JP2016182556A - Waste water treatment apparatus - Google Patents

Waste water treatment apparatus Download PDF

Info

Publication number
JP2016182556A
JP2016182556A JP2015064091A JP2015064091A JP2016182556A JP 2016182556 A JP2016182556 A JP 2016182556A JP 2015064091 A JP2015064091 A JP 2015064091A JP 2015064091 A JP2015064091 A JP 2015064091A JP 2016182556 A JP2016182556 A JP 2016182556A
Authority
JP
Japan
Prior art keywords
mesh
container
treatment apparatus
waste water
denitrification tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015064091A
Other languages
Japanese (ja)
Other versions
JP6560515B2 (en
Inventor
川又 睦
Mutsumi Kawamata
睦 川又
一教 伊藤
Kazunori Ito
一教 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Original Assignee
Taisei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp filed Critical Taisei Corp
Priority to JP2015064091A priority Critical patent/JP6560515B2/en
Publication of JP2016182556A publication Critical patent/JP2016182556A/en
Application granted granted Critical
Publication of JP6560515B2 publication Critical patent/JP6560515B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

PROBLEM TO BE SOLVED: To provide a waste water treatment apparatus capable of efficiently treating nitrate nitrogen and nitrite nitrogen in waste water over a long period.SOLUTION: A waste water treatment apparatus has: a denitrification tank in which waste water is supplied from a lower part and discharged from an upper part; a plurality of network containers installed at intervals from a lower side to an upper side of the denitrification tank; and a carrier stored in the network containers, for supporting denitrifying bacteria.SELECTED DRAWING: Figure 1

Description

本発明は、廃水中の硝酸態窒素および亜硝酸態窒素を処理する廃水処理装置に関する。   The present invention relates to a wastewater treatment apparatus for treating nitrate nitrogen and nitrite nitrogen in wastewater.

水槽で水棲生物を飼育すると、生物の排泄物や残餌からアンモニア態窒素やリン酸等が生じて水質が悪化する。アンモニア態窒素は、硝化菌と総称される微生物群により好気的条件下で酸化され、硝酸態窒素や亜硝酸態窒素に変換される。硝酸態窒素、亜硝酸態窒素は好気的条件下で行われる通常の水処理では取り除くことができない。そのため、硝酸態窒素や亜硝酸態窒素の濃度上昇による飼育生物への影響を防止するには、毎日、水槽内の5〜10%の水を入れ替える必要がある。   When aquatic organisms are bred in an aquarium, ammonia nitrogen, phosphoric acid, etc. are generated from the excrement and residual food of the organisms, and the water quality deteriorates. Ammonia nitrogen is oxidized under aerobic conditions by a group of microorganisms collectively called nitrifying bacteria, and converted to nitrate nitrogen or nitrite nitrogen. Nitrate nitrogen and nitrite nitrogen cannot be removed by ordinary water treatment performed under aerobic conditions. Therefore, in order to prevent the influence on the breeding organisms due to the increase in the concentration of nitrate nitrogen or nitrite nitrogen, it is necessary to replace 5 to 10% of water in the water tank every day.

近年、海から離れた内陸部に水族館が開設されている。水族館には水量500トン以上の大水槽が設けられることが多いが、内陸部に開設された水族館でこのような大水槽で海水に生息する水棲生物を飼育するには、毎日、大量の海水を運搬するか、人工海水を製造する必要があり、非常に高コストである。また、無機塩を含む廃水が大量に下水として放出されることから、下水処理場の微生物群や河川等の淡水に生息する生物への悪影響が懸念される。   In recent years, an aquarium has been established in an inland area away from the sea. Large aquariums with a water volume of 500 tons or more are often set up in aquariums, but in order to raise aquatic organisms that inhabit seawater in such large aquariums inland, It is necessary to transport or manufacture artificial seawater, which is very expensive. Moreover, since wastewater containing inorganic salts is released in large quantities as sewage, there are concerns about adverse effects on microorganisms in sewage treatment plants and organisms that inhabit freshwater such as rivers.

特許文献1には、飼育水の補給量を削減あるいはゼロにすることが可能な閉鎖循環式の水処理装置が提案されている。特許文献1の水処理装置は、硝化槽と脱窒槽とを並列に設け、硝化槽中の硝化菌(独立栄養細菌)の作用によりアンモニア態窒素や亜硝酸態窒素を硝酸態窒素にまで酸化(硝化)するとともに、脱窒槽中の脱窒菌(従属栄養細菌)の作用により硝酸態窒素や亜硝酸態窒素を窒素にまで還元(脱窒)するものである。特許文献1の水処理装置を用いると、硝酸態窒素、亜硝酸態窒素の濃度上昇を防ぐことができるため、水換えの頻度を減らすことができ、給水および廃水を大幅に減らすことができる。   Patent Document 1 proposes a closed-circulation type water treatment apparatus that can reduce or eliminate the amount of breeding water supplied. The water treatment apparatus of Patent Document 1 is provided with a nitrification tank and a denitrification tank in parallel, and oxidizes ammonia nitrogen and nitrite nitrogen to nitrate nitrogen by the action of nitrifying bacteria (autotrophic bacteria) in the nitrification tank ( Nitrification) and reduction of nitrate nitrogen and nitrite nitrogen to nitrogen (denitrification) by the action of denitrifying bacteria (heterotrophic bacteria) in the denitrification tank. If the water treatment apparatus of patent document 1 is used, since the raise of the density | concentration of nitrate nitrogen and nitrite nitrogen can be prevented, the frequency of water change can be reduced and water supply and waste water can be reduced significantly.

特開2011−177619号公報JP 2011-177619 A

特許文献1に記載の水処理装置において、脱窒菌は担体に担持され、脱窒槽内に充填されている。脱窒槽において、硝酸態窒素や亜硝酸態窒素は還元(脱窒)されて窒素となるが、窒素は水に不溶なため窒素ガスの気泡が生じる。この気泡が担体に付着すると、担体が浮上、流出し、担体が減少して脱窒性能が低下するという問題がある。また、担体を長期間使用すると、担体同士が付着・凝集した廃水が流れにくい箇所と、担体が存在しない廃水が流れやすい箇所(以下、水ミチという。)とが生じることがある。水ミチが生じると、水ミチ内を流れて担体と接触しない廃水が増加してしまい、十分に脱窒が行われないまま廃水が脱窒槽から排出されるという問題がある。担体に付着した気泡の分離と、担体の流動化による水ミチの防止のために、撹拌翼等による物理的な撹拌を行うことが考えられるが、物理的な撹拌を行うと、担体が摩耗、消耗してしまうという新たな問題がある。   In the water treatment apparatus described in Patent Document 1, denitrifying bacteria are supported on a carrier and filled in a denitrifying tank. In the denitrification tank, nitrate nitrogen and nitrite nitrogen are reduced (denitrified) to form nitrogen, but nitrogen is insoluble in water, and nitrogen gas bubbles are generated. When these bubbles adhere to the carrier, the carrier floats and flows out, and there is a problem that the carrier is reduced and the denitrification performance is lowered. In addition, when the carrier is used for a long time, there may be a portion where the waste water in which the carriers adhere and agglomerate hardly flows, and a portion where the waste water without the carrier easily flows (hereinafter referred to as water pit). When water pits occur, there is a problem that waste water that flows in the water pits and does not come into contact with the carrier increases, and the waste water is discharged from the denitrification tank without being sufficiently denitrified. It is conceivable to physically stir with a stirring blade or the like in order to separate bubbles adhering to the carrier and to prevent water mitigation due to fluidization of the carrier. There is a new problem of exhaustion.

