electrode, for example, a positive electrode active material coated on a positive electrode current collector such as aluminum can be used. As the negative electrode, for example, a negative electrode active material coated on a negative electrode current collector such as Cu can be used.
As the electrolyte, for example, various non-aqueous electrolytes in a liquid, gel-like, or polymer-like form in which a lithium salt is blended with a non-aqueous solvent such as an organic solvent can be used.
As the film outer package 5, for example, a laminate film in which a resin film is laminated on at least one surface of a metal foil can be used. As the metal foil, a foil made of nickel, copper, aluminum, stainless steel or the like that does not transmit water can be used. As the resin film, a heat-sealing film such as nylon, polyethylene, polypropylene, or polyethylene terephthalate can be used. Note that at least the film outer package 5 on the tab lead 1 side needs to be on the resin film side where the metal foil is not exposed in order to insulate the tab lead 1. Usually, a resin film is laminated on both surfaces of a metal foil.

又、図2に示すように、フィルム外装体5のシール部5aは、一枚のフィルム外装体5を折り返した外縁部の合わせ目に形成され、タブリード1が電池の内部からシール部5aを通って外部に取り出されている。
タブリード1は、Cu又はCu合金からなる基材1aと、基材1aの両面にそれぞれ形成された第1Niめっき層1bと、各第1Niめっき層1b上にそれぞれ形成された第2Niめっき層1cを有している。そして、シール部5a近傍のフィルム外装体5の内面と、タブリード1の表裏面との間は、それぞれ接着層3で隙間なく密封されている。接着層3としては、例えばポリエチレンやポリプロピレン等の粘着テープを用いることができる。
一方、フィルム外装体5の内部には電解質9及び図示しない電極(正極及び負極)が収容されている。そして、フィルム外装体5の内部で、タブリード1は、電解質9に接触すると共に、各電極のうち活物質が塗布されていない集電材露出部7に溶接等により接続されている。
なお、本実施形態では、各第2Niめっき層1cの表面に3価Crの化成処理膜2が形成されているが、この化成処理膜2は必須ではない。
Further, as shown in FIG. 2, the seal portion 5a of the film outer package 5 is formed at the joint of the outer edge portion of the folded film outer package 5, and the tab lead 1 passes through the seal portion 5a from the inside of the battery. Has been taken out.
The tab lead 1 includes a base 1a made of Cu or a Cu alloy, a first Ni plating layer 1b formed on each side of the base 1a, and a second Ni plating layer 1c formed on each first Ni plating layer 1b. Have. And between the inner surface of the film exterior body 5 in the vicinity of the seal portion 5a and the front and back surfaces of the tab lead 1 are sealed without gaps by the adhesive layer 3, respectively. As the adhesive layer 3, for example, an adhesive tape such as polyethylene or polypropylene can be used.
On the other hand, an electrolyte 9 and electrodes (not shown) (positive electrode and negative electrode) are accommodated inside the film outer package 5. The tab lead 1 is in contact with the electrolyte 9 inside the film outer package 5 and is connected to the current collector exposed portion 7 to which no active material is applied among the electrodes by welding or the like.
In the present embodiment, the trivalent Cr chemical conversion film 2 is formed on the surface of each second Ni plating layer 1c, but this chemical conversion film 2 is not essential.

次に、本発明の実施形態に係るフィルム外装電池用タブリード材料について詳細に説明する。図2に示すように、フィルム外装電池用タブリード材料は、Cu又はCu合金からなる基材1aの表面に第1Niめっき層1bが形成され、その上に第2Niめっき層1cが形成されてなる。   Next, the tab lead material for a film-clad battery according to the embodiment of the present invention will be described in detail. As shown in FIG. 2, the tab lead material for a film-clad battery has a first Ni plating layer 1b formed on the surface of a substrate 1a made of Cu or a Cu alloy, and a second Ni plating layer 1c formed thereon.

<基材>
CuおよびCu合金は導電性に優れ、かつ耐食性も比較的良好であるため、基材としてCu又はCu合金を用いる。Cu又はCu合金は、例えば、JIS−H3100(C1020)に規格する無酸素銅、JIS−H3100(C1100)に規格するタフピッチ銅、JIS−H3100(C2200)に規格する丹銅、JIS−H3110(5191)に規格するリン青銅、JIS−H3100(C2600)に規格する黄銅、CDA掲載合金(C7025)に規格するコルソン銅などが挙げられる。
特に、比較的大電流を流すタイプの電池のタブリードには、無酸素銅やタフピッチ銅などの高導電材料が好ましい。
基材の厚みは特に限定されないが、好ましくは0.1〜0.8mm、より好ましくは0.1〜0.6、さらに好ましくは0.1〜0.4mmである。基材の幅は特に限定されないが、例えば幅3〜100mm程度である。
基材は、インゴットを圧延し、さらにスリット加工して所定幅の条として製造できる。さらに必要に応じ、連続プレスにより所定形状(例えば、部分的に穴が開いた形状)の条に加工してもよい。Niめっき後のタブリードをプレス等で加工すると、加工部のめっき層が薄くなったりクラックが生じる可能性があるが、予め基材を加工した後にNiめっきを施すと、耐食性がより向上する。従って、耐食性をより一層向上させたい場合は、基材を加工後にNiめっきを施すとよい。
<Base material>
Since Cu and Cu alloy are excellent in conductivity and relatively good in corrosion resistance, Cu or Cu alloy is used as a base material. Cu or Cu alloy is, for example, oxygen-free copper standardized to JIS-H3100 (C1020), tough pitch copper standardized to JIS-H3100 (C1100), red copper standardized to JIS-H3100 (C2200), JIS-H3110 (5191). ), Phosphor bronze standardized to JIS-H3100 (C2600), corson copper standardized to CDA listed alloy (C7025), and the like.
In particular, a highly conductive material such as oxygen-free copper or tough pitch copper is preferable for the tab lead of a battery of a type in which a relatively large current flows.
Although the thickness of a base material is not specifically limited, Preferably it is 0.1-0.8 mm, More preferably, it is 0.1-0.6, More preferably, it is 0.1-0.4 mm. Although the width | variety of a base material is not specifically limited, For example, it is about 3-100 mm in width.
The base material can be manufactured as a strip having a predetermined width by rolling an ingot and further slitting the ingot. Further, if necessary, it may be processed into a strip having a predetermined shape (for example, a shape having a partially opened hole) by continuous pressing. When the tab lead after Ni plating is processed with a press or the like, the plating layer in the processed portion may be thinned or cracks may occur. However, if Ni plating is performed after the substrate is processed in advance, the corrosion resistance is further improved. Therefore, when it is desired to further improve the corrosion resistance, Ni plating may be performed after the base material is processed.

