JP2016181458A - Sheet-like active material particle-containing mold for secondary battery electrode, secondary battery arranged by use thereof, and manufacturing method of secondary battery electrode - Google Patents

Sheet-like active material particle-containing mold for secondary battery electrode, secondary battery arranged by use thereof, and manufacturing method of secondary battery electrode Download PDF

Info

Publication number
JP2016181458A
JP2016181458A JP2015061870A JP2015061870A JP2016181458A JP 2016181458 A JP2016181458 A JP 2016181458A JP 2015061870 A JP2015061870 A JP 2015061870A JP 2015061870 A JP2015061870 A JP 2015061870A JP 2016181458 A JP2016181458 A JP 2016181458A
Authority
JP
Japan
Prior art keywords
active material
secondary battery
sheet
particles
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015061870A
Other languages
Japanese (ja)
Inventor
充康 今▲崎▼
Mitsuyasu Imazaki
充康 今▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2015061870A priority Critical patent/JP2016181458A/en
Publication of JP2016181458A publication Critical patent/JP2016181458A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a sheet-like active material particle-containing mold for a secondary battery electrode, which is arranged by use of an oxide active material of 3 μm or less in volume-average particle diameter D, and which enables the suppression of the worsening in battery performance, such as the decrease in battery energy density or the increase in internal resistance, and enables the exhibition of good moldability even in the case of forming an electrode with an active material layer large in thickness according to compression molding.SOLUTION: A sheet-like active material particle-containing mold for a secondary battery electrode comprises: 65-90 wt% of oxide active material small particles including primary particles of over 1 to 3 μm in volume-average particle diameter (D); 5-30 wt% of oxide large particles having a number-average particle crushing strength of 3 MPa or larger and including primary particles of 8-50 μm in volume-average particle diameter (D); 0.5-10 wt% of a conductive assistant material; and 0.5-5 wt% of an insulative binding material.SELECTED DRAWING: None

Description

本発明は、二次電池電極用のシート状活物質粒子含有成形体、二次電池および二次電池電極の製造方法に関するものである。   The present invention relates to a sheet-form active material particle-containing molded article for a secondary battery electrode, a secondary battery, and a method for producing a secondary battery electrode.

一般的に、二次電池は高エネルギー密度であるものが要求され、より多くの電極活物質を電池内に存在させることが重要となる。現行の二次電池用電極は金属箔に活物質を含むスラリーを塗工後乾燥することにより製造されているが、活物質層を厚くするためにスラリーを厚く塗工すると、乾燥時に活物質含有層の収縮が起こり、活物質層にクラックが発生したり、活物質層が電極集電体から落下したりする。特に、一次粒子の体積平均粒子径が3μm以下の電極活物質は、活物質層の厚さが厚い電極に適用する、シート状活物質粒子含有成形体の成形性が悪いという課題がある。機械的強度が大きく高信頼性の、活物質層の厚さが厚い電極を作製する際には、このシート状活物質粒子含有成形体の成形性を向上させる必要がある。   Generally, a secondary battery is required to have a high energy density, and it is important that more electrode active materials exist in the battery. Current secondary battery electrodes are manufactured by applying a slurry containing an active material to a metal foil and then drying it. If the slurry is applied thickly to increase the thickness of the active material layer, it will contain an active material during drying. Shrinkage of the layer occurs, cracks are generated in the active material layer, or the active material layer falls from the electrode current collector. In particular, an electrode active material having a primary particle volume average particle diameter of 3 μm or less has a problem that the formability of a sheet-like active material particle-containing molded body applied to an electrode having a thick active material layer is poor. When producing an electrode having high mechanical strength and high reliability and a thick active material layer, it is necessary to improve the moldability of the sheet-like active material particle-containing molded body.

特許文献1には、集電体と活物質含有層の密着性向上および電池のサイクル性を良好にするために、平均粒径が1μm以下のチタン酸リチウム小粒径活物質粒子、及び平均粒径が2μm以上、50μm以下のチタン酸リチウム大粒径活物質粒子を含む活物質含有層であって、大粒径活物質粒子の真密度が小粒径活物質粒子の真密度より大きい活物質含有層を備える負極を用いるとする技術を開示している。また、粒子を混合すると云う観点からは、特許文献2において、正極活物質が、第1の正極活物質と、該第1の正極活物質より体積平均粒子径D50が小さい第2の正極活物質とを含有し、上記第1の正極活物質のD50粒径は10μm以上50μm以下であり、上記第2の正極活物質のD50粒径は1μm以上9μm以下であることを特徴とする非水電解質二次電池とすることが開示されている。 In Patent Document 1, in order to improve the adhesion between the current collector and the active material-containing layer and to improve the cycle performance of the battery, the lithium titanate small particle size active material particles having an average particle size of 1 μm or less, and the average particles An active material-containing layer comprising a lithium titanate large particle size active material particle having a diameter of 2 μm or more and 50 μm or less, wherein the true density of the large particle size active material particles is greater than the true density of the small particle size active material particles The technique which uses the negative electrode provided with a content layer is disclosed. Further, from the viewpoint of mixing particles, in Patent Document 2, the positive electrode active material is a first positive electrode active material and a second positive electrode active material having a volume average particle diameter D 50 smaller than that of the first positive electrode active material. The first positive electrode active material has a D 50 particle size of 10 μm or more and 50 μm or less, and the second positive electrode active material has a D 50 particle size of 1 μm or more and 9 μm or less. A nonaqueous electrolyte secondary battery is disclosed.

特許第4580949号公報Japanese Patent No. 4580949 特開2007−335318号公報JP 2007-335318 A

活物質層の厚さが厚い電極を作製するため、負荷特性、サイクル特性に優れる一次粒子の体積平均粒子径D50が3μm以下の電極活物質を用い、圧縮成形により活物質層を形成する場合には、その小さい粒子径に起因する比表面積の増大により、成形性を確保しようとすると結着材の量を成形体全体の20重量%程度まで多くする必要があり、特に、D50を1μm以下とした場合には、小粒径化に伴う必要結着材量の増大が甚だしくなる。結着材の量が多くなると電池のエネルギー密度が低下し、また、内部抵抗も増大し、電池性能が低下するため好ましくない。 Since the thickness of the active material layer to produce a thick electrode, load characteristics, if the volume average particle diameter D 50 of the primary particles which is excellent in cycle characteristics using the following electrode active material 3 [mu] m, to form an active material layer by compression molding In order to secure moldability due to an increase in specific surface area due to the small particle size, it is necessary to increase the amount of the binder to about 20% by weight of the entire molded body, and in particular, D 50 is 1 μm. In the case of the following, an increase in the necessary amount of binder accompanying the reduction in particle size becomes significant. When the amount of the binder is increased, the energy density of the battery is lowered, the internal resistance is increased, and the battery performance is lowered, which is not preferable.

特許文献1に記載の二次電池において大粒径活物質粒子を用いることの効果は、電極内に空隙が形成され、非水電解質の含浸性が向上されるため、電極内での活物質と非水電解質の接触面積が増大すること、つまりイオンパスが増えることによりリチウムイオンの拡散が向上することとされている。また、小粒径活物質粒子を用いることの効果は、活物質粒子内におけるリチウムイオンの拡散距離を減少させることにより、電極中のリチウムイオン拡散性を効果的に向上することとされている。さらに、大粒径活物質粒子の真密度を小粒径活物質粒子の真密度より大きくすることの効果は、活物質を含むスラリーを集電体に塗布した際に、大粒径活物質粒子が集電体側に沈降しやすくなるため、集電体と活物質含有層との密着性が良好になり、電子導電性が向上することとされている。   The effect of using the large particle size active material particles in the secondary battery described in Patent Document 1 is that voids are formed in the electrode and the impregnation property of the nonaqueous electrolyte is improved. It is supposed that the diffusion area of lithium ions is improved by increasing the contact area of the non-aqueous electrolyte, that is, by increasing the number of ion paths. Further, the effect of using the small particle size active material particles is to effectively improve the lithium ion diffusibility in the electrode by reducing the diffusion distance of lithium ions in the active material particles. Furthermore, the effect of making the true density of the large particle size active material particles larger than the true density of the small particle size active material particles is that when the slurry containing the active material is applied to the current collector, the large particle size active material particles Is likely to settle to the current collector side, so that the adhesion between the current collector and the active material-containing layer is improved, and the electronic conductivity is improved.

特許文献1の発明では、スラリー流延法で活物質層を形成することを前提としており、分散溶媒が極端に少ない場合には適用できない。さらに、一般的には成形体中で構成材料は均一分散されているほうが良好な寿命特性を示す傾向にあり、大粒子の集電体側への偏在を要す特許文献1の二次電池では性能が低下する恐れがある。   The invention of Patent Document 1 is based on the premise that the active material layer is formed by the slurry casting method, and cannot be applied when the amount of the dispersion solvent is extremely small. Furthermore, in general, the constituent materials in the molded body tend to exhibit better life characteristics when they are uniformly dispersed. In the secondary battery of Patent Document 1, which requires uneven distribution of large particles on the current collector side, performance is improved. May decrease.

特許文献2も、活物質粒子として大小混合系とすることを開示するが、その発明の目的は充放電時における抵抗上昇抑制であり、また、特許文献1と同様に、スラリー流延法で活物質層を形成することを前提としており、本発明の課題である、活物質層の厚さが厚い電極に適用されるシート状活物質粒子含有成形体であって、優れた成形性を有する成形体を提供するという課題が存在していない。   Patent Document 2 also discloses that a large and small mixed system is used as the active material particles. The object of the invention is to suppress increase in resistance at the time of charge and discharge. Forming a sheet-shaped active material particle-containing molded article that is applied to an electrode having a thick active material layer, which is a subject of the present invention, and is an object of the present invention, and has excellent moldability There is no problem of providing a body.

