JP2016184482A - Secondary battery - Google Patents

Secondary battery Download PDF

Info

Publication number
JP2016184482A
JP2016184482A JP2015063600A JP2015063600A JP2016184482A JP 2016184482 A JP2016184482 A JP 2016184482A JP 2015063600 A JP2015063600 A JP 2015063600A JP 2015063600 A JP2015063600 A JP 2015063600A JP 2016184482 A JP2016184482 A JP 2016184482A
Authority
JP
Japan
Prior art keywords
negative electrode
metal foil
power generation
generation element
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015063600A
Other languages
Japanese (ja)
Inventor
真博 藤田
Masahiro Fujita
真博 藤田
拓是 森川
Hiroshi Morikawa
拓是 森川
八木 陽心
Yoshin Yagi
陽心 八木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Priority to JP2015063600A priority Critical patent/JP2016184482A/en
Publication of JP2016184482A publication Critical patent/JP2016184482A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a secondary battery having high reliability in welding.SOLUTION: A secondary battery according to the present invention includes a power generation element in which an electrode including a metal foil provided with a mixture layer is wound. The metal foil includes crystal grains which have sizes different from each other on one surface and the other surface of the metal foil. The electrode is arranged such that a surface of the metal foil having larger crystals faces an outer peripheral side of the power generation element.SELECTED DRAWING: Figure 5

Description

本発明は、二次電池に関する。   The present invention relates to a secondary battery.

近年、ハイブリッド型の電気自動車や純粋な電気自動車等の動力源として大容量の二次電池が開発されており、その中でもエネルギー密度(Wh/kg)の高いリチウムイオン二次電池が注目されている。リチウムイオン二次電池は正極電極、負極電極およびそれぞれを絶縁するためのセパレータを重ね合わせて捲回することで形成された発電要素を、角形や円筒形の電池缶に収納することで構成されている。   In recent years, secondary batteries with large capacity have been developed as power sources for hybrid electric vehicles, pure electric vehicles, etc. Among them, lithium ion secondary batteries with high energy density (Wh / kg) are attracting attention. . A lithium ion secondary battery is configured by storing a power generation element formed by overlapping and winding a positive electrode, a negative electrode, and a separator for insulating each in a rectangular or cylindrical battery can. Yes.

円筒形二次電池では、発電要素の一方の電極は、集電部材を介して、電池蓋に設けられた外部端子に電気的に接続される。集電部材と負極電極の金属箔とを溶接するには、集電部材を発電要素側に押し込む必要がある。   In the cylindrical secondary battery, one electrode of the power generation element is electrically connected to an external terminal provided on the battery lid via a current collecting member. In order to weld the current collector and the metal foil of the negative electrode, it is necessary to push the current collector into the power generation element.

特許文献1には、集電部材を発電要素に押し込みやすくするために、電極を変形させた後に集電部材を発電要素に押し込む点が開示されている。   Patent Document 1 discloses that the current collecting member is pushed into the power generation element after the electrodes are deformed in order to easily push the current collection member into the power generation element.

特開2002−203547号公報JP 2002-203547 A

しかし、特許文献1に記載の方法では、拡開部材を金属箔に挿入して金属箔を変形させている。しかし、当該方法では金属箔が拡開部材に巻き込まれて折れ曲がり、集電部材との溶接不良を発生させる恐れがある。   However, in the method described in Patent Document 1, the expanding member is inserted into the metal foil to deform the metal foil. However, in this method, the metal foil is wound around the expanding member and bent, which may cause poor welding with the current collecting member.

本発明では上記課題に鑑み、溶接信頼性の高い二次電池を提供することを課題とする。   In view of the above problems, an object of the present invention is to provide a secondary battery with high welding reliability.

上記課題を解決するために本発明に記載の二次電池は、金属箔に合剤層が設けられた電極が捲回された発電要素を有し、金属箔は、一方の面と他方の面で結晶粒の大きさが異なり、電極は、発電要素の外周側に前記金属箔の結晶が大きい面が向いて配置されることを特徴とする。   In order to solve the above problems, the secondary battery according to the present invention has a power generation element in which an electrode having a mixture layer provided on a metal foil is wound, and the metal foil has one surface and the other surface. The size of the crystal grains is different, and the electrode is disposed on the outer peripheral side of the power generation element with the large crystal face of the metal foil facing.

上記発明を用いることにより、工程を増やすことなく治具を発電要素に挿入しやすくなり、溶接不良の低減効果を得ることができる。   By using the above invention, it is easy to insert the jig into the power generation element without increasing the number of steps, and the effect of reducing welding defects can be obtained.

円筒形二次電池の断面図Cross section of cylindrical secondary battery 円筒形二次電池の分解斜視図Exploded perspective view of cylindrical secondary battery 発電要素の分解断面斜視図Exploded sectional perspective view of power generation element 電解銅箔の断面図Cross section of electrolytic copper foil (a)〜(c)は凸部癖付け前のそれぞれの発電要素の斜視図(A)-(c) is a perspective view of each electric power generation element before convex part brazing (a)及び(b)はそれぞれの発電要素の凸部癖付け工程を示す斜視図(A) And (b) is a perspective view which shows the convex part brazing process of each electric power generation element. (a)及び(b)は本発明に係る発電要素の作成工程図(A) And (b) is a production process diagram of a power generation element according to the present invention. 図7(a)のB部の拡大図Enlarged view of part B in Fig. 7 (a) 電極塗工から凸部溶接までの工程フロー図Process flow diagram from electrode coating to convex welding

以下、実施形態を図面を用いて説明する。本実施形態では、円筒形二次電池及びその製造方法について説明する。   Hereinafter, embodiments will be described with reference to the drawings. In this embodiment, a cylindrical secondary battery and a manufacturing method thereof will be described.

以下、本発明による蓄電素子の実施の形態について、図面を参照して説明する。
図1は、円筒形二次電池の一実施形態を示す拡大断面図である。
Hereinafter, embodiments of a power storage device according to the present invention will be described with reference to the drawings.
FIG. 1 is an enlarged cross-sectional view showing an embodiment of a cylindrical secondary battery.

円筒形二次電池1は、底部を有し、上部が開口された円筒形の電池缶2および電池缶2の上部を封口するハット型の電池蓋3で構成される電池容器4を有する。電池容器4の内部には、以下に説明する発電用の各構成部材が収容され、非水電解液5が注入されている。   The cylindrical secondary battery 1 includes a battery case 4 including a cylindrical battery can 2 having a bottom and an upper opening, and a hat-type battery lid 3 that seals the top of the battery can 2. Inside the battery container 4, constituent members for power generation described below are accommodated, and a non-aqueous electrolyte 5 is injected.

円筒形の電池缶2には、上端側に設けられた開口部2b側に電池缶2の内側に突き出した溝2aが形成されている。   In the cylindrical battery can 2, a groove 2 a protruding to the inside of the battery can 2 is formed on the opening 2 b provided on the upper end side.

電池缶2の内部には、発電要素10が配置されている。発電要素10は、軸方向に沿う中空部を有する細長い円筒形の軸芯15と、軸芯15の周囲に捲回された正極電極および負極電極とを備える。円筒形状の軸芯15の中空部は、軸方向(図面の上下方向)で軸方向に垂直な面の断面形状が異なる。中空部の上方での断面形状は平行部と曲線部で形成されるトラック形状をしている。中空部の下方での断面形状は上方の平行部の幅よりも小さい径の円形である。この上方の中空部15aに円筒状の正極集電リング27が圧入されている。正極集電リング板27は、円盤状の基部27aと、この基部27aの内周部において軸芯15側に向かって突出し、軸芯15の内面に圧入される下部筒部27bと、外周縁において電池蓋3側に突き出す上部筒部27cとを有する。正極集電リング27はこの下部筒部27bにより軸芯15の上端部に固定、支持されている。   A power generation element 10 is arranged inside the battery can 2. The power generation element 10 includes an elongated cylindrical shaft core 15 having a hollow portion along the axial direction, and a positive electrode and a negative electrode wound around the shaft core 15. The hollow portion of the cylindrical shaft core 15 has a different cross-sectional shape in a plane perpendicular to the axial direction in the axial direction (vertical direction in the drawing). The cross-sectional shape above the hollow portion is a track shape formed by parallel portions and curved portions. The cross-sectional shape below the hollow portion is a circle having a diameter smaller than the width of the upper parallel portion. A cylindrical positive current collecting ring 27 is press-fitted into the upper hollow portion 15a. The positive electrode current collecting ring plate 27 includes a disk-shaped base portion 27a, a lower cylindrical portion 27b that protrudes toward the shaft core 15 side at the inner peripheral portion of the base portion 27a, and press-fitted into the inner surface of the shaft core 15, and an outer peripheral edge. And an upper cylindrical portion 27c protruding toward the battery lid 3 side. The positive electrode current collecting ring 27 is fixed and supported on the upper end portion of the shaft core 15 by the lower cylindrical portion 27b.