<第1Niめっき層>
本発明においては、基材の表面にNiめっき層を2層めっきし、そのうち上層側のNiめっき層中のS濃度を高くすることで、上層側のNiめっき層が優先的に腐食され、下層側のNiめっき層の耐食性を確保できる。又、Niめっき層はタブリードの溶接性を向上させる。
このうち、第1Niめっき層は、基材を保護する下地めっき層として機能し、800質量ppm以下のSを含む。第1Niめっき層のSの濃度は好ましくは600質量ppm以下である。なお、後述するウッド浴やスルファミン酸浴など工業的に公知のNiめっき液には硫酸塩やスルファミン酸塩が含有され、これらの成分がめっき過程において不可避的にめっき皮膜中に微量取り込まれるため、S濃度の下限は20〜30質量ppmである。
Niめっき層中のS濃度が高くなるほど腐食し易くなる。このため、第1Niめっき層のSの濃度が800質量ppmを超えると、第1Niめっき層の耐食性が低下し、その下層の基材の腐食を抑制することが困難となる。
<First Ni plating layer>
In the present invention, two Ni plating layers are plated on the surface of the substrate, and by increasing the S concentration in the upper Ni plating layer, the upper Ni plating layer is preferentially corroded, and the lower layer The corrosion resistance of the Ni plating layer on the side can be ensured. Moreover, the Ni plating layer improves the weldability of the tab lead.
Among these, a 1st Ni plating layer functions as a base plating layer which protects a base material, and contains 800 mass ppm or less of S. The concentration of S in the first Ni plating layer is preferably 600 ppm by mass or less. In addition, industrially known Ni plating solutions such as a wood bath and a sulfamic acid bath, which will be described later, contain sulfates and sulfamic acid salts, and these components are inevitably incorporated in the plating film in the plating process, The lower limit of the S concentration is 20 to 30 ppm by mass.
The higher the S concentration in the Ni plating layer, the easier it is to corrode. For this reason, when the concentration of S in the first Ni plating layer exceeds 800 mass ppm, the corrosion resistance of the first Ni plating layer is lowered, and it becomes difficult to suppress corrosion of the underlying substrate.

第1Niめっき層の厚みは、0.2〜7.0μmが好ましく、0.5〜5.0μmがより好ましく、0.7〜2.0μmが最も好ましい。
第1Niめっき層の厚みが0.2μm未満であると、めっき層のピンホールが多くなって耐食性が低下する場合がある。第1Niめっき層の厚みが7.0μmを超えると耐食性の効果が飽和すると共に、曲げ性が低下する場合がある。
The thickness of the first Ni plating layer is preferably 0.2 to 7.0 μm, more preferably 0.5 to 5.0 μm, and most preferably 0.7 to 2.0 μm.
If the thickness of the first Ni plating layer is less than 0.2 μm, the pinholes in the plating layer may increase and the corrosion resistance may decrease. When the thickness of the first Ni plating layer exceeds 7.0 μm, the corrosion resistance effect is saturated and the bendability may be reduced.

第1Niめっき層及び第2Niめっき層の境界は、フィルム外装電池用タブリード材料の断面をFIB(Focused Ion Beam;集束イオンビーム)により観察して区別することができる。
又、第1Niめっき層及び第2Niめっき層中のS濃度は、グロー放電質量分析法(GD−MS法)により、深さ方向にS濃度を測定することで求める。
具体的には、グロー放電質量分析法(GD−MS法)により、第2Niめっき層の表面から深さ方向にアルゴンスパッタし、厚さ方向の中央部まで削ったときのS濃度と、C(炭素)濃度を測定した。さらに、第2Niめっき層をアルゴンスパッタで除去した後、第1Niめっき層を深さ方向にアルゴンスパッタし、厚さ方向の中央部まで削ったときのS,C濃度を同様に測定した。
The boundary between the first Ni plating layer and the second Ni plating layer can be distinguished by observing the cross section of the tab lead material for a film-clad battery with a focused ion beam (FIB).
Further, the S concentration in the first Ni plating layer and the second Ni plating layer is obtained by measuring the S concentration in the depth direction by glow discharge mass spectrometry (GD-MS method).
Specifically, by glow discharge mass spectrometry (GD-MS method), argon concentration is sputtered in the depth direction from the surface of the second Ni plating layer, and the S concentration and the C ( Carbon) concentration was measured. Further, after removing the second Ni plating layer by argon sputtering, the S and C concentrations when the first Ni plating layer was argon sputtered in the depth direction and cut to the center in the thickness direction were similarly measured.

