JP2016183392A - Hard particle for sintered alloy blending, abrasion resistant iron-based sintered alloy and manufacturing method of abrasion resistant iron-based sintered alloy - Google Patents

Hard particle for sintered alloy blending, abrasion resistant iron-based sintered alloy and manufacturing method of abrasion resistant iron-based sintered alloy Download PDF

Info

Publication number
JP2016183392A
JP2016183392A JP2015064877A JP2015064877A JP2016183392A JP 2016183392 A JP2016183392 A JP 2016183392A JP 2015064877 A JP2015064877 A JP 2015064877A JP 2015064877 A JP2015064877 A JP 2015064877A JP 2016183392 A JP2016183392 A JP 2016183392A
Authority
JP
Japan
Prior art keywords
sintered alloy
powder
hard particles
surface roughness
hard
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015064877A
Other languages
Japanese (ja)
Other versions
JP6275074B2 (en
Inventor
義久 植田
Yoshihisa Ueda
義久 植田
裕作 吉田
Yusaku Yoshida
裕作 吉田
杉本 勝
Masaru Sugimoto
勝 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fine Sinter Co Ltd
Original Assignee
Fine Sinter Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fine Sinter Co Ltd filed Critical Fine Sinter Co Ltd
Priority to JP2015064877A priority Critical patent/JP6275074B2/en
Publication of JP2016183392A publication Critical patent/JP2016183392A/en
Application granted granted Critical
Publication of JP6275074B2 publication Critical patent/JP6275074B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a hard particle capable of improving abrasion resistance by a sintered alloy with being blended to an abrasion resistant iron-based sintered alloy and enhancing surface toughness with enhancing adhesiveness between the hard particle and a substrate and improving falling during mechanical processing, the abrasion resistant iron-based sintered alloy and a manufacturing method therefor.SOLUTION: There is provided a hard particle for sintered alloy blending which is blended to the sintered alloy as a raw material and contains, by mass%, Ni:41 to 60%, Mo:30 to 50%, Cr:15% or less, Mn:2 to 10%, Si:0.4 to 2%, C:0.5 to 1.5% and the balance Fe with inevitable impurities.SELECTED DRAWING: None

Description

本発明は焼結合金配合用硬質粒子、耐摩耗性鉄基焼結合金及びその製造方法に関する。   The present invention relates to hard particles for blending sintered alloys, wear-resistant iron-based sintered alloys, and methods for producing the same.

従来より、各種エンジンにおけるバルブシート等の製造に用いられる焼結合金としては、例えば、特許第3596751号公報に記載されているように、硬質粒子に含有されるMoとMnの特性に着目して、質量%でMo:20〜70%、C:0.5〜3%、Ni:5〜40%、Mn:1〜20%、残部が不可避不純物とFeからなる硬質粒子の粉末を用い、硬質粒子が鉄基地中に面積比で10〜60%分散された耐摩耗性鉄基焼結合金が開示されている。   Conventionally, as a sintered alloy used for manufacturing valve seats and the like in various engines, for example, as described in Japanese Patent No. 3596951, attention is paid to the characteristics of Mo and Mn contained in hard particles. , Mo: 20 to 70% by mass, C: 0.5 to 3%, Ni: 5 to 40%, Mn: 1 to 20%, the balance is hard using powder of hard particles composed of inevitable impurities and Fe An abrasion-resistant iron-based sintered alloy in which particles are dispersed in an area of 10 to 60% in an iron matrix is disclosed.

上記した焼結合金においては、硬質粒子に含まれているNi量が5〜40%の範囲にされている。   In the sintered alloy described above, the amount of Ni contained in the hard particles is in the range of 5 to 40%.

特許第359671号公報Japanese Patent No. 359671

上記した焼結合金の更なる耐久性を確保するためには硬質粒子と基地との密着性が高い方が好ましく、また、機械加工時に硬質粒子が基地から脱落することを抑制して焼結合金の面粗さを向上することが好ましい。しかしながら、上記した焼結合金においては、硬質粒子と基地との密着性が必ずしも充分ではなく、また、機械加工時における焼結合金の面粗さを向上させるには十分ではなく、改善の余地があった。   In order to ensure further durability of the sintered alloy described above, it is preferable that the adhesion between the hard particles and the base is high, and the sintered alloy suppresses the hard particles from falling off the base during machining. It is preferable to improve the surface roughness. However, in the above-described sintered alloy, the adhesion between the hard particles and the base is not necessarily sufficient, and it is not sufficient to improve the surface roughness of the sintered alloy during machining, and there is room for improvement. there were.

本願発明者等は、硬質粒子と基地との密着性の向上及び機械加工時における焼結合金の面粗さの向上を図るにつき研究を行う過程において、NiはCと共に硬質粉末のマトリックスのオーステナイト相を安定化するのに必須元素であり、また、耐熱性を向上し耐摩耗性を改善し、硬質粉末と基地の密着性を向上し機械加工時の脱落を改善し面粗さを向上する元素であることに着目し、鋭意研究・検討を重ねた結果、本発明を見出すに至ったものである。   The inventors of the present application conducted a study on improving the adhesion between the hard particles and the base and improving the surface roughness of the sintered alloy at the time of machining. Is an essential element that stabilizes heat, and improves heat resistance and wear resistance, improves adhesion between hard powder and base, improves dropout during machining, and improves surface roughness As a result of intensive studies and examinations, the present invention has been found.

前記課題を解決するため請求項1に係る焼結合金配合用硬質粒子は、焼結合金に原料として配合される硬質粒子であって、質量%でNi:41〜60%、Mo:30〜50%、Cr:15%以下、Mn:2〜10%、Si:0.4〜2%、C:0.5〜1.5%、残部が不可避不純物とFeからなることを特徴とする。   In order to solve the above-mentioned problem, hard particles for blending sintered alloy according to claim 1 are hard particles blended as a raw material in a sintered alloy, and Ni: 41-60%, Mo: 30-50 by mass%. %, Cr: 15% or less, Mn: 2 to 10%, Si: 0.4 to 2%, C: 0.5 to 1.5%, and the balance being inevitable impurities and Fe.

請求項2に係る焼結合金配合用硬質粒子は、請求項1の焼結合金配合用硬質粒子において、Ni:41%〜45%を含むことを特徴とする。   The hard particle for compounding a sintered alloy according to claim 2 is the hard particle for compounding a sintered alloy according to claim 1, characterized by containing Ni: 41% to 45%.

請求項3に係る焼結合金配合用硬質粒子は、焼結合金に原料として配合される硬質粒子であって、質量%でNi:41〜45%、Mo:30〜40%、Cr:10%以下、Mn:2〜6%、Si:0.4〜2%、C:0.5〜1.0%、残部が不可避不純物とFeからなることを特徴とする。   The hard particles for blending a sintered alloy according to claim 3 are hard particles blended as a raw material in a sintered alloy, and Ni: 41 to 45%, Mo: 30 to 40%, Cr: 10% in mass%. Hereinafter, Mn: 2 to 6%, Si: 0.4 to 2%, C: 0.5 to 1.0%, and the balance is made of inevitable impurities and Fe.

請求項4に係る耐摩耗性鉄基焼結合金は、硬質粒子を100%としたとき硬質粒子成分がNi:41〜60%、Mo:30〜50%、Cr:15%以下、Mn:2〜10%、Si:0.4〜2%、C:0.5〜1.5%、残部が不可避不純物とFeからなる硬質粒子の粉末を質量%で1〜50%と、炭素粉末0.5〜2.5%と、残部となるFe粉末とを混合した混合材料を焼結したことを特徴とする。   The wear-resistant iron-based sintered alloy according to claim 4 has hard particle components of Ni: 41 to 60%, Mo: 30 to 50%, Cr: 15% or less, and Mn: 2 when the hard particles are defined as 100%. 10%, Si: 0.4-2%, C: 0.5-1.5%, the balance of hard particles consisting of inevitable impurities and Fe, 1-50% by mass, carbon powder 0. A mixed material obtained by mixing 5 to 2.5% and the remaining Fe powder is sintered.

請求項5に係る耐摩耗性鉄基焼結合金は、硬質粒子を100%としたとき硬質粒子成分がNi:41〜45%、Mo:30〜40%、Cr:10%以下、Mn:2〜6%、Si:0.4〜2%、C:0.5〜1.0%、残部が不可避不純物とFeからなる硬質粒子の粉末を質量%で1〜50%と、炭素粉末0.5〜2.5%と、残部となるFe粉末とを混合した混合材料を焼結したことを特徴とする。   The wear-resistant iron-based sintered alloy according to claim 5 has hard particle components of Ni: 41 to 45%, Mo: 30 to 40%, Cr: 10% or less, and Mn: 2 when the hard particles are taken as 100%. ~ 6%, Si: 0.4-2%, C: 0.5-1.0%, the balance of hard particles consisting of inevitable impurities and Fe, 1-50% by mass, carbon powder 0. A mixed material obtained by mixing 5 to 2.5% and the remaining Fe powder is sintered.

請求項6に係る耐摩耗性鉄基焼結合金の製造方法は、請求項1〜請求項3のいずれかに記載の硬質粒子の粉末を質量%で1〜50%と、炭素粉末0.5〜2.5%と、残部となるFe粉末とを混合した混合材料を用意し、前記混合材料を成形して圧粉成形体を形成し、圧粉成形体を焼結して請求項4又は請求項5に記載の組成をもつ焼結合金とすることを特徴とする。   The method for producing a wear-resistant iron-based sintered alloy according to claim 6 is characterized in that the hard particle powder according to any one of claims 1 to 3 is 1 to 50% by mass and carbon powder 0.5 A mixed material prepared by mixing ~ 2.5% and the remaining Fe powder is prepared, the mixed material is molded to form a green compact, and the green compact is sintered. A sintered alloy having the composition according to claim 5 is characterized.

請求項7に係るバルブシートは、請求項4又は請求項5に記載の耐摩耗性鉄基焼結合金で形成されていることを特徴とする。   A valve seat according to a seventh aspect is formed of the wear-resistant iron-based sintered alloy according to the fourth or fifth aspect.