本発明者は、活物質層の厚さが厚い電極を作製する際、D50が3μm以下の酸化物活物質小粒子にD50が8μm以上の酸化物大粒子を混合することで、結着材を減らしつつ、良好な成形性を発現することができることを見出した。これは、活物質層の圧縮成形法による形成においては、スラリー流延法による形成とは異なり、活物質粒子が成形体中で均一に分散するため、少ない結着材量でも酸化物大粒子周辺に酸化物活物質小粒子が効果的に結着可能となり、また、このような酸化物活物質小粒子が結着した酸化物大粒子同士も、少結着材量かつ小接触面積で、十分効果的に結着されることに起因する現象である。 When producing an electrode with a thick active material layer, the present inventor mixed a small oxide active material particle having a D 50 of 3 μm or less with a large oxide particle having a D 50 of 8 μm or more, thereby binding the electrode. It has been found that good moldability can be expressed while reducing the material. This is because, in the formation of the active material layer by the compression molding method, unlike the formation by the slurry casting method, the active material particles are uniformly dispersed in the molded body, so that even if the amount of the binder is small, the periphery of the large oxide particles Oxide active material small particles can be effectively bound to each other, and large oxide particles bound to such small oxide active material particles are also sufficient with a small amount of binder and a small contact area. This is a phenomenon caused by effective binding.

このようにして圧縮成形法により成形された本発明のシート状活物質粒子含有成形体を用いて板状の電極を作製する方法としては、例えば、成形したシート状活物質粒子含有成形体2枚で集電体を挟み込み、80℃のロールプレスに通し、300kg/cmの圧力をかける方法や、集電体と活物質粒子含有混合物をロールプレスに同時投入し、40kg/cmの圧力をかける方法がある。 As a method for producing a plate-like electrode using the sheet-shaped active material particle-containing molded body of the present invention molded by the compression molding method in this way, for example, two molded sheet-shaped active material particle-containing molded bodies are used. The current collector is sandwiched between and a pressure of 300 kg / cm 2 is applied through a 80 ° C. roll press, or the current collector and the active material particle-containing mixture are simultaneously charged into the roll press, and the pressure of 40 kg / cm 2 is applied. There is a way to apply.

即ち、本発明は、厚み0.3mm以上、3mm以下の二次電池電極用シート状活物質粒子含有成形体であって、一次粒子の体積平均粒子径(D50)が1μm超、3μm以下の酸化物活物質小粒子65重量%以上、90重量%以下、数平均粒子圧縮破壊強度が3MPa以上、かつ、一次粒子の体積平均粒子径(D50)が8μm以上、50μm以下の酸化物大粒子5重量%以上、30重量%以下、導電助材0.5重量%以上、10重量%以下、及び結着材0.5重量%以上、5重量%以下を含み、各構成材料が該成形体内において均一に分散して存在することを特徴とする二次電池電極用シート状活物質粒子含有成形体に関する。 That is, the present invention is a sheet-shaped active material particle-containing molded article for secondary battery electrodes having a thickness of 0.3 mm or more and 3 mm or less, wherein the primary particles have a volume average particle diameter (D 50 ) of more than 1 μm and 3 μm or less. Small oxide active material particles 65% by weight or more and 90% by weight or less, number average particle compression fracture strength of 3 MPa or more, and primary particles having a volume average particle diameter (D 50 ) of 8 μm or more and 50 μm or less 5% by weight or more and 30% by weight or less, conductive additive 0.5% by weight or more and 10% by weight or less, and binder 0.5% by weight or more and 5% by weight or less, and each constituent material is in the molded body. It is related with the molded object containing the sheet-like active material particle for secondary battery electrodes characterized by existing uniformly disperse | distributing.

前記酸化物活物質小粒子は、スピネル構造を有するチタン酸リチウムであることが好ましい。   The small oxide active material particles are preferably lithium titanate having a spinel structure.

前記酸化物大粒子は、スピネル構造を有するチタン酸リチウムおよび/または酸化チタンであることが好ましい。   The large oxide particles are preferably lithium titanate and / or titanium oxide having a spinel structure.

前記酸化物活物質小粒子は、マンガン酸リチウムおよび/またはマンガン酸リチウムのイオンの一部を他の金属イオンで置換した化合物であることが好ましい。   The small oxide active material particles are preferably a compound in which a part of ions of lithium manganate and / or lithium manganate are substituted with other metal ions.

本発明によれば、活物質層の厚さが厚い電極を作製する際、D50が3μm以下の酸化物活物質小粒子にD50が8μm以上の酸化物大粒子を混合することで良好な成形性を有する活物質粒子含有混合物とすることができる。また、このような本発明のシート状活物質粒子含有成形体においては、少量の結着材量(5重量%以下)でも十分な成形性や機械的強度が得られる。十分な成形性や機械的強度が得られることにより、電極成形時や搬送時に活物質混合物が集電体から剥離することがなく取扱いに優れる。また、二次電池製造後においても、集電体からの剥離がないため、二次電池の抵抗増大も抑制することが可能である。機械的強度と柔軟性を兼ね備えた連続体としての電極が製造可能であり、ロールに捲回することも可能であることから、巻き取り、巻き出しなどが容易なため生産性に優れる。 According to the present invention, when an electrode having a thick active material layer is produced, it is preferable to mix large oxide particles having a D 50 of 8 μm or more with small oxide active material particles having a D 50 of 3 μm or less. It can be set as the active material particle containing mixture which has a moldability. Moreover, in such a sheet-like active material particle-containing molded article of the present invention, sufficient moldability and mechanical strength can be obtained even with a small amount of binder (5 wt% or less). By obtaining sufficient formability and mechanical strength, the active material mixture is not peeled off from the current collector during electrode molding or transportation, and is excellent in handling. Further, even after the secondary battery is manufactured, since there is no peeling from the current collector, it is possible to suppress an increase in the resistance of the secondary battery. Since a continuous electrode having both mechanical strength and flexibility can be manufactured and wound on a roll, it is excellent in productivity because it can be easily wound and unwound.

さらに、特許文献1とは異なり、各構成材料が成形体内で均一に分散しているため、電池反応の局在化が起こらないため、副反応や二次電池の膨張・収縮を抑制することができ、長寿命な二次電池とすることができる。また、均一分散していることにより、酸化物大粒子の隙間に酸化物活物質小粒子が充填されやすく、電極密度を向上させることが可能で、結果として二次電池のエネルギー密度を向上させることが可能である。   Further, unlike Patent Document 1, since each constituent material is uniformly dispersed in the molded body, the localization of the battery reaction does not occur, thereby suppressing side reactions and expansion / contraction of the secondary battery. And a long-life secondary battery. In addition, the uniform dispersion makes it easy to fill the gaps between the large oxide particles with the small oxide active material particles, which can improve the electrode density, and as a result, improve the energy density of the secondary battery. Is possible.

以下、本発明の実施の形態を説明する。なお、本発明の範囲は特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。   Embodiments of the present invention will be described below. The scope of the present invention is defined by the scope of the claims, and is intended to include any modifications within the scope and meaning equivalent to the scope of the claims.

(二次電池電極用シート状活物質粒子含有成形体)
本発明の二次電池電極用シート状活物質粒子含有成形体は、厚み0.3mm以上、3mm以下のシート状の二次電池電極用の活物質粒子含有成形体である。厚みをこの範囲内とすることにより、高エネルギー密度、高レート特性の二次電池とすることができる。
(Sheet-like active material particle-containing molded product for secondary battery electrode)
The sheet-shaped active material particle-containing molded article for secondary battery electrodes of the present invention is an active material particle-containing molded article for sheet-shaped secondary battery electrodes having a thickness of 0.3 mm or more and 3 mm or less. By setting the thickness within this range, a secondary battery having high energy density and high rate characteristics can be obtained.

前記活物質粒子含有成形体は、酸化物活物質小粒子、酸化物大粒子、導電助材および結着材の各構成材料を含み、前述の各構成材料が該成形体内において均一に分散して存在する。各構成材料が均一分散されていることにより、長寿命、高エネルギー密度の二次電池とすることができる。   The active material particle-containing molded body includes constituent materials of small oxide active material particles, large oxide particles, a conductive additive, and a binder, and the above-described constituent materials are uniformly dispersed in the molded body. Exists. Since each constituent material is uniformly dispersed, a secondary battery having a long life and high energy density can be obtained.

ここで、各構成材料が均一に分散されているとは、活物質粒子含有成形体中の任意の場所において、酸化物活物質小粒子、酸化物大粒子、導電助材および結着材の存在比率が、活物質粒子成形体全体の平均値に対して誤差範囲±20%以内であることをいう。存在比率はSEM観察によって確認することが可能であり、例えば、成形体中の任意の場所10点で各構成材料の存在比率を求め、その10点の存在比率の平均値と各点の存在比率の差から、誤差範囲±20%以内であるかどうかを判定することができる。本発明のように、活物質粒子含有成形体を圧縮成形により形成した場合には、各構成材料が成形体中で均一に混合されるため、任意の場所において各構成材料の存在比率は上記の範囲内となっており、均一に分散されていることとなる。   Here, each constituent material is uniformly dispersed is the presence of small oxide active material particles, large oxide particles, conductive aids and binders at any location in the active material particle-containing molded body. It means that the ratio is within an error range of ± 20% with respect to the average value of the entire active material particle compact. The abundance ratio can be confirmed by SEM observation. For example, the abundance ratio of each constituent material is obtained at any 10 points in the molded body, and the average of the abundance ratio of the 10 points and the abundance ratio of each point. From the difference, it can be determined whether the error range is within ± 20%. When the active material particle-containing molded body is formed by compression molding as in the present invention, each constituent material is uniformly mixed in the molded body. It is within the range and is uniformly dispersed.