<第2Niめっき層>
第2Niめっき層は第1Niめっき層の表面に形成されている。上記したように第2Niめっき層中のS濃度を1000〜25000質量ppmに高くすることで、第2Niめっき層が優先的に腐食され、下層側の第1Niめっき層の耐食性を確保できる。又、第2Niめっき層を介して相手材と溶接が行われる。
ここで、例えば第2Niめっき層に微細なピンホールが存在する場合に、第2Niめっき層より第1Niめっき層が腐食し易いと、ピンホールを介して下地の第1Niめっき層が集中的に腐食し、基材に達すると考えられる。一方、第2Niめっき層が第1Niめっき層より腐食し易いと、上記ピンホールが存在しても、ピンホール周囲で第2Niめっき層が優先的に腐食し、第1Niめっき層の腐食を抑制できると考えられる。
<Second Ni plating layer>
The second Ni plating layer is formed on the surface of the first Ni plating layer. As described above, by increasing the S concentration in the second Ni plating layer to 1000 to 25000 mass ppm, the second Ni plating layer is preferentially corroded, and the corrosion resistance of the first Ni plating layer on the lower layer side can be ensured. Further, welding with the counterpart material is performed via the second Ni plating layer.
Here, for example, when a fine pinhole exists in the second Ni plating layer, if the first Ni plating layer is more easily corroded than the second Ni plating layer, the underlying first Ni plating layer corrodes intensively through the pinhole. It is thought that the base material is reached. On the other hand, if the second Ni plating layer is more easily corroded than the first Ni plating layer, even if the pinhole exists, the second Ni plating layer corrodes preferentially around the pinhole, and the corrosion of the first Ni plating layer can be suppressed. it is conceivable that.

第2Niめっき層のSの濃度が1000ppm未満であると、第2Niめっき層が第1Niめっき層に比べて優先的に腐食し難くなり、上記しためっき層全体の耐食性が低下する。一方、第2Niめっき層のSの濃度が25000ppmを超えると、曲げ性が低下すると共に、めっき層が割れやすくなって耐食性も低下する。
第2Niめっき層のSの濃度は、好ましくは1000〜15000ppmである。
If the concentration of S in the second Ni plating layer is less than 1000 ppm, the second Ni plating layer is less likely to corrode preferentially than the first Ni plating layer, and the corrosion resistance of the entire plating layer described above is reduced. On the other hand, when the concentration of S in the second Ni plating layer exceeds 25000 ppm, the bendability is deteriorated, the plating layer is easily broken, and the corrosion resistance is also reduced.
The concentration of S in the second Ni plating layer is preferably 1000 to 15000 ppm.

第2Niめっき層の厚みは、0.2〜3.0μmが好ましく、0.3〜2.0μmがより好ましく、0.5〜1.0μmが最も好ましい。
第2Niめっき層の厚みが0.2μm未満であると、第2Niめっき層が第1Niめっき層に比べて優先的に腐食し難くなり、上記しためっき層全体の耐食性が低下する場合がある。第2Niめっき層の厚みが3.0μmを超えると、曲げ性が低下する場合がある。
The thickness of the second Ni plating layer is preferably 0.2 to 3.0 μm, more preferably 0.3 to 2.0 μm, and most preferably 0.5 to 1.0 μm.
If the thickness of the second Ni plating layer is less than 0.2 μm, the second Ni plating layer is less likely to corrode preferentially than the first Ni plating layer, and the corrosion resistance of the entire plating layer described above may be reduced. If the thickness of the second Ni plating layer exceeds 3.0 μm, the bendability may be reduced.

第1Niめっき層及び第2Niめっき層は、例えばウッド浴やスルファミン酸浴など工業的に公知のNiめっき液を用いた電解Niめっきで形成することができる。めっき条件も公知の条件を適用できる。
ここで、第1Niめっき層用のめっき液と、第2Niめっき層用のめっき液とに、それぞれ異なる濃度でS含有化合物からなる光沢剤を添加することで、各Niめっき層にSが取り込まれ、各Niめっき層中のS濃度を調整することができる。S含有化合物からなる光沢剤としては、例えばスルフォン酸塩(飽和または不飽和の脂肪族のスルフォン酸塩、芳香族のスルフォン酸塩等)が挙げられ、具体的にはサッカリン、クマリン、ブチンジオール等が挙げられる。
The first Ni plating layer and the second Ni plating layer can be formed by electrolytic Ni plating using an industrially known Ni plating solution such as a wood bath or a sulfamic acid bath. Known conditions can be applied to the plating conditions.
Here, S is taken into each Ni plating layer by adding brighteners made of S-containing compounds at different concentrations to the plating solution for the first Ni plating layer and the plating solution for the second Ni plating layer. The S concentration in each Ni plating layer can be adjusted. Examples of brighteners comprising S-containing compounds include sulfonates (saturated or unsaturated aliphatic sulfonates, aromatic sulfonates, etc.), and specific examples include saccharin, coumarin, and butynediol. Is mentioned.

本発明の実施形態に係るフィルム外装電池用タブリード材料は、例えば基材の条を連続めっきライン(フープめっきライン)で、電解脱脂、酸洗等の前処理に続いて電解Niめっきして工業的に製造することができる。ここで、最初にめっきする第1Niめっき層用のめっき漕のめっき液には少ない量の上記光沢剤を添加し、次にめっきする第2Niめっき層用のめっき漕のめっき液にはこれより多い量の上記光沢剤を添加すればよい。   The tab lead material for a film-clad battery according to an embodiment of the present invention is industrially produced by, for example, subjecting a strip of a base material to a continuous plating line (hoop plating line) and electrolytic Ni plating following pretreatment such as electrolytic degreasing and pickling. Can be manufactured. Here, a small amount of the brightener is added to the plating solution for the first Ni plating layer to be plated first, and more than this to the plating solution for the second Ni plating layer to be plated next. An amount of the brightener may be added.