本発明は、廃水中の硝酸態窒素および亜硝酸態窒素を長期に亘って効率よく処理することのできる廃水処理装置を提供することを課題とする。   An object of the present invention is to provide a wastewater treatment apparatus capable of efficiently treating nitrate nitrogen and nitrite nitrogen in wastewater over a long period of time.

1.廃水が下部から供給され上部から排出される脱窒槽と、
前記脱窒槽の下方から上方にかけて、間隔を開けて設置される複数の網目状容器と、
前記網目状容器に収容され、脱窒菌が担持されている担体と、
を有することを特徴とする廃水処理装置。
2.前記複数の網目状容器の中で、最も下方に位置する網目状容器が最も大きな容量を有することを特徴とする1.に記載の廃水処理装置。
3.前記脱窒槽内部の廃水が間欠的に撹拌されることを特徴とする1.または2.に記載の廃水処理装置。
4.前記複数の網目状容器のうち、最も下方に位置する網目状容器を除く少なくとも1つの網目状容器の側面が、鉛直方向に延在する凹部を有することを特徴とする1.〜3.のいずれかに記載の廃水処理装置。
5.前記複数の網目状容器のうち、最も下方に位置する網目状容器を除く少なくとも1つの網目状容器の底面が、水平方向に対して傾斜した傾斜部を有することを特徴とする1.〜4.のいずれかに記載の廃水処理装置。
6.隣接する前記網目状容器の間に集泡部材を有することを特徴とする1.〜5.のいずれかに記載の廃水処理装置。
7.1.〜6.のいずれかに記載の廃水処理装置と接続され、前記廃水処理装置との間で水が循環していることを特徴とする水棲生物の飼育水槽。
8.水棲生物を飼育している水槽の水を、1.〜6.のいずれかに記載の廃水処理装置で処理し、前記廃水処理装置と前記水槽との間で循環させることを特徴とする水棲生物の飼育方法。
1. A denitrification tank in which wastewater is supplied from the bottom and discharged from the top,
A plurality of mesh containers installed at intervals from the bottom to the top of the denitrification tank,
A carrier accommodated in the mesh container and carrying denitrifying bacteria;
A wastewater treatment apparatus characterized by comprising:
2. Among the plurality of mesh containers, the mesh container located at the lowest position has the largest capacity. The wastewater treatment apparatus described in 1.
3. 1. Waste water inside the denitrification tank is stirred intermittently. Or 2. The wastewater treatment apparatus described in 1.
4). Of the plurality of mesh-like containers, at least one of the mesh-like containers excluding the lowest mesh-like container has a recess extending in the vertical direction. ~ 3. The waste water treatment apparatus in any one of.
5. Among the plurality of mesh containers, at least one mesh container excluding the mesh container located at the lowest position has an inclined portion inclined with respect to the horizontal direction. ~ 4. The waste water treatment apparatus in any one of.
6). 1. A foam collecting member is provided between adjacent mesh containers. ~ 5. The waste water treatment apparatus in any one of.
7.1. ~ 6. A water tank for breeding aquatic organisms, wherein the water tank is connected to the wastewater treatment apparatus according to any one of the above, and water is circulated between the wastewater treatment apparatus.
8). The water in the tank where the aquatic organisms are bred ~ 6. A method for breeding aquatic organisms, characterized by being treated with the wastewater treatment apparatus according to any one of the above and circulating between the wastewater treatment apparatus and the water tank.

本発明の廃水処理装置は、網目状容器が脱窒槽の下方から上方にかけて間隔を開けて複数個設置されており、隣接する網目状容器の間には空間が存在する。下方の網目状容器を通過した廃水は、この空間で分散して広がり、上方の網目状容器に収納された担体の全面に均一にぶつかるため、網目状容器内に水ミチが生じることを防止することができる。   In the wastewater treatment apparatus of the present invention, a plurality of mesh containers are installed at intervals from the bottom to the top of the denitrification tank, and there is a space between adjacent mesh containers. The waste water that has passed through the lower mesh container spreads and spreads in this space, and evenly collides with the entire surface of the carrier accommodated in the upper mesh container, thus preventing water mist from occurring in the mesh container. be able to.

複数の網目状容器のうち、最も下方に位置する網目状容器の容量を最も大きくすることで、供給された廃水に含まれる酸素を素早く消費できる。最も下方に位置する網目状容器に収容された担体内の脱窒菌により酸素が消費されることで、最も下方に位置する網目状容器より上方は嫌気的雰囲気となり、上方に位置する網目状容器に収容された担体内の脱窒菌による脱窒作用が効率よく発揮される。   By increasing the capacity of the lowermost mesh container among the plurality of mesh containers, oxygen contained in the supplied wastewater can be quickly consumed. Oxygen is consumed by denitrifying bacteria in the carrier housed in the lowermost mesh container, so that the upper part of the lowermost mesh container becomes an anaerobic atmosphere, and the upper mesh container is The denitrification action by the denitrifying bacteria in the contained carrier is efficiently exhibited.

脱窒槽内部の廃水を間欠的に撹拌することにより、担体に付着した気泡を分離することができる。また、担体の凝集により水ミチが発生することを防止することができる。廃水の撹拌は間欠的に行われるため、網目状容器に収容された担体が擦れて摩耗することを抑えることができる。   By intermittently stirring the waste water inside the denitrification tank, the bubbles attached to the carrier can be separated. In addition, it is possible to prevent water from occurring due to the aggregation of the carrier. Since the waste water is agitated intermittently, it is possible to prevent the carrier contained in the mesh container from being rubbed and worn.

複数の網目状容器のうち、最も下方に位置する網目状容器を除く少なくとも1つの網目状容器の側面に凹部を設けることにより、脱窒槽の内壁面と網目状容器の側面とのあいだに気泡が上方に流れる隙間を形成すると、網目状容器の内部に侵入する気泡を減らすことができる。複数の網目状容器のうち、最も下方に位置する網目状容器を除く少なくとも1つの網目状容器の底面が水平方向に対して傾斜した傾斜部を設け、この傾斜部の鉛直方向上部が、網目状容器底面の中心または端部となるようにすることで、下方の網目状容器で発生した窒素の気泡を上方の網目状容器の底面に沿って流し、気泡が上方の網目状容器内部へ浸入し、担体に再付着することを防ぐことができる。さらに、集泡部材を設けることで、気泡を網目状容器内部へ浸入しないように導くことができる。   By providing a recess in the side surface of at least one mesh container excluding the lowest mesh container among the plurality of mesh containers, bubbles are generated between the inner wall surface of the denitrification tank and the side surface of the mesh container. If a gap flowing upward is formed, bubbles that enter the inside of the mesh container can be reduced. Among the plurality of mesh-like containers, at least one mesh-like container excluding the lowest-most mesh-like container is provided with an inclined portion whose bottom surface is inclined with respect to the horizontal direction, and the upper part in the vertical direction of the inclined portion is mesh-like. By making it the center or edge of the bottom of the container, nitrogen bubbles generated in the lower mesh container flow along the bottom of the upper mesh container, and the bubbles penetrate into the upper mesh container. , It can be prevented from reattaching to the carrier. Furthermore, by providing the foam collecting member, it is possible to guide the bubbles so as not to enter the mesh-like container.