前記活物質粒子含有成形体は、酸化物活物質小粒子が65重量%以上、90重量%以下、酸化物大粒子が5重量%以上、30重量%以下、導電助材が0.5重量%以上、10重量%以下、及び結着材が0.5重量%以上、5重量%以下含まれる。このような構成比率とすることで、成形特性と電池特性を良好なものにすることができる。   The active material particle-containing molded product has 65% to 90% by weight of small oxide active material particles, 5% to 30% by weight of large oxide particles, and 0.5% by weight of conductive additive. The content is 10% by weight or less and the binder is 0.5% by weight or more and 5% by weight or less. By setting it as such a structure ratio, a shaping | molding characteristic and a battery characteristic can be made favorable.

(電極の活物質、導電助材、バインダー)
本発明の二次電池電極用シート状活物質粒子含有成形体に含まれる酸化物活物質小粒子は、該電極を負極に用いる場合には、負極に含まれる負極活物質の主成分が、チタンを含む酸化物、酸化モリブデン、酸化ニオブ、及び酸化タングステンであることが好ましく、より好ましくは、チタン酸リチウム、及びチタン酸リチウムのチタンの一部を他の金属イオンで置換したものからなる群から選ばれる1種以上であることであり、前記他の金属イオンがニオブであることが、良好な成形性および長寿命化に効果があるため、特に好ましい。また、前記リチウムチタン酸化物がスピネル構造を有していることが、充放電に対する寸法安定性の観点から特に好ましい。
(Electrode active material, conductive additive, binder)
When the electrode is used for a negative electrode, the oxide active material small particles contained in the sheet-shaped active material particle-containing molded body for secondary battery electrodes of the present invention are composed mainly of titanium as the negative electrode active material contained in the negative electrode. It is preferably an oxide containing molybdenum, molybdenum oxide, niobium oxide, and tungsten oxide, and more preferably, lithium titanate and a group consisting of lithium titanate in which a part of titanium is replaced with other metal ions It is particularly preferable that the other metal ion is niobium because it is effective for good moldability and long life. Moreover, it is particularly preferable that the lithium titanium oxide has a spinel structure from the viewpoint of dimensional stability against charge / discharge.

酸化物大粒子の種類は問わないが、スピネル構造を有するチタン酸リチウムおよび/または酸化チタンであることが、充放電に対する寸法安定性の観点から好ましい。特に、酸化物大粒子を活物質小粒子と同じ酸化物にすることが、エネルギー密度を減らさずに成形性を向上させることができるため好ましい。酸化物大粒子の混合比率は5重量%以上で成形性向上の効果を発揮し、十分な成形性を発現するまで混合比率を増やすことができるが、酸化物大粒子として酸化物活物質小粒子と異なる酸化物を使用した場合には、30重量%以上ではエネルギー密度が低下する傾向にあり好ましくない。   The type of large oxide particles is not limited, but lithium titanate and / or titanium oxide having a spinel structure is preferable from the viewpoint of dimensional stability against charge / discharge. In particular, it is preferable that the large oxide particles be the same oxide as the small active material particles because the moldability can be improved without reducing the energy density. When the mixing ratio of the large oxide particles is 5% by weight or more, the effect of improving the moldability is exhibited, and the mixing ratio can be increased until sufficient moldability is exhibited. When an oxide different from the above is used, an energy density of 30% by weight or more tends to decrease, which is not preferable.

前記酸化物活物質小粒子の一次粒子のD50は、1μm超、3μm以下、前記酸化物大粒子の一次粒子のD50は、8μm以上、50μm以下であることが、上記の成形性向上効果を得るために好ましい。また、酸化物大粒子の数平均粒子圧縮破壊強度は3MPa以上であることが、高強度の活物質層を得るために好ましい。 The D 50 of the primary particles of the oxide active material small particles is more than 1 μm and 3 μm or less, and the D 50 of the primary particles of the large oxide particles is 8 μm or more and 50 μm or less. It is preferable to obtain The number average particle compression fracture strength of the large oxide particles is preferably 3 MPa or more in order to obtain a high-strength active material layer.

このような負極活物質を含む負極に組み合わせる正極に含まれる正極活物質に用いられる酸化物活物質小粒子としては、マンガン酸リチウムおよび/またはマンガン酸リチウムのイオンの一部を他の金属イオンで置換した化合物、リン酸鉄リチウム、及びリン酸マンガンリチウムからなる群から選ばれる1種以上であることが、良好な成形性および長寿命化に効果があるため好ましい。より好ましくは、マンガン酸リチウムおよび/またはマンガン酸リチウムのイオンの一部を他の金属イオンで置換した化合物からなる群から選ばれる1種以上であることであり、前記他の金属イオンがニッケル、アルミニウム、マグネシウム、チタン、クロム、コバルト、鉄から選ばれる少なくとも1種を含む金属イオンであることが、長寿命化に効果があるため、特に好ましい。   As the oxide active material small particles used for the positive electrode active material included in the positive electrode combined with the negative electrode containing such a negative electrode active material, lithium manganate and / or a part of lithium manganate ions may be replaced with other metal ions. One or more selected from the group consisting of a substituted compound, lithium iron phosphate, and lithium manganese phosphate is preferable because it is effective for good moldability and long life. More preferably, it is at least one selected from the group consisting of lithium manganate and / or a compound obtained by substituting some of the ions of lithium manganate with other metal ions, wherein the other metal ions are nickel, A metal ion containing at least one selected from aluminum, magnesium, titanium, chromium, cobalt, and iron is particularly preferable because it has an effect of extending the life.

正極においても、負極と同様の理由で酸化物大粒子は、酸化物活物質小粒子と同じ酸化物にすることが好ましく、酸化物大粒子の成形体中の混合比率は5重量%以上30重量%以下が好ましい。   Also in the positive electrode, the large oxide particles are preferably the same oxide as the small oxide active material particles for the same reason as the negative electrode, and the mixing ratio of the large oxide particles in the compact is 5 wt% or more and 30 wt%. % Or less is preferable.

また、正極においても、負極と同様の理由で、酸化物活物質小粒子の一次粒子のD50は、1μm超、3μm以下、酸化物大粒子の一次粒子のD50は、8μm以上、50μm以下であること、酸化物大粒子の数平均粒子圧縮破壊強度は3MPa以上であることが好ましい。 Also, in the positive electrode, for the same reason as the negative electrode, the D 50 of the primary particles of the small oxide active material particles is more than 1 μm and 3 μm or less, and the D 50 of the primary particles of the large oxide particles is 8 μm or more and 50 μm or less. The number average particle compression fracture strength of the large oxide particles is preferably 3 MPa or more.

本発明の二次電池電極用シート状活物質粒子含有成形体に含まれる導電助材としては、特に限定されないが、炭素材料または/および金属微粒子が好ましい。炭素材料として、例えば、天然黒鉛、人造黒鉛、気相成長炭素繊維、カーボンナノチューブ、アセチレンブラック、ケッチェンブラック、カーボンブラック、及びファーネスブラックなどが挙げられる。金属微粒子としては、例えば、銅、アルミニウム、ニッケルおよびこれら少なくとも1種を含む合金が挙げられる。また、無機材料の微粒子にめっきを施したものでも良い。これら炭素材料および金属微粒子は1種類でも良いし、2種類以上用いても良い。   Although it does not specifically limit as a conductive support agent contained in the sheet-like active material particle containing molded object for secondary battery electrodes of this invention, A carbon material and / or a metal microparticle are preferable. Examples of the carbon material include natural graphite, artificial graphite, vapor-grown carbon fiber, carbon nanotube, acetylene black, ketjen black, carbon black, and furnace black. Examples of the metal fine particles include copper, aluminum, nickel, and an alloy containing at least one of these. Further, the fine particles of inorganic material may be plated. These carbon materials and metal fine particles may be used alone or in combination of two or more.

前記導電助材の成形体中の混合比率は0.5重量%以上、10重量%以下であることが好ましい。このような範囲内とすることで、電極の導電性が確保されつつ結着材との接着性が維持され、高強度の活物質層を得ることができる。   The mixing ratio of the conductive additive in the molded body is preferably 0.5% by weight or more and 10% by weight or less. By setting it as such a range, the adhesiveness with a binder is maintained, ensuring the electroconductivity of an electrode, and a high-strength active material layer can be obtained.

本発明の二次電池電極用シート状活物質粒子含有成形体に含まれる結着材は、結着性があり水または有機溶媒に分散可能なものが使用される。例えば、特に限定されないが、ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)、スチレン−ブタジエン共重合体(SBR)、ポリアクリル酸エステル、ポリアクリルアミド、ポリビニルアルコール(PVA)、ポリイミド(PI)、カルボキシメチルセルロース(CMC)、グルコマンナン・グアガム等の天然多糖類およびそれらの誘導体からなる群から選ばれる少なくとも1種を用いることができる。これらに分散剤、増粘剤を加えても良い。   As the binder contained in the sheet-shaped active material particle-containing molded article for secondary battery electrodes of the present invention, a binder having a binding property and dispersible in water or an organic solvent is used. For example, although not particularly limited, polyvinylidene fluoride (PVdF), polytetrafluoroethylene (PTFE), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), styrene-butadiene copolymer (SBR), polyacrylic ester , Polyacrylamide, polyvinyl alcohol (PVA), polyimide (PI), carboxymethyl cellulose (CMC), at least one selected from the group consisting of natural polysaccharides such as glucomannan guar gum and derivatives thereof. You may add a dispersing agent and a thickener to these.

前記結着材の成形体中の混合比率は、0.5重量%以上、5重量%以下であることが好ましい。このような範囲内とすることで、電池性能を低下させずに十分な結着性を付与することができる。   The mixing ratio of the binder in the molded body is preferably 0.5% by weight or more and 5% by weight or less. By setting it within such a range, sufficient binding properties can be imparted without deteriorating battery performance.

