JP2016181323A - Separator for electrochemical device and electrochemical device - Google Patents

Separator for electrochemical device and electrochemical device Download PDF

Info

Publication number
JP2016181323A
JP2016181323A JP2013168174A JP2013168174A JP2016181323A JP 2016181323 A JP2016181323 A JP 2016181323A JP 2013168174 A JP2013168174 A JP 2013168174A JP 2013168174 A JP2013168174 A JP 2013168174A JP 2016181323 A JP2016181323 A JP 2016181323A
Authority
JP
Japan
Prior art keywords
separator
separator layer
layer
shutdown
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013168174A
Other languages
Japanese (ja)
Inventor
雅一 満永
Masakazu Mitsunaga
雅一 満永
良幸 高森
Yoshiyuki Takamori
良幸 高森
野家 明彦
Akihiko Noie
明彦 野家
松本 修明
Nobuaki Matsumoto
修明 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP2013168174A priority Critical patent/JP2016181323A/en
Priority to PCT/JP2014/070105 priority patent/WO2015022862A1/en
Publication of JP2016181323A publication Critical patent/JP2016181323A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Primary Cells (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Laminated Bodies (AREA)
  • Cell Separators (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide: a separator superior in safety; and an electrochemical device which has the separator and is superior in safety.SOLUTION: A separator for an electrochemical device comprises: a fine porous first separator layer 10 which mainly includes a thermoplastic resin, and performs a shutdown at a predetermined temperature; a thermally-resistant fine porous second separator layer 20; and a fine porous third separator layer 30 which includes a low-melting point material having a lower melting point than that of the thermoplastic resin of the first separator layer, and which performs a shutdown at a lower temperature than each shutdown temperature of the first separator layer. The low-melting point material of the third separator layer is 5-100000 mPa s in melt viscosity at 140°C.SELECTED DRAWING: Figure 1

Description

本発明は、電気化学素子用セパレータおよび電気化学素子に関する。   The present invention relates to a separator for an electrochemical element and an electrochemical element.

リチウムイオン二次電池などの電気化学素子は、携帯電話、ノートパソコン、電気自動車、電源用大型蓄電池などの種々の用途で利用されているが、電源供給時間の長時間化や出力増大の必要から、その高容量化、高エネルギー密度化、高電圧化などが要請されている。また、リチウムイオン二次電池では、高エネルギー密度化などに伴って、異常発熱などの熱暴走の危険性が高まることから、安全対策も強く求められている。   Electrochemical elements such as lithium ion secondary batteries are used in various applications such as mobile phones, notebook computers, electric vehicles, large storage batteries for power supplies, etc., due to the need for longer power supply time and increased output. There are demands for higher capacity, higher energy density, higher voltage, and the like. In addition, with lithium ion secondary batteries, the risk of thermal runaway, such as abnormal heat generation, increases with increasing energy density, and thus safety measures are also strongly required.

例えば、リチウムイオン二次電池では、主要部材として正極、負極、セパレータおよび非水電解液を有しており、セパレータは、絶縁性の多孔質膜からなり、正極と負極との間に配置され、これらを隔てることで電池の内部短絡を防止しつつ、その貫通孔を通じて非水電解液中のイオンを透過させるといった役割を担っている。   For example, a lithium ion secondary battery has a positive electrode, a negative electrode, a separator and a non-aqueous electrolyte as main members, the separator is made of an insulating porous film, and is disposed between the positive electrode and the negative electrode. By separating them, the battery plays a role of allowing ions in the non-aqueous electrolyte to permeate through the through-hole while preventing an internal short circuit of the battery.

リチウムイオン二次電池の熱暴走の殆どは、電池の内部短絡をトリガーとして発生していることから、セパレータへの機能付与がリチウムイオン二次電池の安全対策において重要な位置を占めているといえる。リチウムイオン二次電池の安全性を考慮したセパレータへの機能付与としては、これまで、電池が発熱した際に、セパレータが、その素材であるポリオレフィンなどの熱可塑性樹脂の融点を超えると融解して貫通孔を閉じ、電流を遮断することにより、電池の更なる発熱を抑制するといったシャットダウン機能の付与が一般的である。   Since most of the thermal runaway of lithium ion secondary batteries is triggered by internal short circuit of the battery, it can be said that the functioning to the separator occupies an important position in the safety measures of the lithium ion secondary battery. . As a function to the separator considering the safety of the lithium ion secondary battery, until now, when the battery generates heat, the separator melts when the melting point of the thermoplastic resin such as polyolefin is exceeded. It is common to provide a shutdown function that suppresses further heat generation of the battery by closing the through hole and cutting off the current.

セパレータにおけるシャットダウン機能を発揮する温度は、シャットダウン温度と呼ばれる。電池の温度上昇によりシャットダウン温度に到達すると、シャットダウン機能により電流を遮断する。しかし、電池が安全に停止する場合であっても、シャットダウン温度到達後にすぐに温度低下に転じるわけではなく、シャットダウン温度をある程度越えてから、温度低下に入る。   The temperature at which the shutdown function is exhibited in the separator is called the shutdown temperature. When the shutdown temperature is reached due to the battery temperature rise, the current is cut off by the shutdown function. However, even when the battery is safely stopped, the temperature does not start to decrease immediately after the shutdown temperature is reached, but starts to decrease after the shutdown temperature is exceeded to some extent.

リチウムイオン二次電池に用いられるセパレータは、熱可塑性樹脂製の微多孔性の膜(以降、微多孔膜と呼ぶ。)であり、多孔性と強度向上のために、一軸延伸や二軸延伸が施される。上記延伸のために、上記の微多孔膜にはひずみが生じており、これが原因となって、電池温度上昇時の熱収縮によって破膜が起こることがある。この破膜が起こる温度は、シャットダウン温度より高くはあるが、非常に近い位置にある。   A separator used in a lithium ion secondary battery is a microporous film made of a thermoplastic resin (hereinafter referred to as a microporous film). In order to improve porosity and strength, uniaxial stretching or biaxial stretching is performed. Applied. Due to the stretching, the microporous membrane is distorted, which may cause film breakage due to thermal contraction when the battery temperature rises. The temperature at which this film breaks is higher than the shutdown temperature but is very close.

上記の微多孔膜のみを用いたセパレータは、電池温度の上昇によってシャットダウン温度に到達した後、シャットダウン機能を発揮して電流を遮断する。しかし、上記の事情により、電池の温度は、上昇速度が抑えられつつも、上昇を続ける。熱収縮による破膜が起こる温度に到達すると、上記セパレータが破膜してしまい、正極と負極の接触による内部短絡を引き起こすおそれがある。   The separator using only the microporous membrane described above exhibits a shutdown function and cuts off the current after reaching the shutdown temperature due to an increase in battery temperature. However, due to the above circumstances, the temperature of the battery continues to rise while the rate of rise is suppressed. When the temperature at which film breakage occurs due to heat shrinkage is reached, the separator is broken, which may cause an internal short circuit due to contact between the positive electrode and the negative electrode.

そこで、特許文献1に示されるセパレータでは、上記のような微多孔膜を使用せず、破膜するおそれのない織布や不織布などを使用している。そして、このような織布や不織布はシャットダウン機能を持たないため、シャットダウン機能を持った樹脂を織布や不織布に含ませている。   Therefore, the separator shown in Patent Document 1 does not use the microporous membrane as described above, and uses a woven fabric or a non-woven fabric that does not cause a membrane breakage. And since such a woven fabric or nonwoven fabric does not have a shutdown function, a resin having a shutdown function is included in the woven fabric or nonwoven fabric.

従来の微多孔膜を用いたセパレータでは上述の破膜の問題がある。また、特許文献1に記載のセパレータでは、破膜の問題はなくなったものの、シャットダウン温度よりもかなり高い温度まで電池温度が上昇すると、シャットダウン機能を持った樹脂が織布や不織布から流出するという問題がある。   A conventional separator using a microporous membrane has the above-mentioned problem of membrane breakage. Moreover, in the separator described in Patent Document 1, the problem of film breakage is eliminated, but when the battery temperature rises to a temperature considerably higher than the shutdown temperature, the resin having the shutdown function flows out from the woven fabric or the nonwoven fabric. There is.

特開2007−157723号公報JP 2007-157723 A

このように、シャットダウン機能を持つ構成が1つしかない場合、温度上昇の抑制が十分でないという問題がある。   Thus, when there is only one configuration having a shutdown function, there is a problem that temperature rise is not sufficiently suppressed.

(1)請求項1の発明による電気化学素子用セパレータは、熱可塑性樹脂を主体とし、所定の温度でシャットダウンを行う微多孔性の第1セパレータ層と、耐熱性を有し、かつ微多孔性の第2セパレータ層と、第1セパレータ層の熱可塑性樹脂よりも低い温度で溶融する低融点材を含有し、第1セパレータ層のシャットダウン温度よりも低温でシャットダウンを行う微多孔性の第3セパレータ層とを備え、第3セパレータ層の低融点材の140℃における溶融粘度が、5mPa・s以上、100000mPa・s以下であることを特徴とする。
(2)請求項2の発明による電気化学素子用セパレータは、請求項1に記載の電気化学素子用セパレータにおいて、第1セパレータ層の一方の面に第2セパレータ層が積層され、他方の面に第3セパレータ層が積層されたことを特徴とする。
(3)請求項3の発明による電気化学素子用セパレータは、請求項2に記載の電気化学素子用セパレータにおいて、第3のセパレータ層の第1セパレータ層に対する140℃での溶融充填率が3%以上であることを特徴とする。
(4)請求項4の発明による電気化学素子用セパレータは、請求項1〜3のいずれか一項に記載の電気化学素子用セパレータにおいて、融点の異なる複数の微多孔膜より形成されていることを特徴とする。
(5)請求項5の発明による電気化学素子用セパレータは、請求項1〜4のいずれか一項に記載の電気化学素子用セパレータにおいて、熱可塑性樹脂の融点が125℃以上170℃以下であり、低融点材の融点が、80℃以上140℃以下であることを特徴とする。
(6)請求項6の発明による電気化学素子用セパレータは、請求項1ないし5のいずれか一項に記載の電気化学素子用セパレータにおいて、第2セパレータ層が無機フィラーを含むことを特徴とする。
(7)請求項7の発明による電気化学素子用セパレータは、請求項6に記載の電気化学素子用セパレータにおいて、無機フィラーは、水酸化アルミニウム、ベーマイトおよびアルミナよりなる群から選択される少なくとも1種であることを特徴とする。
(8)請求項8の発明による電気化学素子用セパレータは、請求項1ないし7のいずれか一項に記載の電気化学素子用セパレータにおいて、第1セパレータ層は延伸法及び空孔形成法の少なくともいずれか一方を用いて形成された微多孔膜であって、第2セパレータ層及び第3セパレータ層は、第1セパレータ層にセパレータ層形成用組成物を塗布して形成されたものであることを特徴とする
(9)請求項9の発明による電気化学素子は、正極、負極、セパレータ、非水電解液を有し、セパレータは、請求項1〜8に記載の電気化学素子用セパレータであることを特徴とする。
(10)請求項10の発明による電気化学素子は、請求項8の発明による電気化学素子において、第3セパレータ層は、負極に対向することを特徴とする。
(11)請求項11の発明による電気化学素子は、請求項9または10に記載の電気化学素子において、セパレータが、正極と負極の少なくともいずれか一方と一体化されていることを特徴とする。
(1) The separator for an electrochemical element according to the invention of claim 1 is mainly composed of a thermoplastic resin, and includes a microporous first separator layer that shuts down at a predetermined temperature, heat resistance, and microporosity. The second separator layer and a low melting point material that melts at a temperature lower than the thermoplastic resin of the first separator layer, and the microporous third separator that shuts down at a temperature lower than the shutdown temperature of the first separator layer A low-melting-point material of the third separator layer having a melt viscosity at 140 ° C. of 5 mPa · s or more and 100000 mPa · s or less.
(2) The separator for an electrochemical element according to the invention of claim 2 is the separator for electrochemical element according to claim 1, wherein the second separator layer is laminated on one surface of the first separator layer, and the other surface. The third separator layer is laminated.
(3) The separator for an electrochemical element according to the invention of claim 3 is the separator for an electrochemical element according to claim 2, wherein a melt filling rate at 140 ° C. with respect to the first separator layer of the third separator layer is 3%. It is the above.
(4) The separator for an electrochemical element according to the invention of claim 4 is formed of a plurality of microporous films having different melting points in the separator for an electrochemical element according to any one of claims 1 to 3. It is characterized by.
(5) The separator for electrochemical elements according to the invention of claim 5 is the separator for electrochemical elements according to any one of claims 1 to 4, wherein the thermoplastic resin has a melting point of 125 ° C or higher and 170 ° C or lower. The melting point of the low melting point material is 80 ° C. or higher and 140 ° C. or lower.
(6) The separator for electrochemical elements according to the invention of claim 6 is the separator for electrochemical elements according to any one of claims 1 to 5, wherein the second separator layer contains an inorganic filler. .
(7) The separator for electrochemical elements according to the invention of claim 7 is the separator for electrochemical elements according to claim 6, wherein the inorganic filler is at least one selected from the group consisting of aluminum hydroxide, boehmite and alumina. It is characterized by being.
(8) The separator for electrochemical devices according to the invention of claim 8 is the separator for electrochemical devices according to any one of claims 1 to 7, wherein the first separator layer is at least one of a stretching method and a pore forming method. It is a microporous film formed using either one, and the second separator layer and the third separator layer are formed by applying a separator layer forming composition to the first separator layer. (9) The electrochemical device according to the invention of claim 9 has a positive electrode, a negative electrode, a separator and a non-aqueous electrolyte, and the separator is the separator for an electrochemical device according to any one of claims 1 to 8. It is characterized by.
(10) The electrochemical device according to the invention of claim 10 is the electrochemical device according to claim 8, wherein the third separator layer faces the negative electrode.
(11) The electrochemical device according to the invention of claim 11 is the electrochemical device according to claim 9 or 10, characterized in that the separator is integrated with at least one of the positive electrode and the negative electrode.