廃水処理装置の断面図。Sectional drawing of a wastewater treatment apparatus. 側面に凹部と底面に溝状の傾斜部を有する網目状容器の側面図。The side view of the mesh-shaped container which has a recessed part in a side surface and a groove-shaped inclination part in a bottom face. 側面に凹部と底面に溝状の傾斜部を有する網目状容器の斜視図。The perspective view of the mesh container which has a recessed part in a side surface and a groove-shaped inclination part in a bottom face. 底面全面が傾斜部である網目状容器の側面図。The side view of the mesh-like container whose bottom face whole surface is an inclination part. 底面全面が傾斜部である網目状容器の斜視図。The perspective view of the mesh-like container whose bottom face whole surface is an inclination part. プロペラ状の集泡部材と網目状容器との側面図。The side view of a propeller-shaped foam collection member and a mesh container. プロペラ状の集泡部材の斜視図。The perspective view of a propeller-shaped foam collection member.

以下に、本発明を詳細に説明する。図1に、本発明の廃水処理装置の断面図を示す。
本発明の廃水処理装置は、
廃水が下部から供給され上部から排出される脱窒槽1と、
脱窒槽1の下部から上部にかけて間隔を開けて複数設置される網目状容器2と、
網目状容器2に収容され、脱窒菌が担持されている担体と、
を有することを特徴とする。
The present invention is described in detail below. In FIG. 1, sectional drawing of the waste water treatment apparatus of this invention is shown.
The wastewater treatment apparatus of the present invention is
A denitrification tank 1 in which wastewater is supplied from below and discharged from above,
A mesh-like container 2 that is installed in a plurality from the lower part to the upper part of the denitrification tank 1;
A carrier housed in the mesh container 2 and carrying denitrifying bacteria,
It is characterized by having.

本発明の廃水処理装置は、脱窒槽1と網目状容器2と担体とを有していればよく、これらのほかに必要に応じて他の構成を有することができる。例えば、アンモニア態窒素、亜硝酸態窒素を硝化菌により酸化して硝酸態窒素とする硝化槽、有機物を酸、アルカリ、酵素、可溶化菌等により可溶化する分解槽、プロテインスキマー、フィルター等の物理ろ過装置、ヒーター、クーラー、熱交換器等の水温調整装置、紫外線、オゾン、塩素等で病原菌を死滅させる殺菌装置、廃水処理後の水に酸素を供給する酸素供給装置等を設けることができる。   The wastewater treatment apparatus of the present invention only needs to have the denitrification tank 1, the mesh-like container 2, and the carrier, and can have other configurations as necessary in addition to these. For example, nitrification tanks that oxidize ammonia nitrogen and nitrite nitrogen with nitrifying bacteria to nitrate nitrogen, decomposition tanks that solubilize organic substances with acids, alkalis, enzymes, solubilizing bacteria, protein skimmers, filters, etc. Water temperature control devices such as physical filtration devices, heaters, coolers, heat exchangers, sterilization devices that kill pathogens with ultraviolet rays, ozone, chlorine, etc., oxygen supply devices that supply oxygen to the water after wastewater treatment, etc. can be provided .

脱窒槽1は廃水が下部から供給され上部から排出されるものであれば特に制限されず、密封容器、開放容器のいずれでもよい。ここで、下部とは底面およびその近傍、上部とは上面およびその近傍を意味する。脱窒槽1において、廃水に含まれる硝酸態窒素および亜硝酸態窒素は、脱窒菌により還元(脱窒)されて窒素の気泡となる。廃水を脱窒槽の下部から供給して上部から排出することで、脱窒槽内部での廃水の流れる方向と気泡に加わる浮力の方向とを同一にすることができるため、効率的に気泡を排出することができる。生じた気泡は、処理された廃水とともに排出されてもよいが、気泡による送液不良を防ぐため、脱窒槽上部に排気管11を設け、この排気管11から窒素ガスを放出することが好ましい。排気管11からの廃水の噴出を防ぐために、排気管11には十分な長さを持たせることが好ましい。   The denitrification tank 1 is not particularly limited as long as waste water is supplied from the lower part and discharged from the upper part, and may be either a sealed container or an open container. Here, the lower part means the bottom surface and the vicinity thereof, and the upper part means the upper surface and the vicinity thereof. In the denitrification tank 1, nitrate nitrogen and nitrite nitrogen contained in the wastewater are reduced (denitrified) by denitrifying bacteria to form nitrogen bubbles. By supplying wastewater from the lower part of the denitrification tank and discharging it from the upper part, the direction of the wastewater flowing inside the denitrification tank and the direction of buoyancy applied to the bubbles can be made the same, so the bubbles are efficiently discharged. be able to. The generated bubbles may be discharged together with the treated waste water, but it is preferable to provide the exhaust pipe 11 at the upper part of the denitrification tank and release the nitrogen gas from the exhaust pipe 11 in order to prevent liquid feeding failure due to the bubbles. In order to prevent the discharge of waste water from the exhaust pipe 11, it is preferable that the exhaust pipe 11 has a sufficient length.

脱窒槽1は、単独で用いてもよく、直列または並列に複数個接続して用いてもよい。廃水処理量を増やすことができ、また、脱窒槽1を増設することで容易に処理能力を増強することができるため、並列に接続することが好ましい。脱窒槽1の総容積は、水理学的滞留時間(HRT)や目標とすべき硝酸態窒素濃度に応じて適宜設定することができる。水棲生物を飼育する水槽の水処理に用いるのであれば、硝酸態窒素濃度を25NO −Nmg/L以下とすることが好ましく、脱窒槽1の総容量を飼育水槽中の飼育水の2%以上とすることが好ましい。 The denitrification tank 1 may be used alone, or a plurality of denitrification tanks 1 may be connected in series or in parallel. Since the amount of wastewater treatment can be increased and the treatment capacity can be easily increased by adding the denitrification tank 1, it is preferable to connect them in parallel. The total volume of the denitrification tank 1 can be appropriately set according to the hydraulic residence time (HRT) and the nitrate nitrogen concentration to be targeted. If aquatic of using the water treatment water tank for breeding an organism, the nitrate nitrogen concentration 25NO 3 - preferably in a -Nmg / L or less, 2% of the breeding water rearing water tank the total volume of the denitrification tank 1 The above is preferable.

脱窒槽1の内部には、網目状容器2が下部から上部に間隔を開けて複数設置される。脱窒槽1に設置される網目状容器2の数は特に制限されない。また、網目状容器の間隔は、HRTや廃水の流速に応じて適宜定めることができる。複数の網目状容器2の容量は同一でもよく、異なっていてもよいが、下記で詳述するように、最も下方に位置する網目状容器21が、2番目に大きな網目状容器よりも1.2倍以上の容量を有することが好ましい。網目状容器2を形成する材料は特に制限されず、鉄、アルミ、ステンレス等の金属、ポリスチレン、ポリプロピレン等の合成樹脂、繊維強化プラスチック(FRP)等の複合材を適宜用いることができる。錆びず、軽量であるため、合成樹脂またはFRPを用いることが好ましい。   Inside the denitrification tank 1, a plurality of mesh-like containers 2 are installed at intervals from the lower part to the upper part. The number of mesh-like containers 2 installed in the denitrification tank 1 is not particularly limited. Moreover, the space | interval of a mesh container can be suitably determined according to the flow rate of HRT or waste water. The capacity of the plurality of mesh containers 2 may be the same or different, but as will be described in detail below, the mesh container 21 located at the lowermost position is 1. It is preferable to have a capacity of 2 times or more. The material for forming the mesh container 2 is not particularly limited, and a composite material such as a metal such as iron, aluminum, and stainless steel, a synthetic resin such as polystyrene and polypropylene, and a fiber reinforced plastic (FRP) can be used as appropriate. Since it does not rust and is lightweight, it is preferable to use synthetic resin or FRP.