<3価Cr(クロム)の化成処理膜>
第2Niめっき層の表面に、厚みが1〜10nmの3価Crの化成処理膜が形成されていてもよい。化成処理膜は、フィルム外装体5との密着性を向上させる。
化成処理膜の厚みが1nm未満であると、密着性が低いフィルムと積層した場合の浸漬試験後の密着強度が低くなる場合がある。化成処理膜の厚みが10nmを超えると、接触抵抗が大きくなって溶接性が低下する場合がある。密着性が低いフィルムとしては、例えば市販のポリエチレン系低粘性圧着フィルムが挙げられる。
化成処理膜の厚みは、XPS(X線光電子分光分析)により、アルゴンスパッタしながら深さ方向に成分分析を行ってCr濃度が2%以上の領域を化成膜厚さとした。なおXPSでは3価Crと6価Crを区別可能である。
化成処理膜の厚みが1.5〜5nmであるとより好ましい。
<Chemical conversion film of trivalent Cr (chromium)>
A trivalent Cr chemical conversion film having a thickness of 1 to 10 nm may be formed on the surface of the second Ni plating layer. The chemical conversion treatment film improves the adhesion with the film outer package 5.
When the thickness of the chemical conversion treatment film is less than 1 nm, the adhesion strength after the immersion test when laminated with a film having low adhesion may be lowered. If the thickness of the chemical conversion film exceeds 10 nm, the contact resistance may increase and the weldability may decrease. Examples of the film having low adhesion include a commercially available polyethylene-based low-viscosity pressure-bonding film.
The thickness of the chemical conversion treatment film was analyzed by XPS (X-ray photoelectron spectroscopic analysis) in the depth direction while performing argon sputtering, and the region having a Cr concentration of 2% or more was defined as the chemical film thickness. In XPS, trivalent Cr and hexavalent Cr can be distinguished.
The thickness of the chemical conversion film is more preferably 1.5 to 5 nm.

化成処理膜は、例えば3価クロムを含有する溶液中に、第2Niめっき層を形成したタブリード材料を浸漬した後、乾燥して形成することができる。
3価クロムを含有する溶液としては、主成分の3価クロムの他に、亜鉛、ニッケルなどを含有する水溶性化合物を溶解した水溶液を使用することができる。水溶性の3価クロム化合物としては、例えば、硝酸クロム、硫酸クロム、塩化クロム、燐酸クロム、酢酸クロム等の塩類の他、クロム酸や重クロム酸塩等の六価クロム化合物を還元剤により3価に還元した化合物を使用することも可能である。また、これらを複数併用することもできる。
化成処理膜は、例えば上述の連続めっきラインのNiめっき、その後の水洗処理の工程の後に3価クロム処理槽を設け、連続的に形成する方法が効率的であり好ましい。又、めっきラインと別個に3価クロム処理ラインを設けてもよい。化成処理膜の形成は、3価クロム処理に通常使用される条件で行うことができ、処理温度、処理pH、処理時間、任意の添加剤などについて、当業者が通常行う通りに、具体的な実施の態様に応じた処理条件の変更を行うことができる。
The chemical conversion treatment film can be formed, for example, by immersing the tab lead material on which the second Ni plating layer is formed in a solution containing trivalent chromium and then drying.
As the solution containing trivalent chromium, an aqueous solution in which a water-soluble compound containing zinc, nickel or the like is dissolved in addition to the main component trivalent chromium can be used. Examples of water-soluble trivalent chromium compounds include salts of chromium nitrate, chromium sulfate, chromium chloride, chromium phosphate, chromium acetate, and hexavalent chromium compounds such as chromic acid and dichromate with a reducing agent. It is also possible to use a compound reduced to a valence. A plurality of these can also be used in combination.
For example, the chemical conversion treatment film is preferably formed by providing a trivalent chromium treatment tank after the above-described steps of Ni plating in the continuous plating line and the subsequent water washing treatment, so that it is efficient. Further, a trivalent chromium treatment line may be provided separately from the plating line. The formation of the chemical conversion treatment film can be performed under the conditions normally used for the trivalent chromium treatment, and the treatment temperature, treatment pH, treatment time, optional additives, etc. The processing conditions can be changed according to the embodiment.

以下に実施例をあげて、本発明を詳細に説明するが、本発明は以下の実施例に限定されるものではない。   EXAMPLES The present invention will be described in detail below with reference to examples, but the present invention is not limited to the following examples.