本発明によれば、安全性の高い電気化学素子用セパレータ、および、電気化学素子を得ることができる。   According to the present invention, a highly safe separator for an electrochemical element and an electrochemical element can be obtained.

本発明のセパレータの断面図。Sectional drawing of the separator of this invention. 本発明のセパレータの断面図。Sectional drawing of the separator of this invention. セパレータと電池に関する、実施例と比較例の比較表。The comparison table of an Example and a comparative example about a separator and a battery. 本発明のセパレータの抵抗値の温度依存性。Temperature dependence of the resistance value of the separator of the present invention. 従来のセパレータの抵抗値の温度依存性。Temperature dependence of the resistance value of a conventional separator.

本発明のセパレータの実施形態について述べた後、当該セパレータが搭載される、本発明の電気化学素子の実施形態について述べる。   After describing the embodiment of the separator of the present invention, the embodiment of the electrochemical device of the present invention on which the separator is mounted will be described.

――セパレータの実施形態――
以下、本発明のセパレータについて説明する。本発明のセパレータは、第1セパレータ層、第2セパレータ層、第3セパレータ層という3層を有した層構造となっている。まず、各セパレータ層について述べ、次に、本発明のセパレータの構成等について述べる。
--Embodiment of separator--
Hereinafter, the separator of the present invention will be described. The separator of the present invention has a layer structure having three layers of a first separator layer, a second separator layer, and a third separator layer. First, each separator layer will be described, and then the configuration of the separator of the present invention will be described.

<第1セパレータ層>
第1セパレータ層は、セパレータの基材となるものであり、主に第1セパレータ層によって、電気化学素子の有する正極と負極とが隔離される。セパレータは、一方面側と他方面側を連通する複数の空孔を有しており、セパレータを用いた電気化学素子の内部温度が、第1セパレータ層を構成する熱可塑性樹脂の融点以上になった際には、熱可塑性樹脂が溶融して第1セパレータ層の微多孔を塞ぎ、電気化学反応の進行を抑制するシャットダウンを生じる。このシャットダウン層を2次シャットダウン層と呼ぶ。なお、本発明によるセパレータは、2次シャットダウン層よりも低温で溶融する1次シャットダウン層、すなわち低温シャットダウン層をも含むことを特徴とするが、この1次シャットダウン層もしくは低温シャットダウン層については後述する。
<First separator layer>
A 1st separator layer becomes a base material of a separator and the positive electrode and negative electrode which an electrochemical element has are mainly isolated by the 1st separator layer. The separator has a plurality of pores communicating with one side and the other side, and the internal temperature of the electrochemical element using the separator is equal to or higher than the melting point of the thermoplastic resin constituting the first separator layer. In this case, the thermoplastic resin melts and closes the micropores of the first separator layer, thereby causing a shutdown that suppresses the progress of the electrochemical reaction. This shutdown layer is called a secondary shutdown layer. The separator according to the present invention includes a primary shutdown layer that melts at a temperature lower than that of the secondary shutdown layer, that is, a low-temperature shutdown layer. The primary shutdown layer or the low-temperature shutdown layer will be described later. .

第1セパレータ層を構成する熱可塑性樹脂としては、電気絶縁性を有し、電気化学素子内に保持される非水電解液に対して安定であり、更に電気化学素子の作動電圧範囲において酸化還元され難く、電気化学的に安定な材料が好ましい。このような熱可塑性樹脂の具体例としては、例えば、低密度ポリエチレン(LDPE)、高密度ポリエチレン(HDPE)、変性ポリエチレン(変性PE)、ポリプロピレン(PP)、パラフィン、蝋、共重合ポリオレフィン、ポリオレフィン誘導体(塩素化ポリエチレン、ポリ塩化ビニリデン、ポリ塩化ビニル、フッ素樹脂など)などのポリオレフィン;ポリビニルアルコール;ポリイミド;アラミドなどが挙げられる。また、共重合ポリオレフィンとしては、エチレン−ビニルモノマー共重合体(EVA)、より具体的には、エチレン−プロピレン共重合体、エチレン−酢酸ビニル共重合体、エチレン−メチルアクリレート共重合体、エチレン−アクリル酸共重合体、エチレン−メタクリル酸共重合体、エチレン−ビニルアルコール共重合体などが挙げられる。第1セパレータ層には、例示した各熱可塑性樹脂のうちの1種のみを用いてもよく、2種以上を併用してもよい。   The thermoplastic resin constituting the first separator layer is electrically insulating, stable against non-aqueous electrolyte held in the electrochemical element, and redox within the operating voltage range of the electrochemical element. An electrochemically stable material is preferred. Specific examples of such thermoplastic resins include, for example, low density polyethylene (LDPE), high density polyethylene (HDPE), modified polyethylene (modified PE), polypropylene (PP), paraffin, wax, copolymerized polyolefin, and polyolefin derivatives. Polyolefins such as (chlorinated polyethylene, polyvinylidene chloride, polyvinyl chloride, fluororesin, etc.); polyvinyl alcohol; polyimide; aramid and the like. Further, as the copolymer polyolefin, ethylene-vinyl monomer copolymer (EVA), more specifically, ethylene-propylene copolymer, ethylene-vinyl acetate copolymer, ethylene-methyl acrylate copolymer, ethylene- Acrylic acid copolymers, ethylene-methacrylic acid copolymers, ethylene-vinyl alcohol copolymers, and the like can be mentioned. For the first separator layer, only one of the exemplified thermoplastic resins may be used, or two or more may be used in combination.

例示した各熱可塑性樹脂の中でも、融点、すなわち、JISK 7121の規定に準じて示差走査熱量計(DSC)を用いて測定される融解温度が125℃以上170℃以下の樹脂を使用することが好ましい。この場合には、セパレータにおけるシャットダウンがより好ましい条件で発現するようになる。   Among the exemplified thermoplastic resins, it is preferable to use a resin having a melting point of 125 ° C. or more and 170 ° C. or less measured using a differential scanning calorimeter (DSC) in accordance with JISK 7121. . In this case, the shutdown in the separator appears under more preferable conditions.

また、第1セパレータ層には、融点が125℃以上170℃以下の熱可塑性樹脂〔以下、「樹脂(A)」という〕と共に、これよりも融点が高い熱可塑性樹脂〔以下、「樹脂(B)」という〕とを併用することが好ましい。樹脂(A)と樹脂(B)とを含有する第1セパレータ層の場合には、樹脂(A)の溶融によってシャットダウンが生じた後、樹脂(B)の融点に至るまでの間、第1セパレータ層の形状(セパレータの形状)を保ち得るようにできる。したがって、シャットダウンの発現後に素子温度の上昇が継続していた場合でも、正極と負極とを隔離した状態を維持することができ、電気化学素子の安全性をより高めることができる。また、電気化学素子内の温度が樹脂(B)の融点を上回った場合には、樹脂(B)も溶融し、溶融後の樹脂(A)と樹脂(B)とで形成される厚い層が形成されることで、シャットダウン機能が増強される。   The first separator layer includes a thermoplastic resin having a melting point of 125 ° C. or higher and 170 ° C. or lower (hereinafter referred to as “resin (A)”) and a thermoplastic resin having a higher melting point (hereinafter referred to as “resin (B)”. ) "]] Is preferably used in combination. In the case of the first separator layer containing the resin (A) and the resin (B), after the shutdown occurs due to the melting of the resin (A), the first separator layer is reached until the melting point of the resin (B) is reached. The layer shape (separator shape) can be maintained. Therefore, even when the device temperature continues to rise after the occurrence of shutdown, the state where the positive electrode and the negative electrode are isolated can be maintained, and the safety of the electrochemical device can be further improved. Further, when the temperature in the electrochemical element exceeds the melting point of the resin (B), the resin (B) is also melted, and a thick layer formed of the resin (A) and the resin (B) after melting is formed. By being formed, the shutdown function is enhanced.

第1セパレータ層において、樹脂(A)と樹脂(B)とを併用する場合には、例えば、樹脂(A)で構成された層と樹脂(B)で構成された層との2層構造や、樹脂(A)で構成された層の両面に樹脂(B)で構成された層を有していたり、樹脂(B)で構成された層の両面に樹脂(A)で構成された層を有していたりする3層構造などの多層構造とすることが好ましい。この場合には、樹脂(A)と樹脂(B)とを併用することによる上記の効果を、より良好に確保することができる。   In the first separator layer, when the resin (A) and the resin (B) are used in combination, for example, a two-layer structure of a layer composed of the resin (A) and a layer composed of the resin (B) A layer made of resin (B) on both sides of a layer made of resin (A), or a layer made of resin (A) on both sides of a layer made of resin (B) It is preferable to have a multilayer structure such as a three-layer structure. In this case, the above-mentioned effect by using the resin (A) and the resin (B) in combination can be ensured better.

樹脂(B)の融点は、樹脂(A)の融点よりも高ければよいが、例えば、樹脂(A)の融点よりも10℃以上高いことが好ましい。更に、樹脂(B)の具体的な融点は、130℃以上であることが好ましく、また、200℃以下であることが好ましい。   The melting point of the resin (B) may be higher than the melting point of the resin (A). For example, it is preferably higher by 10 ° C. than the melting point of the resin (A). Furthermore, the specific melting point of the resin (B) is preferably 130 ° C. or higher, and preferably 200 ° C. or lower.

第1セパレータ層における熱可塑性樹脂の含有率〔上記の樹脂(A)と樹脂(B)とを併用する場合には、それらの合計含有率〕は、第1セパレータ層の構成成分の全体積(空孔部分を除く全体積)中、50体積%以上であり、70体積%以上であることが好ましく、100体積%、すなわち、熱可塑性樹脂のみで構成されていてもよい。   The content of the thermoplastic resin in the first separator layer [when the above resin (A) and resin (B) are used in combination, the total content thereof) is the total volume of the components of the first separator layer ( The total volume excluding the void portion) is 50% by volume or more, preferably 70% by volume or more, and may be 100% by volume, that is, only thermoplastic resin.

第1セパレータ層には、通常のリチウムイオン二次電池などの電気化学素子でセパレータとして使用されている熱可塑性樹脂製の微多孔膜、例えば、ポリオレフィン製微多孔膜を用いることができる。例えば延伸法によって微多孔膜を形成することができる。すなわち、無機フィラーなどを混合した上記熱可塑性樹脂を用いて形成したフィルムやシートに一軸または二軸延伸を施して微細な空孔を形成した後、必要に応じて無機フィラーを除去することで製造することができる。また、溶媒による空孔形成法によっても微多孔膜を形成することができる。すなわち、上記例示の熱可塑性樹脂と、他の樹脂やパラフィンとを混合してフィルムやシートとし、その後、上記他の樹脂やパラフィンのみを溶解する溶媒中に、これらのフィルムやシートを浸漬して、他の樹脂やパラフィンのみを溶解させて空孔を形成して製造することもできる。更に、延伸法と空孔形成法とを組み合わせた方法によって製造された熱可塑性樹脂製の微多孔膜を用いることもできる。   For the first separator layer, a microporous film made of a thermoplastic resin used as a separator in an electrochemical element such as a normal lithium ion secondary battery, for example, a microporous film made of polyolefin can be used. For example, a microporous film can be formed by a stretching method. In other words, the film or sheet formed using the thermoplastic resin mixed with an inorganic filler is uniaxially or biaxially stretched to form fine pores, and then manufactured by removing the inorganic filler as necessary. can do. A microporous film can also be formed by a pore formation method using a solvent. That is, the thermoplastic resin exemplified above and other resin or paraffin are mixed to form a film or sheet, and then the film or sheet is immersed in a solvent that dissolves only the other resin or paraffin. It is also possible to manufacture by forming pores by dissolving only other resins and paraffin. Furthermore, a microporous film made of a thermoplastic resin produced by a method combining a stretching method and a pore forming method can also be used.