網目状容器2は、底面および上面が、廃水が通過できる網目状であればよく、側面は網目を有してもよく、有さなくてもよい。網目状容器2の網目を有する面は、一枚の板材に多数の穴を打ち抜いて形成してもよく、複数本の芯材を接合して形成してもよい。芯材から形成する際は、芯材の断面形状は特に制限されず、円形、四角形等を適宜用いることができる。隣接する芯材間の下方の隙間が、上方の隙間よりも狭くなるような三角形、五角形、涙型である芯材から網目状容器を形成すると、いわゆるウェッジメッシュとすることができ、芯材間に詰まった異物を、反対側から水を流すことで容易に取り除くことができる。   The net-like container 2 may have a net-like shape in which the bottom surface and the upper surface can pass waste water, and the side surface may or may not have a mesh. The surface of the mesh container 2 having the mesh may be formed by punching a large number of holes in a single plate material, or may be formed by joining a plurality of core materials. When forming from a core material, the cross-sectional shape of the core material is not particularly limited, and a circular shape, a square shape, or the like can be used as appropriate. When a mesh-like container is formed from a triangular, pentagonal, or tear-shaped core material in which the lower gap between adjacent core materials is narrower than the upper gap, a so-called wedge mesh can be formed. Foreign matter clogged in can be easily removed by flowing water from the opposite side.

網目状容器2の水平方向の断面形状は、脱窒槽1に収容可能であれば特に制限されない。また、中央部に貫通した穴を有するリング状であってもよい。網目状容器2の水平方向の断面形状は、脱窒槽1の水平方向の断面形状と相似形でわずかに小さな形状であることが好ましい。このような形状とすることで、脱窒槽1の内壁面と網目状容器2の側面との隙間を通過する廃水量を減らし、網目状容器を通過して担体と接触する廃水量を増やすことができるため、脱窒効率を高めることができる。   The cross-sectional shape of the mesh container 2 in the horizontal direction is not particularly limited as long as it can be accommodated in the denitrification tank 1. Moreover, the ring shape which has the hole penetrated in the center part may be sufficient. The cross-sectional shape in the horizontal direction of the mesh-like container 2 is preferably similar to the horizontal cross-sectional shape of the denitrification tank 1 and slightly smaller. By adopting such a shape, the amount of waste water passing through the gap between the inner wall surface of the denitrification tank 1 and the side surface of the mesh-like container 2 can be reduced, and the amount of waste water passing through the mesh-like container and contacting the carrier can be increased. Therefore, denitrification efficiency can be increased.

本発明は、網目状容器2が脱窒槽1の下部から上部にかけて間隔を開けて複数個設置されることを特徴とする。隣接する網目状容器2の間に空間が存在し、下方の網目状容器を通過した廃水は、この空間で分散して広がり、上方の網目状容器に収納された担体の全面に均一にぶつかる。そのため、本発明の廃水処理装置は、水ミチの発生を防ぎ、廃水と担体との接触効率の低下を防ぐことができる。   The present invention is characterized in that a plurality of mesh-like containers 2 are installed at intervals from the lower part to the upper part of the denitrification tank 1. There is a space between the adjacent mesh containers 2, and the waste water that has passed through the lower mesh container spreads and spreads in this space, and uniformly strikes the entire surface of the carrier stored in the upper mesh container. Therefore, the wastewater treatment apparatus of the present invention can prevent the occurrence of water pits and prevent a decrease in contact efficiency between the wastewater and the carrier.

網目状容器2の内部には、脱窒菌を担持した担体が収容される。本発明において使用する担体の種類は、特に制限されない。例えば、粒状化したグラニュール汚泥、多孔質ガラス、多孔質セラミック、サンゴ砂、天然樹脂製または合成樹脂製のスポンジ、ゲル、活性炭などの多孔質材料や、天然岩石やガラスなどの無孔質材料を使用することができる。これらの中で、脱窒菌そのものからなるグラニュール汚泥は、処理効率が高く脱窒槽をコンパクトにすることができるため、好適に用いることができる。   A carrier carrying denitrifying bacteria is accommodated in the mesh container 2. The type of carrier used in the present invention is not particularly limited. For example, porous materials such as granulated sludge, porous glass, porous ceramic, coral sand, natural resin or synthetic resin sponge, gel, activated carbon, and nonporous materials such as natural rock and glass Can be used. Among these, granule sludge composed of the denitrifying bacteria themselves can be suitably used because of high processing efficiency and a compact denitrification tank.

担体は、担体の粒径よりも小さなメッシュを有する網目状容器2に収容されるか、担体の粒径よりも小さなメッシュを有するネットに収容された状態で網目状容器2に収容される。例えば、上記したグラニュール汚泥の粒径は2mm程度であるため、担体を収容する網目状容器またはネットのメッシュは1mm程度であることが好ましい。担体は、担体の粒径よりも小さなメッシュを有する網目状容器またはネットに収容されるため、担体は網目状容器またはネットから漏れ出ない。そのため、気泡が担体に付着しても、担体が脱窒槽1から流出することはない。   The carrier is accommodated in the mesh container 2 having a mesh smaller than the particle diameter of the carrier, or is accommodated in the mesh container 2 in a state of being accommodated in a net having a mesh smaller than the particle diameter of the carrier. For example, since the particle diameter of the granule sludge is about 2 mm, the mesh container or the mesh of the net that contains the carrier is preferably about 1 mm. Since the carrier is accommodated in a mesh container or net having a mesh smaller than the particle size of the carrier, the carrier does not leak from the mesh container or net. Therefore, even if bubbles adhere to the carrier, the carrier does not flow out of the denitrification tank 1.

担体には脱窒菌が担持されている。脱窒菌とは、硝酸態窒素または亜硝酸態窒素を還元して窒素を生成する硝酸還元細菌、硫黄酸化脱窒細菌などの総称である。脱窒菌の多くは、嫌気性条件下において活動・増殖可能な通性嫌気性従属栄養細菌に属する。なお、本発明においては、硫黄酸化脱窒細菌と共生する硫酸塩還元細菌も脱窒菌に含まれるものとする。硫酸塩還元細菌は、硫酸塩を還元して硫黄イオンやチオ硫酸イオンを生成する。硫黄イオンやチオ硫酸イオンは、硫黄酸化脱窒細菌による脱窒に利用される。本発明では、脱窒菌として一般に知られている、Thauera属、Sedimenticola属、Arcobactor属などを特に制限することなく使用することができる。なお、Thauera属は、酢酸資化性脱窒細菌であり、芳香族化合物の分解菌としても知られている。   The carrier carries denitrifying bacteria. Denitrifying bacteria is a general term for nitrate-reducing bacteria, sulfur-oxidizing denitrifying bacteria, and the like that produce nitrogen by reducing nitrate nitrogen or nitrite nitrogen. Many of the denitrifying bacteria belong to facultative anaerobic heterotrophic bacteria that can act and grow under anaerobic conditions. In the present invention, sulfate-reducing bacteria that coexist with sulfur-oxidizing denitrifying bacteria are also included in the denitrifying bacteria. Sulfate-reducing bacteria produce sulfate ions and thiosulfate ions by reducing sulfates. Sulfur ions and thiosulfate ions are used for denitrification by sulfur oxidizing denitrifying bacteria. In the present invention, Thauera genus, Sedimenticola genus, Arcobactor genus and the like, which are generally known as denitrifying bacteria, can be used without particular limitation. The genus Thauera is an acetic acid-assimilating denitrifying bacterium and is also known as an aromatic compound-degrading bacterium.