正極電極の正極凸部16は、正極集電リング27の上部筒部27cに溶接されている。正極集電リング27は例えばアルミニウム系金属により形成され、上部筒部27cの外周には、正極電極の正極凸部16および押え部材28が溶接されている。多数の正極凸部16は、正極集電リング27の上部筒部27cの外周に密着させておき、正極凸部16の外周に押え部材28をリング状に巻き付けて仮固定し、この状態で超音波溶接により接合される。   The positive electrode convex portion 16 of the positive electrode is welded to the upper cylindrical portion 27 c of the positive electrode current collecting ring 27. The positive electrode current collecting ring 27 is formed of, for example, an aluminum metal, and the positive electrode convex portion 16 of the positive electrode and the pressing member 28 are welded to the outer periphery of the upper cylindrical portion 27c. A number of the positive electrode protrusions 16 are brought into close contact with the outer periphery of the upper cylindrical part 27c of the positive electrode current collecting ring 27, and a pressing member 28 is wound around the outer periphery of the positive electrode protrusion 16 in a ring shape and temporarily fixed. Joined by sonic welding.

軸芯15の下端部の外周には、外径が径小とされた段部15bが形成され、この段部15bに負極集電リング21が圧入されて固定されている。負極集電リング21は、例えば、銅系金属により形成され、円盤状の基部21aに軸芯15の段部15bに圧入される開口部21bが形成され、外周縁に、電池缶2の底部側に向かって突き出す外周筒部21cが形成されている。負極集電リング21の基部21aには、軸芯15の中空軸に注液された非水電解液5を発電要素10に浸透させるための開口部21d(図2参照)が形成されている。   A step portion 15b having a small outer diameter is formed on the outer periphery of the lower end portion of the shaft core 15, and a negative electrode current collecting ring 21 is press-fitted and fixed to the step portion 15b. The negative electrode current collector ring 21 is formed of, for example, a copper-based metal, and an opening 21b that is press-fitted into the step portion 15b of the shaft core 15 is formed in a disk-shaped base portion 21a. An outer peripheral cylindrical portion 21c that protrudes toward is formed. An opening 21 d (see FIG. 2) for allowing the nonaqueous electrolytic solution 5 injected into the hollow shaft of the shaft core 15 to penetrate into the power generation element 10 is formed in the base portion 21 a of the negative electrode current collecting ring 21.

負極電極の負極凸部17は、負極集電リング21の外周筒部21cに接合される。負極集電リング21の外周筒部21cの外周には、負極電極の負極凸部17および押え部材22が溶接されている。多数の負極凸部17を、負極集電板21の外周筒部21cの外周に密着させておき、負極凸部17の外周に押え部材22をリング状に巻き付けて仮固定し、この状態で溶接される。負極集電リング21の基部21aには、接続リード板50が、抵抗溶接、或いはレーザ溶接等により接合されている。   The negative electrode convex portion 17 of the negative electrode is joined to the outer peripheral cylindrical portion 21 c of the negative electrode current collecting ring 21. The negative electrode convex portion 17 of the negative electrode and the pressing member 22 are welded to the outer periphery of the outer peripheral cylindrical portion 21 c of the negative electrode current collecting ring 21. A number of negative electrode protrusions 17 are brought into close contact with the outer periphery of the outer peripheral cylindrical portion 21c of the negative electrode current collector plate 21, and the holding member 22 is wound around the outer periphery of the negative electrode protrusion 17 in a ring shape and temporarily fixed. Is done. A connection lead plate 50 is joined to the base 21a of the negative electrode current collecting ring 21 by resistance welding, laser welding, or the like.

多数の正極凸部16は、正極集電リング27に溶接され、多数の負極凸部17が負極集電リング21に溶接されることにより、正極集電リング27、負極集電リング21および発電要素10が一体的にユニット化された発電ユニット20が構成される。電池缶2の内部には、非水電解液5が所定量注入されている。非水電解液5の一例として、リチウム塩がカーボネート系溶媒に溶解した溶液が上げられる。   Many positive electrode convex parts 16 are welded to the positive electrode current collection ring 27, and many negative electrode convex parts 17 are welded to the negative electrode current collection ring 21, whereby the positive electrode current collection ring 27, the negative electrode current collection ring 21, and the power generation element A power generation unit 20 in which 10 is unitized is configured. A predetermined amount of non-aqueous electrolyte 5 is injected into the battery can 2. As an example of the nonaqueous electrolytic solution 5, a solution in which a lithium salt is dissolved in a carbonate-based solvent is raised.

図2は円筒形二次電池の分解斜視図である。   FIG. 2 is an exploded perspective view of the cylindrical secondary battery.

円筒形状の軸芯15の中空部の上方には、円筒状の正極集電リング27が圧入されている。正極集電リング27は、例えば、アルミニウム系金属により形成されている。正極集電リング27の基部27aには、電池内部で発生するガスを放出するための開口部27dが形成されている。正極集電リング27に形成された開口部27eは、接続リード板50を電池缶2に溶接するための電極棒(図示せず)を挿通するためのものである。電極棒を正極集電リング27に形成された開口部27eから軸芯15の中空部に差し込み、その先端部で接続リード板50を電池缶2の底部2cの内面に押し付けて抵抗溶接を行う。これにより発電ユニット20は電池缶2の底部2cに固定される。また、負極集電リング21に接続されている電池缶2の底面は一方の出力端子として作用し、発電要素10に蓄電された電力を電池缶2から取り出すことができる。正極集電リング27の基部27aの上面には、複数のアルミニウム箔が積層されて構成されたフレキシブルな接続部材33が、その一端部を溶接されて接合されている。   A cylindrical positive current collecting ring 27 is press-fitted above the hollow portion of the cylindrical shaft core 15. The positive electrode current collector ring 27 is made of, for example, an aluminum-based metal. An opening 27d for releasing gas generated inside the battery is formed in the base 27a of the positive electrode current collecting ring 27. The opening 27 e formed in the positive electrode current collection ring 27 is for inserting an electrode rod (not shown) for welding the connection lead plate 50 to the battery can 2. The electrode rod is inserted into the hollow portion of the shaft core 15 from the opening portion 27e formed in the positive electrode current collecting ring 27, and the connecting lead plate 50 is pressed against the inner surface of the bottom portion 2c of the battery can 2 at the tip portion to perform resistance welding. Thus, the power generation unit 20 is fixed to the bottom 2c of the battery can 2. Further, the bottom surface of the battery can 2 connected to the negative electrode current collecting ring 21 acts as one output terminal, and the electric power stored in the power generation element 10 can be taken out from the battery can 2. A flexible connecting member 33 formed by laminating a plurality of aluminum foils is joined to the upper surface of the base portion 27a of the positive electrode current collecting ring 27 by welding one end thereof.