このような熱可塑性樹脂製の微多孔膜のうち、樹脂(A)のみを用いたものの具体例としては、例えば、PEを含有する単層からなる微多孔膜やPPを含有する単層からなる微多孔膜が挙げられる。また、樹脂(A)と樹脂(B)とを併用したものの具体例としては、例えば、PEを含有する層の片面にPPを含有する層を有する2層構造の微多孔膜、PEを含有する層の両面にPPを含有する層を有する3層構造の微多孔膜などが挙げられる。   Among such microporous membranes made of thermoplastic resin, specific examples of using only the resin (A) include, for example, a microporous membrane composed of a single layer containing PE and a single layer containing PP. A microporous membrane is mentioned. Moreover, as a specific example of the combination of the resin (A) and the resin (B), for example, a microporous membrane having a two-layer structure having a layer containing PP on one side of a layer containing PE, PE is contained. Examples thereof include a microporous membrane having a three-layer structure having layers containing PP on both sides of the layer.

第1セパレータ層の多孔性の程度は気孔率として表せる。気孔率は、セパレータの厚み(t)×幅(w)×長さ(l)から求められる見かけ上の体積(V)に対して、実際の樹脂が占める実体積(v)を用いて(V−v)/Vで表すことができる。樹脂の比重が既知の場合は、切り出したセパレータの重量を測定し、比重から実体積(v)が求められる。見かけ上の体積(V)を求める場合、第1セパレータ層の厚みについては、例えば、ミツトヨ製デジマチックインジケーター(547−401)を用いて測定することができる。また、気孔率を実測で求める際は、ウルトラピクノメーターや水銀ポロシメーターを用いれば良い。第1セパレータ層の気孔率は30%以上が好ましく、35%以上がより好ましい。30%以下だと、セパレータが抵抗になり、該セパレータを用いて作製した電気化学素子の出力が低下する。気孔率は90%以下が好ましく、80%以下がより好ましい、気孔率が90%以上の場合、内部短絡の危険性が増すことになる。   The degree of porosity of the first separator layer can be expressed as porosity. The porosity is obtained by using the actual volume (v) occupied by the actual resin with respect to the apparent volume (V) obtained from the thickness (t) × width (w) × length (l) of the separator (V -V) / V. When the specific gravity of the resin is known, the weight of the cut-out separator is measured, and the actual volume (v) is obtained from the specific gravity. When obtaining the apparent volume (V), the thickness of the first separator layer can be measured using, for example, a Mitutoyo Digimatic Indicator (547-401). Moreover, when calculating | requiring a porosity by measurement, an ultra pycnometer and a mercury porosimeter should just be used. The porosity of the first separator layer is preferably 30% or more, and more preferably 35% or more. When it is 30% or less, the separator becomes a resistance, and the output of the electrochemical device produced using the separator is lowered. The porosity is preferably 90% or less, more preferably 80% or less. When the porosity is 90% or more, the risk of internal short circuit increases.

<第2セパレータ層>
第2セパレータ層は、耐熱性材料の無機フィラーのみで構成されていてもよく、また、無機フィラーと有機バインダーとを含み、無機フィラー同士が有機バインダーで結着された構造を有していてもよい。
<Second separator layer>
The second separator layer may be composed only of an inorganic filler of a heat resistant material, or may include an inorganic filler and an organic binder, and the inorganic filler may have a structure bound with an organic binder. Good.

耐熱性の高い無機フィラーを有する第2セパレータ層を含むセパレータは、電気化学素子内が第1セパレータ層が収縮するような温度になっても、無機フィラーの作用によって第1セパレータ層の収縮や破膜を抑制することができる。また、第1セパレータ層が破膜しても、無機フィラーを有する第2セパレータ層が正極と負極とを仕切るスペーサーとして作用するため、電気化学素子の内部短絡を抑制する効果が期待できる。そのため、無機フィラーも有する第2セパレータ層を含むセパレータは、電気化学素子の安全性をより一層高めることができる。   A separator including a second separator layer having an inorganic filler with high heat resistance is capable of shrinking or breaking the first separator layer due to the action of the inorganic filler even when the temperature in the electrochemical element is such that the first separator layer shrinks. The membrane can be suppressed. Moreover, even if the first separator layer breaks, the second separator layer having an inorganic filler acts as a spacer that partitions the positive electrode and the negative electrode, so that an effect of suppressing an internal short circuit of the electrochemical element can be expected. Therefore, the separator including the second separator layer that also has an inorganic filler can further enhance the safety of the electrochemical element.

無機フィラーとしては、耐熱温度が150℃以上のものが好ましい。本明細書でいう無機フィラーおよび後述する繊維状物における「耐熱温度が150℃以上」とは、少なくとも150℃において形状変化が目視で確認されないことを意味している。   As the inorganic filler, those having a heat resistant temperature of 150 ° C. or more are preferable. The “heat-resistant temperature is 150 ° C. or higher” in the inorganic filler and the fibrous material described later in this specification means that no shape change is visually confirmed at least at 150 ° C.

このような耐熱温度を有する無機フィラーの構成材料の具体例としては、例えば、酸化鉄、SiO(シリカ)、Al(アルミナ)、TiO、BaTiO、ZrOなどの無機酸化物;Al(OH)(水酸化アルミニウム)などの無機水酸化物;窒化アルミニウム、窒化ケイ素などの無機窒化物;フッ化カルシウム、フッ化バリウム、硫酸バリウムなどの難溶性のイオン結晶;シリコン、ダイヤモンドなどの共有結合性結晶;モンモリロナイトなどの粘土などが挙げられる。ここで、無機酸化物は、ベーマイト、ゼオライト、アパタイト、カオリン、ムライト、スピネル、オリビン、マイカなどの鉱物資源由来物質またはこれらの人造物でなどであってもよい。また、金属;SnO、スズ−インジウム酸化物(ITO)などの導電性酸化物;カーボンブラック、グラファイトなどの炭素質材料;などで例示される導電性材料の表面を、電気絶縁性を有する材料、例えば、上記の無機酸化物などで被覆することにより電気絶縁性を持たせた粒子であってもよい。無機フィラーには、上で例示の材料で構成された微粒子のうちの1種のみを用いてもよく、2種以上を併用してもよい。 Specific examples of the constituent material of the inorganic filler having such heat-resistant temperature include, for example, inorganic oxides such as iron oxide, SiO 2 (silica), Al 2 O 3 (alumina), TiO 2 , BaTiO 2 , and ZrO 2 . Inorganic hydroxides such as Al (OH) 3 (aluminum hydroxide); inorganic nitrides such as aluminum nitride and silicon nitride; sparingly soluble ionic crystals such as calcium fluoride, barium fluoride and barium sulfate; silicon and diamond Covalent crystals such as; clays such as montmorillonite. Here, the inorganic oxide may be a material derived from mineral resources such as boehmite, zeolite, apatite, kaolin, mullite, spinel, olivine, mica, or these artificial products. In addition, the surface of a conductive material exemplified by a metal; a conductive oxide such as SnO 2 or tin-indium oxide (ITO); a carbonaceous material such as carbon black or graphite; For example, it may be a particle that is electrically insulated by coating with the above-described inorganic oxide or the like. As the inorganic filler, only one kind of fine particles composed of the materials exemplified above may be used, or two or more kinds may be used in combination.

上で例示した無機フィラーの中でも、アルミナ、シリカ、水酸化アルミニウム、ベーマイトがより好ましく、その中でもベーマイトが更に好ましい。ベーマイトの中でも、粒径や形状を制御しやすく、電気化学素子の特性に悪影響を与えるイオン性の不純物を低減できる合成ベーマイトが特に好ましい。無機フィラーの形状については特に制限はなく、略球状(真球状を含む)や楕円体状、板状など、いずれの形状であってもよい。無機フィラーの粒径は、後述する方法で測定される平均粒径で、0.01μm以上であることが好ましく、0.1μm以上であることがより好ましく、また、20μm以下であることが好ましく、5μm以下であることがより好ましい。   Among the inorganic fillers exemplified above, alumina, silica, aluminum hydroxide, and boehmite are more preferable, and boehmite is more preferable among them. Among boehmite, synthetic boehmite that can easily control the particle size and shape and can reduce ionic impurities that adversely affect the characteristics of the electrochemical element is particularly preferable. There is no restriction | limiting in particular about the shape of an inorganic filler, Any shapes, such as substantially spherical shape (a spherical shape is included), an ellipsoid shape, and plate shape, may be sufficient. The particle size of the inorganic filler is an average particle size measured by a method described later, preferably 0.01 μm or more, more preferably 0.1 μm or more, and preferably 20 μm or less, More preferably, it is 5 μm or less.

有機バインダーの具体例としては、例えば、EVA(酢酸ビニル由来の構造単位が20〜35モル%のもの)、エチレン−エチルアクリレート共重合体(EEA)などのエチレン−アクリル酸共重合体、フッ素系ゴム、スチレンブタジエンゴム(SBR)、カルボキシメチルセルロース(CMC)、ヒドロキシエチルセルロース(HEC)、ポリビニルアルコール(PVA)、ポリビニルブチラール(PVB)、ポリビニルピロリドン(PVP)、ポリエチレンオキサイド(PEO)、ポリ−N−ビニルアセトアミド(PNVA)、ブチルアクリレート−アクリル酸共重合体、架橋アクリル樹脂、ポリウレタン、エポキシ樹脂などが挙げられるが、特に、150℃以上の耐熱温度を有する耐熱性のバインダーが好ましく用いられる。有機バインダーは、上記例示のものを1種単独で用いてもよく、2種以上を併用してもよい。   Specific examples of the organic binder include, for example, EVA (ethylene acetate-derived structural unit of 20 to 35 mol%), ethylene-acrylic acid copolymer (EEA) and other ethylene-acrylic acid copolymers, and fluorine-based ones. Rubber, styrene butadiene rubber (SBR), carboxymethyl cellulose (CMC), hydroxyethyl cellulose (HEC), polyvinyl alcohol (PVA), polyvinyl butyral (PVB), polyvinyl pyrrolidone (PVP), polyethylene oxide (PEO), poly-N-vinyl Acetamide (PNVA), butyl acrylate-acrylic acid copolymer, cross-linked acrylic resin, polyurethane, epoxy resin and the like can be mentioned. In particular, a heat-resistant binder having a heat-resistant temperature of 150 ° C. or higher is preferably used. As the organic binder, those exemplified above may be used alone or in combination of two or more.

上で例示した有機バインダーの中でも、EVA、エチレン−アクリル酸共重合体、フッ素系ゴム、SBR、ブチルアクリレート−アクリル酸共重合体、PVP、CMC、PNVAなどの柔軟性の高いバインダーが好ましい。このような柔軟性の高い有機バインダーの具体例としては、三井デュポンポリケミカル社の「エバフレックスシリーズ(EVA)」、日本ユニカー社のEVA、三井デュポンポリケミカル社の「エバフレックス−EEAシリーズ(エチレン−アクリル酸共重合体)」、日本ユニカー社のEEA、ダイキン工業社の「ダイエルラテックスシリーズ(フッ素ゴム)」、JSR社の「TRD−2001(SBR)」、日本ゼオン社の「BM−400B(SBR)」などが挙げられる。   Among the organic binders exemplified above, highly flexible binders such as EVA, ethylene-acrylic acid copolymer, fluorine-based rubber, SBR, butyl acrylate-acrylic acid copolymer, PVP, CMC, and PNVA are preferable. Specific examples of such highly flexible organic binders include “Evaflex Series (EVA)” by Mitsui DuPont Polychemical Co., Ltd., EVA by Nippon Unicar Co., Ltd. -Acrylic acid copolymer) ", Nippon Unicar EEA, Daikin Industries" DAI-EL Latex Series (Fluororubber) ", JSR" TRD-2001 (SBR) ", Nippon Zeon" BM-400B " (SBR) ".