(二次電池)
本発明の二次電池電極用シート状活物質粒子含有成形体を用いる二次電池は、一般に、イオン伝導性を有する電解質を含むセパレータを正極、及び負極で挟持した積層体を含むものである。
(Secondary battery)
The secondary battery using the sheet-shaped active material particle-containing molded body for secondary battery electrode of the present invention generally includes a laminate in which a separator containing an ion conductive electrolyte is sandwiched between a positive electrode and a negative electrode.

本発明に係る二次電池は、正極と負極との間にセパレータを配置したものを捲回したものであってもよいし、積層したものであってもよい。正極、負極、およびセパレータには、例えば、イオン伝導を担う非水電解質が含浸している。非水電解質としてゲル状のものを使用する場合は、電解質が正極および負極に含浸していても、正極・負極間のみにある状態でもよい。ゲル状電解質により正極・負極間が直接接触していなければ、セパレータを使用する必要はない。   The secondary battery according to the present invention may be one obtained by winding or laminating a separator disposed between a positive electrode and a negative electrode. The positive electrode, the negative electrode, and the separator are impregnated with, for example, a nonaqueous electrolyte that is responsible for ionic conduction. In the case of using a gel-like nonaqueous electrolyte, the electrolyte may be impregnated in the positive electrode and the negative electrode, or may be in a state only between the positive electrode and the negative electrode. If the positive electrode and the negative electrode are not in direct contact with the gel electrolyte, it is not necessary to use a separator.

本発明に係る二次電池は、上記捲回、あるいは積層した後にラミネートフィルムで外装してもよいし、角形、楕円形、円筒形、コイン形、ボタン形、シート形の金属缶で外装してもよい。前記外装には発生したガス等を放出するための機構が備わっていてもよい。また、劣化した当該非水電解質二次電池の機能を回復させるための添加剤を電池外部から注入する機構が備わっていてもよい。積層体の積層数は、所望の電池容量を発現するように適宜設定できる。積層の場合は、電極の積層方向に圧力が加えられていても良い。二次電池内部で圧力を加えても、外装の外側から圧力を加えても良い。   The secondary battery according to the present invention may be externally wrapped with a laminate film after being wound or laminated, or may be externally covered with a rectangular, oval, cylindrical, coin-shaped, button-shaped, or sheet-shaped metal can. Also good. The exterior may be provided with a mechanism for releasing generated gas or the like. Further, a mechanism for injecting an additive for recovering the function of the deteriorated nonaqueous electrolyte secondary battery from the outside of the battery may be provided. The number of stacked layers can be appropriately set so as to express a desired battery capacity. In the case of stacking, pressure may be applied in the stacking direction of the electrodes. The pressure may be applied inside the secondary battery or may be applied from the outside of the exterior.

本発明に係る二次電池は、複数を直列接続することによって組電池とすることができる。本発明の二次電池からなる組電池は、二次電池毎に容量ばらつきを制御する必要がないため、二次電池毎に個別に充放電せずに、組電池単位で充放電することも可能である。また、同様の理由から、組電池単位で電圧監視および制御をすることも可能である。また、直列接続した組電池同士を並列接続することができる。並列の個数には特に制限がなく、使用する用途によって自由に設計することができる。   The secondary battery which concerns on this invention can be made into an assembled battery by connecting two or more in series. The assembled battery comprising the secondary battery of the present invention does not need to control the capacity variation for each secondary battery, so it is also possible to charge and discharge in units of assembled batteries without individually charging and discharging each secondary battery. It is. For the same reason, it is possible to monitor and control the voltage for each assembled battery. Moreover, the assembled batteries connected in series can be connected in parallel. There is no restriction | limiting in particular in the number of parallel, It can design freely by the use to be used.

本発明に係る組電池の用途は特に限定されないが、長寿命、高安全と云う特長から、商用電源に系統連系されて用いることが好ましい。系統連系されて用いられる場合、定電流以外の制御でも充放電がなされてもよい。例えば、終止電圧以下の定電圧を印加することにより充電することや、定ワットや定抵抗で負荷をかけることにより放電をすることが挙げられる。   Although the use of the assembled battery according to the present invention is not particularly limited, it is preferably used in a grid connection with a commercial power source because of its long life and high safety. When used in a grid connection, charging / discharging may be performed by control other than constant current. For example, charging can be performed by applying a constant voltage equal to or lower than the end voltage, or discharging can be performed by applying a load with a constant wattage or a constant resistance.

本発明に係る二次電池は、前述のように、チタンを含む酸化物を負極活物質として含む負極を備えることが好ましいが、このチタンを含む酸化物の異常活性点で、電解質溶媒が分解してガスが発生する場合がある。そのために、一定の充電状態で、発生したガスを吸収する能力がある、リチウムコバルト酸化物を主成分とする正極活物質を含む正極を備えることが好ましい。しかし、このリチウムコバルト酸化物を主成分とする正極活物質を含む正極は、過充電に対し脆弱なので、本発明の効果を奏さしめつつ、このようなガス発生を抑制せしめる観点から、二次電池を、第1の正極として、リチウムマンガン酸化物およびそのマンガンの一部を異種元素で置換した酸化物からなる群から選ばれる1種以上の正極活物質を主成分とする正極を有し、かつ、前記第1の正極とは別の第2の正極として、前記リチウムコバルト酸化物を主成分とする正極活物質を含む正極をさらに有する二次電池とすることも好適な実施態様である。このようにすることで、通常の充放電に関わる第1の正極とは別に、第1の正極と同様に作動する別の活物質を塗布した第2の正極を導入することができる。第2の正極は第1の正極とは電気的に分離しており、第1の正極と第2の正極を同時に一定電圧まで充電したあと、第2の正極を電気的に切り離すことで、充電状態の第2の正極を電池内に存在させることができる。この第2の正極がリチウムコバルト酸化物を主成分とする正極活物質を含む場合、二次電池中に発生したガスを吸収させることが可能になる。   As described above, the secondary battery according to the present invention preferably includes a negative electrode including a titanium-containing oxide as a negative electrode active material. However, the electrolyte solvent decomposes at an abnormally active point of the titanium-containing oxide. Gas may be generated. Therefore, it is preferable to provide a positive electrode including a positive electrode active material mainly composed of lithium cobalt oxide and capable of absorbing the generated gas in a constant charge state. However, since the positive electrode including the positive electrode active material mainly composed of lithium cobalt oxide is vulnerable to overcharge, the secondary battery is provided from the viewpoint of suppressing such gas generation while exhibiting the effects of the present invention. A positive electrode mainly composed of one or more positive electrode active materials selected from the group consisting of lithium manganese oxide and an oxide obtained by substituting a part of the manganese with a different element, and In a preferred embodiment, the second positive electrode different from the first positive electrode is a secondary battery further including a positive electrode including a positive electrode active material mainly composed of the lithium cobalt oxide. By doing in this way, the 2nd positive electrode which apply | coated another active material which operate | moves similarly to a 1st positive electrode separately from the 1st positive electrode in connection with normal charging / discharging can be introduce | transduced. The second positive electrode is electrically separated from the first positive electrode, and after charging the first positive electrode and the second positive electrode to a certain voltage at the same time, the second positive electrode is electrically disconnected to be charged. A second positive electrode in a state can be present in the battery. When the second positive electrode includes a positive electrode active material mainly composed of lithium cobalt oxide, it is possible to absorb the gas generated in the secondary battery.

(セパレータ)
本発明の二次電池電極用シート状活物質粒子含有成形体を用いる二次電池に用いるセパレータとしては、多孔質材料または不織布等が挙げられる。セパレータの材質としては、電解液を構成する有機溶媒に対して溶解しないものが好ましく、具体的にはポリエチレンやポリプロピレンのようなポリオレフィン系ポリマー、ポリエチレンテレフタレートのようなポリエステル系ポリマー、セルロース、ガラスのような無機材料が挙げられる。
(Separator)
Examples of the separator used for the secondary battery using the sheet-like active material particle-containing molded body for the secondary battery electrode of the present invention include porous materials and nonwoven fabrics. The material of the separator is preferably one that does not dissolve in the organic solvent that constitutes the electrolytic solution. Specifically, a polyolefin polymer such as polyethylene or polypropylene, a polyester polymer such as polyethylene terephthalate, cellulose, or glass. Inorganic materials.

セパレータの厚みは1〜500μmが好ましい。1μm未満であるとセパレータの機械的強度の不足により破断し、内部短絡する傾向がある。一方、500μmより厚い場合、電池の内部抵抗と、正極負極の電極間距離が増大することにより、電池の負荷特性が低下する傾向がある。より好ましい厚みは、10〜300μmである。   The thickness of the separator is preferably 1 to 500 μm. If it is less than 1 μm, it tends to break due to insufficient mechanical strength of the separator and cause an internal short circuit. On the other hand, when it is thicker than 500 μm, the load characteristics of the battery tend to be reduced due to an increase in the internal resistance of the battery and the distance between the positive and negative electrodes. A more preferable thickness is 10 to 300 μm.

(電解質)
本発明の二次電池電極用シート状活物質粒子含有成形体を用いる二次電池に用いる電解質としては、非水電解質が好ましく、非水電解質は、特に限定されないが、非水溶媒に溶質を溶解させた電解液、非水溶媒に溶質を溶解させた電解液またはイオン液体を高分子に含浸させたゲル電解質、硫黄系固体電解質のような固体電解質、イオン液体とシリカ微粒子を混合し、疑似固体化した擬似固体電解質などを用いることができる。
(Electrolytes)
The electrolyte used in the secondary battery using the sheet-shaped active material particle-containing molded article for the secondary battery electrode of the present invention is preferably a non-aqueous electrolyte, and the non-aqueous electrolyte is not particularly limited, but the solute is dissolved in a non-aqueous solvent. Mixed electrolytes, electrolytes in which solutes are dissolved in non-aqueous solvents, gel electrolytes in which polymers are impregnated with ionic liquids, solid electrolytes such as sulfur-based solid electrolytes, ionic liquids and silica fine particles are mixed, and quasi-solid A pseudo-solid electrolyte or the like can be used.