正極集電リング27の上部筒部27c上には、電池蓋ユニット30が配置されている。電池蓋ユニット30は、リング形状をした絶縁板34、絶縁板34に設けられた開口部34aに嵌入された接続板35、接続板35に溶接されたダイアフラム37およびダイアフラム37に、かしめと溶接により固定された電池蓋3により構成される。   A battery lid unit 30 is disposed on the upper cylindrical portion 27 c of the positive electrode current collecting ring 27. The battery lid unit 30 includes a ring-shaped insulating plate 34, a connecting plate 35 fitted in an opening 34a provided in the insulating plate 34, a diaphragm 37 welded to the connecting plate 35, and a diaphragm 37 by caulking and welding. The battery cover 3 is fixed.

絶縁板34は、円形の開口部34aを有する絶縁性樹脂材料からなるリング形状を有し、正極集電リング27の上部筒部27c上に載置されている。   The insulating plate 34 has a ring shape made of an insulating resin material having a circular opening 34 a, and is placed on the upper cylindrical portion 27 c of the positive electrode current collecting ring 27.

絶縁板34は、開口部34aおよび下方に突出する側部34bを有している。絶縁板34の開口部34a内には接続板35が嵌合されている。接続板35の下面には、接続部材33の他端部が溶接されて接合されている。   The insulating plate 34 has an opening 34a and a side 34b protruding downward. A connecting plate 35 is fitted in the opening 34 a of the insulating plate 34. The other end of the connection member 33 is welded and joined to the lower surface of the connection plate 35.

接続板35は、アルミニウム系金属で形成され、中央部を除くほぼ全体が均一でかつ、中央側が少々低い位置に撓んだ、ほぼ皿形状を有している。接続板35の中心には、薄肉でドーム形状に形成された突起部35aが形成されており、突起部35aの周囲には、複数の開口部35bが形成されている。開口部35bは、電池内部に発生するガスを放出する機能を有している。接続板35の突起部35aはダイアフラム37の中央部の底面に抵抗溶接または摩擦攪拌接合により接合されている。ダイアフラム37はアルミニウム系金属で形成され、ダイアフラム37の中心部を中心とする円形の切込み37aを有する。切込み37aはプレスにより上面側をV字形状に押し潰して、残部を薄肉にしたものである。ダイアフラム37は、電池の安全性確保のために設けられており、電池の内圧が上昇すると、切込み37aにおいて開裂し、内部のガスを放出する機能を有する。   The connection plate 35 is made of an aluminum-based metal and has a substantially dish shape that is substantially uniform except for the central portion and is bent to a slightly lower position on the central side. A projection 35a that is thin and formed in a dome shape is formed at the center of the connection plate 35, and a plurality of openings 35b are formed around the projection 35a. The opening 35b has a function of releasing gas generated inside the battery. The protrusion 35 a of the connection plate 35 is joined to the bottom surface of the center portion of the diaphragm 37 by resistance welding or friction stir welding. The diaphragm 37 is formed of an aluminum-based metal, and has a circular cut 37 a centering on the center portion of the diaphragm 37. The cut 37a is formed by crushing the upper surface side into a V shape by pressing and thinning the remainder. The diaphragm 37 is provided for ensuring the safety of the battery, and has a function of cleaving at the cut 37a and releasing the internal gas when the internal pressure of the battery increases.

ダイアフラム37は周縁部において電池蓋3の周縁部を固定している。ダイアフラム37は図2に図示されるように、当初、周縁部に電池蓋3側に向かって垂直に起立する側壁37bを有している。この側壁37b内に電池蓋3を収容し、かしめ加工により、側壁37bを電池蓋3の上面側に屈曲して固定する。   The diaphragm 37 fixes the peripheral edge of the battery lid 3 at the peripheral edge. As shown in FIG. 2, the diaphragm 37 initially has a side wall 37 b erected vertically at the peripheral portion toward the battery lid 3 side. The battery lid 3 is accommodated in the side wall 37b, and the side wall 37b is bent and fixed to the upper surface side of the battery lid 3 by caulking.

電池蓋3は、炭素鋼等の鉄で形成され、表裏両面にニッケルめっきが施されており、ダイアフラム37に接触する円盤状の周縁部3aと、この周縁部3aから上方に突出する筒部3bを有するハット型を有する。筒部3bには開口部3cが形成されている。この開口部3cは、電池内部に発生するガス圧によりダイアフラム37が開裂した際、ガスを電池外部に放出するためのものである。電池蓋3は一方の電力出力端として作用し、電池蓋3から蓄電された電力を取り出すことができる。   The battery lid 3 is made of iron such as carbon steel, nickel plated on both front and back surfaces, a disc-shaped peripheral edge 3a that contacts the diaphragm 37, and a cylindrical portion 3b that protrudes upward from the peripheral edge 3a. Having a hat shape. An opening 3c is formed in the cylindrical portion 3b. The opening 3c is for releasing gas to the outside of the battery when the diaphragm 37 is cleaved by the gas pressure generated inside the battery. The battery lid 3 acts as one power output end, and the stored electric power can be taken out from the battery lid 3.

ダイアフラム37と電池蓋3とのかしめ部を覆う絶縁部材からなるガスケット43が設けられている。ガスケット43は、ゴムで形成されており、限定する意図ではないが、1つの好ましい材料の例として、フッ素系樹脂をあげることができる。   A gasket 43 made of an insulating member that covers the caulked portion between the diaphragm 37 and the battery lid 3 is provided. The gasket 43 is made of rubber, and is not intended to be limited, but one example of a preferable material is a fluorine-based resin.

ガスケット43は、リング状の基部43aの周側縁に、上部方向に向けてほぼ垂直に起立して形成された外周壁部43bを有する形状を有している。   The gasket 43 has a shape having an outer peripheral wall portion 43b that is formed to rise substantially vertically toward the upper direction at the peripheral edge of the ring-shaped base portion 43a.

そして、プレス等により、電池缶2と共にガスケット43の外周壁部43bを屈曲して基部43aと外周壁部43bにより、ダイアフラム37と電池蓋3を軸方向に圧接するようにかしめ加工される。これにより、電池蓋3、ダイアフラム37、絶縁板34および接続板35が一体に形成された電池蓋ユニット30がガスケット43を介して電池缶2に固定されると共に、絶縁板34が発電ユニット20の正極集電リング27に当接し、発電ユニット20を電池缶2の缶底側に押しつけている。   Then, the outer peripheral wall 43b of the gasket 43 is bent together with the battery can 2 by pressing or the like, and the diaphragm 37 and the battery lid 3 are crimped by the base 43a and the outer peripheral wall 43b so as to be pressed in the axial direction. Thereby, the battery lid unit 30 in which the battery lid 3, the diaphragm 37, the insulating plate 34 and the connection plate 35 are integrally formed is fixed to the battery can 2 via the gasket 43, and the insulating plate 34 is attached to the power generation unit 20. The power generation unit 20 is pressed against the bottom side of the battery can 2 in contact with the positive electrode current collecting ring 27.

図3は、発電要素10の構造の詳細を示すための分解断面斜視図である。   FIG. 3 is an exploded cross-sectional perspective view showing details of the structure of the power generation element 10.

発電要素10は、軸芯15の周囲に、正極電極11、負極電極12、および第1、第2のセパレータ13、14が捲回された構造を有する。   The power generating element 10 has a structure in which a positive electrode 11, a negative electrode 12, and first and second separators 13 and 14 are wound around an axis 15.

軸芯15は、例えば、PP(ポリプロピレン)のような絶縁材により形成され、中空円筒形状を有する。軸芯15には、第1のセパレータ13、負極電極12、第2のセパレータ14および正極電極11が、順に積層され、捲回されている。最内周の負極電極12の内側には第1のセパレータ13および第2のセパレータ14が数周(図3では、1周)捲回されている。第1のセパレータ13および第2のセパレータ14は、絶縁性の多孔質体で形成されている。   The shaft core 15 is formed of an insulating material such as PP (polypropylene) and has a hollow cylindrical shape. A first separator 13, a negative electrode 12, a second separator 14, and a positive electrode 11 are sequentially laminated and wound on the shaft core 15. Inside the innermost negative electrode 12, the first separator 13 and the second separator 14 are wound several times (one turn in FIG. 3). The first separator 13 and the second separator 14 are formed of an insulating porous body.