請求項1に係る焼結合金配合用硬質粒子は、焼結合金に原料として配合される硬質粒子であって、質量%でNi:41〜60%、Mo:30〜50%、Cr:15%以下、Mn:2〜10%、Si:0.4〜2%、C:0.5〜1.5%、残部が不可避不純物とFeからなり、また、請求項3に係る焼結合金配合用硬質粒子は、焼結合金に原料として配合される硬質粒子であって、質量%でNi:41〜45%、Mo:30〜40%、Cr:10%以下、Mn:2〜6%、Si:0.4〜2%、C:0.5〜1.0%、残部が不可避不純物とFeからなる。   The hard particles for blending a sintered alloy according to claim 1 are hard particles blended as a raw material in a sintered alloy, and Ni: 41-60%, Mo: 30-50%, Cr: 15% by mass% Hereinafter, Mn: 2 to 10%, Si: 0.4 to 2%, C: 0.5 to 1.5%, the balance is composed of inevitable impurities and Fe, and for the sintered alloy blending according to claim 3 The hard particles are hard particles blended as a raw material in the sintered alloy, and in mass%, Ni: 41 to 45%, Mo: 30 to 40%, Cr: 10% or less, Mn: 2 to 6%, Si : 0.4 to 2%, C: 0.5 to 1.0%, and the balance consists of inevitable impurities and Fe.

本発明に係る焼結合金配合用硬質粒子では、NiがCと共に硬質粉末のマトリックスのオーステナイト相を安定化するのに必須元素であり、また、耐熱性を向上し耐摩耗性を改善し、硬質粉末と基地の密着性を向上し機械加工時の脱落を改善し面粗さを向上する元素であることに着目し、Niの含有量をNi:41〜60%、好適には、Ni:41〜45%としたので、かかる硬質粒子を含有して生成される焼結合金によれば、耐摩耗性を改善し、硬質粉末と基地の密着性を向上して機械加工時の脱落を改善し面粗さを向上することができる。   In the hard alloy compounding hard particles according to the present invention, Ni is an essential element for stabilizing the austenite phase of the hard powder matrix together with C, and also improves heat resistance and wear resistance, and hard Focusing on the fact that it is an element that improves the adhesion between the powder and the base, improves the dropout during machining, and improves the surface roughness, the Ni content is from 41 to 60%, preferably Ni: 41. The sintered alloy produced by containing such hard particles improves wear resistance, improves the adhesion between the hard powder and the base, and improves the dropout during machining. Surface roughness can be improved.

また、請求項4及び請求項5に係る耐摩耗性鉄基焼結合金は、前記した硬質粒子粉末を質量%で1〜50%と、炭素粉末0.5〜2.5%と、残部となるFe粉末とを混合した混合材料を焼結して得られるので、前記した硬質粒子の特性に基づき、耐摩耗性鉄基焼結合金における耐摩耗性を改善し、硬質粉末と基地の密着性を向上して機械加工時の脱落を改善し面粗さを向上することができる。   In addition, the wear-resistant iron-based sintered alloy according to claim 4 and claim 5 includes 1 to 50% by mass of the hard particle powder described above, 0.5 to 2.5% carbon powder, and the balance. Since it is obtained by sintering a mixed material mixed with Fe powder, it improves the wear resistance of the wear-resistant iron-based sintered alloy based on the characteristics of the hard particles described above, and the adhesion between the hard powder and the base Can improve the dropout during machining and improve the surface roughness.

更に、耐摩耗性鉄基焼結合金を成形焼結するに際して、焼結前の混合材料中に硬質粒子粉末を質量%で1〜50%混合して成形焼結しており、成形焼結に支障のない範囲で可能な限り硬質粒子を含有させることにより、焼結合金における耐摩耗性を改善し、硬質粉末と基地の密着性を向上して機械加工時の脱落を改善し面粗さを向上することができる。
前記のように生成される焼結合金は、バルブシートに使用して好適である。
Furthermore, when forming and sintering the wear-resistant iron-based sintered alloy, 1-50% by mass of the hard particle powder is mixed in the mixed material before sintering to form and sinter. By including hard particles as much as possible within the range that does not hinder, the wear resistance of the sintered alloy is improved, the adhesion between the hard powder and the base is improved, the dropout during machining is improved, and the surface roughness is reduced. Can be improved.
The sintered alloy produced as described above is suitable for use in a valve seat.

バルブシートの耐摩耗試験機を模式的に示す説明図である。It is explanatory drawing which shows typically the abrasion resistance tester of a valve seat.

(硬質粒子)
第1実施形態に係る硬質粒子は、質量%でNi:41〜60%、Mo:30〜50%、Cr:15%以下、Mn:2〜10%、Si:0.4〜2%、C:0.5〜1.5%、残部が不可避不純物とFeからなる。
(Hard particles)
The hard particles according to the first embodiment are, in mass%, Ni: 41-60%, Mo: 30-50%, Cr: 15% or less, Mn: 2-10%, Si: 0.4-2%, C : 0.5 to 1.5%, the balance being inevitable impurities and Fe.

ここに、Ni含有量としては、Ni:41%〜45%の範囲が更に好適である。   Here, the Ni content is more preferably in the range of Ni: 41% to 45%.

第2実施形態に係る硬質粒子は、質量%でNi:41〜45%、Mo:30〜40%、Cr:10%以下、Mn:2〜6%、Si:0.4〜2%、C:0.5〜1.0%、残部が不可避不純物とFeからなる。   The hard particles according to the second embodiment are, in mass%, Ni: 41-45%, Mo: 30-40%, Cr: 10% or less, Mn: 2-6%, Si: 0.4-2%, C : 0.5-1.0%, the balance consists of inevitable impurities and Fe.

前記した第1実施形態及び第2実施形態に係る硬質粒子では、Niは基地におけるCと共に硬質粉末のマトリックスのオーステナイト相を安定化するのに必須元素であり、また、耐熱性を向上し耐摩耗性を改善し、硬質粉末と基地の密着性を向上し機械加工時の脱落を改善し面粗さ(加工性)を向上する元素であることに基づき、焼結合金における耐摩耗性と加工性との良好なバランスを図るべく、第1実施形態の硬質粒子におけるNiの含有量は、41%〜60%の範囲に設定され、また、第2実施形態に係る硬質粒子におけるNiの含有量は、41〜45%の範囲に設定される。   In the hard particles according to the first and second embodiments described above, Ni is an essential element for stabilizing the austenite phase of the matrix of the hard powder together with C in the base, and also improves heat resistance and wear resistance. Wear resistance and workability in sintered alloys based on the fact that it is an element that improves hardness, improves adhesion between hard powder and base, improves dropout during machining, and improves surface roughness (workability) In order to achieve a good balance, the Ni content in the hard particles of the first embodiment is set in the range of 41% to 60%, and the Ni content in the hard particles according to the second embodiment is It is set in the range of 41 to 45%.

ここに、Niの含有量が41%未満であると、耐摩耗性及び加工性につき十分な効果が得られず、また、Niの含有量が60%を超えると延性が高くなり加工性が悪化する。   Here, if the Ni content is less than 41%, sufficient effects on wear resistance and workability cannot be obtained, and if the Ni content exceeds 60%, the ductility becomes high and the workability deteriorates. To do.

Moは、硬質粉末中にMo系炭化物を生成し、耐摩耗性を改善するための必須元素である。しかしながら、過度に添加すると硬質粉末が脆くなり、バルブシート形状への機械加工時に脱落しやすくなり、面粗さが悪化する。具体的に、30%未満の添加量では耐摩耗性が十分でなく、一方、50%を超えて添加すると脆性が高くなり、面粗さが悪化する。   Mo is an essential element for generating Mo-based carbides in the hard powder and improving wear resistance. However, if it is added excessively, the hard powder becomes brittle, it becomes easy to fall off during machining into a valve seat shape, and the surface roughness deteriorates. Specifically, if the addition amount is less than 30%, the wear resistance is not sufficient. On the other hand, if the addition amount exceeds 50%, the brittleness increases and the surface roughness deteriorates.

CrはCと共に硬質粉末中にCr系炭化物を生成し耐摩耗性を改善するための必須元素である。しかしながら、具体的に、15%を超えて添加すると機械加工時に硬質粉末が脱落しやすくなり、面粗さが悪化する。   Cr is an essential element for improving the wear resistance by producing Cr carbide in the hard powder together with C. However, if more than 15% is added, the hard powder tends to fall off during machining and the surface roughness is deteriorated.

Mnは焼結時に硬質粉末と基地の密着性を改善する効果を有する元素であり、2%未満の添加では基地との密着性が悪く機械加工時に硬質粉末が脱落し面粗さが悪化し、耐摩耗性も悪化する。一方、10%を超えて添加すると、基地への拡散が大きくなり過ぎて硬質粉末の形状を保てなくなり、かえって密着性が低下し、面粗さが悪化する。   Mn is an element that has the effect of improving the adhesion between the hard powder and the base during sintering. If less than 2%, the adhesion with the base is poor and the hard powder falls off during machining, resulting in poor surface roughness. Abrasion resistance also deteriorates. On the other hand, if it exceeds 10%, the diffusion to the base becomes too large and the shape of the hard powder cannot be maintained, and on the contrary, the adhesion is lowered and the surface roughness is deteriorated.

Siは、マトリックスに固溶することで硬質粉末の硬さを増加し、耐摩耗性を改善するための必須元素である。しかしながら、過度に添加すると硬質粉末が脆くなる。具体的に、0.4%未満の添加では耐摩耗性が十分でなく、一方、2%を超えて添加すると脆性が高くなり、耐摩耗性が悪化する。   Si is an essential element for increasing the hardness of the hard powder and improving the wear resistance by dissolving in the matrix. However, if added excessively, the hard powder becomes brittle. Specifically, if the addition is less than 0.4%, the wear resistance is not sufficient. On the other hand, if the addition exceeds 2%, the brittleness increases and the wear resistance deteriorates.