上記の有機バインダーを使用する場合には、後述する第2セパレータ層形成用の組成物の溶媒に溶解させるか、または分散させたエマルジョンの状態で用いればよい。   When the organic binder is used, it may be used in the state of an emulsion dissolved or dispersed in a solvent of a composition for forming a second separator layer described later.

第2セパレータ層には、セパレータの形状安定性や柔軟性を確保するために繊維状物を含有させてもよい。繊維状物は、耐熱温度が150℃以上であることが好ましい。   The second separator layer may contain a fibrous material in order to ensure the shape stability and flexibility of the separator. The fibrous material preferably has a heat resistant temperature of 150 ° C. or higher.

繊維状物としては、電気絶縁性を有しており、電気化学的に安定で、電気化学素子が有する非水電解液や、セパレータ製造の際に使用する溶媒に安定であり、好ましくは上記の耐熱温度を有していれば、特に材質に制限はない。   As the fibrous material, it has electrical insulation, is electrochemically stable, is stable to the non-aqueous electrolyte solution of the electrochemical element, and the solvent used in the production of the separator, preferably the above-mentioned The material is not particularly limited as long as it has a heat resistant temperature.

繊維状物の具体的な構成材料としては、例えば、セルロースおよびその変成体〔カルボキシメチルセルロース(CMC)、ヒドロキシプロピルセルロース(HPC)など〕、ポリオレフィン(PP、プロピレンの共重合体など)、ポリエステル〔ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリブチレンテレフタレート(PBT)など〕、ポリアクリロニトリル(PAN)、アラミド、ポリアミドイミド、ポリイミドなどの樹脂;ガラス、アルミナ、ジルコニア、シリカなどの無機酸化物;などを挙げることができ、これらの構成材料を2種以上併用して繊維状物を構成してもよい。また、繊維状物は、必要に応じて、各種添加剤、例えば、繊維状物が樹脂である場合には酸化防止剤などを含有していても構わない。   Specific constituent materials of the fibrous material include, for example, cellulose and its modified products (carboxymethyl cellulose (CMC), hydroxypropyl cellulose (HPC), etc.), polyolefin (PP, propylene copolymer, etc.), polyester [polyethylene, etc. Resins such as terephthalate (PET), polyethylene naphthalate (PEN), polybutylene terephthalate (PBT), polyacrylonitrile (PAN), aramid, polyamideimide, polyimide; inorganic oxides such as glass, alumina, zirconia, silica; A fibrous material may be formed by using two or more of these constituent materials in combination. Further, the fibrous material may contain various additives, for example, an antioxidant when the fibrous material is a resin, as necessary.

繊維状物の形状としては、例えば、平均径が0.01〜20μmであることが好ましく、平均長が0.1〜50000μmであることが好ましい。   As the shape of the fibrous material, for example, the average diameter is preferably 0.01 to 20 μm, and the average length is preferably 0.1 to 50000 μm.

本明細書でいう微粒子(無機フィラーおよび後述する低融点材)の平均粒径は、例えば、微粒子の水分散体を用意し、大塚電子社製の濃厚系粒径アナライザー「FPAR−1000」を使用して、動的光散乱により測定されるD50(体積累積頻度が50%なる粒径)として規定することができる。 The average particle size of the fine particles (inorganic filler and low melting point material described later) referred to in the present specification is, for example, using an aqueous dispersion of fine particles and using a concentrated particle size analyzer “FPAR-1000” manufactured by Otsuka Electronics Co., Ltd. Then, it can be defined as D 50 (particle diameter with a volume cumulative frequency of 50%) measured by dynamic light scattering.

第2セパレータ層に有機バインダーが含有される場合には、有機バインダーによる効果をより良好に確保する観点から、その含有率は、第2セパレータ層の構成成分の全体積中、0.2体積%以上であることが好ましく、0.5体積%以上であることがより好ましい。ただし、第2セパレータ層における有機バインダーの量が多すぎると、他の成分の量が少なくなりすぎて、それらによる効果が十分に確保し得ない虞があることから、第2セパレータ層における有機バインダーの含有率は、第2セパレータ層の構成成分の全体積中、20体積%以下であることが好ましく、10体積%以下であることがより好ましい。   When the second separator layer contains an organic binder, the content is 0.2% by volume in the total volume of the constituent components of the second separator layer from the viewpoint of better ensuring the effect of the organic binder. It is preferable that the amount be 0.5% by volume or more. However, if the amount of the organic binder in the second separator layer is too large, the amount of other components becomes too small, and there is a possibility that the effect of them cannot be sufficiently secured. The content of is preferably 20% by volume or less, and more preferably 10% by volume or less, in the total volume of the constituent components of the second separator layer.

第2セパレータ層に無機フィラーが含有される場合には、無機フィラーによる上記の効果をより良好に確保する観点から、その含有率は、第2セパレータ層の構成成分の全体積中、10体積%以上であることが好ましく、40体積%以上であることがより好ましい。ただし、第2セパレータ層における無機フィラーの量が多すぎると、他の成分の量が少なくなりすぎて、それらによる効果が十分に確保し得ない虞があることから、第2セパレータ層における無機フィラーの含有率は、第2セパレータ層の構成成分の全体積中、99体積%以下であることが好ましく、95体積%以下であることがより好ましい。   When the inorganic filler is contained in the second separator layer, the content is 10% by volume in the total volume of the constituent components of the second separator layer, from the viewpoint of ensuring the above-described effect by the inorganic filler better. It is preferable that it is above, and it is more preferable that it is 40 volume% or more. However, if the amount of the inorganic filler in the second separator layer is too large, the amount of the other components becomes too small, and there is a possibility that the effect by them cannot be sufficiently secured. Therefore, the inorganic filler in the second separator layer The content of is preferably 99% by volume or less and more preferably 95% by volume or less in the total volume of the constituent components of the second separator layer.

第2セパレータ層に繊維状物が含有される場合には、繊維状物による上記の効果をより良好に確保する観点から、その含有率は、第2セパレータ層の構成成分の全体積中、5体積%以上であることが好ましく、10体積%以上であることがより好ましい。ただし、第2セパレータ層における繊維状物の量が多すぎると、他の成分の量が少なくなりすぎて、それらによる効果が十分に確保し得ない虞があることから、第2セパレータ層における繊維状物の含有率は、第2セパレータ層の構成成分の全体積中、90体積%以下であることが好ましく、60体積%以下であることがより好ましい。   When the fibrous material is contained in the second separator layer, the content is 5 out of the total volume of the constituent components of the second separator layer, from the viewpoint of ensuring the above-described effect by the fibrous material better. The volume is preferably at least volume%, more preferably at least 10 volume%. However, if the amount of the fibrous material in the second separator layer is too large, the amount of other components becomes too small, and there is a possibility that the effect by them cannot be sufficiently secured. The content of the shaped material is preferably 90% by volume or less, and more preferably 60% by volume or less, in the total volume of the constituent components of the second separator layer.

なお、上記の無機フィラー、有機バインダーおよび繊維状物が、第1セパレータ層に含有されていてもよい。   In addition, said inorganic filler, an organic binder, and a fibrous material may be contained in the 1st separator layer.

なお、後述する実施例の室温での透気度抵抗度の測定結果などからもわかるように、第2セパレータ層は、イオン透過性を有している。   In addition, as can be seen from the measurement results of air permeability resistance at room temperature in Examples described later, the second separator layer has ion permeability.

<第3セパレータ層>
第3セパレータ層を構成する熱可塑性樹脂は、シャットダウンを起こす熱可塑性樹脂層(2次シャットダウン層)として上で例示した、「樹脂(A)」の融点よりも低い融点を有する材料〔以下、「低融点材」という〕である。この樹脂層を1次シャットダウン層(もしくは低温シャットダウン層)と呼ぶ。この樹脂層は、電気絶縁性を有し、電気化学素子内に保持される非水電解液に対して安定であり、更に電気化学素子の作動電圧範囲において酸化還元され難く、電気化学的に安定な材料が好ましい。
<Third separator layer>
The thermoplastic resin constituting the third separator layer is a material having a melting point lower than the melting point of “resin (A)” exemplified above as a thermoplastic resin layer (secondary shutdown layer) that causes shutdown [hereinafter, “ It is called “low melting point material”. This resin layer is called a primary shutdown layer (or a low temperature shutdown layer). This resin layer has electrical insulation, is stable with respect to the non-aqueous electrolyte retained in the electrochemical element, and is not easily oxidized or reduced in the operating voltage range of the electrochemical element, and is electrochemically stable. Are preferred.

このような熱可塑性樹脂の具体例としては、例えば、低密度ポリエチレン(LDPE)、高密度ポリエチレン(HDPE)、変性ポリエチレン、ポリプロピレン(PP)、パラフィン、蝋、共重合ポリオレフィン、ポリオレフィン誘導体(塩素化ポリエチレン、ポリ塩化ビニリデン、ポリ塩化ビニル、フッ素樹脂など)などのポリオレフィン;ポリビニルアルコール;ポリイミド;アラミドなどが挙げられる。また、上記共重合ポリオレフィンとしては、エチレン−ビニルモノマー共重合体(EVA)、より具体的には、エチレン−プロピレン共重合体、エチレン−酢酸ビニル共重合体、エチレン−メチルアクリレート共重合体、エチレン−アクリル酸共重合体、エチレン−メタクリル酸共重合体、エチレン−ビニルアルコール共重合体などが挙げられる。第3セパレータ層には、上で例示した各熱可塑性樹脂のうちの1種のみを用いてもよく、2種以上を併用してもよい。   Specific examples of such thermoplastic resins include, for example, low density polyethylene (LDPE), high density polyethylene (HDPE), modified polyethylene, polypropylene (PP), paraffin, wax, copolymer polyolefin, polyolefin derivative (chlorinated polyethylene). Polyolefins such as polyvinylidene chloride, polyvinyl chloride, and fluororesins), polyvinyl alcohol, polyimide, and aramid. Examples of the copolymer polyolefin include ethylene-vinyl monomer copolymer (EVA), more specifically, ethylene-propylene copolymer, ethylene-vinyl acetate copolymer, ethylene-methyl acrylate copolymer, ethylene. -Acrylic acid copolymer, ethylene-methacrylic acid copolymer, ethylene-vinyl alcohol copolymer, etc. are mentioned. For the third separator layer, only one of the thermoplastic resins exemplified above may be used, or two or more may be used in combination.

上で例示した各熱可塑性樹脂の中でも、融点、すなわち、JISK 7121の規定に準じて示差走査熱量計(DSC)を用いて測定される融解温度が80〜140℃のものを使用することが好ましい。この場合には、セパレータにおけるシャットダウンがより好ましい条件で発現するようになる。
さらに言えば、第3次、第4次シャットダウン層のように異なる融点を有するシャットダウン層を増加させることについては特に制限はない。
Among the thermoplastic resins exemplified above, it is preferable to use a resin having a melting point, that is, a melting temperature of 80 to 140 ° C. measured using a differential scanning calorimeter (DSC) in accordance with JIS K 7121. . In this case, the shutdown in the separator appears under more preferable conditions.
Furthermore, there is no particular limitation on increasing the number of shutdown layers having different melting points such as the third and fourth shutdown layers.

第3セパレータ層における熱可塑性樹脂の含有率は、第3セパレータ層の構成成分の全体積(空孔部分を除く全体積)中、50体積%以上であり、70体積%以上であることが好ましく、100体積%、すなわち、熱可塑性樹脂のみで構成されていてもよい。
第3セパレータ層は、低融点材のみで構成されていてもよく、また、低融点材と有機バインダーとを含み、低融点材同士が有機バインダーで結着された構造を有していてもよい。
The content of the thermoplastic resin in the third separator layer is 50% by volume or more and preferably 70% by volume or more in the total volume (total volume excluding the voids) of the constituent components of the third separator layer. 100 volume%, that is, it may be composed of only a thermoplastic resin.
The third separator layer may be composed of only a low melting point material, or may include a low melting point material and an organic binder, and the low melting point material may be bonded to each other with an organic binder. .