最内周(軸芯側)では、負極電極12の捲き始めが正極電極11の捲き始めよりも周方向に延出している。また、最外周(電池缶側)では負極電極12が正極電極11よりも外周側に捲回されており、負極電極12の捲き終わりが正極電極11の捲き終わりよりも周方向に延出されている。最外周の負極電極12の外周に第2のセパレータ14が捲回されている。最外周の第2のセパレータ14終端が接着テープ19で止められる。尚、最外周で第1のセパレータ13および第2のセパレータ14が数回、捲回された後、接着テープ19で止められることもある。   In the innermost circumference (axial core side), the beginning of the negative electrode 12 extends in the circumferential direction from the beginning of the positive electrode 11. Further, at the outermost periphery (battery can side), the negative electrode 12 is wound more outward than the positive electrode 11, and the end of the negative electrode 12 is extended in the circumferential direction from the end of the positive electrode 11. Yes. A second separator 14 is wound around the outer periphery of the outermost negative electrode 12. The end of the second separator 14 on the outermost periphery is stopped with an adhesive tape 19. In some cases, the first separator 13 and the second separator 14 are wound several times on the outermost periphery and then stopped by the adhesive tape 19.

正極電極11は、アルミニウム箔により形成され長尺な形状を有し、正極金属箔11aと、この正極金属箔11aの両面に正極合剤が塗布された正極合剤層11bを有する。正極金属箔11aの長手方向に延在する上方側の側縁は、正極合剤が塗布されず正極金属箔11aが露出した正極箔露出部11cとなっている。この正極箔露出部11cには、軸芯15の軸に沿って上方に突き出す多数の正極凸部16が等間隔に一体的に形成されている。   The positive electrode 11 is formed of an aluminum foil, has a long shape, and includes a positive electrode metal foil 11a and a positive electrode mixture layer 11b in which a positive electrode mixture is applied to both surfaces of the positive electrode metal foil 11a. The upper side edge extending in the longitudinal direction of the positive electrode metal foil 11a is a positive electrode foil exposed portion 11c where the positive electrode mixture is not applied and the positive electrode metal foil 11a is exposed. A large number of positive electrode protrusions 16 protruding upward along the axis of the shaft core 15 are integrally formed on the positive electrode foil exposed portion 11c at equal intervals.

正極合剤は正極活物質と、正極導電材と、正極バインダとからなる。正極活物質として、コバルト、マンガン、ニッケル等のリチウム酸化物が挙げられる。   The positive electrode mixture includes a positive electrode active material, a positive electrode conductive material, and a positive electrode binder. Examples of the positive electrode active material include lithium oxides such as cobalt, manganese, and nickel.

正極バインダとして、ポリフッ化ビニリデン(PVDF)やフッ素ゴムなどが挙げられる。   Examples of the positive electrode binder include polyvinylidene fluoride (PVDF) and fluororubber.

正極合剤を正極金属箔11aに塗布する方法の例として、ロール塗工法、スリットダイ塗工法、等が挙げられる。正極合剤に分散溶液を混練したスラリを、厚さ20μmのアルミニウム箔の両面に均一に塗布し、乾燥させた後、プレスし、裁断する。正極合剤の塗布厚さの一例としては片側約40μmである。正極金属箔11aを裁断する際、正極凸部16を一体的に形成する。すべての正極凸部16の長さは、ほぼ同じである。   Examples of the method for applying the positive electrode mixture to the positive electrode metal foil 11a include a roll coating method and a slit die coating method. A slurry obtained by kneading a dispersion solution in a positive electrode mixture is uniformly applied to both surfaces of an aluminum foil having a thickness of 20 μm, dried, pressed, and cut. An example of the coating thickness of the positive electrode mixture is about 40 μm on one side. When the positive electrode metal foil 11a is cut, the positive electrode protrusions 16 are integrally formed. All the positive electrode convex portions 16 have substantially the same length.

負極電極12は、電解銅箔により形成され長尺な形状を有する負極金属箔12aと、この負極金属箔12aの両面に負極合剤が塗布された負極合剤層12bとを有する。負極金属箔12aの長手方向に延在する下方側の側縁は、負極合剤が塗布されず銅箔が露出した負極箔露出部12cとなっている。この負極箔露出部12cには、軸芯15の軸に沿って正極凸部16とは反対方向に延出された、多数の負極凸部17が等間隔に一体的に形成されている。   The negative electrode 12 includes a negative electrode metal foil 12a formed of an electrolytic copper foil and having a long shape, and a negative electrode mixture layer 12b in which a negative electrode mixture is applied to both surfaces of the negative electrode metal foil 12a. The side edge on the lower side extending in the longitudinal direction of the negative electrode metal foil 12a is a negative electrode foil exposed portion 12c where the negative electrode mixture is not applied and the copper foil is exposed. A large number of negative electrode protrusions 17 extending in the direction opposite to the positive electrode protrusions 16 along the axis of the axial core 15 are integrally formed on the negative electrode foil exposed part 12c at equal intervals.

負極合剤は、負極活物質と、負極バインダと、増粘剤とからなる。負極活物質としては、黒鉛炭素が挙げられる。   The negative electrode mixture includes a negative electrode active material, a negative electrode binder, and a thickener. An example of the negative electrode active material is graphite carbon.

負極合剤を負極金属箔12aに塗布する方法の例として、ロール塗工法、スリットダイ塗工法等が挙げられる。   Examples of the method for applying the negative electrode mixture to the negative electrode metal foil 12a include a roll coating method and a slit die coating method.

負極合剤に分散溶媒を混練したスラリを、厚さ10μmの電解銅箔の両面に均一に塗布し、乾燥させた後、裁断する。負極合剤の塗布厚さの一例としては片側約40μmである。負極金属箔12aをプレスにより裁断する際、負極凸部17を一体的に形成する。   A slurry obtained by kneading a dispersion solvent in a negative electrode mixture is uniformly applied to both surfaces of an electrolytic copper foil having a thickness of 10 μm, dried, and then cut. An example of the coating thickness of the negative electrode mixture is about 40 μm on one side. When the negative electrode metal foil 12a is cut by pressing, the negative electrode protrusion 17 is integrally formed.

なお、本発明では電解銅箔の厚さを10μmとしたが、電解銅箔の厚さが厚すぎると後述する反り量が十分確保できない可能性がある。そのため、電解銅箔の厚さは反り量を十分確保できる20μm以下、より好ましくは10μm以下とすることが好ましい。   In the present invention, the thickness of the electrolytic copper foil is 10 μm. However, if the thickness of the electrolytic copper foil is too thick, there is a possibility that a warping amount described later cannot be secured sufficiently. Therefore, the thickness of the electrolytic copper foil is preferably 20 μm or less, more preferably 10 μm or less, which can ensure a sufficient amount of warpage.

一方で電解銅箔の反りを十分に生かすためには、負極凸部17の長さも重要である。負極凸部17が少しでも負極合剤層12bの端部から突出していれば、負極凸部17は反るが、より十分反り量を確保するためには負極凸部17の長さを20mm以上確保することが好ましい。   On the other hand, in order to make full use of the warp of the electrolytic copper foil, the length of the negative electrode protrusion 17 is also important. If the negative electrode protrusion 17 protrudes from the end of the negative electrode mixture layer 12b, the negative electrode protrusion 17 warps, but in order to secure a sufficient amount of warpage, the length of the negative electrode protrusion 17 is 20 mm or more. It is preferable to ensure.