Cは、硬質粉末中にMo系炭化物、Cr系炭化物を生成し凝着摩耗を防止するため、また、Niと共にマトリックスをオーステナイト化するための必須元素である。しかしながら、具体的に、1.5%を超えて添加すると、延性が向上し面粗さが悪化し、一方、0.5%未満の添加では、基地との密着性が悪化し、脱落しやすくなり面粗さが悪化する。それにより、耐摩耗性も悪化する。   C is an essential element for forming Mo-based carbides and Cr-based carbides in the hard powder to prevent adhesive wear, and for austenizing the matrix together with Ni. However, specifically, when added over 1.5%, the ductility is improved and the surface roughness is deteriorated. On the other hand, when the added amount is less than 0.5%, the adhesiveness with the base is deteriorated and easily falls off. The rough surface becomes worse. Thereby, the wear resistance is also deteriorated.

第1実施形態及び第2実施形態に係る硬質粒子は、溶湯を噴霧化するアトマイズ処理で製造されたものでも良いし、溶湯を凝固させた凝固体を機械的粉砕で粉末化したものでも良い。アトマイズ処理としては、非酸化性雰囲気(窒素ガスやアルゴンガスなどの不活性ガス雰囲気や真空中)でアトマイズ処理したものを採用できる。   The hard particles according to the first embodiment and the second embodiment may be manufactured by an atomizing process for atomizing a molten metal, or may be a powder obtained by mechanically pulverizing a solidified body obtained by solidifying a molten metal. As the atomization treatment, an atomization treatment in a non-oxidizing atmosphere (inert gas atmosphere such as nitrogen gas or argon gas or in vacuum) can be employed.

また、硬質粒子の平均粒径としては、鉄基焼結合金の用途、種類などに応じて適宜選択できるが、一般的には、20〜250μm程度、30〜200μm程度、40〜180μm程度にすることができる。但しこれに限定されるものではない。硬質粒子の硬さは、Mo炭化物等の量にもよるが、一般的にはHv350〜750程度、Hv450〜700程度にすることができる。但しこれに限定されるものではなく、要するに、焼結合金の基地などのように硬質粒子の使用対象物に対して硬ければ良い。   The average particle size of the hard particles can be appropriately selected according to the use and type of the iron-based sintered alloy, but is generally about 20 to 250 μm, about 30 to 200 μm, and about 40 to 180 μm. be able to. However, it is not limited to this. The hardness of the hard particles is generally about Hv 350 to 750 and about Hv 450 to 700, although it depends on the amount of Mo carbide and the like. However, the present invention is not limited to this. In short, it is only necessary that the hard particles are hard to be used, such as a sintered alloy base.

(耐摩耗性鉄基焼結合金)
第1実施形態に係る硬質粒子を使用して生成される耐摩耗鉄基焼結合金は、 硬質粒子を100%としたとき硬質粒子成分がNi:41〜60%、Mo:30〜50%、Cr:15%以下、Mn:2〜10%、Si:0.4〜2%、C:0.5〜1.5%、残部が不可避不純物とFeからなる硬質粒子の粉末を質量%で1〜50%と、炭素粉末0.5〜5%と、残部となるFe粉末とを混合した混合材料を焼結して生成される。
(Abrasion-resistant iron-based sintered alloy)
The wear-resistant iron-based sintered alloy produced using the hard particles according to the first embodiment has a hard particle component of Ni: 41-60%, Mo: 30-50% when the hard particles are taken as 100%, Cr: 15% or less, Mn: 2 to 10%, Si: 0.4 to 2%, C: 0.5 to 1.5%, balance of hard particles composed of unavoidable impurities and Fe in 1% by mass It is produced by sintering a mixed material obtained by mixing ˜50%, carbon powder 0.5˜5%, and the remaining Fe powder.

また、第2実施形態にかかる硬質粒子を使用して生成される耐摩耗性鉄基焼結合金は、硬質粒子を100%としたとき硬質粒子成分がNi:41〜45%、Mo:30〜40%、Cr:10%以下、Mn:2〜6%、Si:0.4〜2%、C:0.5〜1.0%、残部が不可避不純物とFeからなる硬質粒子の粉末を質量%で1〜50%と、炭素粉末0.5〜2.5%と、残部となるFe粉末とを混合した混合材料を焼結して生成される。   Further, the wear-resistant iron-based sintered alloy produced by using the hard particles according to the second embodiment has Ni: 41 to 45% of the hard particle component and Mo: 30 to 30% when the hard particles are taken as 100%. 40%, Cr: 10% or less, Mn: 2 to 6%, Si: 0.4 to 2%, C: 0.5 to 1.0%, the balance being hard particles powder consisting of inevitable impurities and Fe It is produced by sintering a mixed material obtained by mixing 1 to 50%, carbon powder 0.5 to 2.5%, and the remaining Fe powder.

焼結合金の基地の組成に関して、鉄基焼結合金の耐摩耗性を確保すべく、鉄基焼結合金の基地の硬さを確保するため、鉄基焼結合金の基地としては、パーライトを含む組織を採用することができる。パーライトを含む組織としては、パーライト組織、パーライト−オーステナイト系の混合組織、パーライト−フェライト系の混合組織、パーライト−セメンタイト系の混合組織にすることができる。耐摩耗性を確保するには、硬さが低いフェライトは少ない方が好ましい。基地の硬さは組成にもよるが、一般的にはHv120〜300程度、Hv150〜250程度にすることができるが、これらに限定されるものではない。硬質粒子の硬さは、基地よりも硬質であり、一般的にはHv350〜750程度、Hv450〜700程度にすることができるが、これらに限定されるものではない。   Regarding the composition of the sintered alloy base, in order to ensure the wear resistance of the iron-based sintered alloy, to secure the hardness of the iron-based sintered alloy base, Including organizations can be employed. The pearlite-containing structure may be a pearlite structure, a pearlite-austenite mixed structure, a pearlite-ferrite mixed structure, or a pearlite-cementite mixed structure. In order to ensure wear resistance, it is preferable that the amount of ferrite having low hardness is small. Although the hardness of the base depends on the composition, it can generally be about Hv 120 to 300 and about Hv 150 to 250, but is not limited thereto. The hardness of the hard particles is harder than that of the base, and can generally be about Hv 350 to 750 and about Hv 450 to 700, but is not limited thereto.

尚、前記した各耐摩耗性鉄基焼結合金によれば、硬質粒子の組成、硬質粒子の好ましい組成範囲は、第1実施形態及び第2実施形態に係る硬質粒子の組成と基本的に同様である。硬質粒子の平均粒径としては、鉄基焼結合金の用途、種類などに応じて適宜選択できるが、一般的には、20〜250μm程度、30〜200μm程度、40〜180μm程度にすることができる。硬質粒子の硬さは、Mo炭化物等の量にもよるが、一般的にはHv350〜750程度、Hv450〜700程度にすることができる。但しこれに限定されるものではない。   In addition, according to each of the above-mentioned wear-resistant iron-based sintered alloys, the composition of the hard particles and the preferable composition range of the hard particles are basically the same as those of the hard particles according to the first and second embodiments. It is. The average particle size of the hard particles can be selected as appropriate according to the use and type of the iron-based sintered alloy, but is generally about 20 to 250 μm, about 30 to 200 μm, and about 40 to 180 μm. it can. The hardness of the hard particles is generally about Hv 350 to 750 and about Hv 450 to 700, although it depends on the amount of Mo carbide and the like. However, it is not limited to this.

(耐摩耗性鉄基焼結合金の製造方法)
前記した各耐摩耗性鉄基焼結合金の製造方法では、第1実施形態又は第2実施形態に係る硬質粒子の粉末を質量%で1〜50%と、炭素粉末0.5〜2.5%と、残部となるFe粉末とを混合した混合材料を用意し、混合材料を成形して圧粉成形体を形成し、圧粉成形体を焼結する。
(Method for producing wear-resistant iron-based sintered alloy)
In the manufacturing method of each wear-resistant iron-based sintered alloy described above, the hard particle powder according to the first embodiment or the second embodiment is 1 to 50% by mass, and the carbon powder is 0.5 to 2.5. % And a mixed material in which the remaining Fe powder is mixed, the mixed material is molded to form a green compact, and the green compact is sintered.

上記した硬質粒子は、焼結合金の基地に分散し、焼結合金の耐摩耗性を高める硬質相を構成する。硬質粒子の割合が少ないと、焼結合金の耐摩耗性は充分でない。硬質粒子の割合が過剰であると、基地に対する硬質粒子の保持性が確保されにくい。このため硬質粒子の粉末の配合量は質量%で1〜50%とする。炭素粉末としては一般的には黒鉛粉末を採用できる。炭素粉末の炭素(C)は焼結合金の基地または硬質粒子に拡散し、固溶したり炭化物(Mo炭化物またはCr炭化物等)を生成したりする。このため炭素粉末の配合量は0.5〜2.5%とする。   The hard particles described above are dispersed in the base of the sintered alloy and constitute a hard phase that enhances the wear resistance of the sintered alloy. If the ratio of hard particles is small, the wear resistance of the sintered alloy is not sufficient. When the ratio of the hard particles is excessive, it is difficult to ensure the retention of the hard particles with respect to the base. For this reason, the compounding quantity of the hard particle powder is 1 to 50% by mass. In general, graphite powder can be used as the carbon powder. The carbon (C) of the carbon powder diffuses into the base of the sintered alloy or hard particles, and forms a solid solution or generates a carbide (such as Mo carbide or Cr carbide). For this reason, the compounding quantity of carbon powder shall be 0.5 to 2.5%.

Fe粉末は、耐摩耗性鉄基焼結合金の基地を構成する。上記した製造方法によれば、出発原料のコストの低減を図ることができ、さらに、圧粉成形体の圧縮成形性を図ることができ、圧粉成形体ひいては焼結合金の高密度化に有利となる。   The Fe powder constitutes the base of the wear-resistant iron-based sintered alloy. According to the manufacturing method described above, the cost of the starting material can be reduced, and further, the compression molding property of the green compact can be achieved, which is advantageous for increasing the density of the green compact and thus the sintered alloy. It becomes.