<タブリード材の製造>
基材となるCuおよびCu合金として、それぞれタフピッチ銅(JIS−C1100)、リン青銅(JIS−C5200)、コルソン銅(JIS−C7025)を用いた。これらの厚さ0.2mmの銅合金板を、幅30mm、長さ100mmの短冊状に切断した。
基材の両面に、第1Niめっき層と第2Niめっき層をこの順でめっきしてタブリード材料を製造した。又、一部の試料については、第2Niめっき層の表面にクロム化成処理を行って3価Crの化成処理膜を形成した。
第1Niめっき層及びの第2Niめっき層のめっき浴は、スルファミン酸浴(スルファミン酸ニッケルとホウ酸を含有、液温55℃)に、光沢剤としてサッカリンを0〜20g/Lの間で種々調整し、1,4ブチンジオールを0〜5g/Lの間で種々調整したものを用いた。これにより、各Niめっき層中のS濃度を調整した。
クロム化成処理は市販の3価Cr含有処理液(40℃,pH4.5)を用い、処理液中に第2Niめっき層をめっきした後の試料を浸漬させて行った。化成処理膜の厚さは、処理液への浸漬時間を変えることで調整した。このようにして短冊状のタブリード材を製造した。
<Manufacture of tab lead materials>
Tough pitch copper (JIS-C1100), phosphor bronze (JIS-C5200), and Corson copper (JIS-C7025) were used as Cu and Cu alloy as the base material, respectively. These copper alloy plates having a thickness of 0.2 mm were cut into strips having a width of 30 mm and a length of 100 mm.
A tab lead material was produced by plating a first Ni plating layer and a second Ni plating layer in this order on both surfaces of the substrate. Moreover, about some samples, the chemical conversion treatment film of trivalent Cr was formed by performing chromium chemical conversion treatment on the surface of the second Ni plating layer.
The plating bath of the first Ni plating layer and the second Ni plating layer is variously adjusted between 0 and 20 g / L of saccharin as a brightener in a sulfamic acid bath (containing nickel sulfamate and boric acid, liquid temperature 55 ° C.). In addition, 1,4-butynediol was variously adjusted between 0 and 5 g / L. Thereby, the S concentration in each Ni plating layer was adjusted.
The chromium chemical conversion treatment was performed by using a commercially available trivalent Cr-containing treatment solution (40 ° C., pH 4.5) and immersing the sample after plating the second Ni plating layer in the treatment solution. The thickness of the chemical conversion treatment film was adjusted by changing the immersion time in the treatment liquid. In this way, a strip-shaped tab lead material was produced.

各Niめっき層の厚さはFIB(SIIナノテクノノジー社製 SMI−3050SE)での断面像で各Niめっき層の境界を識別して測定した。
各Niめっき層中のSとC濃度はグロー放電質量分析計(VG マイクロトレース社製 VG 9000)を用いて、上述のように測定した。
化成処理膜(クロメート層)の厚さは、XPS(アルバックファイ社製 PHI-5000)による深さ方向分析を行って、上述のように測定した。
The thickness of each Ni plating layer was measured by identifying the boundary of each Ni plating layer by a cross-sectional image using FIB (SMI-3050SE, manufactured by SII Nanotechnology).
The S and C concentrations in each Ni plating layer were measured as described above using a glow discharge mass spectrometer (VG 9000 manufactured by VG Microtrace).
The thickness of the chemical conversion treatment film (chromate layer) was measured as described above by performing a depth direction analysis by XPS (PHI-5000 manufactured by ULVAC-PHI).

得られた試料につき、以下の評価を行った。
<耐食性(腐食試験)>
リチウムイオン電池の電解液として一般的に使用されているエチレンカーボネート+ジメチルカーボネート+ジエチルカーボネート液(1:1:1(モル比))にLiPF6を1mol/L添加し、次に純水を電解液に対して1000質量ppm添加した腐食液を準備した。この腐食液に各試料を浸漬して60℃の恒温槽の中に72時間放置した。なお、上述のように試料は短冊形状であり、Niめっきの際にめっきセルに保持した一方の端面がめっきされずに基材が露出しているため、この露出部を腐食液に浸漬させないようにして試験を行った。
腐食試験後の試料を取出して洗浄、乾燥した後、試料表面の外観を光学顕微鏡(20〜200倍)で観察し、以下の基準で耐食性を評価した。評価が○、△であれば実用上問題はない。
○:腐食が観察されなかった
△:腐食点の数が1〜2個/mm
×:腐食点の数が3個/mm以上
なお、腐食の有無は、図4に示すようにめっき面の色調と異なる基材の銅のスポット状の色味(図4の暗部)が出たか否かで判定した。
The following evaluation was performed about the obtained sample.
<Corrosion resistance (corrosion test)>
1 mol / L of LiPF6 is added to ethylene carbonate + dimethyl carbonate + diethyl carbonate solution (1: 1: 1 (molar ratio)) generally used as an electrolyte for lithium ion batteries, and then pure water is added to the electrolyte. A corrosive solution added with 1000 ppm by mass was prepared. Each sample was immersed in this corrosive solution and left in a constant temperature bath at 60 ° C. for 72 hours. As mentioned above, the sample has a strip shape, and one end face held in the plating cell at the time of Ni plating is not plated and the base material is exposed, so that this exposed portion is not immersed in the corrosive liquid. The test was conducted.
After the sample after the corrosion test was taken out, washed and dried, the appearance of the sample surface was observed with an optical microscope (20 to 200 times), and the corrosion resistance was evaluated according to the following criteria. If evaluation is (circle) and (triangle | delta), there is no problem practically.
○: Corrosion was not observed Δ: Number of corrosion points was 1 to 2 / mm 2
×: The number of corrosion points is 3 / mm 2 or more Note that the presence or absence of corrosion produces a spot-like color of copper (dark part in FIG. 4) of the base material different from the color tone of the plating surface as shown in FIG. Judged by whether or not.