第1、第2のセパレータ13、14の幅は、負極電極12の負極合剤層12bの幅よりも大きい。負極電極12の負極合剤層12bの幅は、正極電極11の正極合剤層11bの幅よりも大きい。負極合剤層12bの幅および長さを正極合剤層11bの幅および長さよりも大きくして、正極合剤層11bの全領域を負極合剤層12bで覆う構造とされている。リチウムイオン二次電池の場合、正極活物質であるリチウムがイオン化してセパレータを浸透し、負極活物質に吸蔵される。この場合、負極側に負極活物質が形成されておらず負極金属箔12aが表出していると負極金属箔12aにリチウムが析出し、内部短絡を発生する原因となる。上記の如く、正極合剤層11bの全領域を負極合剤層12bで覆うことにより、このようなリチウム析出に伴う内部短絡を防止することができる。   The widths of the first and second separators 13 and 14 are larger than the width of the negative electrode mixture layer 12 b of the negative electrode 12. The width of the negative electrode mixture layer 12 b of the negative electrode 12 is larger than the width of the positive electrode mixture layer 11 b of the positive electrode 11. The width and length of the negative electrode mixture layer 12b are made larger than the width and length of the positive electrode mixture layer 11b, and the entire region of the positive electrode mixture layer 11b is covered with the negative electrode mixture layer 12b. In the case of a lithium ion secondary battery, lithium, which is a positive electrode active material, is ionized, penetrates the separator, and is occluded by the negative electrode active material. In this case, if the negative electrode active material is not formed on the negative electrode side and the negative electrode metal foil 12a is exposed, lithium is deposited on the negative electrode metal foil 12a, causing an internal short circuit. As described above, by covering the entire region of the positive electrode mixture layer 11b with the negative electrode mixture layer 12b, it is possible to prevent such an internal short circuit due to lithium deposition.

第1のセパレータ13および第2のセパレータ14は、それぞれ、例えば、厚さ40μmのポリエチレン製多孔膜で形成されている。   The first separator 13 and the second separator 14 are each formed of, for example, a polyethylene porous film having a thickness of 40 μm.

続いて、本発明の特徴となる金属箔について説明する。負極電極12は、電解銅箔により形成され長尺な形状を有する負極金属箔12aと、この負極金属箔12aの両面に負極合剤が塗布された負極合剤層12bとを有する。図4は負極金属箔12aの断面図である。本発明で用いられる電解銅箔は電着によって製造されるため、電解ドラムに結晶が析出する面と、析出した面から結晶が成長する面とで結晶粒が異なる。結晶が析出する面は結晶粒が小さい面12dとなり、結晶が成長する面は結晶粒が大きい面12eとなり、それぞれの結晶粒は析出成長した際に生じる内部応力が異なる。このため内部応力の影響によって結晶粒が大きい面12e側に反るようになる。   Next, the metal foil that is a feature of the present invention will be described. The negative electrode 12 includes a negative electrode metal foil 12a formed of an electrolytic copper foil and having a long shape, and a negative electrode mixture layer 12b in which a negative electrode mixture is applied to both surfaces of the negative electrode metal foil 12a. FIG. 4 is a cross-sectional view of the negative electrode metal foil 12a. Since the electrolytic copper foil used in the present invention is manufactured by electrodeposition, the crystal grain is different between the surface on which the crystal is deposited on the electrolytic drum and the surface on which the crystal grows from the deposited surface. The surface on which crystals precipitate is a surface 12d with small crystal grains, and the surface on which crystals grow is a surface 12e with large crystal grains, and the internal stress generated when each crystal grain is precipitated and grown is different. For this reason, the crystal grains warp to the large surface 12e side due to the influence of internal stress.

本発明では、図3に示すように発電要素10の外周側に結晶粒が大きい面12eが向くように負極金属箔12aが配置される。このように負極金属箔12aを配置することによって、負極凸部17が発電要素10の外周側に広がるようになり、電池作成時にコマ51、52にひっかかり、負極凸部17が巻き込まれて折れ曲がることが無くなる。そのため、負極集電板21と負極凸部17との溶接信頼性が向上する。   In the present invention, as shown in FIG. 3, the negative electrode metal foil 12 a is arranged on the outer peripheral side of the power generation element 10 so that the surface 12 e with large crystal grains faces. By disposing the negative electrode metal foil 12a in this way, the negative electrode convex portion 17 spreads to the outer peripheral side of the power generation element 10, and is caught by the pieces 51 and 52 at the time of battery production, and the negative electrode convex portion 17 is caught and bent. Disappears. Therefore, the reliability of welding between the negative electrode current collector plate 21 and the negative electrode convex portion 17 is improved.

図5は凸部癖付け前の発電要素10の斜視図である。図5(a)(b)(c)はそれぞれ電解銅箔ではない負極金属箔12a(圧延銅箔)を使用した発電要素10a、結晶粒が小さい側の面12dを外側に向けた発電要素10b、そして結晶粒が大きい側の面12eを外側に向けた発電要素10cを示すものである。負極凸部17の結晶粒の状態によって図5(a)の負極凸部17が湾曲していない発電要素10a、図5(b)の負極凸部17が内側に湾曲し窄まっている発電要素10b、図5(c)の負極凸部17が外側に湾曲し広がった発電要素10cの3つの形態になる。   FIG. 5 is a perspective view of the power generation element 10 before the convex portion is brazed. FIGS. 5A, 5B, and 5C show a power generation element 10a that uses a negative electrode metal foil 12a (rolled copper foil) that is not an electrolytic copper foil, and a power generation element 10b that has a surface 12d with a smaller crystal grain facing outward. And the electric power generation element 10c which turned the surface 12e of the side with a large crystal grain to the outer side is shown. The power generation element 10a in which the negative electrode protrusion 17 in FIG. 5A is not curved depending on the state of the crystal grains of the negative electrode protrusion 17, and the power generation element in which the negative electrode protrusion 17 in FIG. 10b, the negative electrode convex part 17 of FIG.5 (c) becomes three forms of the electric power generation element 10c which curved and spread outside.

図6及び図7は負極集電板21を挿入するために、負極凸部17を広げる工程を説明する図である。発電要素10は後述する負極集電板21を挿入する為の環状の突出部17bを形成するためにテーパー角の大きいコマ52を負極凸部17の中央の開口部17aに押し込んで形成する必要がある。しかしながら、図6(a)に示すような負極凸部17が湾曲していない発電要素10aでは、テーパー角の大きいコマ52を押し込む際に、負極凸部17の先端がコマ52に引っ掛かり、負極凸部17がコマ52に引っ掛かったまま開口部17aに押し込まれることによって負極凸部17が開口部17a内側に巻き込まれてしまう。そのような状況になると、巻き込まれた負極凸部17は折れ曲がり、負極集電板21の外周に正しく配置されずに溶接され、溶接不良を起こす恐れがある。   6 and 7 are diagrams for explaining a process of expanding the negative electrode protrusion 17 in order to insert the negative electrode current collector plate 21. The power generation element 10 needs to be formed by pushing a top 52 having a large taper angle into the central opening 17a of the negative electrode protrusion 17 in order to form an annular protrusion 17b for inserting a negative electrode current collector plate 21 described later. is there. However, in the power generation element 10a in which the negative electrode convex portion 17 is not curved as shown in FIG. 6A, when the top 52 having a large taper angle is pushed, the tip of the negative electrode convex portion 17 is caught by the top 52, and the negative electrode convex portion When the portion 17 is pushed into the opening 17a while being caught by the top 52, the negative electrode convex portion 17 is caught inside the opening 17a. In such a situation, the negative electrode protrusion 17 that is involved is bent and welded without being properly arranged on the outer periphery of the negative electrode current collector plate 21, which may cause poor welding.