上記した製造方法によれば、硬質粒子と基地とにおいては、焼結時に、一方に含まれている合金元素は他方に拡散するため、硬質粒子と基地との密着性が高まる。殊に、第1実施形態及び第2実施形態に係る硬質粒子を採用したときには、Niの特性に基づき、焼結合金における耐摩耗性と加工性との良好なバランスを図ることができる。   According to the manufacturing method described above, in the hard particles and the matrix, the alloy element contained in one diffuses to the other during the sintering, so that the adhesion between the hard particles and the matrix increases. In particular, when the hard particles according to the first and second embodiments are employed, a good balance between wear resistance and workability in the sintered alloy can be achieved based on the characteristics of Ni.

焼結温度としては、1050〜1250℃程度、殊に1100〜1150℃程度を採用できる。焼結温度における焼結時間としては、10分〜120分、殊に15〜40分を採用できる。焼結雰囲気としては、不活性ガス雰囲気などの非酸化性雰囲気が好ましい。非酸化性雰囲気としては、窒素雰囲気、アルゴンガス雰囲気、真空雰囲気があげられる。   As the sintering temperature, about 1050 to 1250 ° C., particularly about 1100 to 1150 ° C. can be adopted. As the sintering time at the sintering temperature, 10 minutes to 120 minutes, especially 15 to 40 minutes can be employed. The sintering atmosphere is preferably a non-oxidizing atmosphere such as an inert gas atmosphere. Examples of the non-oxidizing atmosphere include a nitrogen atmosphere, an argon gas atmosphere, and a vacuum atmosphere.

前記のように製造される耐摩耗性鉄基焼結合金は、ガソリン、軽油、圧縮天然ガスや液化石油ガスを燃料とする車両用などの各種エンジンのバルブシートで使用される焼結合金に適する。   The wear-resistant iron-based sintered alloy produced as described above is suitable as a sintered alloy used in valve seats of various engines such as gasoline, light oil, compressed natural gas and liquefied petroleum gas as vehicles. .

以下、本発明を具体的に実施した実施例について比較例と共に説明する。   Examples according to the present invention will be described below together with comparative examples.

各実施例に係る耐摩耗性鉄基終結合金を生成するについて、先ず、不活性ガス(窒素ガス)を用いたガスアトマイズにより、表1に示す組成を有する硬質粒子A〜Yの合金粉末を製造した。これらを44μm〜250μmの範囲に分級し、各硬質粒子の粉末とした。   For producing the wear-resistant iron-based final bond according to each example, first, alloy powders of hard particles A to Y having the composition shown in Table 1 were manufactured by gas atomization using an inert gas (nitrogen gas). . These were classified into a range of 44 μm to 250 μm to obtain a powder of each hard particle.

Figure 2016183392
Figure 2016183392

上記した合金粉末A〜Yの内、合金粉末A〜Nは、本発明の範囲内にある硬質粒子に相当する粉末であり、本発明例に相当する。合金粉末A〜Nにおいて、Niは41%〜60%の範囲で、Moは30%〜50%の範囲で、Crは0%〜15%の範囲で、Mnは2%〜10%の範囲で、Siは0.4%〜2%の範囲で、Cは0.5%〜1.5%でそれぞれ含有されている。
また、合金粉末O〜Yは、各成分の内いずれかが本発明の範囲から外れており、比較例に相当する。具体的に、粉末合金Oでは、Niの含有量が35%であり、本発明の範囲41%〜60%から低く外れている。粉末合金Pでは、Niの含有量が65%であり本発明の範囲41%〜60%から高く外れており、また、Moの分有量が25%であり本発明の範囲30%〜50%から低く外れている。粉末合金Qでは、Moの含有量が25%であり本発明の範囲30%〜50%から低く外れている。粉末合金Rでは、Moの含有量が55%であり本発明の範囲30%〜50%の範囲から高く外れている。粉末合金Sでは、Crの含有量が20%であり本発明の範囲15%以下から高く外れている。粉末合金Tでは、Mnの含有量が0%であり本発明の範囲2%〜10%から低く外れている。粉末合金Uでは、Mnの含有量が12%であり本発明の範囲2%〜10%から高く外れている。粉末合金Vでは、Siの含有量が0%であり本発明の範囲0.4%〜2%から低く外れている。粉末合金Wでは、Siの含有量が2.5%であり本発明の範囲0.4%〜2%から高く外れている。粉末合金Xでは、Cの含有量が0.2%であり本発明の範囲0.5%〜1.5%から低く外れている。粉末合金Yでは、Cの含有量が1.7%であり本発明の範囲0.5%〜1.5%から高く外れている。
Among the alloy powders A to Y described above, the alloy powders A to N are powders corresponding to hard particles within the scope of the present invention, and correspond to examples of the present invention. In the alloy powders A to N, Ni is in the range of 41% to 60%, Mo is in the range of 30% to 50%, Cr is in the range of 0% to 15%, and Mn is in the range of 2% to 10%. , Si is contained in the range of 0.4% to 2%, and C is contained in the range of 0.5% to 1.5%.
Further, any one of the components of the alloy powders O to Y is out of the scope of the present invention, and corresponds to a comparative example. Specifically, in the powder alloy O, the Ni content is 35%, which is low from the range of 41% to 60% of the present invention. In the powder alloy P, the Ni content is 65%, which is far from the range of 41% to 60% of the present invention, and the Mo content is 25%, and the range of the present invention is 30% to 50%. Is low. In the powder alloy Q, the Mo content is 25%, which is low from the range of 30% to 50% of the present invention. In the powder alloy R, the Mo content is 55%, which is far from the range of 30% to 50% of the present invention. In the powder alloy S, the Cr content is 20%, which is highly deviated from the range of 15% or less of the present invention. In the powder alloy T, the Mn content is 0%, which is low from the range of 2% to 10% of the present invention. In the powder alloy U, the content of Mn is 12%, which is far from the range of 2% to 10% of the present invention. In the powder alloy V, the Si content is 0%, which is low from the range of 0.4% to 2% of the present invention. In the powder alloy W, the content of Si is 2.5%, which is highly deviated from the range of 0.4% to 2% of the present invention. In the powder alloy X, the C content is 0.2%, which is low from the range of 0.5% to 1.5% of the present invention. In the powder alloy Y, the content of C is 1.7%, which is highly deviated from the range of 0.5% to 1.5% of the present invention.

更に、下記表2に示す割合で、上記した粉末合金(硬質粒子の粉末)A〜Yと、黒鉛粉末と、純Fe粉末とを混合機により混合し、実施例1〜実施例14、比較例1〜11に使用する混合粉末をそれぞれ形成した。表2に示すように、実施例1〜実施例14、比較例1〜比較例11の全てにおいて、硬質粒子の粉末混合量を40%とした。また、黒鉛粉末の混合量としては、表2に示すように、実施例1〜実施例14では、1.2%〜1.5%の範囲で混合し、また、比較例1〜比較例11では、1.1%〜1.6%の範囲で混合した。   Furthermore, the above-described powder alloys (hard particle powders) A to Y, graphite powder, and pure Fe powder were mixed by a mixer at the ratio shown in Table 2 below. Examples 1 to 14 and Comparative Example The mixed powder used for 1-11 was formed, respectively. As shown in Table 2, in all of Examples 1 to 14 and Comparative Examples 1 to 11, the mixing amount of hard particles was 40%. Further, as shown in Table 2, the mixing amount of the graphite powder was mixed in the range of 1.2% to 1.5% in Examples 1 to 14, and Comparative Example 1 to Comparative Example 11 Then, it mixed in 1.1%-1.6% of range.

Figure 2016183392
Figure 2016183392

更に、成形型を用い、上記したように配合した混合粉末を78.4×107Pa(8tonf/cm )の加圧力でリング形状をなす試験片を圧縮成形し、圧粉成形体を形成した。試験片はバルブシート形状に成形した。 Further, a test piece having a ring shape was compression-molded by using a mold and the mixed powder blended as described above at a pressure of 78.4 × 10 7 Pa (8 tonf / cm 2 ) to form a green compact. The test piece was molded into a valve seat shape.

その後、各圧粉成形体を1140℃の不活性雰囲気(窒素ガス雰囲気)中で20分間、焼結し、試験片に係る実施例1〜実施例14、比較例1〜比較例11の焼結合金(バルブシート)を形成した。   Then, each compacting body was sintered in an inert atmosphere (nitrogen gas atmosphere) at 1140 ° C. for 20 minutes, and the sintered bonding of Examples 1 to 14 and Comparative Examples 1 to 11 according to the test pieces was performed. Gold (valve seat) was formed.

前記のように形成された実施例1〜実施例14、比較例1〜比較例11の焼結合金(バルブシート)について、摩耗性試験を行うとともに所定条件下で面粗さを測定した。
ここに、摩耗試験及び面粗さ測定を行うについては、好適例と考えられる実施例2に係る焼結合金を基準とし、表2においては、硬質粒子Bを40%含有する実施例2の焼結合金で得られた摩耗量の値及び面粗さの値を1.000として他の各実施例及び比較例で得られた摩耗量の値及び面粗さの値を比で表している。
For the sintered alloys (valve seats) of Examples 1 to 14 and Comparative Examples 1 to 11 formed as described above, an abrasion test was performed and surface roughness was measured under predetermined conditions.
Here, the wear test and the surface roughness measurement are based on the sintered alloy according to Example 2 considered as a preferred example, and in Table 2, the firing of Example 2 containing 40% hard particles B is used. The wear amount value and the surface roughness value obtained in the other examples and comparative examples are expressed as a ratio, with the wear amount value and the surface roughness value obtained with the bond gold being 1.000.