前記非水溶媒としては、環状の非プロトン性溶媒及び/又は鎖状の非プロトン性溶媒を含むことが好ましく、炭酸塩であることがより好ましい。環状の非プロトン性溶媒としては、環状カーボネート、環状エステル、環状スルホン及び環状エーテルなどが例示される。鎖状の非プロトン性溶媒としては、鎖状カーボネート、鎖状カルボン酸エステル及び鎖状エーテルなどが例示される。また、上記に加えアセトニトリルなどの一般的に非水電解質の溶媒として用いられる溶媒を用いても良い。より具体的には、ジメチルカーボネート、メチルエチルカーボネート、ジメチルカーボネート、ジプロピルカーボネート、メチルプロピルカーボネート、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、γ−ブチロラクトン、1,2−ジメトキシエタン、スルホラン、ジオキソラン、プロピオン酸メチルなどを用いることができる。これら溶媒は1種類で用いてもよいし、2種類以上混合しても用いてもよいが、後述の溶質の溶解させやすさ、イオンの伝導性の高さから、2種類以上混合した溶媒を用いることが好ましい。   The non-aqueous solvent preferably includes a cyclic aprotic solvent and / or a chain aprotic solvent, and more preferably a carbonate. Examples of the cyclic aprotic solvent include cyclic carbonates, cyclic esters, cyclic sulfones and cyclic ethers. Examples of the chain aprotic solvent include chain carbonates, chain carboxylic acid esters and chain ethers. In addition to the above, a solvent generally used as a solvent for nonaqueous electrolytes such as acetonitrile may be used. More specifically, dimethyl carbonate, methyl ethyl carbonate, dimethyl carbonate, dipropyl carbonate, methyl propyl carbonate, ethylene carbonate, propylene carbonate, butylene carbonate, γ-butyrolactone, 1,2-dimethoxyethane, sulfolane, dioxolane, propionic acid Methyl and the like can be used. These solvents may be used singly or in combination of two or more. However, in view of ease of dissolving the solute described later and the high conductivity of ions, a mixed solvent of two or more types is used. It is preferable to use it.

前記溶質は、特に限定されないが、例えば、リチウムイオン二次電池の場合、LiClO、LiBF、LiPF、LiAsF、LiCFSO、LiBOB(Lithium Bis (Oxalato) Borate)、LiN(SOCFなど、構成元素にリチウムとハロゲンを含む化合物が、溶媒に溶解しやすいことから好ましい。電解質に含まれる溶質の濃度は、0.5mol/L以上2.0mol/L以下であることが好ましい。0.5mol/L未満では所望のイオン伝導性が発現しない場合があり、一方、2.0mol/Lより高いと、溶質がそれ以上溶解しない場合がある。非水電解質には、難燃剤、安定化剤などの添加剤が微量含まれてもよい。 The solute is not particularly limited. For example, in the case of a lithium ion secondary battery, LiClO 4 , LiBF 4 , LiPF 6 , LiAsF 6 , LiCF 3 SO 3 , LiBOB (Lithium Bis (Oxalato) Borate), LiN (SO 2 ). A compound containing lithium and halogen as constituent elements such as CF 3 ) 2 is preferable because it is easily dissolved in a solvent. The concentration of the solute contained in the electrolyte is preferably 0.5 mol / L or more and 2.0 mol / L or less. If it is less than 0.5 mol / L, the desired ionic conductivity may not be exhibited. On the other hand, if it is higher than 2.0 mol / L, the solute may not be dissolved any more. The non-aqueous electrolyte may contain a trace amount of additives such as a flame retardant and a stabilizer.

二次電池に非水電解質を用いる場合、非水電解質の量は、特に限定されないが、電池容量1Ahあたり、0.1mL以上であることが好ましい。0.1mL未満の場合、電極反応に伴うイオンの伝導が追いつかず、所望の電池性能が発現しない場合がある。固体電解質を用いる場合には、そのまま加圧成形しても良いし、前述の電極に用いた結着材を使用し、シート状に成形して使用しても良い。   When using a non-aqueous electrolyte for the secondary battery, the amount of the non-aqueous electrolyte is not particularly limited, but is preferably 0.1 mL or more per 1 Ah of battery capacity. When the amount is less than 0.1 mL, the conduction of ions accompanying the electrode reaction cannot catch up, and the desired battery performance may not be exhibited. In the case of using a solid electrolyte, it may be pressure-molded as it is, or it may be used after being formed into a sheet using the binder used for the electrode described above.

本発明の二次電池電極用シート状活物質粒子含有成形体に金属等の導電性を有する集電体を貼りあわせることにより板状二次電池電極とすることができる。前記集電体に用いられる導電性材料としては、例えば、銅、アルミニウム、ニッケル、チタンおよびこれら少なくとも1種を含む合金または導電性を有する高分子が挙げられる。形状としては、箔状、メッシュ状、パンチング状、エキスパンド状、または発泡構造体が挙げられる。このような集電体に用いられる導電性材料は、電極作動電位で安定であればよく、リチウムイオン電池においては、作動電位がリチウム基準で0.7V以下では、銅およびその合金が好ましく、0.7V以上ではアルミニウムおよびその合金が好ましい。   A plate-like secondary battery electrode can be obtained by bonding a conductive current collector such as a metal to the molded article containing the sheet-like active material particles for the secondary battery electrode of the present invention. Examples of the conductive material used for the current collector include copper, aluminum, nickel, titanium, an alloy containing at least one of these, and a conductive polymer. Examples of the shape include a foil shape, a mesh shape, a punching shape, an expanded shape, and a foam structure. The conductive material used for such a current collector is only required to be stable at the electrode operating potential, and in a lithium ion battery, copper and its alloys are preferable when the operating potential is 0.7 V or less based on lithium. Above 7 V, aluminum and its alloys are preferred.

前記正極および負極における活物質層の空隙率は15%以上60%以下が好ましく、15%以上40%以下がより好ましい。空隙率が15%未満の場合、イオン拡散が制限されすぎるため、良好な電池性能が得られにくい。空隙率60%以上の場合、活物質同士もしくは活物質と導電助材の接触不良になることがあり、電池性能が低下する恐れがある。また、空隙率が大きい場合には体積エネルギー密度が低下するため、前記範囲内であることが好ましい。   The porosity of the active material layer in the positive electrode and the negative electrode is preferably 15% or more and 60% or less, and more preferably 15% or more and 40% or less. When the porosity is less than 15%, ion diffusion is too limited, and it is difficult to obtain good battery performance. When the porosity is 60% or more, there may be a poor contact between the active materials or between the active material and the conductive additive, and the battery performance may be deteriorated. Further, when the porosity is large, the volume energy density is lowered, and therefore it is preferably within the above range.

本発明の二次電池電極用シート状活物質粒子含有成形体を含む正極および負極は、集電体の両面に正極活物質層、または両面に負極活物質層を形成させた形態であってもよく、集電体の片面に正極活物質層、もう片面に負極活物質層を形成させた形態、すなわち、バイポーラ電極であってもよいが、バイポーラ型とする場合、集電体を介した正極と負極の液絡を防止するため、絶縁材料が正極と負極間に配置されている。また、バイポーラ電極である場合は、隣り合うバイポーラ電極の正極と負極との間にセパレータを配置し、正極と負極とが対向した層内は、液絡を防止するため正極および負極の周辺部に絶縁材料が配置されている。   The positive electrode and the negative electrode including the sheet-shaped active material particle-containing molded product for the secondary battery electrode of the present invention may be in a form in which a positive electrode active material layer is formed on both sides of a current collector, or a negative electrode active material layer is formed on both sides. Well, a form in which a positive electrode active material layer is formed on one side of the current collector and a negative electrode active material layer is formed on the other side, that is, a bipolar electrode may be used. In order to prevent liquid junction between the negative electrode and the negative electrode, an insulating material is disposed between the positive electrode and the negative electrode. In the case of a bipolar electrode, a separator is disposed between the positive electrode and the negative electrode of the adjacent bipolar electrode, and the layer where the positive electrode and the negative electrode face each other is disposed around the positive electrode and the negative electrode to prevent liquid junction. Insulating material is arranged.

(成形方法)
本発明の二次電池電極用シート状活物質粒子含有成形体の前駆体となる活物質粒子含有混合物を製造する方法は、特に限定されないが、酸化物活物質小粒子、酸化物大粒子、導電助材、バインダーを均一に混合できることから、撹拌造粒装置、ボールミル、プラネタリミキサ、ジェットミル、薄膜旋回型ミキサーを用いることが好ましい。活物質混合物の混合方法は、特に限定されないが、酸化物活物質小粒子、酸化物大粒子、導電助材を混合した後に、溶媒に分散させたバインダーを加えて作製しても良いし、電極活物質、導電助材、およびバインダーを混合した後に溶媒を加えて作製しても良い。好ましくは、酸化物活物質小粒子、酸化物大粒子の混合物に、溶媒に分散させたバインダーを加えて混合した後に、導電助材を加えて、混合する方法が望ましい。
(Molding method)
The method for producing the active material particle-containing mixture that becomes the precursor of the sheet-shaped active material particle-containing molded product for the secondary battery electrode of the present invention is not particularly limited, but small oxide active material particles, large oxide particles, conductive Since an auxiliary material and a binder can be mixed uniformly, it is preferable to use a stirring granulator, a ball mill, a planetary mixer, a jet mill, and a thin-film swirl mixer. The mixing method of the active material mixture is not particularly limited, but it may be prepared by adding a binder dispersed in a solvent after mixing small particles of oxide active material, large particles of oxide, and a conductive additive, or an electrode. Alternatively, the active material, conductive additive, and binder may be mixed and then added with a solvent. Preferably, a method of adding a conductive additive to a mixture of small particles of oxide active material and large particles of oxide and adding a binder dispersed in a solvent, and then mixing them is desirable.