脱窒槽の酸化還元電位(ORP)は、低下しすぎると硫化水素が発生してしまうため、−300(mV)〜−100(mV)の範囲に調整することが好ましい。なお、酸化還元電位を調整するには、脱窒槽への廃水の供給量や炭素源・電子供与体の供給量をコントロールすればよい。   If the oxidation-reduction potential (ORP) of the denitrification tank is too low, hydrogen sulfide is generated. Therefore, it is preferable to adjust the oxidation-reduction potential (ORP) to a range of −300 (mV) to −100 (mV). In order to adjust the redox potential, the amount of waste water supplied to the denitrification tank and the amount of carbon source / electron donor supplied may be controlled.

脱窒菌には、炭素源および電子供与体として可溶化された有機物が供給される。可溶化された有機物は、担体内における炭素率(C/N比)が1.0〜3.0になるように添加することが望ましい。なお、水中の有機物量が不足している場合には、脱窒菌の炭素源・電子供与体となる酢酸ナトリウム、酢酸、メタノール、グルコースなどを供給すればよい。これらの中で、生物への影響が少ない酢酸ナトリウムまたは酢酸が好ましい。   The denitrifying bacterium is supplied with a solubilized organic substance as a carbon source and an electron donor. The solubilized organic substance is desirably added so that the carbon ratio (C / N ratio) in the carrier is 1.0 to 3.0. In addition, when the amount of organic substances in water is insufficient, sodium acetate, acetic acid, methanol, glucose, or the like that serves as a carbon source / electron donor for denitrifying bacteria may be supplied. Of these, sodium acetate or acetic acid is preferred because it has little effect on the organism.

脱窒菌の多くは、嫌気性条件下において活動・増殖可能な通性嫌気性従属栄養細菌に属することから、脱窒槽1の内部は、嫌気性雰囲気に維持する必要がある。ただし、溶存酸素濃度の高い廃水が脱窒槽1に供給されると、脱窒槽最下部の網目状容器21近辺は好気性雰囲気となるが、好気性雰囲気下では脱窒菌は酸素を消費して活動するため、嫌気的雰囲気下での代謝である脱窒が行われない。そのため、供給された廃水に含まれる酸素を素早く消費できるように、最も下方に位置する網目状容器21がそれ以外の網目状容器と比較して容量が大きいことが好ましい。具体的には、最も下方に位置する網目状容器は、2番目に大きな網目状容器よりも1.2倍以上の容量を有することが好ましい。最も下方に位置する網目状容器21を大容量とし、多くの担体を収容して廃水中の酸素を消費することで、最も下方に位置する網目状容器21より上方は嫌気的雰囲気となり、上方に位置する網目状容器に収容された担体内の脱窒菌による脱窒作用が効率よく発揮される。   Since most of the denitrifying bacteria belong to facultative anaerobic heterotrophic bacteria that can be activated and propagated under anaerobic conditions, the inside of the denitrifying tank 1 needs to be maintained in an anaerobic atmosphere. However, when waste water with a high dissolved oxygen concentration is supplied to the denitrification tank 1, the vicinity of the mesh container 21 at the bottom of the denitrification tank becomes an aerobic atmosphere, but in the aerobic atmosphere, the denitrifying bacteria consume oxygen and are active. Therefore, denitrification, which is metabolism in an anaerobic atmosphere, is not performed. Therefore, it is preferable that the mesh container 21 located at the lowermost part has a larger capacity than other mesh containers so that oxygen contained in the supplied wastewater can be quickly consumed. Specifically, it is preferable that the lowermost mesh container has a capacity 1.2 times or more than the second largest mesh container. The lowermost mesh container 21 has a large capacity, accommodates a large amount of carrier and consumes oxygen in the wastewater, so that the upper part of the lowermost mesh container 21 becomes an anaerobic atmosphere, The denitrification action by the denitrifying bacteria in the carrier accommodated in the mesh container located is efficiently exhibited.

本発明において、脱窒槽内部の廃水が間欠的に撹拌されることが好ましい。脱窒槽内部の廃水を撹拌する方法は特に制限されず、例えば、網目状容器2を間欠的に回転、振動のいずれか、または両方をさせるための駆動装置3を設け、網目状容器2を回転、振動のいずれか、または両方をさせることにより脱窒槽内部の廃水を撹拌してもよい。振動は、鉛直方向、水平方向、斜め方向のいずれでもよく、またはこれらの組み合わせでもよい。廃水を間欠的に撹拌することで、担体に付着した気泡を分離することができる。担体が収容されて重い網目状容器を動かすのに必要なエネルギーが少ないため、網目状容器を回転、または、鉛直方向に振動させることが好ましい。また、下記で述べるように、隣接する網目状容器の間の空間で廃水を撹拌してもよい。   In this invention, it is preferable that the waste water inside a denitrification tank is stirred intermittently. The method for stirring the waste water inside the denitrification tank is not particularly limited. For example, a driving device 3 is provided for intermittently rotating, vibrating, or both of the mesh container 2, and the mesh container 2 is rotated. The waste water inside the denitrification tank may be stirred by causing either or both of vibrations. The vibration may be in any of a vertical direction, a horizontal direction, and an oblique direction, or a combination thereof. By intermittently stirring the waste water, the bubbles attached to the carrier can be separated. Since less energy is required to move the heavy mesh container containing the carrier, the mesh container is preferably rotated or vibrated in the vertical direction. Further, as described below, the waste water may be agitated in the space between adjacent mesh containers.

駆動装置3としては特に制限されないが、例えば、複数の網目状容器2の中心を貫通する軸4を設け、この軸4をモーター等で回転、または、ギア、カム等を組み合わせて振動、または回転と同時に振動させればよい。このとき、上記したように中央部が貫通したリング状の網目状容器2を用いると、網目状容器の中央部に軸4を通すことが容易である。駆動装置3であるモーターを上部に設け、脱窒槽上部に設けた排気管11に軸を通すと、構造を簡素化でき低コストであるため好ましい。なお、網目状容器2を回転させる場合は、脱窒槽1と網目状容器2とは回転可能なように水平方向の断面が円形であることが好ましい。   Although it does not restrict | limit especially as the drive device 3, For example, the axis | shaft 4 which penetrates the center of the some mesh-like container 2 is provided, this axis | shaft 4 is rotated with a motor etc., or is combined with a gear, a cam, etc. Just vibrate at the same time. At this time, as described above, when the ring-shaped mesh-like container 2 having the center portion penetrated is used, it is easy to pass the shaft 4 through the center portion of the mesh-like container. It is preferable to provide a motor as the driving device 3 at the top and pass the shaft through the exhaust pipe 11 provided at the top of the denitrification tank because the structure can be simplified and the cost is low. In addition, when rotating the mesh container 2, it is preferable that the horizontal cross section is circular so that the denitrification tank 1 and the mesh container 2 can rotate.

本発明において、脱窒槽内部の廃水は間欠的に撹拌される。脱窒槽内部を間欠的に撹拌することにより、脱窒槽内部を常に撹拌する場合と比較して、網目状容器2に収容された担体同士が擦れて摩耗することを抑えることができる。廃水を撹拌する間隔は、生じる窒素ガス量と、窒素ガスの担体への付着量に応じて適宜定めることができるが、通常、3〜24時間毎に動かせばよい。また、撹拌は定期的に行ってもよく、不定期に行ってもよい。   In the present invention, the waste water inside the denitrification tank is stirred intermittently. By intermittently stirring the inside of the denitrification tank, it is possible to prevent the carriers contained in the mesh container 2 from rubbing and wearing compared to the case of constantly stirring the inside of the denitrification tank. The interval at which the wastewater is stirred can be determined as appropriate according to the amount of nitrogen gas produced and the amount of nitrogen gas adhering to the carrier. Moreover, stirring may be performed regularly and may be performed irregularly.