一方で図6(b)に示すような負極凸部17が内側に湾曲して窄まっている発電要素10bにおいては、開口部17a側に負極凸部17が巻き込まれる可能性がより高くなってしまう。そのため、図6(b)のような形態では、テーパー角の大きい52を用いるのではなく、負極凸部17を開口部17aの内側に巻き込まずに外周側に押し広げるため、テーパー角の小さいコマ51を用いて、負極凸部17の根元に予備の癖付けを行う必要がある。つまり、一旦テーパー角の小さいコマ51を負極凸部17の中央の開口部17aに押し込んだ後に、テーパー角の大きいコマ52を負極凸部17の中央の開口部17aに押し込み、負極凸部17の根元を癖付けする必要があるため、癖付工程が2段階になってしまう。そのため、負極凸部17が湾曲していない発電要素10a及び負極凸部17が内側に湾曲し窄まっている発電要素10bの形態では、工程を簡素化して電池を作成しようとすると、負極集電板21と負極凸部17との溶接不良を発生させる可能性が高くなる。   On the other hand, in the power generation element 10b in which the negative electrode protrusion 17 is curved and narrowed inward as shown in FIG. 6B, there is a higher possibility that the negative electrode protrusion 17 is caught on the opening 17a side. End up. For this reason, in the configuration as shown in FIG. 6B, instead of using 52 having a large taper angle, the negative electrode convex portion 17 is pushed out to the outer peripheral side without being caught inside the opening portion 17a, so that a coma having a small taper angle is formed. 51, it is necessary to perform preliminary brazing on the base of the negative electrode protrusion 17. In other words, after the top 51 having a small taper angle is once pushed into the central opening 17 a of the negative electrode convex portion 17, the top 52 having a large taper angle is pushed into the central opening 17 a of the negative electrode convex portion 17. Since it is necessary to braze the root, the brazing process becomes two stages. Therefore, in the form of the power generation element 10a in which the negative electrode convex portion 17 is not curved and the power generation element 10b in which the negative electrode convex portion 17 is curved and narrowed inward, if the battery is manufactured by simplifying the process, the negative electrode current collector The possibility of causing poor welding between the plate 21 and the negative electrode protrusion 17 is increased.

他方で図5(c)に示すように、発電要素10を作成する際に負極金属箔12aの結晶が大きい面12eを発電要素10の外側に向けて配置した発電要素10cでは、負極凸部17が外側に湾曲し広がった発電要素10cを意図的に作成される。そのため、図7(a)に示すように、負極凸部17が外側に湾曲し広がった発電要素10cは、負極凸部17の中央の開口部17aが外側に湾曲し広がっていることから、負極凸部17がテーパー角の大きいコマ52のテーパー部分に引っ掛かることが無くなる。従って、負極凸部17が発電要素10の内側に巻き込まれて折れることがないため、負極集電板21と負極凸部17が溶接不良を起こす可能性も低くなる、また、テーパー角の小さいコマ51を押し込む予備の癖付け工程をせずに、テーパー角の大きいコマ52を押し込むことができるため、予備の癖付け工程を削減できる。   On the other hand, as shown in FIG. 5 (c), in the power generation element 10 c in which the surface 12 e with a large crystal of the negative electrode metal foil 12 a is arranged toward the outside of the power generation element 10 when the power generation element 10 is formed, the negative electrode protrusion 17 Is intentionally created with the power generating element 10c curved outward. Therefore, as shown in FIG. 7A, the power generation element 10c in which the negative electrode convex portion 17 curves and spreads outward has a negative opening because the central opening 17a of the negative electrode convex portion 17 curves and spreads outward. The convex portion 17 is not caught by the tapered portion of the top 52 having a large taper angle. Accordingly, since the negative electrode convex portion 17 is not caught inside the power generation element 10 and is not broken, the possibility that the negative electrode current collecting plate 21 and the negative electrode convex portion 17 cause poor welding is reduced, and a coma with a small taper angle is formed. Since the top 52 having a large taper angle can be pushed in without the preliminary brazing process of pushing 51, the spare brazing process can be reduced.

図7(b)は負極凸部17の癖付け後、負極集電板21と負極凸部17との溶接まで間の様子を示す図である。発電要素10の負極凸部17には、テーパー角の大きいコマ52によって負極集電板21が挿入可能な大きさの環状の突出部17bが形成される。負極集電板21は環状の突出部17bに挿入され負極集電板21の外周筒部21cに負極凸部17を密着させ、負極凸部17の外周に押え部材22をリング状に巻き付けて仮固定し、この状態で溶接される。   FIG. 7B is a view showing a state after the negative electrode convex portion 17 is brazed until the negative electrode current collector plate 21 and the negative electrode convex portion 17 are welded. The negative electrode protrusion 17 of the power generation element 10 is formed with an annular protrusion 17b having a size that allows the negative electrode current collector plate 21 to be inserted by a piece 52 having a large taper angle. The negative electrode current collector plate 21 is inserted into the annular projecting portion 17b, the negative electrode convex portion 17 is brought into close contact with the outer peripheral cylindrical portion 21c of the negative electrode current collector plate 21, and the pressing member 22 is wound around the outer periphery of the negative electrode convex portion 17 in a ring shape. It is fixed and welded in this state.

図8は図7(a)A−A断面のうちのB部の拡大図である。負極凸部17は発電要素10の外側に結晶が大きい面12eが配置されている。負極凸部17は発電要素10の内周部ではR部がきついことより湾曲が抑制され、先端部分のみが発電要素10の外側に湾曲される。一方で、発電要素10の外周部ではR部が緩いことから湾曲が抑制されず、負極凸部17が発電要素10の外側に湾曲されることになる。コマ52を挿入しやすくするためには、負極凸部17が発電要素10の外側に向かって反っていることが必要である。しかし、最外周の負極凸部17が反りすぎていると、コマ52を挿入する工程で必要になる治具と干渉して、発電要素10の生産性が低下する場合がある。そのため、本発明のように内周側の負極凸部17の湾曲が抑制されることによって、最外周の負極凸部17の湾曲への影響を少なく出来、負極凸部17が治具と干渉することを抑制できる。   FIG. 8 is an enlarged view of a portion B in the AA cross section of FIG. The negative electrode protrusion 17 has a large crystal surface 12 e disposed outside the power generation element 10. The negative electrode convex portion 17 is curved at the inner peripheral portion of the power generation element 10 because the R portion is tight, and only the tip portion is curved outward of the power generation element 10. On the other hand, since the R portion is loose at the outer peripheral portion of the power generation element 10, the bending is not suppressed, and the negative electrode convex portion 17 is curved to the outside of the power generation element 10. In order to facilitate the insertion of the top 52, it is necessary that the negative electrode protrusion 17 bends toward the outside of the power generation element 10. However, if the outermost negative electrode convex portion 17 is warped too much, it may interfere with a jig required in the step of inserting the top 52, and the productivity of the power generating element 10 may be reduced. Therefore, by suppressing the curvature of the negative electrode convex portion 17 on the inner peripheral side as in the present invention, the influence on the curvature of the negative electrode convex portion 17 on the outermost periphery can be reduced, and the negative electrode convex portion 17 interferes with the jig. This can be suppressed.

本発明に係る電池の電極塗工から凸部溶接までの工程フローを説明する。   A process flow from electrode coating to convex welding of the battery according to the present invention will be described.

まず、ステップS1では、電着により作製される電解銅箔を使用した負極金属箔12aの両面に負極合剤を塗布することにより、負極電極12を作製する。   First, in step S1, the negative electrode 12 is produced by applying a negative electrode mixture on both surfaces of a negative electrode metal foil 12a using an electrolytic copper foil produced by electrodeposition.

そして、ステップS2で、負極金属箔12aをプレスにより裁断することによって負極凸部17を形成する。このとき負極金属箔12aが内部に有する応力の差により、負極凸部17を結晶が大きい面12e側に湾曲させることができる。   In step S2, the negative electrode protrusion 17 is formed by cutting the negative electrode metal foil 12a by pressing. At this time, the negative electrode convex portion 17 can be curved toward the surface 12e where the crystal is large due to the difference in stress that the negative electrode metal foil 12a has.

続いて、ステップS3で発電要素10を軸芯15の周囲に、正極電極11、負極電極12、および第1、第2のセパレータ13、14が捲回して作製する。このとき負極電極12は負極金属箔12aの結晶が成長する面12eを発電要素10の外側を向くように配置して捲回される。このように発電要素10を作成することによって、負極凸部17を発電要素10の外周側に向かって湾曲し、開口部17aが押し広がった状態を作ることが出来る。   Subsequently, in step S3, the power generation element 10 is produced by winding the positive electrode 11, the negative electrode 12, and the first and second separators 13 and 14 around the shaft core 15. At this time, the negative electrode 12 is wound with the surface 12 e on which the crystal of the negative electrode metal foil 12 a grows facing the outside of the power generation element 10. By creating the power generation element 10 in this way, it is possible to create a state in which the negative electrode protrusion 17 is curved toward the outer peripheral side of the power generation element 10 and the opening 17a is pushed and spread.