前述のとおり、本発明の二次電池電極用シート状活物質粒子含有成形体に金属等の導電性を有する集電体を貼り付けるにより板状二次電池電極とすることができる。集電体への貼り付け方法は特に限定されないが、順に、2枚の前記二次電池電極用シート状活物質粒子含有成形体で集電体を挟み込み、集電体挟持物を形成する工程、及び該集電体挟持物を、その両面にある、前記2枚の二次電池電極用シート状活物質粒子含有成形体の両側からプレスする工程を含むことが好ましい。または、集電体と活物質粒子含有混合物を同時にプレスし、二次電池電極用シート状活物質粒子含有成形体の製造と板状二次電池電極を同時に成形する工程を含むことが好ましい。シートの乾燥は、電極を成形する前でも後でも良い。   As described above, a plate-like secondary battery electrode can be obtained by attaching a current collector having conductivity such as metal to the sheet-like active material particle-containing molded article for the secondary battery electrode of the present invention. The method of attaching to the current collector is not particularly limited, the step of sandwiching the current collector between the two sheets of the active material particle-containing sheet for secondary battery electrodes in order to form a current collector sandwich, It is preferable to include a step of pressing the current collector sandwiched article from both sides of the two sheet-shaped active material particle-containing molded bodies for secondary battery electrodes on both sides thereof. Alternatively, it is preferable to include a step of simultaneously pressing the current collector and the active material particle-containing mixture to produce a sheet-shaped active material particle-containing molded body for a secondary battery electrode and simultaneously molding a plate-like secondary battery electrode. The sheet may be dried before or after the electrode is formed.

以下の方法で実施例1〜6、及び比較例1〜5の二次電池を作製し、性能を評価した。それぞれの評価条件は表1に記載のとおりである。   The secondary batteries of Examples 1 to 6 and Comparative Examples 1 to 5 were produced by the following method, and the performance was evaluated. Each evaluation condition is as described in Table 1.

(1)二次電池の作製
電極活物質であるLi1.1Al0.1Mn1.8(LAMO)またはLiTi12(LTO)の各々の大粒子および小粒子の粉末を表1に示す比率で混合した粉末90重量部に対して、導電助材(アセチレンブラック)を5重量部、結着材(PTFE)を固形分換算で5重量部混合して、各々の電極に対応する活物質含有混合物を調製し、この混合物を用いて電極を作製した。具体的な方法は後述する。また、前記の大粒子および小粒子の混合粉末の代わりに大粒子のみの粉末90重量部を使用し、同様の方法で電極を作製し、これを対極として前記の電極と組み合わせて二次電池を作製した。
(1) Preparation of secondary battery Powders of large and small particles of Li 1.1 Al 0.1 Mn 1.8 O 4 (LAMO) or Li 4 Ti 5 O 12 (LTO) as electrode active materials Each electrode was prepared by mixing 5 parts by weight of conductive auxiliary material (acetylene black) and 5 parts by weight of binder (PTFE) in terms of solid content with respect to 90 parts by weight of powder mixed in the ratio shown in Table 1. An active material-containing mixture corresponding to was prepared, and an electrode was produced using this mixture. A specific method will be described later. Further, instead of the above mixed powder of large particles and small particles, 90 parts by weight of powder of only large particles was used, and an electrode was produced in the same manner, and this was used as a counter electrode in combination with the above electrode to form a secondary battery. Produced.

(電極活物質の粉末の製造)
ここで、各々の電極活物質は、以下の方法で製造した。
(Production of electrode active material powder)
Here, each electrode active material was manufactured by the following method.

正極活物質であるLi1.1Al0.1Mn1.8(LAMO)は、文献(Electrochemical and Solid−State Letters,9(12),A557(2006))に記載されている方法で製造した。すなわち、二酸化マンガン、炭酸リチウム、水酸化アルミニウム、およびホウ酸の水分散液を調製し、スプレードライ法で混合粉末を得た。このとき、二酸化マンガン、炭酸リチウムおよび水酸化アルミニウムの量は、リチウム、アルミニウムおよびマンガンのモル比が1.1:0.1:1.8となるように調製した。次に、この混合粉末を空気雰囲気下900℃で12時間加熱した後、再度650℃で24時間加熱した。最後に、この粉末を95℃の水で洗浄後、乾燥させることによって正極活物質の粉末を得た。焼成温度条件を変更することにより体積平均粒子径および数平均粒子圧縮破壊強度を調整した。 Li 1.1 Al 0.1 Mn 1.8 O 4 (LAMO), which is a positive electrode active material, is a method described in literature (Electrochemical and Solid-State Letters, 9 (12), A557 (2006)). Manufactured. That is, an aqueous dispersion of manganese dioxide, lithium carbonate, aluminum hydroxide, and boric acid was prepared, and a mixed powder was obtained by a spray drying method. At this time, the amounts of manganese dioxide, lithium carbonate and aluminum hydroxide were adjusted so that the molar ratio of lithium, aluminum and manganese was 1.1: 0.1: 1.8. Next, the mixed powder was heated at 900 ° C. for 12 hours in an air atmosphere, and then again heated at 650 ° C. for 24 hours. Finally, the powder was washed with 95 ° C. water and dried to obtain a positive electrode active material powder. Volume average particle diameter and number average particle compression fracture strength were adjusted by changing the firing temperature conditions.

負極活物質のLiTi12は、文献(Journal of Electrochemical Sosiety,142,1431(1995))に記載されている方法で製造した。すなわち、まず二酸化チタンと水酸化リチウムを、チタンとリチウムとのモル比を5:4となるように混合し、次にこの混合物を窒素雰囲気下800℃で12時間加熱することによって負極活物質の粉末を得た。LAMO同様にスプレードライ法を用いることや、焼成温度条件を変更することにより体積平均粒子径および数平均粒子圧縮破壊強度を調整した。 The negative electrode active material Li 4 Ti 5 O 12 was produced by a method described in the literature (Journal of Electrochemical Society, 142, 1431 (1995)). That is, first, titanium dioxide and lithium hydroxide are mixed so that the molar ratio of titanium and lithium is 5: 4, and then this mixture is heated at 800 ° C. for 12 hours in a nitrogen atmosphere to thereby form a negative electrode active material. A powder was obtained. Similar to LAMO, the volume average particle diameter and the number average particle compression fracture strength were adjusted by using a spray drying method or changing the firing temperature condition.

体積平均粒子径はレーザー回折散乱法粒度分布測定装置により測定した。数平均粒子圧縮破壊強度は島津製微小圧縮試験機を用いて10回測定を行い、平均強度を算出した。   The volume average particle diameter was measured by a laser diffraction scattering method particle size distribution analyzer. The number average particle compression fracture strength was measured 10 times using a Shimadzu micro compression tester, and the average strength was calculated.

(活物質含有混合物及び電極の作製)
活物質含有混合物および電極の作製方法を以下に示す。
(Production of active material-containing mixture and electrode)
A method for producing an active material-containing mixture and an electrode is described below.

先ず、前記電極活物質と導電助材とを自動乳鉢を用いて混合した。得られた混合粉体をミキサーに移し、水に分散した結着材を、1流体ノズルを用いて噴霧により加え、予備混合した後、水を加えて固形分濃度90%に調整し、再度ミキサー混合することにより、活物質含有混合物を得た。   First, the electrode active material and the conductive additive were mixed using an automatic mortar. The obtained mixed powder is transferred to a mixer, and a binder dispersed in water is added by spraying using a one-fluid nozzle. After preliminary mixing, water is added to adjust the solid content to 90%, and the mixer is again mixed. By mixing, an active material-containing mixture was obtained.

次に、活物質粒子含有成形体を圧縮成形法により作製した。すなわち、前述の活物質含有混合物をギャップロールに通し、厚み600μmのシート状に圧延し、活物質粒子含有成形体を得た。   Next, an active material particle-containing molded body was produced by a compression molding method. That is, the above-mentioned active material-containing mixture was passed through a gap roll and rolled into a sheet having a thickness of 600 μm to obtain an active material particle-containing molded body.

成形体中の任意の場所10点をSEMにより観察し、酸化物活物質小粒子、酸化物大粒子、導電助材および結着材の存在比率を求め、その10点の存在比率の平均値と各点の存在比率の差を調べたところ、いずれも20%以内であり、各構成材料は成形体内で均一に分散されていた。   Observe 10 points in the molded body by SEM, determine the abundance ratio of small oxide active material particles, large oxide particles, conductive additive and binder, and the average value of the abundance ratio of the 10 points When the difference in the abundance ratio of each point was examined, all were within 20%, and each constituent material was uniformly dispersed in the molded body.