先ず、前記摩耗試験に使用された摩耗試験機について図1に基づき説明する。図1において、摩耗試験機Mでは、プロパンガスバーナー1を加熱源として用い、前記の様に作成した焼結合金からなる試験片であるリング形状のバルブシート2及びバルブ3のバルブフェース4との摺動部をプロパンガス燃焼雰囲気とした。バルブフェース4はSUH35材である。バルブシートフェース5の温度を300℃に制御し、スプリング6によりバルブシートフェース5とバルブフェース4との接触時に25kgfの荷重を付与して3250回/分の割合で接触させ、8時間の摩耗試験を行った。   First, the wear tester used in the wear test will be described with reference to FIG. In FIG. 1, in the wear tester M, the propane gas burner 1 is used as a heating source, and the ring-shaped valve seat 2 and the valve face 4 of the valve 3 are test pieces made of a sintered alloy prepared as described above. The sliding part was a propane gas combustion atmosphere. The valve face 4 is a SUH35 material. The temperature of the valve seat face 5 is controlled to 300 ° C., and a load of 25 kgf is applied by the spring 6 when the valve seat face 5 and the valve face 4 are brought into contact with each other at a rate of 3250 times / min. Went.

表2において、前記したように実施例2に係る焼結合金の摩耗量を基準としたことから、他の実施例及び比較例に係る焼結合金の摩耗量は、実施例2に係る焼結合金の摩耗量を1.000として、この値に対する摩耗量比で表されている。ここに、摩耗量比の値が1.000よりも大きい場合には実施例2の焼結合金よりも摩耗していることを示し、また、摩耗量比の値が1.000よりも小さい場合には実施例2の焼結合金よりも摩耗量が少ないことを示す。
尚、摩耗量比の値の上限値は、1.5である。かかる「1.5」の上限値は、硬質粒子Bを40%含有して得られる実施例2の焼結合金が好適であると考えられることから、実施例2の焼結合金を基準としたことに基づく推測値である。従って、摩耗量比の値が1.5よりも大きければ摩耗量が許容限度を超えて製品としては不適格であると考えられ、一方、摩耗量比の値が1.5よりも小さければ摩耗量は許容限度内である。
In Table 2, since the amount of wear of the sintered alloy according to Example 2 was used as a reference as described above, the amount of wear of the sintered alloys according to other Examples and Comparative Examples was the sinter bonding according to Example 2. The wear amount of gold is assumed to be 1.000. Here, when the value of the wear amount ratio is larger than 1.000, it indicates that the wear is greater than the sintered alloy of Example 2, and when the value of the wear amount ratio is smaller than 1.000. Shows that the amount of wear is smaller than that of the sintered alloy of Example 2.
The upper limit value of the wear amount ratio is 1.5. The upper limit of “1.5” is based on the sintered alloy of Example 2 because the sintered alloy of Example 2 obtained by containing 40% of hard particles B is considered suitable. A guess based on that. Therefore, if the value of the wear amount ratio is larger than 1.5, it is considered that the wear amount exceeds the allowable limit and is not suitable as a product. On the other hand, if the wear amount ratio value is smaller than 1.5, the wear amount is considered to be unacceptable. The amount is within acceptable limits.

実施例1〜実施例14に係る焼結合金について行われた摩耗試験では、表2に示すように、実施例1、実施例3〜実施例14に係る焼結合金の摩耗量比の値は、いずれも1.5以下の値が得られており、摩耗試験における試験結果は良好である。   In the abrasion test performed on the sintered alloys according to Examples 1 to 14, as shown in Table 2, the values of the wear amount ratios of the sintered alloys according to Example 1 and Examples 3 to 14 are In both cases, a value of 1.5 or less was obtained, and the test result in the wear test was good.

また、比較例1〜比較例11について行われた摩耗試験では、表2に示すように、比較例2、比較例4、比較例5、比較例7、比較例11に係る焼結合金では摩耗量比の値がいずれも1.5以下であり良好であるが、比較例1、比較例3、比較例6、比較例8、比較例9及び比較例10に係る焼結合金では摩耗性比の値がいずれも1.5を超える値となっており、耐摩耗性が低いものである。   Moreover, in the abrasion test performed about Comparative Example 1-Comparative Example 11, as shown in Table 2, with the sintered alloy which concerns on Comparative Example 2, Comparative Example 4, Comparative Example 5, Comparative Example 7, and Comparative Example 11, it is worn out. The values of the quantity ratios are all 1.5 or less, which is good, but in the sintered alloys according to Comparative Example 1, Comparative Example 3, Comparative Example 6, Comparative Example 8, Comparative Example 9 and Comparative Example 10, the wear ratio Each of the values exceeds 1.5, and the wear resistance is low.

続いて、各焼結合金の面粗さの評価について説明する。
先ず、前記のように生成した実施例1〜実施例14、比較例1〜比較例11に係る焼結合金の試験片(外形30mm、内見22mm、全長9mmのリング形状を有する)を用意し、各試験片を窒化チタンアルミコーティングした超硬刃具を有するNC旋盤にセットした。NC旋盤では、超硬歯具の回転数970rpm、切込み量0.3mm、送り量0.08mm/rev、切削距離320mの条件で湿式にてトラバース切削が行われた。この後、表面粗さ測定機を使用して各試験片の表面粗さRaを測定して評価した。
Next, the evaluation of the surface roughness of each sintered alloy will be described.
First, the sintered alloy test pieces (having a ring shape with an outer diameter of 30 mm, an inner diameter of 22 mm, and an overall length of 9 mm) according to Examples 1 to 14 and Comparative Examples 1 to 11 generated as described above were prepared. Each test piece was set on an NC lathe having a carbide cutting tool coated with titanium nitride aluminum. In the NC lathe, the traverse cutting was performed in a wet manner under the conditions of a rotation speed of the cemented carbide tool of 970 rpm, a cutting amount of 0.3 mm, a feed amount of 0.08 mm / rev, and a cutting distance of 320 m. Thereafter, the surface roughness Ra of each test piece was measured and evaluated using a surface roughness measuring machine.

表2において、前記したように実施例2に係る焼結合金の面粗さを基準としたことから、他の実施例及び比較例に係る焼結合金の面粗さは、実施例2に係る焼結合金の面粗さを1.000として、この値に対する面粗さ比で表されている。ここに、面粗さ比の値が1.000よりも大きい場合には実施例2の焼結合金よりも測定面が粗いことを示し、また、面粗さ比の値が1.000よりも小さい場合には実施例2の焼結合金よりも測定面は平滑であることを示す。
尚、面粗さ比の値の上限値は、1.5である。かかる「1.5」の上限値は、前記耐摩耗量比の場合と同様、硬質粒子Bを40%含有して得られる実施例2の焼結合金が好適であると考えられることから、実施例2の焼結合金を基準としたことに基づく推測値である。従って、面粗さ比の値が1.5よりも大きければ測定面が許容限度を超えて粗く、製品としては不適格であると考えられ、一方、面粗さ比の値が1.5よりも小さければ測定面の粗さは許容限度内である。
In Table 2, since the surface roughness of the sintered alloy according to Example 2 was used as a reference as described above, the surface roughness of the sintered alloys according to other Examples and Comparative Examples is related to Example 2. The surface roughness of the sintered alloy is 1.000, and the surface roughness ratio is expressed with respect to this value. Here, when the value of the surface roughness ratio is larger than 1.000, it indicates that the measurement surface is rougher than the sintered alloy of Example 2, and the value of the surface roughness ratio is more than 1.000. When it is smaller, the measurement surface is smoother than the sintered alloy of Example 2.
The upper limit value of the surface roughness ratio is 1.5. Since the upper limit value of “1.5” is considered to be suitable for the sintered alloy of Example 2 obtained by containing 40% of hard particles B as in the case of the wear resistance ratio, This is an estimated value based on the sintered alloy of Example 2 as a reference. Therefore, if the value of the surface roughness ratio is larger than 1.5, the measurement surface exceeds the allowable limit and is considered to be unsuitable as a product, while the value of the surface roughness ratio is more than 1.5. If it is smaller, the roughness of the measurement surface is within the allowable limit.

実施例1〜実施例14に係る焼結合金について行われた面粗さ測定では、表2に示すように、実施例1、実施例3〜実施例14に係る焼結合金の面粗さ比の値は、いずれも1.5以下の値が得られており、面粗さ測定における測定結果は良好である。   In the surface roughness measurement performed for the sintered alloys according to Examples 1 to 14, as shown in Table 2, the surface roughness ratios of the sintered alloys according to Example 1 and Examples 3 to 14 were used. As for the value of all, the value of 1.5 or less is obtained, and the measurement result in the surface roughness measurement is good.

また、比較例1〜比較例11について行われた面粗さ測定では、表2に示すように、比較例3、比較例8に係る焼結合金では面粗さ比の値がいずれも1.5以下であり良好であるが、比較例1、比較例2、比較例4、比較例5、比較例6、比較例7、比較例9、比較例10及び比較例11に係る焼結合金では面粗さ比の値がいずれも1.5を超える値となっており、測定面はかなり粗い状態にある。   Moreover, in the surface roughness measurement performed about the comparative example 1-the comparative example 11, as shown in Table 2, in the sintered alloy which concerns on the comparative example 3 and the comparative example 8, all the values of surface roughness ratio are 1. In the sintered alloys according to Comparative Example 1, Comparative Example 2, Comparative Example 4, Comparative Example 5, Comparative Example 5, Comparative Example 6, Comparative Example 7, Comparative Example 9, Comparative Example 10 and Comparative Example 11, which are 5 or less Each of the surface roughness ratio values exceeds 1.5, and the measurement surface is in a considerably rough state.

前記したところにより、硬質粒子A〜Nを使用する実施例1〜実施例14に係る焼結合金では、摩耗量比の値及び面粗さ比の値の双方が上限値以下であり、従って、硬質粒子A〜Nはバルブシートを生成するための焼結合金配合用硬質粒子として好適なものである。比較例1〜比較例11に係る焼結合金では、摩耗量比の値及び面粗さ比の値の双方が上限値以下となる焼結合金は存在しなかった。   As described above, in the sintered alloys according to Example 1 to Example 14 using the hard particles A to N, both the value of the wear amount ratio and the value of the surface roughness ratio are not more than the upper limit value. The hard particles A to N are suitable as hard particles for blending a sintered alloy for generating a valve seat. In the sintered alloys according to Comparative Examples 1 to 11, there was no sintered alloy in which both the wear amount ratio value and the surface roughness ratio value were not more than the upper limit values.