<溶接性(接触抵抗)>
JIS−C5402(5.3)に準拠して、各試料の接触抵抗を測定した。接触抵抗は、ロレスタ2端子法APプローブを使用し、直流抵抗として測定した。
<曲げ性(曲げ試験)>
日本伸銅協会技術標準JCBA T307に従い、W型の金型を用いて各試料を曲げ半径R=1.0mmで曲げた。曲げ部のNiめっき層の割れの有無、割れの大きさを光学顕微鏡(500倍)で観察し、以下の基準で曲げ性を評価した。評価が○、△であれば実用上問題はない。
○:Niめっき層の割れが観察されなかった
△:Niめっき層が割れたが基材は観察されなかった
×:Niめっき層が割れ、基材が観察された
なお、基材は、Niめっき層と色調と異なるので識別可能である。
<Weldability (contact resistance)>
The contact resistance of each sample was measured according to JIS-C5402 (5.3). The contact resistance was measured as a direct current resistance using a Loresta two-terminal AP probe.
<Bendability (bending test)>
Each sample was bent at a bending radius R = 1.0 mm using a W-shaped mold in accordance with Japan Copper and Brass Association Technical Standard JCBA T307. The presence or absence of cracks in the Ni plating layer at the bent part and the size of the cracks were observed with an optical microscope (500 times), and the bendability was evaluated according to the following criteria. If evaluation is (circle) and (triangle | delta), there is no problem practically.
○: Ni plating layer was not cracked Δ: Ni plating layer was cracked but the substrate was not observed ×: Ni plating layer was cracked and the substrate was observed Note that the substrate was Ni plated It can be distinguished because it is different in color from layer.

<フィルムとの密着性>
タブリード材の片面に、メタロセン系ポリプロピレンからなる市販のシーラントフィルム(日本ポリプロ社製、WINTEC)を重ね、130℃で5秒間熱圧着させた。この試験片につき、JIS−C5016に従う180°ピール試験を行って密着性を評価した。
○:ピール強度が5N/10mm以上
×:ピール強度が5N/10mm未満
<Adhesion with film>
On one side of the tab lead material, a commercially available sealant film made of metallocene polypropylene (manufactured by Nippon Polypro Co., Ltd., WINTEC) was layered and thermocompression bonded at 130 ° C. for 5 seconds. About this test piece, the 180 degree peel test according to JIS-C5016 was done, and adhesiveness was evaluated.
○: Peel strength is 5 N / 10 mm or more ×: Peel strength is less than 5 N / 10 mm

得られた結果を表1、表2に示す。   The obtained results are shown in Tables 1 and 2.

表1、表2から明らかなように、各実施例の場合、フィルムとの密着性、耐食性、溶接性及び曲げ性に優れていた。
なお、実施例17は、第1Niめっき層をめっきする際、めっき浴中の光沢剤(サッカリン)濃度を0としたものである。
As is clear from Tables 1 and 2, in each case, the adhesion to the film, the corrosion resistance, the weldability and the bendability were excellent.
In Example 17, when the first Ni plating layer was plated, the brightener (saccharin) concentration in the plating bath was set to zero.

一方、第1Niめっき層を形成しなかった比較例1の場合、第2Niめっき層が腐食し易いために下地の基材が露出して腐食し、耐食性が劣った。
第2Niめっき層を形成しなかった比較例2の場合、第2Niめっき層が優先的に腐食されることによる下層側の第1Niめっき層の保護が実現されず、下地の基材が露出して腐食し、耐食性が劣った。これは、第1Niめっき層の微細なピンホールやめっき欠陥を通して下地の基材が直接腐食したためと考えられる。
第1Niめっき層のSの濃度が800質量ppmを超えた比較例3の場合、第1Niめっき層の耐食性が低下し、その下層の基材が露出して腐食し、耐食性が劣った。
第2Niめっき層のSの濃度が1000ppm未満である比較例4の場合、第2Niめっき層が優先的に腐食し難くなり、下層側の第1Niめっき層の保護が十分でなくなったため、下地の基材が露出して腐食し、耐食性が劣った。
第2Niめっき層のSの濃度が25000ppmを超えた比較例5の場合、曲げ性が劣ったと共に、第2Niめっき層が割れて耐食性も劣った。
On the other hand, in Comparative Example 1 in which the first Ni plating layer was not formed, the second Ni plating layer was easily corroded, so that the underlying base material was exposed and corroded, resulting in poor corrosion resistance.
In the case of Comparative Example 2 in which the second Ni plating layer was not formed, the protection of the first Ni plating layer on the lower layer side due to the preferential corrosion of the second Ni plating layer was not realized, and the underlying base material was exposed. Corroded and inferior in corrosion resistance. This is presumably because the underlying substrate was directly corroded through fine pinholes and plating defects in the first Ni plating layer.
In the case of Comparative Example 3 in which the concentration of S in the first Ni plating layer exceeded 800 ppm by mass, the corrosion resistance of the first Ni plating layer was lowered, the underlying base material was exposed and corroded, and the corrosion resistance was inferior.
In the case of Comparative Example 4 in which the concentration of S in the second Ni plating layer is less than 1000 ppm, the second Ni plating layer is not easily corroded preferentially, and the protection of the first Ni plating layer on the lower layer side is not sufficient. The material was exposed and corroded, resulting in poor corrosion resistance.
In the case of Comparative Example 5 in which the concentration of S in the second Ni plating layer exceeded 25000 ppm, the bendability was inferior, and the second Ni plating layer was cracked and the corrosion resistance was also inferior.

なお、図3、図4は、それぞれ実施例1、比較例1の試料の腐食試験後の外観を示す。実施例1の場合、試料の表面に腐食点が観察されなかったが、比較例1の場合、濃色の腐食点が観察された。   3 and 4 show the appearances of the samples of Example 1 and Comparative Example 1 after the corrosion test, respectively. In the case of Example 1, no corrosion point was observed on the surface of the sample, but in the case of Comparative Example 1, a dark color corrosion point was observed.