第3セパレータ層に用いる有機バインダーは、第2セパレータ層に用いられる有機バインダーとして挙げられた有機バインダーの中から、適宜、用いられる。第3セパレータ層に有機バインダーを使用する場合には、後述する第3セパレータ層形成用の組成物の溶媒に溶解させるか、または分散させたエマルジョンの状態で用いればよい。第3セパレータ層にも、第2セパレータ層と同様に繊維状物を含有させてもよい。   The organic binder used for a 3rd separator layer is suitably used from the organic binders mentioned as an organic binder used for a 2nd separator layer. When an organic binder is used for the third separator layer, it may be used in the state of an emulsion dissolved or dispersed in a solvent for a composition for forming a third separator layer described later. The third separator layer may contain a fibrous material as in the second separator layer.

第3セパレータ層に有機バインダーを含有させる場合には、有機バインダーによる効果をより良好に確保する観点から、その含有率は、第3セパレータ層の構成成分の全体積中、0.2体積%以上であることが好ましく、0.5体積%以上であることがより好ましい。ただし、第2セパレータ層における有機バインダーの量が多すぎると、他の成分の量が少なくなりすぎて、それらによる効果が十分に確保し得ない虞があることから、第2セパレータ層における有機バインダーの含有率は、第2セパレータ層の構成成分の全体積中、20体積%以下であることが好ましく、10体積%以下であることがより好ましい。   In the case where an organic binder is contained in the third separator layer, the content is 0.2% by volume or more in the total volume of the constituent components of the third separator layer, from the viewpoint of ensuring a better effect of the organic binder. It is preferable that it is 0.5 volume% or more. However, if the amount of the organic binder in the second separator layer is too large, the amount of other components becomes too small, and there is a possibility that the effect of them cannot be sufficiently secured. The content of is preferably 20% by volume or less, and more preferably 10% by volume or less, in the total volume of the constituent components of the second separator layer.

少なくとも低融点材、バインダ、界面活性剤を含む第3セパレータの塗布量(w)は、高温で溶融した際の体積(溶融体積)の、第1セパレータ層の空孔体積に占める割合(溶融充填率)が所定範囲となるように設定することが好ましい。例えば、140℃では、溶融充填率3%以上であることが好ましく、10%以上がより好ましい。3%より小さくなると、シャットダウン効果が弱くなり、該電気化学素子用セパレータを用いて作製した電気化学素子の発熱抑制の効果が弱まる。溶融充填率は200%以下が好ましく、150%以下がより好ましい。溶融充填率が200%を超えると、該セパレータが抵抗になり、該セパレータを用いて作製した電気化学素子の出力が低下する。   The coating amount (w) of the third separator containing at least a low-melting-point material, a binder, and a surfactant is the ratio of the volume (melted volume) when melted at a high temperature to the pore volume of the first separator layer (melt-filled) It is preferable to set the ratio to be within a predetermined range. For example, at 140 ° C., the melt filling rate is preferably 3% or more, and more preferably 10% or more. If it is less than 3%, the shutdown effect is weakened, and the effect of suppressing the heat generation of the electrochemical device produced using the electrochemical device separator is weakened. The melt filling rate is preferably 200% or less, and more preferably 150% or less. When the melt filling rate exceeds 200%, the separator becomes a resistance, and the output of an electrochemical element manufactured using the separator is lowered.

溶融充填率を、第1セパレータ層1m2当たりの第3セパレータ層の重量(w)を用いて、溶融体積を式で表すと、以下の式(1)で表される。

Figure 2016181323

そして、溶融充填率は、以下の式(2)で表される。
Figure 2016181323

ここで、
w:第1セパレータ層1m2当たりに形成された第3セパレータ層の重量
d:第3セパレータ層の比重(真密度)
α:第3セパレータ層の線膨張率
β:第3セパレータ層の体積膨張率
T:シャットダウン温度
t:室温
V:第1セパレータ層の1m2当たりの見かけ上の体積
v:第1セパレータ層の1m2当たりの実体積
である。 When the melt volume is expressed by a formula using the weight (w) of the third separator layer per 1 m 2 of the first separator layer, the melt filling rate is expressed by the following formula (1).
Figure 2016181323

The melt filling rate is expressed by the following formula (2).
Figure 2016181323

here,
w: Weight of the third separator layer formed per 1 m 2 of the first separator layer d: Specific gravity (true density) of the third separator layer
α: Linear expansion coefficient of the third separator layer β: Volume expansion coefficient of the third separator layer T: Shutdown temperature t: Room temperature V: Apparent volume per 1 m 2 of the first separator layer v: 1 m of the first separator layer The actual volume per 2 units.

第3セパレータ層の比重(真密度)(バインダ、界面活性剤等、第3セパレータ層形成用組成物を含む)は、例えば、乾燥品をウルトラピクノメーターで測定することにより求めることができる。   The specific gravity (true density) of the third separator layer (including the third separator layer forming composition such as a binder and a surfactant) can be determined, for example, by measuring the dried product with an ultra pycnometer.

第3セパレータ層に用いられる低融点材の溶融粘度は140℃で5mPa・s以上が好ましく、8mPa・s以上がより好ましい。5mPa・sより小さいと、シャットダウン時に溶融した低融点材がセパレータ外に流れ出しやすくなる。低融点材の溶融粘度は140℃で100000mPa・s以下が好ましく、2000mPa・s以下がより好ましい。100000mPa・sより大きい場合、低融点材が溶融した際、流動性が小さく、セパレータの気孔を閉塞できない。特に、1000mPa・s未満がセパレータの気孔を閉塞しやすく、最も好ましい。また、第3セパレータ層に用いられる低融点材の溶融粘度は、第1セパレータ層を構成する熱可塑性樹脂よりも低くすることで、塗布性と、シャットダウン性能の両方の性能向上を図ることが可能となる。   The melt viscosity of the low melting point material used for the third separator layer is preferably 5 mPa · s or more, more preferably 8 mPa · s or more at 140 ° C. When it is less than 5 mPa · s, the low melting point material melted at the time of shutdown easily flows out of the separator. The melt viscosity of the low melting point material is preferably 100,000 mPa · s or less at 140 ° C., more preferably 2000 mPa · s or less. When it is larger than 100,000 mPa · s, when the low melting point material is melted, the fluidity is small and the pores of the separator cannot be closed. Particularly, less than 1000 mPa · s is most preferable because it easily closes the pores of the separator. Moreover, the melt viscosity of the low melting point material used for the third separator layer is lower than that of the thermoplastic resin constituting the first separator layer, so that both the applicability and the shutdown performance can be improved. It becomes.

なお、後述する実施例の室温での透気度抵抗度の測定結果などからもわかるように、第3セパレータ層は、イオン透過性を有している。   As can be seen from the measurement results of the air permeability resistance at room temperature in the examples described later, the third separator layer has ion permeability.

以下、セパレータの構成、厚み、透気度、強度、製造方法について述べる。
<セパレータの構成>
図1は、本実施の形態におけるセパレータの代表的な構成の一例を示す断面図である。セパレータ1は、第1セパレータ層10の一方面に第2セパレータ層20が設けられ、第1セパレータ層10の他方面に第3セパレータ層30が設けられている。第1セパレータ層10は、樹脂(A)で構成されたA層11の両面に、樹脂(B)で構成されたB層12、12を有する3層構造を有している。A層11は、樹脂(A)として例えば融点が137℃のPEを用いており、かかる融点以上のシャットダウン温度で溶融して微多孔を閉塞するシャットダウンを行う。B層12は、樹脂(B)として例えば融点が170℃のPPを用いており、素子温度の上昇時にかかる融点までは構造を維持し、その後溶融して微多孔を閉塞するシャットダウンを行う。
Hereinafter, the configuration, thickness, air permeability, strength, and manufacturing method of the separator will be described.
<Configuration of separator>
FIG. 1 is a cross-sectional view showing an example of a typical configuration of a separator in the present embodiment. In the separator 1, the second separator layer 20 is provided on one surface of the first separator layer 10, and the third separator layer 30 is provided on the other surface of the first separator layer 10. The first separator layer 10 has a three-layer structure having B layers 12 and 12 made of a resin (B) on both surfaces of an A layer 11 made of a resin (A). The A layer 11 uses, for example, PE having a melting point of 137 ° C. as the resin (A), and performs shutdown to close the micropores by melting at a shutdown temperature equal to or higher than the melting point. The B layer 12 uses, for example, PP having a melting point of 170 ° C. as the resin (B), maintains the structure up to the melting point when the element temperature rises, and then shuts down to close the micropores by melting.

第2セパレータ層20は、例えば耐熱性材料である無機フィラー21を有しており、耐熱温度が150℃以上に設定されている。これにより、少なくとも150℃以下ではセパレータ1の熱収縮を抑制することができる。第2セパレータ層の耐熱温度が高いほど、より高い温度でもセパレータの熱収縮を抑制することができ、安全性が向上する。   The second separator layer 20 includes, for example, an inorganic filler 21 that is a heat resistant material, and the heat resistant temperature is set to 150 ° C. or higher. Thereby, the thermal contraction of the separator 1 can be suppressed at least at 150 ° C. or lower. As the heat resistant temperature of the second separator layer is higher, the thermal contraction of the separator can be suppressed even at a higher temperature, and safety is improved.

第3セパレータ層30は、第1セパレータ層10の樹脂(A)の融点よりも低い融点を有する低融点材である、例えば融点が100℃〜125℃のPEを用いており、電気化学素子の内部温度がかかる融点を超えると溶融して微多孔を閉塞するシャットダウン(1次シャットダウン)を行う。第3セパレータ層30は、このような1次シャットダウン層(低温シャットダウン層)であり、第1セパレータ層10である2次シャットダウン層のシャットダウン温度よりも低温でシャットダウンを行う。したがって、より早い段階でシャットダウンを行うことができ、熱暴走へと至る発熱を抑制できる。その後、内部短絡等、何らかの要因で発熱が起こった場合にも、第1セパレータ層10の2次シャットダウン層がシャットダウンし、2段階で発熱抑制が可能となる。   The third separator layer 30 is a low melting point material having a melting point lower than the melting point of the resin (A) of the first separator layer 10, for example, PE having a melting point of 100 ° C. to 125 ° C. When the internal temperature exceeds the melting point, a shutdown (primary shutdown) is performed to melt and close the micropores. The third separator layer 30 is such a primary shutdown layer (low-temperature shutdown layer), and performs shutdown at a temperature lower than the shutdown temperature of the secondary shutdown layer that is the first separator layer 10. Therefore, shutdown can be performed at an earlier stage, and heat generation leading to thermal runaway can be suppressed. Thereafter, even when heat is generated due to some cause such as an internal short circuit, the secondary shutdown layer of the first separator layer 10 is shut down, and heat generation can be suppressed in two stages.

1段階目のシャットダウンが起こった後に、さらなる発熱が起こった場合には、低融点材が溶解後、さらに温度上昇することにより、第3セパレータ層30はより低粘度化する。この際、セパレータ1からの低融点材の流出が起こり、シャットダウンの持続効果が消失する可能性がある。したがって、第1セパレータ層10が2次シャットダウン層を持たないとすると、さらなる発熱の可能性が高まる。しかし、本実施形態のセパレータ1は、第1セパレータ層10が2次シャットダウン層を有するので、1次シャットダウン層のシャットダウンの持続効果が消失しても、第1セパレータ層10内の2次シャットダウン層の溶解温度に達した際に、再度、シャットダウンが可能となる。このように、異なるシャットダウン温度を有するシャットダウン層が複数存在することにより、より、広い温度範囲で発熱を抑制でき、安全性の向上に寄与する。   If further heat generation occurs after the first-stage shutdown, the temperature of the third separator layer 30 is further lowered by further increasing the temperature after the low melting point material is dissolved. At this time, the low melting point material flows out of the separator 1 and the sustaining effect may be lost. Therefore, if the first separator layer 10 does not have a secondary shutdown layer, the possibility of further heat generation increases. However, in the separator 1 of the present embodiment, since the first separator layer 10 has the secondary shutdown layer, even if the sustained shutdown effect of the primary shutdown layer disappears, the secondary shutdown layer in the first separator layer 10 When the melting temperature is reached, the shutdown can be performed again. Thus, the presence of a plurality of shutdown layers having different shutdown temperatures makes it possible to suppress heat generation in a wider temperature range, thereby contributing to an improvement in safety.

また、上記のように、第2セパレータ層20は、耐熱性材料を有し、熱収縮を抑える機能を有する。熱収縮を抑えることにより、セパレータの破膜による内部短絡を抑制できる。よって、本発明のセパレータ1は、異なる融点を有する複数の熱可塑性樹脂層による多段階のシャットダウンと耐熱材料による破膜防止の機能を兼ね備えた構造となっている。   In addition, as described above, the second separator layer 20 has a heat resistant material and has a function of suppressing thermal shrinkage. By suppressing the heat shrinkage, an internal short circuit due to the film breakage of the separator can be suppressed. Therefore, the separator 1 of the present invention has a structure that combines a multi-stage shutdown by a plurality of thermoplastic resin layers having different melting points and a function of preventing film breakage by a heat-resistant material.