次に、耐摩耗性鉄基焼結合金を生成するに際し、硬質粒子の粉末と炭素粉末とFe粉末とを混合して混合材料を調整するについて、硬質粒子の粉末と炭素粉末のそれぞれの混合量と、混合材料を成形焼結して得られる焼結合金の摩耗量比及び面粗さ比との関係について調べた。その結果が表3に示されている。
尚、摩耗性比及び面粗さ比の測定は、前記した方法と同一の方法で測定された。
Next, when producing the wear-resistant iron-based sintered alloy, the mixing amount of each of the hard particle powder and the carbon powder is adjusted by adjusting the mixed material by mixing the hard particle powder, the carbon powder, and the Fe powder. And the relationship between the wear amount ratio and the surface roughness ratio of the sintered alloy obtained by forming and sintering the mixed material. The results are shown in Table 3.
The wear ratio and the surface roughness ratio were measured by the same method as described above.

Figure 2016183392
Figure 2016183392

表3において、実施例15〜実施例19の5つの実施例、及び、比較例12〜比較例18の7つの比較例が示されている。実施例15〜実施例19で使用された硬質粒子(K、A、G、B、J)はそれぞれ前記実施例11、実施例1、実施例7、実施例2、実施例10の焼結合金を生成する際に使用された硬質量子である。また、比較例12〜比較例18で使用された硬質粒子(M、O、T、Q、W、X、S)はそれぞれ実施例13、比較例1、比較例6、比較例3、比較例9、比較例10、比較例5の焼結合金を生成する際に使用された硬質粒子である。   In Table 3, five examples of Example 15 to Example 19 and seven comparative examples of Comparative Example 12 to Comparative Example 18 are shown. The hard particles (K, A, G, B, J) used in Examples 15 to 19 are the sintered alloys of Example 11, Example 1, Example 7, Example 2, and Example 10, respectively. It is a hard quantum used in generating. The hard particles (M, O, T, Q, W, X, S) used in Comparative Examples 12 to 18 were Example 13, Comparative Example 1, Comparative Example 6, Comparative Example 3, and Comparative Example, respectively. 9, hard particles used in producing the sintered alloys of Comparative Example 10 and Comparative Example 5.

ここに、実施例15に係る焼結合金は、硬質粒子Kを1%、黒鉛粉末を1.6%、及び残部Fe粉末を混合した混合材料を成形焼結して得られた。実施例16に係る焼結合金は、硬質粒子Aを5%、黒鉛粉末を1.6%、及び残部Fe粉末を混合した混合材料を成形焼結して得られた。実施例17に係る焼結合金は、硬質粒子Gを10%、黒鉛粉末を1.7%、及び残部Fe粉末を混合した混合材料を成形焼結して得られた。実施例18に係る焼結合金は、硬質粒子Bを20%、黒鉛粉末を1.7%、及び残部Fe粉末を混合した混合材料を成形焼結して得られた。実施例19に係る焼結合金は、硬質粒子Jを50%、黒鉛粉末を1.1%、及び残部Fe粉末を混合した混合材料を成形焼結して得られた。   Here, the sintered alloy according to Example 15 was obtained by molding and sintering a mixed material in which 1% of the hard particles K, 1.6% of the graphite powder, and the remaining Fe powder were mixed. The sintered alloy according to Example 16 was obtained by forming and sintering a mixed material in which 5% hard particles A, 1.6% graphite powder, and the remaining Fe powder were mixed. The sintered alloy according to Example 17 was obtained by molding and sintering a mixed material in which 10% hard particles G, 1.7% graphite powder, and the remaining Fe powder were mixed. The sintered alloy according to Example 18 was obtained by molding and sintering a mixed material obtained by mixing 20% hard particles B, 1.7% graphite powder, and the remaining Fe powder. The sintered alloy according to Example 19 was obtained by molding and sintering a mixed material in which 50% hard particles J, 1.1% graphite powder, and the remaining Fe powder were mixed.

また、比較例12では、硬質粒子Mを60%、黒鉛粉末を1.4%、及び残部Fe粉末を混合した混合材料を成形焼結しようとしたが、加圧成形後の形状が不安定であり、焼結合金は得られなかった(表紙の※を参照)。比較例13に係る焼結合金は、硬質粒子Oを1%、黒鉛粉末を1.5%、及び残部Fe粉末を混合した混合材料を成形焼結して得られた。比較例14に係る焼結合金は、硬質粒子Tを5%、黒鉛粉末を1.6%、及び残部Fe粉末を混合した混合材料を成形焼結して得られた。比較例15に係る焼結合金は、硬質粒子Qを10%、黒鉛粉末を1.3%、及び残部Fe粉末を混合した混合材料を成形焼結して得られた。比較例16に係る焼結合金は、硬質粒子Wを20%、黒鉛粉末を1.6%、及び残部Fe粉末を混合した混合材料を成形焼結して得られた。比較例17に係る焼結合金は、硬質粒子Xを50%、黒鉛粉末を1.5%、及び残部Fe粉末を混合した混合材料を成形焼結して得られた。比較例18では、硬質粒子Sを60%、黒鉛粉末を1.3%、及び残部Fe粉末を混合した混合材料を成形焼結しようとしたが、加圧成形後の形状が不安定であり、焼結合金は得られなかった(表3の※を参照)。   In Comparative Example 12, an attempt was made to mold and sinter a mixed material in which 60% hard particles M, 1.4% graphite powder, and the remaining Fe powder were mixed, but the shape after pressure molding was unstable. There was no sintered alloy (see * on the cover). The sintered alloy according to Comparative Example 13 was obtained by molding and sintering a mixed material obtained by mixing 1% hard particles O, 1.5% graphite powder, and the remaining Fe powder. The sintered alloy according to Comparative Example 14 was obtained by molding and sintering a mixed material in which 5% hard particles T, 1.6% graphite powder, and the remaining Fe powder were mixed. The sintered alloy according to Comparative Example 15 was obtained by molding and sintering a mixed material obtained by mixing 10% hard particles Q, 1.3% graphite powder, and the remaining Fe powder. The sintered alloy according to Comparative Example 16 was obtained by molding and sintering a mixed material in which 20% hard particles W, 1.6% graphite powder, and the remaining Fe powder were mixed. The sintered alloy according to Comparative Example 17 was obtained by molding and sintering a mixed material in which 50% hard particles X, 1.5% graphite powder, and the remaining Fe powder were mixed. In Comparative Example 18, an attempt was made to mold and sinter a mixed material in which 60% hard particles S, 1.3% graphite powder, and the remaining Fe powder were mixed, but the shape after pressure molding was unstable, No sintered alloy was obtained (see * in Table 3).

次に、各実施例、比較例に係る焼結合金について測定された摩耗量比及び面粗さ比の値について検討する。ここに、実施例15〜実施例19、比較例12〜比較例18にかかる焼結合金を生成するに際して、硬質粒子の含有量は1%〜60%の範囲にされているが、硬質粒子の含有量が多くなると焼結合金の耐摩耗性が向上し摩耗量の値は低下するとともに面粗さの値も低下する。これとは逆に、硬質粒子の含有量が少なくなると焼結合金の耐摩耗性が低下して摩耗量の値は高くなるとともに面粗さの値も高くなる。このような事情下においては、硬質粒子の含有量が多いか又は少ないかによって、摩耗量比の基準となる基準値も変化するが、硬質粒子の含有量に対応する焼結合金の摩耗量比及び面粗さ比の上限値については大体分かっている。具体的に、硬質粒子の含有量が1%の場合(実施例15、比較例13)には、摩耗量比及び面粗さ比として許容できる上限値は2.7程度となる。同様に、硬質粒子の含有量が5%の場合(実施例16、比較例14)には、摩耗量比及び面粗さ比として許容できる上限値は2.2程度となり、硬質粒子の含有量が10%の場合(実施例17、比較例15)には、摩耗量比及び面粗さ比として許容できる上限値は1.9程度となり、硬質粒子の含有量が20%の場合(実施例18、比較例16)には、摩耗量比及び面粗さ比として許容できる上限値は1.8程度となり、硬質粒子の含有量が50%の場合(実施例19、比較例17)には、摩耗量比及び面粗さ比として許容できる上限値は1.4程度となる。   Next, the values of the wear amount ratio and the surface roughness ratio measured for the sintered alloys according to the examples and comparative examples will be examined. Here, when producing sintered alloys according to Example 15 to Example 19 and Comparative Example 12 to Comparative Example 18, the content of hard particles is in the range of 1% to 60%. When the content is increased, the wear resistance of the sintered alloy is improved, the value of the wear amount is lowered, and the value of the surface roughness is also lowered. On the other hand, when the hard particle content is reduced, the wear resistance of the sintered alloy is lowered, the wear value is increased, and the surface roughness value is also increased. Under such circumstances, the reference value of the wear amount ratio changes depending on whether the hard particle content is large or small, but the wear amount ratio of the sintered alloy corresponding to the hard particle content The upper limit of the surface roughness ratio is generally known. Specifically, when the hard particle content is 1% (Example 15 and Comparative Example 13), the upper limit value allowable as the wear amount ratio and the surface roughness ratio is about 2.7. Similarly, when the hard particle content is 5% (Example 16 and Comparative Example 14), the upper limit value acceptable as the wear amount ratio and the surface roughness ratio is about 2.2, and the hard particle content Is 10% (Example 17 and Comparative Example 15), the allowable upper limit of the wear amount ratio and the surface roughness ratio is about 1.9, and the hard particle content is 20% (Example). 18 and Comparative Example 16), the allowable upper limit for the wear amount ratio and the surface roughness ratio is about 1.8, and when the hard particle content is 50% (Example 19, Comparative Example 17). The upper limit allowable for the wear amount ratio and the surface roughness ratio is about 1.4.