1 タブリード
1a 基材
1b 第1Niめっき層
1c 第2Niめっき層
100 フィルム外装電池
DESCRIPTION OF SYMBOLS 1 Tab lead 1a Base material 1b 1st Ni plating layer 1c 2nd Ni plating layer 100 Film exterior battery

Claims (6)

フィルム外装電池の内部の電極に接続されると共に該フィルム外装電池の外部に取り出されるフィルム外装電池用タブリード材料であって、
Cu又はCu合金からなる基材の表面に第1Niめっき層が形成され、その上に第2Niめっき層が形成されてなり、
前記第1Niめっき層が800質量ppm以下のSを含み、かつ前記第2Niめっき層が1000〜25000質量ppmのSを含むフィルム外装電池用タブリード材料。
A tab lead material for a film-clad battery that is connected to an electrode inside the film-clad battery and taken out of the film-clad battery,
A first Ni plating layer is formed on the surface of a base material made of Cu or Cu alloy, and a second Ni plating layer is formed thereon,
A tab lead material for a film-clad battery, wherein the first Ni plating layer contains 800 ppm by mass or less of S, and the second Ni plating layer contains 1000 to 25000 ppm by mass of S.
前記第1Niめっき層の厚みが0.2〜7.0μm、かつ前記第2Niめっき層の厚みが0.2〜2.0μmである請求項1に記載のフィルム外装電池用タブリード材料。 2. The tab lead material for a film-clad battery according to claim 1, wherein the thickness of the first Ni plating layer is 0.2 to 7.0 μm, and the thickness of the second Ni plating layer is 0.2 to 2.0 μm. 前記第2Niめっき層の表面に、厚みが1〜10nmの3価Crの化成処理膜が形成されてなる請求項1又は2に記載のフィルム外装電池用タブリード材料。 The tab lead material for film-clad batteries according to claim 1 or 2, wherein a trivalent Cr chemical conversion film having a thickness of 1 to 10 nm is formed on the surface of the second Ni plating layer. フィルム外装電池の内部の電極に接続されると共に該フィルム外装電池の外部に取り出されるフィルム外装電池用タブリード材料の製造方法であって、
Cu又はCu合金からなる基材の表面に、800質量ppm以下のSを含む第1Niめっき層をめっきした後、1000〜25000質量ppmのSを含む第2Niめっき層をめっきするフィルム外装電池用タブリード材料の製造方法。
A method for producing a tab lead material for a film-clad battery that is connected to an electrode inside the film-clad battery and is taken out of the film-clad battery,
Tab lead for film-clad battery, in which a surface of a base material made of Cu or Cu alloy is plated with a first Ni plating layer containing 800 mass ppm or less of S and then a second Ni plating layer containing 1000 to 25000 mass ppm of S is plated Material manufacturing method.
前記第1Niめっき層の厚みを0.2〜7.0μm、かつ前記第2Niめっき層の厚みを0.2〜2.0μmとする請求項4に記載のフィルム外装電池用タブリード材料の製造方法。   The method for producing a tab lead material for a film-clad battery according to claim 4, wherein the thickness of the first Ni plating layer is 0.2 to 7.0 µm, and the thickness of the second Ni plating layer is 0.2 to 2.0 µm. 前記第2Niめっき層の表面に、厚みが1〜10nmの3価Crの化成処理膜を形成する請求項4又は5に記載のフィルム外装電池用タブリード材料の製造方法。 6. The method for producing a tab lead material for a film-clad battery according to claim 4, wherein a trivalent Cr chemical conversion film having a thickness of 1 to 10 nm is formed on the surface of the second Ni plating layer.
JP2015063845A 2015-03-26 2015-03-26 Tab lead material for film-clad battery and manufacturing method thereof Active JP6220359B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015063845A JP6220359B2 (en) 2015-03-26 2015-03-26 Tab lead material for film-clad battery and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015063845A JP6220359B2 (en) 2015-03-26 2015-03-26 Tab lead material for film-clad battery and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2016184494A true JP2016184494A (en) 2016-10-20
JP6220359B2 JP6220359B2 (en) 2017-10-25

Family

ID=57241796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015063845A Active JP6220359B2 (en) 2015-03-26 2015-03-26 Tab lead material for film-clad battery and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6220359B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108823622A (en) * 2018-06-29 2018-11-16 桑顿新能源科技有限公司 A kind of negative lug material and its manufacturing method for lithium battery
WO2019083298A1 (en) * 2017-10-26 2019-05-02 엘지전자 주식회사 Lead tab, and pouch-type battery comprising same
JP2019102436A (en) * 2017-11-29 2019-06-24 格斯科技股▲ふん▼有限公司 Method for manufacturing negative tab and positive tab of soft pack battery
CN110224103A (en) * 2019-07-25 2019-09-10 蜂巢能源科技有限公司 Preparation method for the tab of battery, lithium ion battery and lithium ion battery
CN114552133A (en) * 2021-09-15 2022-05-27 万向一二三股份公司 Preparation method of negative electrode tab of surface inert metal coating and lithium battery
WO2022153399A1 (en) * 2021-01-13 2022-07-21 住友電気工業株式会社 Lead wire, electrical energy storage device and method for producing lead wire
WO2023058192A1 (en) * 2021-10-07 2023-04-13 住友電気工業株式会社 Lead wire and power storage device
WO2024053093A1 (en) * 2022-09-09 2024-03-14 住友電気工業株式会社 Lead wire for non-aqueous electrolyte battery, and non-aqueous electrolyte battery