上記したように、網目状容器2の形状は特に制限されないが、複数の網目状容器のうち、最も下方に位置する網目状容器21を除く少なくとも1つの網目状容器の側面が、鉛直方向に延在する凹部5を有することが好ましい。側面に凹部5を有する網目状容器2の側面図を図2に、斜視図を図3に示す。   As described above, the shape of the mesh container 2 is not particularly limited, but the side surface of at least one mesh container excluding the mesh container 21 located at the lowest position of the plurality of mesh containers extends in the vertical direction. It is preferable to have the recessed part 5 which exists. A side view of the mesh-like container 2 having the recess 5 on the side surface is shown in FIG. 2, and a perspective view is shown in FIG.

網目状容器2のメッシュは細かいため、下方の網目状容器2で発生した気泡は、上方の網目状容器底面のメッシュをすぐには通過しない。網目状容器側面に凹部5を設け、脱窒槽1の内壁面と網目状容器2の側面とのあいだに凹部5からなる隙間を形成することで、網目状容器底面のメッシュで一旦留まった気泡をこの隙間から上方に流し、網目状容器2の内部に侵入する気泡を減らすことができる。凹部5の形状、本数は特に制限されないが、脱窒槽の水平方向断面に対する凹部5の水平方向断面の総面積の比率が、10%以下であることが好ましい。10%より大きいと、網目状容器の内部を通らない廃水が多くなりすぎる。   Since the mesh of the mesh container 2 is fine, bubbles generated in the mesh container 2 below do not immediately pass through the mesh on the bottom of the mesh container 2 above. A recess 5 is provided on the side surface of the mesh container, and a gap formed by the recess 5 is formed between the inner wall surface of the denitrification tank 1 and the side surface of the mesh container 2, so that the air bubbles once retained by the mesh on the bottom surface of the mesh container Air bubbles flowing upward from the gap and entering the inside of the mesh container 2 can be reduced. The shape and number of the recesses 5 are not particularly limited, but the ratio of the total area of the horizontal section of the recess 5 to the horizontal section of the denitrification tank is preferably 10% or less. If it is larger than 10%, too much waste water does not pass through the inside of the mesh container.

さらに、複数の網目状容器のうち、最も下方に位置する網目状容器21を除く少なくとも1つの網目状容器の底面が、水平方向に対して傾斜した傾斜部6を有することが好ましい。網目状容器底面に傾斜部6を設けることで、傾斜部6に気泡を集め、気泡を合一して大きな気泡とし、網目状容器底面のメッシュを通過しにくくすることができる。また、傾斜部6の上方を、底面の端部または中心とすることで、傾斜部6の傾きに沿って気泡を底面の端部または中心に導くことができる。傾斜部6の形状や数は特に制限されず、例えば、下に凸である錐状体、下に凸である半球、上に凸である錐状体、上に凸である円錐のように、底面全面を傾斜部としてもよく、1本または複数本の溝状の傾斜部を形成して底面の一部のみを傾斜部としてもよい。   Furthermore, it is preferable that the bottom surface of at least one mesh-like container excluding the lowest mesh-like container 21 among the plurality of mesh-like containers has an inclined portion 6 that is inclined with respect to the horizontal direction. By providing the inclined portion 6 on the bottom of the mesh-like container, it is possible to collect bubbles on the inclined portion 6 and combine the bubbles into large bubbles, making it difficult to pass through the mesh on the bottom of the mesh-like container. Further, by setting the upper portion of the inclined portion 6 as the end portion or the center of the bottom surface, the bubbles can be guided to the end portion or the center of the bottom surface along the inclination of the inclined portion 6. The shape and number of the inclined portions 6 are not particularly limited, and for example, a cone that is convex downward, a hemisphere that is convex downward, a cone that is convex upward, and a cone that is convex upward, The entire bottom surface may be an inclined portion, or one or a plurality of groove-shaped inclined portions may be formed, and only a part of the bottom surface may be the inclined portion.

図2、3に示す網目状容器は、底面端部を上方とする溝状の傾斜部6を有する。この網目状容器では、底面端部に到達した気泡は脱窒槽と網目状容器との間を通って浮上するため、網目状容器2の内部に侵入する気泡を減らすことができる。また、図2、3に示す網目状容器2は、底面の傾斜部6と側面の凹部5とが連続しているため、よりスムーズに気泡を浮上させることができる。なお、網目状容器2は傾斜部6と凹部5とをともに有するものに限定されず、傾斜部6のみを有するものでもよい。   The mesh-like container shown in FIGS. 2 and 3 has a groove-like inclined portion 6 with the bottom end portion facing upward. In this mesh-like container, the bubbles that have reached the bottom end part float between the denitrification tank and the mesh-like container, so that bubbles entering the inside of the mesh-like container 2 can be reduced. 2 and 3, since the inclined portion 6 on the bottom surface and the concave portion 5 on the side surface are continuous, the bubbles can float more smoothly. The mesh container 2 is not limited to the one having both the inclined portion 6 and the recessed portion 5, and may have only the inclined portion 6.

底面が上に凸の円錐状であり、底面全面が傾斜部6である網目状容器2の側面図を図4に、斜視図を図5に示す。
図4、5に記載の網目状容器2は、網目状容器2の中心を通る軸4が中空管であり、軸側面の網目状容器底面と交差する部分に開口41を有している。底面全面が傾斜部である図4、5に記載の網目状容器では、底面中心に集まった気泡は軸に設けられた開口41から軸4の内部に取り込まれ、網目状容器の内部を通ることなく脱窒槽1の外に排出される。なお、底面中心に導いた気泡を網目状容器内部を通らずに上方に導く方法はこれに限定されるものではなく、例えば、網目状容器2としてリング状のものを用い、網目状容器2の中央部から気泡を上方に通してもよい。
FIG. 4 shows a side view of the mesh-like container 2 whose bottom surface has an upwardly convex conical shape and the entire bottom surface is the inclined portion 6, and FIG. 5 shows a perspective view.
4 and 5, the shaft 4 passing through the center of the mesh container 2 is a hollow tube, and has an opening 41 at a portion intersecting the bottom surface of the mesh container on the side of the shaft. 4 and 5 in which the entire bottom surface is an inclined portion, bubbles collected at the center of the bottom surface are taken into the shaft 4 from the opening 41 provided in the shaft and pass through the inside of the mesh container. Without being discharged out of the denitrification tank 1. In addition, the method of guiding the air bubbles guided to the center of the bottom face upward without passing through the inside of the mesh container is not limited to this. For example, a ring-shaped container is used as the mesh container 2, Bubbles may be passed upward from the center.

隣接する網目状容器2の間に集泡部材7を設けてもよい。集泡部材7を形成する材料は特に制限されず、鉄、アルミ、ステンレス等の金属、ポリスチレン、ポリプロピレン等の合成樹脂、繊維強化プラスチック(FRP)等の複合材を適宜用いることができる。錆びず、軽量であるため、合成樹脂またはFRPを用いることが好ましい。集泡部材7は水が通過できなくてもよいが、廃水が集泡部材7の隙間から強く流れ出ると、廃水が集中してぶつかる部分に水ミチが生じやすいため、集泡部材7は水が通過できることが好ましい。水が通過できる材料としては、網目状容器と同様の材料を用いることができる。   A foam collecting member 7 may be provided between adjacent mesh containers 2. The material for forming the foam collecting member 7 is not particularly limited, and composite materials such as metals such as iron, aluminum, and stainless steel, synthetic resins such as polystyrene and polypropylene, and fiber reinforced plastics (FRP) can be used as appropriate. Since it does not rust and is lightweight, it is preferable to use synthetic resin or FRP. The foam collecting member 7 may not be able to pass water. However, when the waste water flows strongly from the gap of the foam collecting member 7, water mist tends to occur in the portion where the waste water concentrates and collides, so the foam collecting member 7 It is preferable that it can pass. As a material through which water can pass, the same material as that of the mesh container can be used.