このシート2枚の間にアルミニウムエキスパンドメタル(目開き1mm×2mm、厚み0.1mm)を挟み込み、再度ギャップロールを通すことにより成形した後に、170℃で真空乾燥することにより電極を作製した。乾燥後、アルミニウムエキスパンドメタルを含む電極の厚さはおよそ1.0mmであった。大粒子と小粒子の混合物を使用した電極それぞれの成形性を表1に示す。成形性が良好であった場合を○、活物質層にクラックが発生したり、活物質層の脱落が見られたりした場合は×とした。   An aluminum expanded metal (aperture 1 mm × 2 mm, thickness 0.1 mm) was sandwiched between the two sheets, formed again by passing through a gap roll, and then vacuum dried at 170 ° C. to produce an electrode. After drying, the thickness of the electrode containing aluminum expanded metal was approximately 1.0 mm. Table 1 shows the moldability of each electrode using a mixture of large particles and small particles. The case where the moldability was good was evaluated as ◯, and the case where cracks occurred in the active material layer or the active material layer was dropped was evaluated as x.

(二次電池の作製)
LAMOは正極として、LTOは負極として使用した。
(Production of secondary battery)
LAMO was used as a positive electrode and LTO was used as a negative electrode.

先ず、上記で得られた大粒子と小粒子の混合物を使用した電極と、大粒子のみを使用した対極を使用して、正極/セパレータ/負極の順に積層し積層体を作製した。セパレータはセルロース不織布(厚さ25μm)を2枚重ねて用いた。次に、正極および負極に引き出し電極となるアルミニウムタブを振動溶接させた後に、このタブ付きの積層体を袋状のアルミラミネートシートに入れた。正極、負極の容量を測定するために負極としてリチウム金属電極を用いる場合には、ステンレス製シートにリチウム金属を圧着させることにより作製した電極に、ニッケルタブを振動溶接したものを使用した。前記積層体入りの袋の中に、非水電解液(プロピレンカーボネート/エチルメチルカーボネート=3/7vol%、LiPF 1mol/L)を入れた後に、袋の出口を引き出し電極ごと熱封止することによって非水電解質二次電池を作製した。 First, an electrode using the mixture of large particles and small particles obtained above and a counter electrode using only large particles were used to laminate a positive electrode / separator / negative electrode in this order to produce a laminate. As the separator, two cellulose non-woven fabrics (thickness 25 μm) were used. Next, an aluminum tab serving as a lead electrode was vibration welded to the positive electrode and the negative electrode, and the laminated body with the tab was put into a bag-shaped aluminum laminate sheet. In the case of using a lithium metal electrode as a negative electrode in order to measure the capacity of the positive electrode and the negative electrode, a nickel tab vibration-welded electrode was used, which was prepared by pressure bonding lithium metal to a stainless steel sheet. After putting a non-aqueous electrolyte (propylene carbonate / ethyl methyl carbonate = 3/7 vol%, LiPF 6 1 mol / L) into the bag containing the laminate, the outlet of the bag is drawn out and heat sealed together with the electrode. Thus, a non-aqueous electrolyte secondary battery was produced.

(2)二次電池の性能評価
正極にLAMOを、負極にLTOを用いた二次電池を、単独で、または同じ種類の二次電池同士を直列接続した組電池として、外装の外側から金属板で挟んだ状態で、8時間で充電または放電が終わる電流値(1/8Cレート)で充放電サイクル試験を行った。即ち、前記組電池は、前記直列接続の任意の点に流れる電流Iであって、含まれる二次電池に共通に流れる電流Iを1/8Cとして、含まれる全ての二次電池を充放電した。
(2) Performance evaluation of secondary battery A secondary battery using LAMO as a positive electrode and LTO as a negative electrode alone or as an assembled battery in which secondary batteries of the same type are connected in series, a metal plate from the outside of the exterior A charge / discharge cycle test was conducted at a current value (1/8 C rate) at which charging or discharging ended in 8 hours. That is, the assembled battery is a current I that flows to an arbitrary point of the series connection, and the current I that flows in common to the included secondary batteries is set to 1/8 C, and all the included secondary batteries are charged and discharged. .

この充放電サイクル試験において、サイクル数は100サイクルとし、単電池または組電池の両端の電圧を監視し、単電池当たりの電圧が充電終止電圧2.8V到達時に充電を終了する制御を、放電終止電圧2.0V到達時に放電を終了する制御を実施した。この二次電池の容量維持率の値を表1に示す。ここで、容量維持率とは、充放電サイクル試験を実施した後の放電容量を、1サイクル目の放電容量と比較した時のパーセント値である。   In this charge / discharge cycle test, the number of cycles is set to 100, and the voltage at both ends of the unit cell or the assembled cell is monitored, and when the voltage per unit cell reaches the end-of-charge voltage of 2.8 V, the control for terminating the charge is performed. Control was performed to end the discharge when the voltage reached 2.0V. Table 1 shows the capacity retention rate of the secondary battery. Here, the capacity retention rate is a percentage value when the discharge capacity after the charge / discharge cycle test is compared with the discharge capacity of the first cycle.

Figure 2016181458
Figure 2016181458

(実施例1〜6)
実施例1、2のように、酸化物大粒子が体積平均粒子径20μm、数平均粒子圧縮破壊強度10MPaのLTO粉体、酸化物活物質小粒子が体積平均粒子径2.5μm、数平均粒子圧縮破壊強度2MPaのLTO粉体の、酸化物大粒子と酸化物活物質小粒子の重量比を5:95または30:70とした場合には、電極作製が可能であった。また、実施例1,2の酸化物大粒子を数平均粒子圧縮破壊強度3MPaのLTOに変更した、実施例3,4においても成形性は良好であった。作製したLTO電極と、体積平均粒子径15μm、数平均粒子圧縮破壊強度10MPaの大粒子LAMOのみを含む対極とを組み合わせて作製した電池は、容量維持率が100サイクルで98%以上と良好な値を示した。
(Examples 1-6)
As in Examples 1 and 2, LTO powder with large oxide particles having a volume average particle diameter of 20 μm and number average particle compression fracture strength of 10 MPa, and small oxide active material particles with volume average particle diameter of 2.5 μm and number average particles When the weight ratio of the large oxide particles to the small oxide active material particles of the LTO powder having a compressive fracture strength of 2 MPa was 5:95 or 30:70, an electrode could be produced. In addition, in Examples 3 and 4 in which the large oxide particles of Examples 1 and 2 were changed to LTO having a number average particle compression fracture strength of 3 MPa, the moldability was good. The battery produced by combining the produced LTO electrode with the counter electrode containing only the large particle LAMO having a volume average particle diameter of 15 μm and a number average particle compressive fracture strength of 10 MPa has a capacity retention rate of 98% or more at 100 cycles and a good value showed that.

実施例5、6のように、LAMOでも同様に、酸化物大粒子が体積平均粒子径15μm、数平均粒子圧縮破壊強度10MPaのLAMO粉体、酸化物活物質小粒子が体積平均粒子径3μm、数平均粒子圧縮破壊強度2MPaのLAMO粉体の、酸化物大粒子と酸化物活物質小粒子の重量比を5:95または30:70とした場合には、電極作製が可能であった。作製した電極と、体積平均粒子径20μm、数平均粒子圧縮破壊強度10MPaの大粒子LTOのみを含む対極とを組み合わせて作製した電池は、容量維持率が100サイクルで98%以上と良好な値を示した。   As in Examples 5 and 6, similarly in LAMO, large oxide particles have a volume average particle diameter of 15 μm, LAMO powder having a number average particle compression fracture strength of 10 MPa, small oxide active material particles have a volume average particle diameter of 3 μm, When the weight ratio of the large oxide particles to the small oxide active material particles was 5:95 or 30:70 in the LAMO powder having a number average particle compression fracture strength of 2 MPa, an electrode could be produced. A battery produced by combining the produced electrode with a counter electrode containing only a large particle LTO having a volume average particle diameter of 20 μm and a number average particle compressive fracture strength of 10 MPa has a capacity retention rate of 98% or more at 100 cycles and a good value. Indicated.

(比較例1〜2)
これに対し、比較例1のように酸化物大粒子の割合を5重量%以下にした場合や比較例2のように酸化物大粒子の数平均粒子圧縮破壊強度を2MPaにした場合には、電極作製は困難であった。酸化物大粒子の量が5重量%よりも少ない場合は、酸化物活物質小粒子の比表面積増大の影響で粒子同士の結着力が低下したものと考えられ、酸化物大粒子の数平均粒子圧縮破壊強度が3MPaより小さい場合は、活物質層自体の強度が低いため、加圧成形時に粒子破壊が発生しているものと考えられる。
(Comparative Examples 1-2)
On the other hand, when the ratio of the large oxide particles is 5% by weight or less as in Comparative Example 1 or when the number average particle compression fracture strength of the large oxide particles is 2 MPa as in Comparative Example 2, Electrode production was difficult. When the amount of the large oxide particles is less than 5% by weight, it is considered that the binding force between the particles decreased due to the increase in the specific surface area of the small oxide active material particles. When the compressive fracture strength is less than 3 MPa, the strength of the active material layer itself is low, and it is considered that particle fracture occurs during pressure molding.

(比較例3)
比較例3では、ミキサーでの混合ではなく、乳棒と乳鉢を用いて手混合した活物質含有混合物を用いて圧縮成形法により成形した。すなわち、2種類の電極活物質と導電助材とを自動乳鉢を用いて混合し、得られた混合粉体をステンレスボウルに移し、水に分散した結着材を加え、アルミナ乳棒を用いて予備混合した後、水を加えて固形分濃度90%に調整した。この場合、電極の作製時にクラックが発生したり、活物質が脱落したりする傾向が見られ、電極作製は困難であった。
(Comparative Example 3)
In the comparative example 3, it shape | molded by the compression molding method using the active material containing mixture hand-mixed using the pestle and the mortar instead of mixing with a mixer. That is, two types of electrode active materials and a conductive aid are mixed using an automatic mortar, the obtained mixed powder is transferred to a stainless steel bowl, a binder dispersed in water is added, and a preliminary material is prepared using an alumina pestle. After mixing, water was added to adjust the solid content concentration to 90%. In this case, there was a tendency for cracks to occur during the production of the electrode or the active material to fall off, making it difficult to produce the electrode.