ステップS4では、発電要素10の負極凸部17にテーパー角の大きいコマ52を押し込むことによって環状の突出部17bを形成する。   In step S <b> 4, the annular protrusion 17 b is formed by pushing a piece 52 having a large taper angle into the negative electrode protrusion 17 of the power generation element 10.

その後ステップS5に進み、負極集電板21を環状の突出部17bに挿入する。   Thereafter, the process proceeds to step S5, and the negative electrode current collector plate 21 is inserted into the annular protrusion 17b.

最後にステップS6で、環状の突出部17bに挿入した負極集電板21の外周筒部21cに負極凸部17を密着させ、負極凸部17の外周に押え部材22をリング状に巻き付けて仮固定してから溶接を行う。   Finally, in step S6, the negative electrode protrusion 17 is brought into close contact with the outer peripheral cylindrical portion 21c of the negative electrode current collector plate 21 inserted into the annular protrusion 17b, and the holding member 22 is wound around the outer periphery of the negative electrode protrusion 17 in a ring shape. Weld after fixing.

これらの6つの工程を行うことで負極凸部17の結晶粒が大きい面12eを発電要素10の外向きに配置した発電要素10を作製でき、負極凸部17が発電要素10の外側に湾曲する応力を有する円筒形二次電池を作製することができる。   By performing these six steps, it is possible to manufacture the power generation element 10 in which the surface 12e with large crystal grains of the negative electrode convex portion 17 is arranged outward of the power generation element 10, and the negative electrode convex portion 17 is curved outward of the power generation element 10. A cylindrical secondary battery having stress can be manufactured.

なお、本実施形態では電解銅箔を用いたものを代表例として説明したが、正極金属箔であっても表裏で結晶粒に違いがあるものを用いた場合には、上記で説明したものと同様の効果がある。   In the present embodiment, the example using the electrolytic copper foil has been described as a representative example. However, even when the positive electrode metal foil has different crystal grains on the front and back sides, There is a similar effect.

また、本実施形態では負極金属箔12aに電解銅箔を用いたものを代表例として説明したが、電解銅箔以外の銅箔であっても表裏で結晶粒の大きさが異なるものを用いた場合には、上記で説明したものと同様の効果がある。   In the present embodiment, the negative electrode metal foil 12a using an electrolytic copper foil has been described as a representative example. However, a copper foil other than the electrolytic copper foil has different crystal grain sizes on the front and back sides. In this case, the same effect as described above can be obtained.

また、本発明では負極金属箔12aに負極凸部17が設けられた円筒形二次電池を代表例として説明したが、角形二次電池の発電要素に適用しても良い。角形二次電池の発電要素に適用した場合には発電要素の両端に設けられた湾曲部に力がかかるため、円筒形二次電池の金属箔の反り量は低下してしまうが、発電要素の外周側に金属箔が反るようにすることによって、集電板と金属箔とを溶接する際に発電要素の開口部に溶接治具を挿入しやすくなる。そのため、溶接治具が金属箔を巻き込み集電板と金属箔との溶接不良を起こす可能性が低くなり、溶接信頼性が向上する。   In the present invention, the cylindrical secondary battery in which the negative electrode convex portion 17 is provided on the negative electrode metal foil 12a has been described as a representative example. However, the present invention may be applied to a power generation element of a square secondary battery. When applied to a power generation element of a square secondary battery, a force is applied to the curved portions provided at both ends of the power generation element, so that the amount of warpage of the metal foil of the cylindrical secondary battery is reduced, but the power generation element By making the metal foil warp on the outer peripheral side, it becomes easy to insert a welding jig into the opening of the power generation element when welding the current collector plate and the metal foil. Therefore, the possibility that the welding jig wraps the metal foil and causes poor welding between the current collector plate and the metal foil is reduced, and the welding reliability is improved.

以上、本発明について簡単にまとめる。本発明に記載の二次電池は、金属箔(12a)に合剤層(12b)が設けられた電極(12)が捲回された発電要素(10)を有し、金属箔(12a)は、一方の面(12c)と他方の面(12e)で結晶粒の大きさが異なり、電極(12)は、発電要素10の外周側に金属箔の結晶が大きい面(12e)が向いて配置される。このような構造にすることによって、発電要素10の外周側に電極凸部が広がるため、金属箔を折り曲げることなく治具を挿入できる。そのため、金属箔と集電部材との溶接信頼性が向上する。   The present invention will be briefly described above. The secondary battery according to the present invention has a power generation element (10) in which an electrode (12) provided with a mixture layer (12b) is provided on a metal foil (12a), and the metal foil (12a) is The crystal grain size is different between one surface (12c) and the other surface (12e), and the electrode (12) is arranged on the outer peripheral side of the power generation element 10 with the surface (12e) having a large metal foil crystal facing. Is done. By adopting such a structure, since the electrode convex portion spreads on the outer peripheral side of the power generation element 10, a jig can be inserted without bending the metal foil. Therefore, the welding reliability between the metal foil and the current collecting member is improved.

また、本発明に記載の二次電池は、金属箔(12a)の反りが発電要素10の内周側よりも外周側の方が大きい構造となっている。このような構造にすることによって、電極凸部が発電要素10の外側に広がりすぎることが無くなるため、電極凸部と治具が干渉しあうことが無くなり、生産性が向上する。   Further, the secondary battery described in the present invention has a structure in which the warpage of the metal foil (12a) is larger on the outer peripheral side than on the inner peripheral side of the power generation element 10. By adopting such a structure, since the electrode convex portion does not extend too far outside the power generation element 10, the electrode convex portion and the jig do not interfere with each other, and the productivity is improved.

また、本発明に記載の二次電池は、金属箔の厚さが20μm以下である。このような構造にすることによって、十分に金属箔を反らせることが出来るため、治具と金属箔との干渉を抑制できる。従って、金属箔が折れ曲がることなく集電板と溶接することができ溶接信頼性が向上する。   In the secondary battery according to the present invention, the thickness of the metal foil is 20 μm or less. With such a structure, the metal foil can be sufficiently warped, so that interference between the jig and the metal foil can be suppressed. Therefore, the metal foil can be welded to the current collector plate without bending, and the welding reliability is improved.

また、本発明に記載の二次電池は、合剤層から突出した銅箔の長さが20mm以上である。このような構造にすることによって、十分に金属箔を反らせることが出来、ひいては溶接信頼性が向上する。   In the secondary battery described in the present invention, the length of the copper foil protruding from the mixture layer is 20 mm or more. By adopting such a structure, the metal foil can be sufficiently warped, and as a result, the welding reliability is improved.

以上、本発明の実施形態について詳述したが、本発明は、上述の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の精神を逸脱しない範囲で、種々の設計変更を行うことができるものである。例えば、上記した実施の形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。さらに、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。   Although the embodiments of the present invention have been described in detail above, the present invention is not limited to the above-described embodiments, and various designs can be made without departing from the spirit of the present invention described in the claims. It can be changed. For example, the above-described embodiment has been described in detail for easy understanding of the present invention, and is not necessarily limited to one having all the configurations described. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Furthermore, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.