表3において、実施例15に係る焼結合金では、摩耗量比は2.512、面粗さ比は2.101であり、この場合における摩耗量比及び面粗さ比の上限値は2.7であるから、摩耗量比及び面粗さ比の両方が上限値以下である。これより実施例15に係る焼結合金は摩耗量比及び面粗さ比の双方を満たす良好な焼結合金である。   In Table 3, in the sintered alloy according to Example 15, the wear amount ratio is 2.512 and the surface roughness ratio is 2.101. In this case, the upper limit values of the wear amount ratio and the surface roughness ratio are 2. Therefore, both the wear amount ratio and the surface roughness ratio are below the upper limit value. Thus, the sintered alloy according to Example 15 is a good sintered alloy that satisfies both the wear amount ratio and the surface roughness ratio.

実施例16に係る焼結合金では、摩耗量比は2.079、面粗さ比は1.919であり、この場合における摩耗量比及び面粗さ比の上限値は2.2であるから、摩耗量比及び面粗さ比の両方が上限値以下である。これより実施例16に係る焼結合金は摩耗量比及び面粗さ比の双方を満たす良好な焼結合金である。   In the sintered alloy according to Example 16, the wear amount ratio is 2.079 and the surface roughness ratio is 1.919, and the upper limit values of the wear amount ratio and the surface roughness ratio in this case are 2.2. Both the wear amount ratio and the surface roughness ratio are below the upper limit value. Thus, the sintered alloy according to Example 16 is a good sintered alloy that satisfies both the wear amount ratio and the surface roughness ratio.

実施例17に係る焼結合金では、摩耗量比は1.268、面粗さ比は1.752であり、この場合における摩耗量比及び面粗さ比の上限値は1.9であるから、摩耗量比及び面粗さ比の両方が上限値以下である。これより実施例17に係る焼結合金は摩耗量比及び面粗さ比の双方を満たす良好な焼結合金である。   In the sintered alloy according to Example 17, the wear amount ratio is 1.268 and the surface roughness ratio is 1.752, and the upper limit values of the wear amount ratio and the surface roughness ratio in this case are 1.9. Both the wear amount ratio and the surface roughness ratio are below the upper limit value. Thus, the sintered alloy according to Example 17 is a good sintered alloy that satisfies both the wear amount ratio and the surface roughness ratio.

実施例18に係る焼結合金では、摩耗量比は1.232、面粗さ比は1.399であり、この場合における摩耗量比及び面粗さ比の上限値は1.8であるから、摩耗量比及び面粗さ比の両方が上限値以下である。これより実施例18に係る焼結合金は摩耗量比及び面粗さ比の双方を満たす良好な焼結合金である。   In the sintered alloy according to Example 18, the wear amount ratio is 1.232 and the surface roughness ratio is 1.399, and the upper limit values of the wear amount ratio and the surface roughness ratio in this case are 1.8. Both the wear amount ratio and the surface roughness ratio are below the upper limit value. Thus, the sintered alloy according to Example 18 is a good sintered alloy that satisfies both the wear amount ratio and the surface roughness ratio.

実施例19に係る焼結合金では、摩耗量比は0.904、面粗さ比は1.328であり、この場合における摩耗量比及び面粗さ比の上限値は1.4であるから、摩耗量比及び面粗さ比の両方が上限値以下である。これより実施例19に係る焼結合金は摩耗量比及び面粗さ比の双方を満たす良好な焼結合金である。   In the sintered alloy according to Example 19, the wear amount ratio is 0.904 and the surface roughness ratio is 1.328. In this case, the upper limit values of the wear amount ratio and the surface roughness ratio are 1.4. Both the wear amount ratio and the surface roughness ratio are below the upper limit value. Thus, the sintered alloy according to Example 19 is a good sintered alloy that satisfies both the wear amount ratio and the surface roughness ratio.

比較例12では、硬質粒子Mを60%、黒鉛粉末を1.4%、及び残部Fe粉末を混合した混合材料を成形焼結しようとしたが、加圧成形後の形状が不安定であり、焼結合金は得られなかった(表3の※を参照)。これは、硬質粒子の含有量が60%と多すぎたことに起因して、残部の基地をもってしても安定な形状を保持できなかったものと推察される。   In Comparative Example 12, an attempt was made to mold and sinter a mixed material in which 60% hard particles M, 1.4% graphite powder, and the remaining Fe powder were mixed, but the shape after pressure molding was unstable, No sintered alloy was obtained (see * in Table 3). This is presumably because the content of hard particles was too high at 60%, so that a stable shape could not be maintained even with the remaining base.

比較例13に係る焼結合金では、摩耗量比は2.902、面粗さ比は2.568であり、この場合における摩耗量比及び面粗さ比の上限値は2.7であるから、面粗さ比は上限値以下であるものの、摩耗量比は上限値を超えている。これより比較例13に係る焼結合金は摩耗量比に問題があり、バルブシートに使用する焼結合金としては不適格なものである。   In the sintered alloy according to Comparative Example 13, the wear amount ratio is 2.902 and the surface roughness ratio is 2.568, and the upper limit values of the wear amount ratio and the surface roughness ratio in this case are 2.7. The surface roughness ratio is not more than the upper limit value, but the wear amount ratio exceeds the upper limit value. Accordingly, the sintered alloy according to Comparative Example 13 has a problem in the wear amount ratio, and is unsuitable as a sintered alloy used for the valve seat.

比較例14に係る焼結合金では、摩耗量比は2.551、面粗さ比は2.545であり、この場合における摩耗量比及び面粗さ比の上限値は2.2であるから、摩耗量比及び面粗さ比の両方が上限値を超えている。これより比較例14に係る焼結合金は、摩耗量比及び面粗さ比の双方に問題があり、バルブシートに使用する焼結合金としては不適格なものである。   In the sintered alloy according to Comparative Example 14, the wear amount ratio is 2.551 and the surface roughness ratio is 2.545, and the upper limit values of the wear amount ratio and the surface roughness ratio in this case are 2.2. Both the wear amount ratio and the surface roughness ratio exceed the upper limit. Thus, the sintered alloy according to Comparative Example 14 has a problem in both the wear amount ratio and the surface roughness ratio, and is unsuitable as a sintered alloy used for the valve seat.

比較例15に係る焼結合金では、摩耗量比は1.982、面粗さ比は1.613であり、この場合における摩耗量比及び面粗さ比の上限値は1.9であるから、面粗さ比は上限値以下であるものの、摩耗量比は上限値を超えている。これより比較例15に係る焼結合金は摩耗量比に問題があり、バルブシートに使用する焼結合金としては不適格なものである。   In the sintered alloy according to Comparative Example 15, the wear amount ratio is 1.982, and the surface roughness ratio is 1.613. In this case, the upper limit values of the wear amount ratio and the surface roughness ratio are 1.9. The surface roughness ratio is not more than the upper limit value, but the wear amount ratio exceeds the upper limit value. Accordingly, the sintered alloy according to Comparative Example 15 has a problem in the wear amount ratio, and is unsuitable as a sintered alloy used for the valve seat.

比較例16に係る焼結合金では、摩耗量比は1.863、面粗さ比は1.919であり、この場合における摩耗量比及び面粗さ比の上限値は1.8であるから、摩耗量比及び面粗さ比の両方が上限値を超えている。これより比較例16に係る焼結合金は、摩耗量比及び面粗さ比の双方に問題があり、バルブシートに使用する焼結合金としては不適格なものである。   In the sintered alloy according to Comparative Example 16, the wear amount ratio is 1.863 and the surface roughness ratio is 1.919, and the upper limit values of the wear amount ratio and the surface roughness ratio in this case are 1.8. Both the wear amount ratio and the surface roughness ratio exceed the upper limit. Thus, the sintered alloy according to Comparative Example 16 has problems in both the wear amount ratio and the surface roughness ratio, and is unsuitable as a sintered alloy used for the valve seat.

比較例17に係る焼結合金では、摩耗量比は1.612、面粗さ比は1.673であり、この場合における摩耗量比及び面粗さ比の上限値は1.4であるから、摩耗量比及び面粗さ比の両方が上限値を超えている。これより比較例16に係る焼結合金は、摩耗量比及び面粗さ比の双方に問題があり、バルブシートに使用する焼結合金としては不適格なものである。   In the sintered alloy according to Comparative Example 17, the wear amount ratio is 1.612, and the surface roughness ratio is 1.673. In this case, the upper limit values of the wear amount ratio and the surface roughness ratio are 1.4. Both the wear amount ratio and the surface roughness ratio exceed the upper limit. Thus, the sintered alloy according to Comparative Example 16 has problems in both the wear amount ratio and the surface roughness ratio, and is unsuitable as a sintered alloy used for the valve seat.

比較例18では、硬質粒子Sを60%、黒鉛粉末を1.3%、及び残部Fe粉末を混合した混合材料を成形焼結しようとしたが、加圧成形後の形状が不安定であり、焼結合金は得られなかった(表3の※を参照)。これは、硬質粒子の含有量が60%と多すぎたことに起因して、残部の基地をもってしても安定な形状を保持できなかったものと推察される。   In Comparative Example 18, an attempt was made to mold and sinter a mixed material in which 60% hard particles S, 1.3% graphite powder, and the remaining Fe powder were mixed, but the shape after pressure molding was unstable, No sintered alloy was obtained (see * in Table 3). This is presumably because the content of hard particles was too high at 60%, so that a stable shape could not be maintained even with the remaining base.

前記したように、実施例15〜実施例19に係る焼結合金においては、摩耗量比及び面粗さ比の双方がそれぞれの上限値以下であり、これらの焼結合金はいずれもバルブシートを製造するについて好適な焼結合金である。実施例15〜実施例19における硬質粒子含有量からして、混合材料に硬質粒子1〜50%の範囲で硬質粒子の粉末と炭素粉末とFe粉末とを混合した混合材料を成形焼結することにより好適な焼結合金が得られるものである。   As described above, in the sintered alloys according to Examples 15 to 19, both the wear amount ratio and the surface roughness ratio are not more than the respective upper limit values. It is a sintered alloy suitable for manufacturing. From the content of hard particles in Examples 15 to 19, molding and sintering a mixed material obtained by mixing hard particle powder, carbon powder, and Fe powder in the range of 1 to 50% of hard particles. Thus, a more suitable sintered alloy can be obtained.