この活物質層の任意の場所10点をSEMにより観察し、各構成材料の存在比率を求め、その10点の存在比率の平均値と各点の存在比率の差を調べたところ、存在比率の差が場所により20%を超える傾向が見られ、成形体内で均一に分散されてはいなかった。以上の結果より、構成材料が均一分散されていることが成形性向上のためには重要であるものと考えられる。   Observing 10 points in this active material layer by SEM, obtaining the abundance ratio of each constituent material, and examining the difference between the abundance ratio of each 10 points and the abundance ratio of each point. The difference tended to exceed 20% depending on the location, and it was not uniformly dispersed in the molded body. From the above results, it is considered that it is important to improve the moldability that the constituent materials are uniformly dispersed.

(比較例4、5)
比較例4は、酸化物活物質小粒子の体積平均粒子径が1μmより小さい場合、比較例5は、酸化物大粒子の体積平均粒子径が8μmより小さい場合であり、いずれも成形性は悪い傾向が見られた。特定の体積平均粒子径の酸化物活物質小粒子、酸化物大粒子を使用することが、成形性向上の効果を得るためには必要であるものと考えられる。
(Comparative Examples 4 and 5)
Comparative Example 4 is a case where the volume average particle diameter of the small oxide active material particles is smaller than 1 μm, and Comparative Example 5 is a case where the volume average particle diameter of the large oxide particles is smaller than 8 μm. There was a trend. It is considered that the use of small oxide active material particles and large oxide particles having a specific volume average particle diameter is necessary in order to obtain the effect of improving moldability.

Claims (7)

厚み0.3mm以上、3mm以下の二次電池電極用シート状活物質粒子含有成形体であって、
一次粒子の体積平均粒子径(D50)が1μm超、3μm以下の酸化物活物質小粒子65重量%以上、90重量%以下、
数平均粒子圧縮破壊強度が3MPa以上、かつ、一次粒子の体積平均粒子径(D50)が8μm以上、50μm以下の酸化物大粒子5重量%以上、30重量%以下、
導電助材0.5重量%以上、10重量%以下、及び
結着材0.5重量%以上、5重量%以下を含み、
各構成材料が該成形体内において均一に分散して存在することを特徴とする二次電池電極用シート状活物質粒子含有成形体。
A sheet-shaped active material particle-containing molded article for a secondary battery electrode having a thickness of 0.3 mm or more and 3 mm or less,
65% by weight or more and 90% by weight or less of oxide active material small particles whose primary particles have a volume average particle diameter (D 50 ) of more than 1 μm and 3 μm or less,
The number average particle compression fracture strength is 3 MPa or more, and the primary particles have a volume average particle diameter (D 50 ) of 8 μm or more and 50 μm or less of large oxide particles of 5% by weight to 30% by weight,
Including 0.5% by weight or more and 10% by weight or less of a conductive additive, and 0.5% by weight or more and 5% by weight or less of a binder,
Each of the constituent materials is uniformly dispersed in the molded body, and is a molded article containing sheet-like active material particles for a secondary battery electrode.
前記酸化物活物質小粒子が、スピネル構造を有するチタン酸リチウムである、請求項1に記載の二次電池電極用シート状活物質粒子含有成形体。   The sheet-like active material particle-containing molded article for a secondary battery electrode according to claim 1, wherein the small oxide active material particles are lithium titanate having a spinel structure. 前記酸化物大粒子が、スピネル構造を有するチタン酸リチウムおよび/または酸化チタンである、請求項2に記載の二次電池電極用シート状活物質粒子含有成形体。   The sheet-like active material particle-containing molded article for a secondary battery electrode according to claim 2, wherein the large oxide particles are lithium titanate and / or titanium oxide having a spinel structure. 前記酸化物活物質小粒子が、マンガン酸リチウムおよび/またはマンガン酸リチウムのイオンの一部を他の金属イオンで置換した化合物である、請求項1に記載の二次電池電極用シート状活物質粒子含有成形体。   The sheet-like active material for a secondary battery electrode according to claim 1, wherein the small particles of the oxide active material are a compound obtained by substituting a part of ions of lithium manganate and / or lithium manganate with another metal ion. Particle-containing compact. 請求項1〜4のいずれかに記載の二次電池電極用シート状活物質粒子含有成形体を用いた二次電池。   The secondary battery using the sheet-like active material particle containing molded object for secondary battery electrodes in any one of Claims 1-4. 請求項1〜4のいずれかに記載の二次電池電極用シート状活物質粒子含有成形体を用いた板状二次電池電極の製造方法であって、順に、
2枚の前記二次電池電極用シート状活物質粒子含有成形体で、集電体を挟み込み集電体挟持物を形成する工程、及び
該集電体挟持物を、その両面にある、前記2枚の二次電池電極用シート状活物質粒子含有成形体の両側からプレスする工程を含む、板状二次電池電極の製造方法。
It is a manufacturing method of the plate-shaped secondary battery electrode using the sheet-like active material particle content forming object for secondary battery electrodes in any one of Claims 1-4, Comprising:
A step of sandwiching a current collector with two sheet-shaped active material particle-containing compacts for a secondary battery electrode to form a current collector sandwich, and the current collector sandwich on both sides, The manufacturing method of a plate-shaped secondary battery electrode including the process of pressing from the both sides of the sheet-like active material particle containing molded object for secondary battery electrodes.
請求項1〜4のいずれかに記載の二次電池電極用シート状活物質粒子含有成形体を用いた板状二次電池電極の製造方法であって、集電体と活物質粒子含有混合物を同時にプレスし、二次電池電極用シート状活物質粒子含有成形体の製造と板状二次電池電極を同時に成形する工程を含む、板状二次電池電極の製造方法。
It is a manufacturing method of the plate-shaped secondary battery electrode using the sheet-like active material particle containing molded object for secondary battery electrodes in any one of Claims 1-4, Comprising: A collector and an active material particle containing mixture are made. The manufacturing method of a plate-shaped secondary battery electrode including the process of pressing simultaneously and manufacturing the sheet-like active material particle containing molded object for secondary battery electrodes, and shape | molding a plate-shaped secondary battery electrode simultaneously.
JP2015061870A 2015-03-25 2015-03-25 Sheet-like active material particle-containing mold for secondary battery electrode, secondary battery arranged by use thereof, and manufacturing method of secondary battery electrode Pending JP2016181458A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015061870A JP2016181458A (en) 2015-03-25 2015-03-25 Sheet-like active material particle-containing mold for secondary battery electrode, secondary battery arranged by use thereof, and manufacturing method of secondary battery electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015061870A JP2016181458A (en) 2015-03-25 2015-03-25 Sheet-like active material particle-containing mold for secondary battery electrode, secondary battery arranged by use thereof, and manufacturing method of secondary battery electrode

Publications (1)

Publication Number Publication Date
JP2016181458A true JP2016181458A (en) 2016-10-13

Family

ID=57132156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015061870A Pending JP2016181458A (en) 2015-03-25 2015-03-25 Sheet-like active material particle-containing mold for secondary battery electrode, secondary battery arranged by use thereof, and manufacturing method of secondary battery electrode

Country Status (1)

Country Link
JP (1) JP2016181458A (en)

Similar Documents

Publication Publication Date Title
US11322732B2 (en) Electrode for lithium-ion cell, lithium-ion cell, and method for manufacturing electrode for lithium-ion cell
CN102549813B (en) Lithium secondary battery and manufacturing method therefor
JP6152825B2 (en) Non-aqueous electrolyte secondary battery
CN110383546B (en) Conductive material dispersion for electrochemical element electrode, slurry composition and method for producing same, electrode, and electrochemical element
US20210119206A1 (en) Positive electrode composition for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
WO2016129527A1 (en) Nonaqueous-electrolyte secondary cell, and positive electrode of nonaqueous-electrolyte secondary cell
WO2020111201A1 (en) Lithium ion secondary battery positive electrode composition, lithium ion secondary battery positive electrode, and lithium ion secondary battery
KR20190095835A (en) Positive electrode, and secondary battery comprising the positive electrode
JPWO2015199101A1 (en) Non-aqueous electrolyte secondary battery and assembled battery formed by connecting a plurality thereof
JP6628482B2 (en) Non-aqueous secondary battery
JP2015069969A (en) Positive electrode for lithium secondary battery, and lithium secondary battery
US20230395804A1 (en) Production method of solid-state secondary battery sheet and binder for solid-state secondary battery
JP2013134923A (en) Lithium ion secondary battery
WO2013108841A1 (en) Non-aqueous electrolyte secondary cell containing scavenger
JP2016207583A (en) Sheet-like active material particle-containing molding for secondary battery electrode, secondary battery electrode, and secondary battery using the same
JP5418828B2 (en) Lithium secondary battery and manufacturing method thereof
JP7107382B2 (en) secondary battery
JP6331246B2 (en) Nonaqueous electrolyte secondary battery electrode and battery using the same
JP7127638B2 (en) Secondary battery and manufacturing method thereof
JP2016181459A (en) Sheet-like active material particle-containing mold for secondary battery electrode, secondary battery arranged by use thereof, and manufacturing method of secondary battery electrode
JP2017039250A (en) Laminate
JP2015225761A (en) Electrode active material mixture, electrode manufactured by use thereof, and nonaqueous electrolyte secondary battery
JP2014093272A (en) Electrode active material mixture, electrode formed by use thereof, and nonaqueous electrolytic secondary battery
JP2016181458A (en) Sheet-like active material particle-containing mold for secondary battery electrode, secondary battery arranged by use thereof, and manufacturing method of secondary battery electrode
TWI821837B (en) Method for manufacturing electrode for secondary battery using non-aqueous electrolyte