1 円筒形二次電池
2 電池缶
2a 溝
2b 開口部
3 電池蓋
3a 周縁部
3b 筒部
3c 開口部
4 電池容器
5 非水電解液
10 発電要素
10a 負極凸部17が反っていない発電要素
10b 負極凸部17が内側に窄まっている発電要素
10c 負極凸部17が外側に広がった発電要素
11 正極電極
11a 正極金属箔
11b 正極合剤層
11c 正極箔露出部
12 負極電極
12a 負極金属箔
12b 負極合剤層
12c 負極箔露出部
12d 結晶が小さい面
12e 結晶が大きい面
13 第1のセパレータ
14 第2のセパレータ
15 軸芯
15a 上方の中空部
15b 段部
16 正極凸部
17 負極凸部
17a 負極凸部17の中央の開口部
17b 環状の突出部
19 接着テープ
20 発電ユニット
21 負極集電板
21a 基部
21b 開口部
21c 外周筒部
21d 開口部
22 押え部材
27 正極集電板
27a 基部
27b 下部筒部
27c 上部筒部
27d 開口部
27e 開口部
28 押え部材
30 電池蓋ユニット
33 接続部材
34 絶縁板
34a 開口部
34b 側部
35 接続板
35a 突起部
35b 開口部
37 ダイアフラム
37a 切込み
37b 側壁
43 ガスケット
43a 基部
43b 外周壁部
50 接続リード板
51 テーパー角の小さいコマ
52 テーパー角の大きいコマ
DESCRIPTION OF SYMBOLS 1 Cylindrical secondary battery 2 Battery can 2a Groove 2b Opening part 3 Battery cover 3a Peripheral part 3b Cylindrical part 3c Opening part 4 Battery container 5 Non-aqueous electrolyte 10 Electric power generation element 10a Electric power generation element 10b Negative electrode convex part 17 is not curving 10b Negative electrode Power generation element 10 c with convex portion 17 constricted inward Power generation element with negative electrode convex portion 17 spreading outward 11 Positive electrode 11 a Positive metal foil 11 b Positive electrode mixture layer 11 c Positive foil exposed portion 12 Negative electrode 12 a Negative metal foil 12 b Negative electrode Mixture layer 12c Negative electrode foil exposed portion 12d Surface with small crystal 12e Surface with large crystal 13 First separator 14 Second separator 15 Core 15a Upper hollow portion 15b Step portion 16 Positive electrode convex portion 17 Negative electrode convex portion 17a Negative electrode convex portion Opening 17b in the center of the part 17 Annular protrusion 19 Adhesive tape 20 Power generation unit 21 Negative electrode current collector 21a Base 21b 21c outer peripheral cylinder part 21d opening part 22 holding member 27 positive electrode current collector plate 27a base part 27b lower cylinder part 27c upper cylinder part 27d opening part 27e opening part 28 holding member 30 battery cover unit 33 connecting member 34 insulating plate 34a opening part 34b side part 35 Connection plate 35a Protrusion 35b Opening 37 Diaphragm 37a Notch 37b Side wall 43 Gasket 43a Base 43b Outer peripheral wall 50 Connection lead plate 51 Top with small taper angle 52 Top with large taper angle

Claims (6)

金属箔に合剤層が設けられた電極が捲回された発電要素を有する二次電池において、
前記金属箔は、一方の面と他方の面で結晶粒の大きさが異なり、
前記電極は、前記発電要素の外周側に前記金属箔の結晶が大きい面が向いて配置されることを特徴とする二次電池。
In a secondary battery having a power generation element in which an electrode provided with a mixture layer on a metal foil is wound,
The metal foil has different crystal grain sizes on one side and the other side,
The secondary battery according to claim 1, wherein the electrode is disposed on an outer peripheral side of the power generation element such that a surface having a large crystal of the metal foil faces.
請求項1に記載の二次電池において、
前記金属箔の反りは、前記発電要素の内周側よりも外周側の方が大きいことを特徴とする二次電池。
The secondary battery according to claim 1,
The secondary battery is characterized in that the warpage of the metal foil is larger on the outer peripheral side than on the inner peripheral side of the power generating element.
請求項2に記載の二次電池において、
前記金属箔は電着により作成された銅箔であることを特徴とする二次電池。
The secondary battery according to claim 2,
The secondary battery, wherein the metal foil is a copper foil prepared by electrodeposition.
請求項3に記載の二次電池において、
前記銅箔の厚さは20μm以下であることを特徴とする二次電池。
The secondary battery according to claim 3,
The secondary battery is characterized in that a thickness of the copper foil is 20 μm or less.
請求項3又は4に記載の二次電池において、
前記合剤層から突出した銅箔の長さは20mm以上であることを特徴とする二次電池。
The secondary battery according to claim 3 or 4,
The length of the copper foil which protruded from the said mixture layer is 20 mm or more, The secondary battery characterized by the above-mentioned.
金属箔に合剤層が設けられた電極が捲回された発電要素を有する二次電池の製造方法において、
前記金属箔は、一方の面と他方の面で結晶粒の大きさが異なり、前記金属箔の結晶粒の大きい面が前記発電要素の外周側を向くように捲回される工程を有することを特徴とする二次電池の作成方法。
In a method for producing a secondary battery having a power generation element in which an electrode provided with a mixture layer on a metal foil is wound,
The metal foil has a step in which the size of crystal grains is different between one surface and the other surface, and the large surface of the metal foil is wound so that the large surface of the metal foil faces the outer peripheral side of the power generation element. A method for producing a secondary battery.
JP2015063600A 2015-03-26 2015-03-26 Secondary battery Pending JP2016184482A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015063600A JP2016184482A (en) 2015-03-26 2015-03-26 Secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015063600A JP2016184482A (en) 2015-03-26 2015-03-26 Secondary battery

Publications (1)

Publication Number Publication Date
JP2016184482A true JP2016184482A (en) 2016-10-20

Family

ID=57243183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015063600A Pending JP2016184482A (en) 2015-03-26 2015-03-26 Secondary battery

Country Status (1)

Country Link
JP (1) JP2016184482A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10920330B2 (en) * 2016-11-11 2021-02-16 Iljin Materials Co., Ltd. Electrolytic copper foil for secondary battery and method for producing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008041307A (en) * 2006-08-02 2008-02-21 Sony Corp Negative electrode and secondary battery
JP2008047308A (en) * 2006-08-10 2008-02-28 Mitsui Mining & Smelting Co Ltd Nonaqueous electrolyte secondary battery
JP4199839B2 (en) * 1997-11-05 2008-12-24 住友電気工業株式会社 Swirl type lithium ion battery electrode and spiral type lithium ion battery using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4199839B2 (en) * 1997-11-05 2008-12-24 住友電気工業株式会社 Swirl type lithium ion battery electrode and spiral type lithium ion battery using the same
JP2008041307A (en) * 2006-08-02 2008-02-21 Sony Corp Negative electrode and secondary battery
JP2008047308A (en) * 2006-08-10 2008-02-28 Mitsui Mining & Smelting Co Ltd Nonaqueous electrolyte secondary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10920330B2 (en) * 2016-11-11 2021-02-16 Iljin Materials Co., Ltd. Electrolytic copper foil for secondary battery and method for producing the same

Similar Documents

Publication Publication Date Title
JP6657843B2 (en) Rechargeable battery
JP5081932B2 (en) Sealed battery and manufacturing method thereof
JP5396349B2 (en) Secondary battery
JP6208687B2 (en) Cylindrical secondary battery and manufacturing method thereof
JP2009110751A (en) Secondary battery
JP5006603B2 (en) Nonaqueous electrolyte secondary battery
JP2016225014A (en) Cylindrical secondary battery
WO2018061381A1 (en) Non-aqueous electrolyte secondary battery
JP5613618B2 (en) Cylindrical secondary battery
JP5512303B2 (en) Cylindrical secondary battery
JPWO2017010042A1 (en) Winding battery
JP2011159440A (en) Cylindrical secondary battery and method for manufacturing the same
US20140030568A1 (en) Cylindrical secondary battery
JP2014082055A (en) Cylindrical power storage element
JP2012169063A (en) Cylindrical secondary battery
WO2017057324A1 (en) Power storage element and method for manufacturing power storage element
JP2016110772A (en) Cylindrical secondary battery
JP2018055904A (en) Electrochemical cell and manufacturing method of the electrochemical cell
JP2016184482A (en) Secondary battery
JP6393598B2 (en) Cylindrical secondary battery
JP2012185912A (en) Cylindrical secondary cell
WO2014076828A1 (en) Secondary battery
JP2017059345A (en) Cylindrical secondary battery
JP5651536B2 (en) Cylindrical secondary battery
JP2022152423A (en) cylindrical battery

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170117

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170124

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170726

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180529

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20181127