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110739434A (en) * 2018-07-20 2020-01-31 宁德新能源科技有限公司 Utmost point ear, electric core and battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4840541B1 (en) * 1969-10-01 1973-12-01 Udylite Corp
JPS50118930A (en) * 1974-03-04 1975-09-18
JPS5816086A (en) * 1981-07-06 1983-01-29 オクシデンタル・ケミカル・コ−ポレ−シヨン Composite nickel layer composition and electrodeposition
JP2001234361A (en) * 2000-02-24 2001-08-31 Ibiden Co Ltd Highly corrosion resistant nickel-gold plating
WO2014199513A1 (en) * 2013-06-14 2014-12-18 オートモーティブエナジーサプライ株式会社 Secondary battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4840541B1 (en) * 1969-10-01 1973-12-01 Udylite Corp
JPS50118930A (en) * 1974-03-04 1975-09-18
JPS5816086A (en) * 1981-07-06 1983-01-29 オクシデンタル・ケミカル・コ−ポレ−シヨン Composite nickel layer composition and electrodeposition
JP2001234361A (en) * 2000-02-24 2001-08-31 Ibiden Co Ltd Highly corrosion resistant nickel-gold plating
WO2014199513A1 (en) * 2013-06-14 2014-12-18 オートモーティブエナジーサプライ株式会社 Secondary battery

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021500725A (en) * 2017-10-26 2021-01-07 エルジー エレクトロニクス インコーポレイティド Lead tab and pouch type battery equipped with it
JP7221953B2 (en) 2017-10-26 2023-02-14 エルジー・ケム・リミテッド Lead tab and pouch type battery with same
CN109713206A (en) * 2017-10-26 2019-05-03 Lg 电子株式会社 Lead tab and pouch-type battery comprising the lead tab
KR20190046515A (en) * 2017-10-26 2019-05-07 엘지전자 주식회사 Lead tab and pouch type battery including the same
CN109713206B (en) * 2017-10-26 2022-01-14 Lg 电子株式会社 Lead tab and pouch type battery including the same
KR102517953B1 (en) * 2017-10-26 2023-04-03 주식회사 엘지화학 Lead tab and pouch type battery including the same
WO2019083298A1 (en) * 2017-10-26 2019-05-02 엘지전자 주식회사 Lead tab, and pouch-type battery comprising same
JP2019102436A (en) * 2017-11-29 2019-06-24 格斯科技股▲ふん▼有限公司 Method for manufacturing negative tab and positive tab of soft pack battery
CN108823622A (en) * 2018-06-29 2018-11-16 桑顿新能源科技有限公司 A kind of negative lug material and its manufacturing method for lithium battery
CN110224103A (en) * 2019-07-25 2019-09-10 蜂巢能源科技有限公司 Preparation method for the tab of battery, lithium ion battery and lithium ion battery
WO2022153399A1 (en) * 2021-01-13 2022-07-21 住友電気工業株式会社 Lead wire, electrical energy storage device and method for producing lead wire
CN114552133A (en) * 2021-09-15 2022-05-27 万向一二三股份公司 Preparation method of negative electrode tab of surface inert metal coating and lithium battery
CN114552133B (en) * 2021-09-15 2023-09-05 万向一二三股份公司 Preparation method of negative electrode lug with surface inert metal coating and lithium battery
WO2023058192A1 (en) * 2021-10-07 2023-04-13 住友電気工業株式会社 Lead wire and power storage device
WO2024053093A1 (en) * 2022-09-09 2024-03-14 住友電気工業株式会社 Lead wire for non-aqueous electrolyte battery, and non-aqueous electrolyte battery

Also Published As

Publication number Publication date
JP6220359B2 (en) 2017-10-25

Similar Documents

Publication Publication Date Title
JP6220359B2 (en) Tab lead material for film-clad battery and manufacturing method thereof
KR101108312B1 (en) Plated steel sheet for can and process for producing the same
JP5138118B2 (en) Crimp terminal, connection structure, and manufacturing method thereof
EP2416400A1 (en) Material for metallic outer case for secondary battery utilizing non-aqueous electrolyte, metallic outer case, secondary battery, and process for production of material for metallic outer case
JP5250466B2 (en) Non-aqueous electrolyte secondary battery and lithium secondary battery
JP2016169439A (en) Copper terminal material with tin plating, manufacturing method therefor and wire terminal part structure
US20030031926A1 (en) Tab surface treatments for polymer-metal laminate electrochemical cell packages
JP6232302B2 (en) Method for manufacturing electrode tab for lithium ion battery
TWI465592B (en) A Ni-plated metal plate, a welded structure, and a method for manufacturing a battery material
US20210175513A1 (en) Laminated electrolytic foil
US20140308602A1 (en) Collector plate for fuel cells and method for producing same
US20130087364A1 (en) Film Conductor for Flat Cells and Method for Producing Same
JP2012234651A (en) Connector terminal, method of manufacturing the same, and connector
CN106469803A (en) Electrode terminal, electrochemical appliance and the electrochemical appliance module containing electrochemical appliance
JP2012043747A (en) Secondary battery electrode and method of manufacturing the same
WO2022153399A1 (en) Lead wire, electrical energy storage device and method for producing lead wire
US20210328227A1 (en) Electrode terminal having high corrosion resistance for secondary battery and method for manufacturing the same
CN109390589B (en) Material for negative electrode collector of secondary battery
WO2023058192A1 (en) Lead wire and power storage device
JP7354349B1 (en) conductor
US20220190447A1 (en) Lead member
JP5778198B2 (en) Terminal manufacturing method, terminal obtained by the manufacturing method, terminal material, electric wire terminal connection structure and manufacturing method thereof, and copper or copper alloy plate material for terminal
WO2023223968A1 (en) Non-aqueous electrolyte battery tab lead
JPS6330998B2 (en)
KR20090104446A (en) Electrochemical cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170710

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170925

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170929

R150 Certificate of patent or registration of utility model

Ref document number: 6220359

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250