本実施形態の電気化学素子において、以下の事情により、本実施形態のセパレータ1は、第3セパレータ層30が負極に対向し、第2セパレータ層20が正極に対向して配置されることが好ましい。電気化学素子は、長期間の使用によりデンドライトが析出し、負極から正極に向かって成長する。このデンドライトは電解液と反応するため、この反応を早期に抑える方法として、デンドライトを物理的に覆うことが挙げられる。上述したセパレータ配置の電気化学素子では、シャットダウン時間の短縮効果が見られた。上述したセパレータ配置の電気化学素子では、電気化学素子の温度が高騰して第3セパレータ層30が溶融する際、溶融した第3セパレータ層30の低融点材がデンドライト及び負極を直接覆う可能性がある。これにより、デンドライトと電解液の反応を早期に抑えることができる。以上より、上述した配置によって電気化学素子の安全性をより高めることができる。   In the electrochemical device of the present embodiment, the separator 1 of the present embodiment is preferably disposed with the third separator layer 30 facing the negative electrode and the second separator layer 20 facing the positive electrode due to the following circumstances. . In the electrochemical device, dendrites are deposited by long-term use and grow from the negative electrode toward the positive electrode. Since this dendrite reacts with the electrolyte, a method for suppressing this reaction at an early stage is to physically cover the dendrite. In the electrochemical device having the separator arrangement described above, the effect of shortening the shutdown time was observed. In the electrochemical device having the separator arrangement described above, when the temperature of the electrochemical device rises and the third separator layer 30 is melted, the low melting point material of the melted third separator layer 30 may directly cover the dendrite and the negative electrode. is there. Thereby, reaction of a dendrite and electrolyte solution can be suppressed at an early stage. As mentioned above, the safety | security of an electrochemical element can be improved more by the arrangement | positioning mentioned above.

一方、正極側に第3セパレータ層30が配置された場合、デンドライトを有する負極と第3セパレータ層30との間には、第1セパレータ層10と第2セパレータ層20が存在することになる。よって、正極側に第3セパレータ層30が配置されている場合には、本発明の通常の効果は得られるものの、溶融した第3セパレータ層30の低融点材が、デンドライト及び負極を直接覆うことができないため、負極側に配置された場合と比して、デンドライトと電解液の反応を抑制するのに時間がかかると推察される。   On the other hand, when the third separator layer 30 is disposed on the positive electrode side, the first separator layer 10 and the second separator layer 20 exist between the negative electrode having dendrites and the third separator layer 30. Therefore, when the third separator layer 30 is disposed on the positive electrode side, the normal effect of the present invention can be obtained, but the molten low melting point material of the third separator layer 30 directly covers the dendrite and the negative electrode. Therefore, it is presumed that it takes time to suppress the reaction between the dendrite and the electrolytic solution as compared with the case where it is arranged on the negative electrode side.

図2は、本実施形態におけるセパレータの代表的な構成の他の一例を示す断面図である。セパレータ1は、第1のセパレータ層10の一方面に第2セパレータ層20が設けられ、第2のセパレータ層20の一方面に重ねて第3セパレータ層30が設けられている。そして、第3セパレータ層30が負極に対向し、第1セパレータ層10が正極に対向して配置される。この構成においても、図1に示すセパレータ1と同様の作用効果を奏することができる。   FIG. 2 is a cross-sectional view showing another example of the representative configuration of the separator in the present embodiment. In the separator 1, the second separator layer 20 is provided on one surface of the first separator layer 10, and the third separator layer 30 is provided on one surface of the second separator layer 20. The third separator layer 30 is disposed to face the negative electrode, and the first separator layer 10 is disposed to face the positive electrode. Even in this configuration, the same effects as the separator 1 shown in FIG. 1 can be obtained.

<セパレータの厚み>
電気化学素子における短絡防止効果をより高め、セパレータの強度を確保して取り扱い性を良好にする観点から、本発明のセパレータの厚みは、3μm以上であることが好ましく、5μm以上であることがより好ましい。他方、電気化学素子のエネルギー密度をより高める観点からは、本発明のセパレータの厚みは、45μm以下であることが好ましく、30μm以下であることがより好ましい。
<Separator thickness>
From the viewpoint of further improving the short-circuit preventing effect in the electrochemical element, ensuring the strength of the separator and improving the handleability, the thickness of the separator of the present invention is preferably 3 μm or more, more preferably 5 μm or more. preferable. On the other hand, from the viewpoint of further increasing the energy density of the electrochemical element, the thickness of the separator of the present invention is preferably 45 μm or less, and more preferably 30 μm or less.

第1セパレータ層の厚みは、2μm以上であることが好ましく、4μm以上であって、好ましくは30μm以下、より好ましくは20μm以下である。第2セパレータ層の厚みは、好ましくは1μm以上、より好ましくは3μm以上であって、好ましくは15μm以下、より好ましくは10μm以下である。第3セパレータ層の厚みは、好ましくは1μm以上、より好ましくは3μm以上であって、好ましくは15μm以下、より好ましくは10μm以下である。   The thickness of the first separator layer is preferably 2 μm or more, preferably 4 μm or more, preferably 30 μm or less, more preferably 20 μm or less. The thickness of the second separator layer is preferably 1 μm or more, more preferably 3 μm or more, preferably 15 μm or less, more preferably 10 μm or less. The thickness of the third separator layer is preferably 1 μm or more, more preferably 3 μm or more, preferably 15 μm or less, more preferably 10 μm or less.

<セパレータの透気抵抗度>
本発明のセパレータの透気抵抗度測定は、JIS P 8117に準拠した方法で行われ、100mLの空気が膜を透過する秒数で示されるガーレー値が、10〜500secであることが望ましい。透気度が大きすぎると、イオン透過性が小さくなり、他方、小さすぎると、セパレータの強度が小さくなることがある。これまで説明してきた構成のセパレータとすることで、このような透気度を確保することができる。
<Air permeability resistance of separator>
The measurement of the air resistance of the separator of the present invention is performed by a method in accordance with JIS P 8117, and the Gurley value indicated by the number of seconds that 100 mL of air passes through the membrane is desirably 10 to 500 sec. If the air permeability is too high, the ion permeability is reduced, whereas if it is too low, the strength of the separator may be reduced. By using the separator having the configuration described so far, such air permeability can be ensured.

<セパレータの強度>
セパレータの強度としては、直径1mmのニードルを用いた突き刺し強度で50g以上であることが望ましい。かかる突き刺し強度が小さすぎると、リチウムのデンドライト結晶が発生した場合に、セパレータの突き破れによる短絡が発生する場合がある。例えば、無機フィラーも含有する第2セパレータ層を有するセパレータとすることで、このような強度を確保することができる。
<Strength of separator>
The strength of the separator is desirably 50 g or more in terms of piercing strength using a needle having a diameter of 1 mm. If the piercing strength is too small, a short circuit may occur due to the piercing of the separator when lithium dendrite crystals are generated. For example, such a strength can be ensured by using a separator having a second separator layer that also contains an inorganic filler.

<セパレータの製造方法>
セパレータは、例えば、第1セパレータ層を構成する熱可塑性樹脂製の微多孔膜などに、第2セパレータ層形成用組成物(スラリー、ペーストなど)及び第3セパレータ層形成用組成物(スラリー、ペーストなど)を塗布し、所定の温度で乾燥して第2セパレータ層及び第3セパレータ層を形成することにより製造することができる。必要に応じて塗料に界面活性剤を用いるか、または、第1セパレータ層に表面処理(コロナ処理、オゾン処理、電子線処理、プライマー処理等)を施した後、塗布しても構わない。
<Manufacturing method of separator>
The separator is, for example, a second separator layer forming composition (slurry, paste, etc.) and a third separator layer forming composition (slurry, paste) on a microporous film made of a thermoplastic resin constituting the first separator layer. Etc.) and dried at a predetermined temperature to form the second separator layer and the third separator layer. If necessary, a surfactant may be used in the paint, or the first separator layer may be applied after surface treatment (corona treatment, ozone treatment, electron beam treatment, primer treatment, etc.).

第2セパレータ層形成用組成物は、無機フィラー、繊維状物などを溶媒に分散させ、また必要に応じて使用される有機バインダーを上記溶媒に分散または溶解させて調製される。   The composition for forming the second separator layer is prepared by dispersing an inorganic filler, a fibrous material or the like in a solvent, and dispersing or dissolving an organic binder used as necessary in the solvent.

第3セパレータ層形成用組成物は、低融点材、繊維状物などを溶媒に分散または溶解させ、また必要に応じて使用される有機バインダーを上記溶媒に分散または溶解させて調製される。第3セパレータ層形成用組成物の形態が分散体またはエマルジョンの場合、その微粒子の形状については特に制限はなく、略球状(真球状を含む)や楕円体状、板状など、いずれの形状であってもよい。該第3セパレータ層形成用組成物の粒径は、上記の方法で測定される平均粒径で、0.01μm以上であることが好ましく、0.1μm以上であることがより好ましく、また、20μm以下であることが好ましく、5μm以下であることがより好ましい。   The composition for forming the third separator layer is prepared by dispersing or dissolving a low-melting-point material, a fibrous material or the like in a solvent, and dispersing or dissolving an organic binder used as necessary in the solvent. When the composition of the third separator layer forming composition is a dispersion or an emulsion, the shape of the fine particles is not particularly limited, and may be any shape such as a substantially spherical shape (including a true spherical shape), an elliptical shape, or a plate shape. There may be. The particle size of the composition for forming the third separator layer is an average particle size measured by the above method, preferably 0.01 μm or more, more preferably 0.1 μm or more, and 20 μm. Or less, more preferably 5 μm or less.

第2セパレータ層形成用組成物及び第3セパレータ層形成用組成物に用いられる溶媒は、無機フィラー、低融点材および繊維状物などを均一に分散でき、かつ有機バインダーを均一に溶解または分散できるものであればよいが、例えば、トルエンなどの芳香族炭化水素、テトラヒドロフランなどのフラン類、メチルエチルケトン、メチルイソブチルケトンなどのケトン類など、一般に有機溶媒が好適に用いられる。これらの溶媒に、界面張力を制御する目的で、アルコール(エチレングリコール、プロピレングリコールなど)、または、モノメチルアセテートなどの各種プロピレンオキサイド系グリコールエーテルなどを適宜添加してもよい。また、有機バインダーが水溶性である場合、エマルジョンとして使用する場合などでは、水を溶媒としてもよく、この際にもアルコール類(メチルアルコール、エチルアルコール、イソプロピルアルコール、エチレングリコールなど)を適宜加えて界面張力を制御することもできる。   The solvent used in the composition for forming the second separator layer and the composition for forming the third separator layer can uniformly disperse the inorganic filler, the low melting point material, the fibrous material, and the like, and can dissolve or disperse the organic binder uniformly. However, organic solvents such as aromatic hydrocarbons such as toluene, furans such as tetrahydrofuran, and ketones such as methyl ethyl ketone and methyl isobutyl ketone are generally preferably used. For the purpose of controlling the interfacial tension, alcohols (ethylene glycol, propylene glycol, etc.) or various propylene oxide glycol ethers such as monomethyl acetate may be appropriately added to these solvents. In addition, when the organic binder is water-soluble or used as an emulsion, water may be used as a solvent. In this case, alcohols (methyl alcohol, ethyl alcohol, isopropyl alcohol, ethylene glycol, etc.) are appropriately added. It is also possible to control the interfacial tension.

第2セパレータ層形成用組成物及び第3セパレータ層形成用組成物における固形分含量(溶媒を除く全成分の合計含量)は、例えば、10〜40質量%とすることが好ましい。   The solid content (total content of all components excluding the solvent) in the second separator layer forming composition and the third separator layer forming composition is preferably 10 to 40% by mass, for example.

――電気化学素子の実施形態――
<電気化学素子の構成例>
以下、本発明のセパレータを用いた電気化学素子の一例として、リチウムイオン二次電池(以下、単に「電池」ともいう)への適用について詳述する。リチウムイオン二次電池の形態としては、スチール缶やアルミニウム缶などを外装缶として使用した筒形(角筒形や円筒形など)などが挙げられる。また、金属を蒸着したラミネートフィルムを外装体としたソフトパッケージ電池とすることもできる。
--Embodiment of electrochemical element--
<Configuration example of electrochemical element>
Hereinafter, as an example of an electrochemical element using the separator of the present invention, application to a lithium ion secondary battery (hereinafter also simply referred to as “battery”) will be described in detail. Examples of the form of the lithium ion secondary battery include a cylindrical shape (such as a rectangular tube shape or a cylindrical shape) using a steel can or an aluminum can as an outer can. Moreover, it can also be set as the soft package battery which used the laminated film which vapor-deposited the metal as an exterior body.