集泡部材7の形状は、気泡を合一して大きな気泡とすることができるものであれば特に制限することなく使用することができる。例えば、下に凸である錐状体、下に凸である半球、上に凸である錐状体、上に凸である円錐、プロペラ状、上に凸である扇状等が挙げられる。   The shape of the foam collecting member 7 can be used without particular limitation as long as the bubbles can be combined to form large bubbles. For example, a downwardly convex cone, a downwardly convex hemisphere, an upwardly convex cone, an upwardly convex cone, a propeller shape, an upwardly convex fan shape, and the like can be given.

軸4に固定されたプロペラ状の集泡部材7と網目状容器2との側面図を図6に、軸4に固定されたプロペラ状の集泡部材7の斜視図を図7に示す。このような構成では、軸4を回転すると、プロペラ状の集泡部材7により廃水を強く撹拌することができる。そのため、担体に付着した気泡をより分離でき、また、担体同士の凝集を防ぐことができる。この際、網目状容器2としてリング状のものを用いてもよく、リング状の網目状容器と軸4とは接続してもよく、接続しなくてもよい。   A side view of the propeller-shaped foam collecting member 7 fixed to the shaft 4 and the mesh container 2 is shown in FIG. 6, and a perspective view of the propeller-shaped foam collecting member 7 fixed to the shaft 4 is shown in FIG. In such a configuration, when the shaft 4 is rotated, the wastewater can be strongly stirred by the propeller-shaped foam collecting member 7. For this reason, bubbles adhering to the carrier can be further separated, and aggregation of the carriers can be prevented. At this time, a ring-shaped container may be used as the mesh-shaped container 2, and the ring-shaped mesh-shaped container and the shaft 4 may be connected or may not be connected.

集泡部材7で集められて合一して大きくなった気泡は、上方の網目状容器底面のメッシュを通過しにくくなる。さらに、集泡部材で集められた気泡の網目状容器内部への侵入を少なくするために、集泡部材で集められた気泡は、網目状容器の底面端部、凹部5、傾斜部6近辺に浮上することが好ましい。   Bubbles collected by the foam collecting member 7 and coalesced to become larger do not easily pass through the mesh on the bottom of the upper mesh container. Further, in order to reduce the intrusion of the bubbles collected by the foam collecting member into the inside of the mesh container, the bubbles collected by the foam collecting member are located near the bottom end of the mesh container, the concave portion 5 and the inclined portion 6. It is preferable to surface.

本発明の廃水処理装置は硝酸態窒素と亜硝酸体窒素を含む廃水の処理に用いることができる。例えば、下水処理場における廃水処理、畜産場における廃水処理、水棲生物を飼育する水槽の水処理等に用いることができる。本発明の廃水処理装置で水処理を行う水槽で飼育する水棲生物の種類としては特に制限されず、魚類、イカ、タコ等の頭足類、エビ、カニ、カブトエビ、シャコ、ヤドカリ、グソクムシ等の甲殻類、イソギンチャク、クラゲ、サンゴ等の刺胞動物、ウニ、ナマコ、ヒトデ等の棘皮動物、カエル、サンショウウオ等の両生類、カメ、ヘビ、ワニ等の爬虫類、ペンギン、エトピリカ等の鳥類、カワウソ、アシカ、ラッコ、オットセイ、ジュゴン、マナティー、イルカ等の哺乳類等を挙げることができる。また、淡水に生息する水棲生物、海水に生息する水棲生物のどちらの飼育にも用いることができる。   The wastewater treatment apparatus of the present invention can be used for treatment of wastewater containing nitrate nitrogen and nitrite nitrogen. For example, it can be used for wastewater treatment in a sewage treatment plant, wastewater treatment in a livestock farm, water treatment in a tank for breeding aquatic organisms, and the like. There are no particular restrictions on the type of aquatic organisms that are bred in a water tank that performs water treatment with the wastewater treatment apparatus of the present invention. Crustaceans such as crustaceans, sea anemones, jellyfish and corals, echinoderms such as sea urchins, sea cucumbers and starfish, amphibians such as frogs and salamanders, reptiles such as turtles, snakes and crocodiles, birds such as penguins and tufted puffins, otters and sea lions , Mammals such as sea otters, fur seals, dugongs, manatees and dolphins. It can also be used to breed both aquatic organisms that inhabit freshwater and aquatic organisms that inhabit seawater.

本発明の廃水処理装置を水棲生物の飼育水槽の水処理に用いることで、水を交換、補給する頻度を減少することができる。特に海水に生息する水棲生物の飼育水槽の水処理に用いると、海水の運搬または人工海水の作製を大幅に減らすことができ、また、無機塩を含む廃水を下水に放出する量を減らすことができる。さらに、硝酸態窒素、亜硝酸態窒素を栄養とする緑藻類等の繁殖を抑え、水槽を鑑賞に適した状態に維持することができる。   By using the wastewater treatment apparatus of the present invention for water treatment in aquatic organism breeding tanks, the frequency of water exchange and replenishment can be reduced. Especially when used for water treatment of aquatic organisms breeding tanks that inhabit seawater, it can greatly reduce the transport of seawater or the production of artificial seawater and reduce the amount of wastewater containing inorganic salts to the sewage. it can. Furthermore, it is possible to suppress the growth of green algae and the like that nourish nitrate nitrogen and nitrite nitrogen, and maintain the water tank in a state suitable for viewing.

1 脱窒槽
11 排気管
2 網目状容器
21 最も下方に位置する網目状容器
3 駆動装置
4 軸
41 開口
5 凹部
6 傾斜部
7 集泡部材
DESCRIPTION OF SYMBOLS 1 Denitrification tank 11 Exhaust pipe 2 Reticulated container 21 Reticulated container 3 located in the lowest part Drive apparatus 4 Shaft 41 Opening 5 Recessed part 6 Inclined part 7 Foam collecting member

Claims (8)