比較例12、比較例18におけるように、硬質粒子の含有量が60%を超えると、残部の基地をもってしても安定な形状を保持できず、焼結合金を得ることができない。   As in Comparative Example 12 and Comparative Example 18, when the content of hard particles exceeds 60%, a stable shape cannot be maintained even with the remaining base, and a sintered alloy cannot be obtained.

尚、本発明は前記各実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内で種々の改良、変形が可能であることは勿論である。   The present invention is not limited to the above-described embodiments, and various improvements and modifications can be made without departing from the scope of the present invention.

1 ガスバーナ
2 バルブシート
3 バルブ
4 バルブフェース
5 バルブシートフェース
1 Gas burner 2 Valve seat 3 Valve 4 Valve face 5 Valve seat face

Claims (7)

焼結合金に原料として配合される硬質粒子であって、質量%でNi:41〜60%、Mo:30〜50%、Cr:15%以下、Mn:2〜10%、Si:0.4〜2%、C:0.5〜1.5%、残部が不可避不純物とFeからなることを特徴とする焼結合金配合用硬質粒子。   Hard particles blended as a raw material in a sintered alloy, Ni: 41-60%, Mo: 30-50%, Cr: 15% or less, Mn: 2-10%, Si: 0.4 by mass% Hard particles for blending sintered alloy, characterized in that -2%, C: 0.5-1.5%, the balance being inevitable impurities and Fe. 請求項1において、Ni:41%〜45%を含むことを特徴とする焼結合金配合用硬質粒子。   The hard particle for compounding sintered alloy according to claim 1, comprising Ni: 41% to 45%. 焼結合金に原料として配合される硬質粒子であって、質量%でNi:41〜45%、Mo:30〜40%、Cr:10%以下、Mn:2〜6%、Si:0.4〜2%、C:0.5〜1.0%、残部が不可避不純物とFeからなることを特徴とする焼結合金配合用硬質粒子。   Hard particles blended as a raw material in a sintered alloy, and Ni: 41 to 45%, Mo: 30 to 40%, Cr: 10% or less, Mn: 2 to 6%, Si: 0.4 by mass% Hard particles for blending sintered alloy, characterized in that -2%, C: 0.5-1.0%, the balance being inevitable impurities and Fe. 硬質粒子を100%としたとき硬質粒子成分がNi:41〜60%、Mo:30〜50%、Cr:15%以下、Mn:2〜10%、Si:0.4〜2%、C:0.5〜1.5%、残部が不可避不純物とFeからなる硬質粒子の粉末を質量%で1〜50%と、炭素粉末0.5〜2.5%と、残部となるFe粉末とを混合した混合材料を焼結したことを特徴とする耐摩耗性鉄基焼結合金。   When hard particles are 100%, hard particle components are Ni: 41-60%, Mo: 30-50%, Cr: 15% or less, Mn: 2-10%, Si: 0.4-2%, C: 0.5 to 1.5%, the balance of hard particles consisting of inevitable impurities and Fe is 1 to 50% by mass, carbon powder 0.5 to 2.5%, and the remaining Fe powder. A wear-resistant iron-based sintered alloy obtained by sintering a mixed material. 硬質粒子を100%としたとき硬質粒子成分がNi:41〜45%、Mo:30〜40%、Cr:10%以下、Mn:2〜6%、Si:0.4〜2%、C:0.5〜1.0%、残部が不可避不純物とFeからなる硬質粒子の粉末を質量%で1〜50%と、炭素粉末0.5〜2.5%と、残部となるFe粉末とを混合した混合材料を焼結したことを特徴とする耐摩耗性鉄基焼結合金。   When hard particles are 100%, hard particle components are Ni: 41-45%, Mo: 30-40%, Cr: 10% or less, Mn: 2-6%, Si: 0.4-2%, C: 0.5 to 1.0%, the balance of hard particles consisting of inevitable impurities and Fe is 1 to 50% by mass, carbon powder 0.5 to 2.5%, and the remaining Fe powder. A wear-resistant iron-based sintered alloy obtained by sintering a mixed material. 請求項1〜請求項3のいずれかに記載の硬質粒子の粉末を質量%で1〜50%と、炭素粉末0.5〜2.5%と、残部となるFe粉末とを混合した混合材料を用意し、
前記混合材料を成形して圧粉成形体を形成し、圧粉成形体を焼結して請求項4又は請求項5に記載の組成をもつ焼結合金とすることを特徴とする耐摩耗性鉄基焼結合金の製造方法。
The mixed material which mixed the powder of the hard particle | grains in any one of Claims 1-3 with 1-50% by mass%, carbon powder 0.5-2.5%, and the Fe powder used as the remainder. Prepare
The mixed material is molded to form a green compact, and the green compact is sintered to obtain a sintered alloy having the composition according to claim 4 or 5. A method for producing an iron-based sintered alloy.
請求項4又は請求項5に記載の耐摩耗性鉄基焼結合金で形成されていることを特徴とするバルブシート。
A valve seat formed of the wear-resistant iron-based sintered alloy according to claim 4 or 5.
JP2015064877A 2015-03-26 2015-03-26 Hard particle for compounding sintered alloy, wear-resistant iron-based sintered alloy, and method for producing wear-resistant iron-based sintered alloy Active JP6275074B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015064877A JP6275074B2 (en) 2015-03-26 2015-03-26 Hard particle for compounding sintered alloy, wear-resistant iron-based sintered alloy, and method for producing wear-resistant iron-based sintered alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015064877A JP6275074B2 (en) 2015-03-26 2015-03-26 Hard particle for compounding sintered alloy, wear-resistant iron-based sintered alloy, and method for producing wear-resistant iron-based sintered alloy

Publications (2)

Publication Number Publication Date
JP2016183392A true JP2016183392A (en) 2016-10-20
JP6275074B2 JP6275074B2 (en) 2018-02-07

Family

ID=57242789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015064877A Active JP6275074B2 (en) 2015-03-26 2015-03-26 Hard particle for compounding sintered alloy, wear-resistant iron-based sintered alloy, and method for producing wear-resistant iron-based sintered alloy

Country Status (1)

Country Link
JP (1) JP6275074B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114855052A (en) * 2022-05-13 2022-08-05 赵克中 Molybdenum-titanium-based alloy material and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001181807A (en) * 1999-12-17 2001-07-03 Toyota Motor Corp Hard particle, wear resistant ferrous sintered alloy, method for producing wear resistant ferrous sintered alloy and valve seat
JP2011157617A (en) * 2010-02-04 2011-08-18 Daido Steel Co Ltd Hard particle for sintered compact, and the sintered compact

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001181807A (en) * 1999-12-17 2001-07-03 Toyota Motor Corp Hard particle, wear resistant ferrous sintered alloy, method for producing wear resistant ferrous sintered alloy and valve seat
JP2011157617A (en) * 2010-02-04 2011-08-18 Daido Steel Co Ltd Hard particle for sintered compact, and the sintered compact

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114855052A (en) * 2022-05-13 2022-08-05 赵克中 Molybdenum-titanium-based alloy material and preparation method thereof

Also Published As

Publication number Publication date
JP6275074B2 (en) 2018-02-07

Similar Documents

Publication Publication Date Title
CN104428436B (en) Iron-base sintered alloy valve seat
JP4948636B2 (en) Hard particles for blending sintered alloys, wear-resistant iron-based sintered alloys, and valve seats
US7918915B2 (en) Specific chromium, molybdenum and carbon iron-based metallurgical powder composition capable of better compressibility and method of production
JP3865293B2 (en) Abrasion resistant hard phase forming alloy powder and method for producing wear resistant sintered alloy using the same
JP5125488B2 (en) Hard particle powder for sintered body and sintered body
CN104583436A (en) Hard particles for incorporation in sintered alloy and wear-resistant iron-based sintered alloy and production method thereof
JP6431012B2 (en) Method for producing wear-resistant iron-based sintered alloy and wear-resistant iron-based sintered alloy
JP6392796B2 (en) Method for producing wear-resistant iron-based sintered alloy, compact for sintered alloy, and wear-resistant iron-based sintered alloy
JP6352959B2 (en) Method for producing wear-resistant iron-based sintered alloy, compact for sintered alloy, and wear-resistant iron-based sintered alloy
JP6275074B2 (en) Hard particle for compounding sintered alloy, wear-resistant iron-based sintered alloy, and method for producing wear-resistant iron-based sintered alloy
JP6077499B2 (en) Sintered alloy molded body, wear-resistant iron-based sintered alloy, and method for producing the same
JP6635664B2 (en) Hard powder for Fe-based sintering and Fe-based sintered body using the same and having excellent wear resistance
JP2017115197A (en) Manufacturing method of abrasion resistant iron-based alloy and manufacturing method of valve sheet
JP6595223B2 (en) Alloy powder for matrix composition of sintered alloy, sintered alloy containing alloy powder for matrix composition, and method for producing sintered alloy
JP2004211185A (en) Iron based sintered alloy excellent in dimensional precision, strength and sliding property, and its production method
EP3636369B1 (en) Method of producing a valve guide made of an iron-based sintered alloy
US20180282844A1 (en) Method of producing wear-resistant iron-based sintered alloy
JP7156193B2 (en) Hard particles and sintered sliding member using the same
JP7453118B2 (en) Method for manufacturing hard particles, sliding members, and sintered alloys
JP2705376B2 (en) Valve seat made of Fe-based sintered alloy with high strength and toughness
JP6302530B2 (en) Hard powder for iron-base wear-resistant sintered alloy and iron-base wear-resistant sintered alloy
JP4303172B2 (en) Ferrous sintered alloy valve seat
JPH04136140A (en) Iron base sintered material excellent in pitching resistance and wear resistance
JPH11302805A (en) Sintered valve seat and its production
JP2004002939A (en) Oil pump rotor made of iron-based sintered alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171031

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180109

R150 Certificate of patent or registration of utility model

Ref document number: 6275074

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250