正極としては、例えば、正極活物質であるリチウム含有遷移金属酸化物、バインダーおよび導電助剤などを含有する正極合剤層を、集電体の片面または両面に有する構造のものを使用できる。   As a positive electrode, the thing of the structure which has the positive mix layer containing the lithium containing transition metal oxide which is a positive electrode active material, a binder, a conductive support agent, etc. on the single side | surface or both surfaces, for example can be used.

正極活物質としては、従来のリチウムイオン二次電池に用いられている活物質、すなわち、Liイオンを吸蔵放出可能な活物質であれば特に制限はない。具体的には、例えば、Li1+xMO(−0.1<x<0.1、M:Co、Ni、Mn、Al、Mgなど)で表される層状構造のリチウム含有遷移金属酸化物、LiMnやその元素の一部を他元素で置換したスピネル構造のリチウムマンガン酸化物、LiMPO(M:Co、Ni、Mn、Feなど)で表されるオリビン型化合物などを用いることが可能である。上記層状構造のリチウム含有遷移金属酸化物の具体例としては、LiCoOやLiNi1−xCox−yAl(0.1≦x≦0.3、0.01≦y≦0.2)などのほか、少なくともCo、NiおよびMnを含む酸化物(LiMn1/3Ni1/3Co1/3、LiMn5/12Ni5/12Co1/6、LiMn3/5Ni1/5Co1/5など)などを例示することができる。 The positive electrode active material is not particularly limited as long as it is an active material used in a conventional lithium ion secondary battery, that is, an active material capable of occluding and releasing Li ions. Specifically, for example, a lithium-containing transition metal oxide having a layered structure represented by Li 1 + x MO 2 (−0.1 <x <0.1, M: Co, Ni, Mn, Al, Mg, etc.), It is possible to use LiMn 2 O 4 , a spinel-structure lithium manganese oxide obtained by substituting some of its elements with other elements, or an olivine type compound represented by LiMPO 4 (M: Co, Ni, Mn, Fe, etc.). Is possible. Specific examples of the lithium-containing transition metal oxide having a layered structure include LiCoO 2 and LiNi 1-x Co xy Al y O 2 (0.1 ≦ x ≦ 0.3, 0.01 ≦ y ≦ 0. 2) and other oxides containing at least Co, Ni and Mn (LiMn 1/3 Ni 1/3 Co 1/3 O 2 , LiMn 5/12 Ni 5/12 Co 1/6 O 2 , LiMn 3 / 5 Ni 1/5 Co 1/5 O 2 etc.).

正極のバインダーとしては、例えば、ポリフッ化ビニリデン(PVDF)などフッ素樹脂などが、また、正極の導電助剤としては、例えば、カーボンブラックなどの炭素材料などが使用される。   As the binder for the positive electrode, for example, a fluororesin such as polyvinylidene fluoride (PVDF) is used, and as the conductive additive for the positive electrode, for example, a carbon material such as carbon black is used.

正極は、例えば、正極活物質、導電助剤およびバインダーを含む正極合剤を、N−メチル−2−ピロリドン(NMP)などの溶剤に分散させて正極合剤含有組成物(スラリー、ペーストなど)を調製し、これを集電体に塗布し乾燥し、更に必要に応じてカレンダー処理などのプレス処理を施す工程を経て製造することができる。ただし、正極の製造方法は、上記の方法に限定される訳ではなく、他の方法で製造してもよい。   For the positive electrode, for example, a positive electrode mixture containing a positive electrode active material, a conductive additive and a binder is dispersed in a solvent such as N-methyl-2-pyrrolidone (NMP), and a positive electrode mixture-containing composition (slurry, paste, etc.) Can be produced by applying it to a current collector, drying it, and then subjecting it to press treatment such as calendering if necessary. However, the manufacturing method of a positive electrode is not necessarily limited to said method, You may manufacture by another method.

正極の集電体としては、アルミニウムなどの金属の箔、パンチングメタル、網、エキスパンドメタルなどを用い得るが、通常、厚みが10〜30μmのアルミニウム箔が好適に用いられる。   As the current collector of the positive electrode, a metal foil such as aluminum, a punching metal, a net, an expanded metal, or the like can be used. Usually, an aluminum foil having a thickness of 10 to 30 μm is preferably used.

正極側のリード部は、通常、正極作製時に、集電体の一部に正極合剤層を形成せずに集電体の露出部を残し、そこをリード部とすることによって設けられる。ただし、リード部は必ずしも当初から集電体と一体化されたものであることは要求されず、集電体にアルミニウム製の箔などを後から接続することによって設けてもよい。   The lead portion on the positive electrode side is normally provided by leaving the exposed portion of the current collector without forming the positive electrode mixture layer on a part of the current collector and forming the lead portion at the time of producing the positive electrode. However, the lead portion is not necessarily integrated with the current collector from the beginning, and may be provided by connecting an aluminum foil or the like to the current collector later.

負極としては、従来のリチウムイオン二次電池に用いられている負極、すなわち、Liイオンを吸蔵放出可能な活物質を含有する負極であれば特に制限はない。例えば、負極活物質として、黒鉛、熱分解炭素類、コークス類、ガラス状炭素類、有機高分子化合物の焼成体、メソカーボンマイクロビーズ(MCMB)、炭素繊維などの、リチウムを吸蔵、放出可能な炭素系材料の1種または2種以上の混合物が用いられる。また、Si、Sn、Ge、Bi、Sb、Inなどの元素およびその合金、リチウム含有窒化物、またはリチウム含有酸化物などのリチウム金属に近い低電圧で充放電できる化合物、もしくはリチウム金属やリチウム/アルミニウム合金も負極活物質として用いることができる。これらの負極活物質に導電助剤(カーボンブラックなどの炭素材料など)やPVDFなどのバインダーなどを適宜添加した負極合剤を、集電体を芯材として成形体(負極合剤層)に仕上げたもの、または上記各種合金やリチウム金属の箔を単独、もしくは集電体上に積層したものなどが負極として用いられる。   The negative electrode is not particularly limited as long as it is a negative electrode used in a conventional lithium ion secondary battery, that is, a negative electrode containing an active material capable of occluding and releasing Li ions. For example, as a negative electrode active material, lithium, such as graphite, pyrolytic carbons, cokes, glassy carbons, fired organic polymer compounds, mesocarbon microbeads (MCMB), and carbon fibers, can be occluded and released. One type or a mixture of two or more types of carbon-based materials are used. In addition, elements such as Si, Sn, Ge, Bi, Sb, In and alloys thereof, lithium-containing nitrides, compounds that can be charged and discharged at a low voltage close to lithium metal such as lithium-containing oxides, or lithium metal or lithium / An aluminum alloy can also be used as the negative electrode active material. A negative electrode mixture prepared by appropriately adding a conductive additive (carbon material such as carbon black) or a binder such as PVDF to these negative electrode active materials is finished into a molded body (negative electrode mixture layer) using the current collector as the core material. Or a laminate of the above various alloys and lithium metal foil alone or on a current collector is used as the negative electrode.

負極合剤層を有する負極の場合、例えば、負極活物質およびバインダー、更には必要に応じて導電助剤などを含む負極合剤を、NMPや水などの溶剤に分散させて負極合剤含有組成物(スラリー、ペーストなど)を調製し、これを集電体に塗布し乾燥し、更に必要に応じてカレンダー処理などのプレス処理を施す工程を経て製造することができる。ただし、負極合剤層を有する負極の製造方法は、上記の方法に限定される訳ではなく、他の方法で製造してもよい。   In the case of a negative electrode having a negative electrode mixture layer, for example, a negative electrode mixture-containing composition obtained by dispersing a negative electrode active material and a binder, and further a negative electrode mixture containing a conductive auxiliary agent if necessary in a solvent such as NMP or water. An article (slurry, paste, etc.) is prepared, applied to a current collector, dried, and further subjected to a press treatment such as a calendar treatment as necessary. However, the manufacturing method of the negative electrode having the negative electrode mixture layer is not limited to the above method, and may be manufactured by other methods.

負極に集電体を用いる場合には、集電体としては、銅製やニッケル製の箔、パンチングメタル、網、エキスパンドメタルなどを用い得るが、通常、銅箔が用いられる。この負極集電体は、高エネルギー密度の電池を得るために負極全体の厚みを薄くする場合、厚みの上限は30μmであることが好ましく、下限は5μmであることが望ましい。また、負極側のリード部は、正極側のリード部と同様にして形成すればよい。   When a current collector is used for the negative electrode, a copper or nickel foil, a punching metal, a net, an expanded metal, or the like can be used as the current collector, but a copper foil is usually used. In the negative electrode current collector, when the thickness of the entire negative electrode is reduced in order to obtain a battery having a high energy density, the upper limit of the thickness is preferably 30 μm, and the lower limit is preferably 5 μm. Further, the lead portion on the negative electrode side may be formed in the same manner as the lead portion on the positive electrode side.

正極と負極は、本発明のセパレータを介して積層した積層体や、更にこれを巻回した巻回体などの電極体の形態で用いることができる。   The positive electrode and the negative electrode can be used in the form of an electrode body such as a laminated body laminated via the separator of the present invention or a wound body obtained by winding the laminated body.

電極体においては、セパレータは、正極および負極のうちの少なくとも一方と一体化されていてもよい。セパレータを正極と一体化するには、例えば、正極合剤含有組成物を集電体に塗布して塗膜を形成し、乾燥する前のこの塗膜上にセパレータを重ねる方法などが採用できる。また、セパレータを負極と一体化する場合にも、例えば、負極合剤含有組成物を集電体に塗布して塗膜を形成し、乾燥する前のこの塗膜上にセパレータを重ねる方法などが採用できる。   In the electrode body, the separator may be integrated with at least one of the positive electrode and the negative electrode. In order to integrate the separator with the positive electrode, for example, a method of applying a positive electrode mixture-containing composition to a current collector to form a coating film, and stacking the separator on this coating film before drying can be employed. In addition, when the separator is integrated with the negative electrode, for example, there is a method in which the negative electrode mixture-containing composition is applied to a current collector to form a coating film, and the separator is stacked on this coating film before drying. Can be adopted.

非水電解液としては、リチウム塩を有機溶媒に溶解した溶液が用いられる。リチウム塩としては、溶媒中で解離してLiイオンを形成し、電池として使用される電圧範囲で分解などの副反応を起こしにくいものであれば特に制限は無い。例えば、LiClO、LiPF、LiBF、LiAsF、LiSbFなどの無機リチウム塩;LiCFSO、LiCFCO、Li(SO、LiN(CFSO、LiC(CFSO、LiC2n+1SO(2≦n≦5)、LiN(RfOSO〔ここでRfはフルオロアルキル基〕などの有機リチウム塩などを用いることができる。 As the non-aqueous electrolyte, a solution in which a lithium salt is dissolved in an organic solvent is used. The lithium salt is not particularly limited as long as it dissociates in a solvent to form Li + ions and hardly causes side reactions such as decomposition in a voltage range used as a battery. For example, inorganic lithium salts such as LiClO 4 , LiPF 6 , LiBF 4 , LiAsF 6 , LiSbF 6 ; LiCF 3 SO 3 , LiCF 3 CO 2 , Li 2 C 2 F 4 (SO 3 ) 2 , LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 , LiC n F 2n + 1 SO 3 (2 ≦ n ≦ 5), LiN (RfOSO 2 ) 2 [where Rf is a fluoroalkyl group] or the like is used. Can do.