廃水が下部から供給され上部から排出される脱窒槽と、
前記脱窒槽の下方から上方にかけて間隔を開けて設置される複数の網目状容器と、
前記網目状容器に収容され、脱窒菌が担持されている担体と、
を有することを特徴とする廃水処理装置。
A denitrification tank in which wastewater is supplied from the bottom and discharged from the top,
A plurality of mesh-like containers installed at intervals from below to above the denitrification tank;
A carrier accommodated in the mesh container and carrying denitrifying bacteria;
A wastewater treatment apparatus characterized by comprising:
前記複数の網目状容器の中で、最も下方に位置する網目状容器が最も大きな容量を有することを特徴とする請求項1に記載の廃水処理装置。 The wastewater treatment apparatus according to claim 1, wherein the lowermost mesh container has the largest capacity among the plurality of mesh containers. 前記脱窒槽内部の廃水が間欠的に撹拌されることを特徴とする請求項1または2に記載の廃水処理装置。 The wastewater treatment apparatus according to claim 1 or 2, wherein the wastewater inside the denitrification tank is intermittently agitated. 前記複数の網目状容器のうち、最も下方に位置する網目状容器を除く少なくとも1つの網目状容器の側面が、鉛直方向に延在する凹部を有することを特徴とする請求項1〜3のいずれかに記載の廃水処理装置。 The side surface of at least one mesh-like container excluding the lowest mesh-like container among the plurality of mesh-like containers has a recess extending in the vertical direction. The waste water treatment device according to crab. 前記複数の網目状容器のうち、最も下方に位置する網目状容器を除く少なくとも1つの網目状容器の底面が、水平方向に対して傾斜した傾斜部を有することを特徴とする請求項1〜4のいずれかに記載の廃水処理装置。 The bottom surface of at least one mesh container excluding the mesh container located at the lowest position among the plurality of mesh containers has an inclined portion inclined with respect to the horizontal direction. The waste water treatment apparatus in any one of. 隣接する前記網目状容器の間に集泡部材を有することを特徴とする請求項1〜5のいずれかに記載の廃水処理装置。 The wastewater treatment apparatus according to any one of claims 1 to 5, further comprising a foam collecting member between the adjacent mesh containers. 請求項1〜6のいずれかに記載の廃水処理装置と接続され、前記廃水処理装置との間で水が循環していることを特徴とする水棲生物の飼育水槽。 An aquatic organism breeding tank connected to the wastewater treatment apparatus according to any one of claims 1 to 6, wherein water is circulated between the wastewater treatment apparatus. 水棲生物を飼育している水槽の水を、請求項1〜6のいずれかに記載の廃水処理装置で処理し、前記廃水処理装置と前記水槽との間で循環させることを特徴とする水棲生物の飼育方法。 An aquatic organism characterized in that the water in the aquarium in which aquatic organisms are bred is treated with the wastewater treatment apparatus according to any one of claims 1 to 6 and circulated between the wastewater treatment apparatus and the aquarium. Breeding method.
JP2015064091A 2015-03-26 2015-03-26 Waste water treatment equipment Active JP6560515B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015064091A JP6560515B2 (en) 2015-03-26 2015-03-26 Waste water treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015064091A JP6560515B2 (en) 2015-03-26 2015-03-26 Waste water treatment equipment

Publications (2)

Publication Number Publication Date
JP2016182556A true JP2016182556A (en) 2016-10-20
JP6560515B2 JP6560515B2 (en) 2019-08-14

Family

ID=57242142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015064091A Active JP6560515B2 (en) 2015-03-26 2015-03-26 Waste water treatment equipment

Country Status (1)

Country Link
JP (1) JP6560515B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019180292A (en) * 2018-04-10 2019-10-24 株式会社環境技術研究所 Denitrification apparatus and denitrification method

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58156596U (en) * 1982-04-13 1983-10-19 株式会社西原環境衛生研究所 Sewage treatment equipment
JPS605499U (en) * 1983-06-22 1985-01-16 ベスト工業株式会社 Filter media for anaerobic treatment
JPH03262597A (en) * 1990-03-12 1991-11-22 Miyama Sangyo Kk Water quality improving equipment
JP2006136775A (en) * 2004-11-10 2006-06-01 Hideo Kida Denitrification apparatus and aquaculture equipment provided with the same
JP2008212865A (en) * 2007-03-06 2008-09-18 Nihon Suido Consultants Co Ltd Nitration tank
JP2008221033A (en) * 2007-03-08 2008-09-25 Kuraray Co Ltd Wastewater treatment method and apparatus
JP2010029779A (en) * 2008-07-29 2010-02-12 Tadashi Miyamoto Toilet sewage treatment system
JP2011177619A (en) * 2010-02-26 2011-09-15 Taisei Corp Water treatment apparatus and water treatment method
JP2011189286A (en) * 2010-03-15 2011-09-29 Toshiba Corp Water treatment system for organic wastewater
JP2015000400A (en) * 2013-06-18 2015-01-05 水ing株式会社 Fixed bed type biological denitrification method and device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58156596U (en) * 1982-04-13 1983-10-19 株式会社西原環境衛生研究所 Sewage treatment equipment
JPS605499U (en) * 1983-06-22 1985-01-16 ベスト工業株式会社 Filter media for anaerobic treatment
JPH03262597A (en) * 1990-03-12 1991-11-22 Miyama Sangyo Kk Water quality improving equipment
JP2006136775A (en) * 2004-11-10 2006-06-01 Hideo Kida Denitrification apparatus and aquaculture equipment provided with the same
JP2008212865A (en) * 2007-03-06 2008-09-18 Nihon Suido Consultants Co Ltd Nitration tank
JP2008221033A (en) * 2007-03-08 2008-09-25 Kuraray Co Ltd Wastewater treatment method and apparatus
JP2010029779A (en) * 2008-07-29 2010-02-12 Tadashi Miyamoto Toilet sewage treatment system
JP2011177619A (en) * 2010-02-26 2011-09-15 Taisei Corp Water treatment apparatus and water treatment method
JP2011189286A (en) * 2010-03-15 2011-09-29 Toshiba Corp Water treatment system for organic wastewater
JP2015000400A (en) * 2013-06-18 2015-01-05 水ing株式会社 Fixed bed type biological denitrification method and device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019180292A (en) * 2018-04-10 2019-10-24 株式会社環境技術研究所 Denitrification apparatus and denitrification method
JP7036655B2 (en) 2018-04-10 2022-03-15 株式会社環境技術研究所 Denitrification device and denitrification method
JP2022066374A (en) * 2018-04-10 2022-04-28 株式会社環境技術研究所 Denitrification device, denitrification method, and water treatment system using denitrification device

Also Published As

Publication number Publication date
JP6560515B2 (en) 2019-08-14

Similar Documents

Publication Publication Date Title
KR102242705B1 (en) Recirculating aquaculture system use of Biofloc Technology
US5732654A (en) Open air mariculture system and method of culturing marine animals
JP5254834B2 (en) Land culture system
JP2010532246A (en) Method for converting fish waste from an aquaculture system to methane using a modified UASB reactor
CN1120658C (en) Closed circulation cultivation system
JP6100301B2 (en) Purification device and aquarium equipped with the same
CN106396298A (en) Purification device for treating poultry farming wastewater through solar bio-floating bed
KR102379737B1 (en) Automatic Sedimentation Circulation Breeding Tank for Bioflock aquafarm.
KR20150022312A (en) Recirculating Aquaculture System
JP6129709B2 (en) Water purification system for aquarium
KR101730409B1 (en) Water treatment system for eel culture apparatus
CN107428576A (en) Moving-bed bioreactor and method for treating water
JP6560515B2 (en) Waste water treatment equipment
CN201376922Y (en) Photovoltaic water purification device
JP2013247949A (en) Water treating device
JP2015061513A (en) Completely closed circulation type land breeding system for abalones and land breeding method for abalones using the same
KR100458764B1 (en) Method and apparatus for the treatment of contaminated water by submersible biological aerated filter
CN106186525A (en) A kind of comprehensive processing technique of livestock and poultry cultivation sewage
CN103553185B (en) A kind of micro-electrolysis treatment method that water body is carried out in-situ treatment
KR20220075694A (en) Water treatment system of circulation filtration system that can save energy
JP2013063036A (en) Method for raising aquatic animals, and method for removing nitrate-nitrogen
Yamamoto Characteristics of closed recirculating systems
JP3299806B2 (en) Wastewater treatment method
CN218345206U (en) Water quality circulation purification device for temporary culture of fresh and live aquatic products
JP2002320426A (en) Seaweeds culturing equipment and fishes and shellfishes culturing equipment furnished with the seaweeds culturing equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180123

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190110

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190719

R150 Certificate of patent or registration of utility model

Ref document number: 6560515

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150