非水電解液に用いる有機溶媒としては、上記のリチウム塩を溶解し、電池として使用される電圧範囲で分解などの副反応を起こさないものであれば特に限定されない。例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネートなどの環状カーボネート;ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネートなどの鎖状カーボネート;プロピオン酸メチルなどの鎖状エステル、γ−ブチロラクトンなどの環状エステル;ジメトキシエタン、ジエチルエーテル、1,3−ジオキソラン、ジグライム、トリグライム、テトラグライムなどの鎖状エーテル;ジオキサン、テトラヒドロフラン、2−メチルテトラヒドロフランなどの環状エーテル;アセトニトリル、プロピオニトリル、メトキシプロピオニトリルなどのニトリル類;エチレングリコールサルファイトなどの亜硫酸エステル類;などが挙げられ、これらは2種以上混合して用いることもできる。より良好な特性の電池とするためには、エチレンカーボネートと鎖状カーボネートとの混合溶媒など、高い導電率を得ることができる組み合わせで用いることが望ましい。   The organic solvent used for the non-aqueous electrolyte is not particularly limited as long as it dissolves the above lithium salt and does not cause a side reaction such as decomposition in a voltage range used as a battery. For example, cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate, vinylene carbonate; chain carbonates such as dimethyl carbonate, diethyl carbonate, and methyl ethyl carbonate; chain esters such as methyl propionate; cyclic esters such as γ-butyrolactone; Chain ethers such as dimethoxyethane, diethyl ether, 1,3-dioxolane, diglyme, triglyme and tetraglyme; cyclic ethers such as dioxane, tetrahydrofuran and 2-methyltetrahydrofuran; nitriles such as acetonitrile, propionitrile and methoxypropionitrile Sulfites such as ethylene glycol sulfite; etc., and these should be used as a mixture of two or more. It can be. In order to obtain a battery with better characteristics, it is desirable to use a combination that can obtain high conductivity, such as a mixed solvent of ethylene carbonate and chain carbonate.

また、これらの非水電解液に安全性や充放電サイクル性、高温貯蔵性といった特性を向上させる目的で、ビニレンカーボネート類、1,3−プロパンサルトン、ジフェニルジスルフィド、シクロヘキシルベンゼン、ビフェニル、フルオロベンゼン、t−ブチルベンゼンなどの添加剤を適宜加えることもできる。   In addition, vinylene carbonates, 1,3-propane sultone, diphenyl disulfide, cyclohexylbenzene, biphenyl, and fluorobenzene are used for the purpose of improving safety, charge / discharge cycleability, and high-temperature storage properties of these non-aqueous electrolytes. An additive such as t-butylbenzene may be added as appropriate.

リチウム塩の非水電解液中での濃度としては、0.5〜1.5mol/Lとすることが好ましく、0.9〜1.25mol/Lとすることがより好ましい。   The concentration of the lithium salt in the non-aqueous electrolyte is preferably 0.5 to 1.5 mol / L, and more preferably 0.9 to 1.25 mol / L.

本発明の電気化学素子は、正極、負極、セパレータおよび非水電解液を有しており、かつセパレータが本発明のセパレータであればよく、その他の構成および構造については特に制限はなく、従来から知られている電気化学素子で採用されている各種構成および構造を適用することができる。本発明のセパレータを適用できる電気化学素子は、非水電解液を用いるものであれば特に限定されるものではなく、リチウムイオン二次電池の他、リチウムイオン一次電池やスーパーキャパシタなど、高温での安全性が要求される用途であれば好ましく適用できる。すなわち、本発明の電気化学素子は、正極、負極、セパレータおよび非水電解液を有しており、かつセパレータが本発明のセパレータであればよく、その他の構成および構造については特に制限はなく、従来の非水電解液を有する各種電気化学素子(リチウムイオン二次電池、リチウムイオン一次電池、スーパーキャパシタなど)が備えている各種構成および構造を採用することができる。   The electrochemical device of the present invention has a positive electrode, a negative electrode, a separator, and a non-aqueous electrolyte, and the separator only needs to be the separator of the present invention. Other configurations and structures are not particularly limited. Various configurations and structures employed in known electrochemical elements can be applied. The electrochemical device to which the separator of the present invention can be applied is not particularly limited as long as it uses a non-aqueous electrolyte. In addition to a lithium ion secondary battery, a lithium ion primary battery, a super capacitor, etc. Any application that requires safety can be preferably applied. That is, the electrochemical device of the present invention has a positive electrode, a negative electrode, a separator and a non-aqueous electrolyte, and the separator may be the separator of the present invention, and there is no particular limitation on the other configuration and structure, Various configurations and structures provided in various electrochemical elements (lithium ion secondary battery, lithium ion primary battery, supercapacitor, etc.) having a conventional non-aqueous electrolyte can be employed.

本発明の電気化学素子において、本発明のセパレータは、正極と負極の少なくともいずれか一方に固定されて一体化された構成を有していてもよい。   In the electrochemical device of the present invention, the separator of the present invention may have a configuration in which it is fixed and integrated with at least one of the positive electrode and the negative electrode.

本発明の電気化学素子は、従来から知られている電気化学素子と同様の用途に適用することができる。   The electrochemical device of the present invention can be applied to the same applications as conventionally known electrochemical devices.

――実施例――
以下、実施例に基づいて本発明を詳細に述べる。図3に、本実施例を一覧表にして示した。なお、下記実施例は、本発明を制限するものではない。
--Example--
Hereinafter, the present invention will be described in detail based on examples. FIG. 3 shows a list of this embodiment. The following examples do not limit the present invention.

<セパレータの実施例>
(実施例a1)
ベーマイト微粒子:97質量部、バインダーであるアクリレート共重合体(モノマー成分としてブチルアクリレートを主成分とする市販のアクリレート共重合体)3質量部に、溶媒である水を加えて分散させて、固形分顔料が22質量%の第2セパレータ層形成用スラリーを調製した。
<Example of separator>
(Example a1)
Boehmite fine particles: 97 parts by mass, 3 parts by mass of an acrylate copolymer as a binder (a commercially available acrylate copolymer having butyl acrylate as a main component as a monomer component), water as a solvent is added and dispersed to obtain a solid content. A slurry for forming a second separator layer having a pigment content of 22% by mass was prepared.

このスラリーを、両面にコロナ放電処理をしたPP/高密度PE/PPの3層構造の微多孔膜(厚み16μm、気孔率49%)の片面に塗布し乾燥して、第1セパレータ層の片面に厚みが5μmの第2セパレータ層を有するセパレータr1を得た。   This slurry was applied to one side of a three-layered microporous film (thickness 16 μm, porosity 49%) of PP / high density PE / PP subjected to corona discharge treatment on both sides, and dried to provide one side of the first separator layer. A separator r1 having a second separator layer having a thickness of 5 μm was obtained.

変性ポリエチレン:97質量部、バインダーであるアクリレート共重合体3質量部に、溶媒である水を加えて分散させて、固形分顔料が30質量%の第3セパレータ層形成用スラリーを調製した。変性ポリエチレンは140℃で溶融粘度300mPa・sのものを用いた。なお、ここで用いた変性ポリエチレンの融点は、110℃〜115℃である。
なお、本実施例で用いた140℃における溶融粘度は、例えば、キャピログラフ(東洋精機社製)を使用し、長さ(L):10mm、直径(D):1.0mmのノズルを用いて、せん断速度を100s-1として測定した値を用いることができる。
Modified polyethylene: 97 parts by mass, and 3 parts by mass of an acrylate copolymer as a binder were added and dispersed water as a solvent to prepare a third separator layer forming slurry having a solid pigment of 30% by mass. Modified polyethylene having a melt viscosity of 300 mPa · s at 140 ° C. was used. In addition, melting | fusing point of the modified polyethylene used here is 110 degreeC-115 degreeC.
The melt viscosity at 140 ° C. used in this example is, for example, using a capillograph (manufactured by Toyo Seiki Co., Ltd.), using a nozzle with a length (L) of 10 mm and a diameter (D) of 1.0 mm. A value measured with a shear rate of 100 s −1 can be used.

このスラリーを、第1セパレータ層の片面に厚みが5μmの第2セパレータ層を有するセパレータr1の第2セパレータ層の反対側の面に厚みが5μmの第3セパレータ層を塗布し乾燥して、第1セパレータ層の両面にそれぞれ、第2、第3セパレータ層を有するセパレータa1を得た。溶融充填率を計算した結果、23.3%だった。セパレータ構成の概略図は図1と同様である。   The slurry was applied to a third separator layer having a thickness of 5 μm on the surface opposite to the second separator layer of the separator r1 having a second separator layer having a thickness of 5 μm on one side of the first separator layer, and dried. A separator a1 having second and third separator layers on both sides of one separator layer was obtained. As a result of calculating the melt filling rate, it was 23.3%. The schematic diagram of the separator configuration is the same as in FIG.

(実施例a2)
ベーマイト微粒子:97質量部、バインダーであるアクリレート共重合体(モノマー成分としてブチルアクリレートを主成分とする市販のアクリレート共重合体)3質量部に、溶媒である水を加えて分散させて、固形分顔料が22質量%の第2セパレータ層形成用スラリーを調製した。
(Example a2)
Boehmite fine particles: 97 parts by mass, 3 parts by mass of an acrylate copolymer as a binder (a commercially available acrylate copolymer having butyl acrylate as a main component as a monomer component), water as a solvent is added and dispersed to obtain a solid content. A slurry for forming a second separator layer having a pigment content of 22% by mass was prepared.

このスラリーを、両面にコロナ放電処理をしたPP/高密度PE/PPの3層構造の微多孔膜(厚み16μm、気孔率49%)の片面に塗布し乾燥して、第1セパレータ層の片面に厚みが5μmの第2セパレータ層を有するセパレータr2を得た。   This slurry was applied to one side of a three-layered microporous film (thickness 16 μm, porosity 49%) of PP / high density PE / PP subjected to corona discharge treatment on both sides, and dried to provide one side of the first separator layer. A separator r2 having a second separator layer having a thickness of 5 μm was obtained.

変性ポリエチレン:97質量部、バインダーであるアクリレート共重合体3質量部に、溶媒である水を加えて分散させて、固形分顔料が30質量%の第3セパレータ層形成用スラリーを調製した。変性ポリエチレンは140℃で溶融粘度300mPa・sのものを用いた。なお、ここで用いた変性ポリエチレンの融点は、110℃〜115℃である。   Modified polyethylene: 97 parts by mass, and 3 parts by mass of an acrylate copolymer as a binder were added and dispersed water as a solvent to prepare a third separator layer forming slurry having a solid pigment of 30% by mass. Modified polyethylene having a melt viscosity of 300 mPa · s at 140 ° C. was used. In addition, melting | fusing point of the modified polyethylene used here is 110 degreeC-115 degreeC.

このスラリーを、第1セパレータ層の片面に厚みが5μmの第2セパレータ層を有するセパレータr2の第2セパレータ層の反対側の面に厚みが9μmの第3セパレータ層を塗布し乾燥して、第1セパレータ層の両面にそれぞれ、第2、第3セパレータ層を有するセパレータa2を得た。溶融充填率を計算した結果、49.3%だった。セパレータ構成の概略図は図1と同様である。   The slurry was applied to a third separator layer having a thickness of 9 μm on the surface opposite to the second separator layer of the separator r2 having a second separator layer having a thickness of 5 μm on one side of the first separator layer, and dried. A separator a2 having second and third separator layers on both surfaces of the one separator layer was obtained. As a result of calculating the melt filling rate, it was 49.3%. The schematic diagram of the separator configuration is the same as in FIG.

(実施例a3)
ベーマイト微粒子:97質量部、バインダーであるアクリレート共重合体(モノマー成分としてブチルアクリレートを主成分とする市販のアクリレート共重合体)3質量部に、溶媒である水を加えて分散させて、固形分顔料が22質量%の第2セパレータ層形成用スラリーを調製した。
(Example a3)
Boehmite fine particles: 97 parts by mass, 3 parts by mass of an acrylate copolymer as a binder (a commercially available acrylate copolymer having butyl acrylate as a main component as a monomer component), water as a solvent is added and dispersed to obtain a solid content. A slurry for forming a second separator layer having a pigment content of 22% by mass was prepared.

このスラリーを、両面にコロナ放電処理をしたPP/高密度PE/PPの3層構造の微多孔膜(厚み16μm、気孔率49%)の片面に塗布し乾燥して、第1セパレータ層の片面に厚みが3μmの第2セパレータ層を有するセパレータr3を得た。   This slurry was applied to one side of a three-layered microporous film (thickness 16 μm, porosity 49%) of PP / high density PE / PP subjected to corona discharge treatment on both sides, and dried to provide one side of the first separator layer. A separator r3 having a second separator layer with a thickness of 3 μm was obtained.

変性ポリエチレン:97質量部、バインダーであるアクリレート共重合体3質量部に、溶媒である水を加えて分散させて、固形分顔料が35質量%の第3セパレータ層形成用スラリーを調製した。変性ポリエチレンは140℃で溶融粘度20mPa・sのものを用いた。なお、ここで用いた変性ポリエチレンの融点は、110℃〜115℃である。   Modified polyethylene: 97 parts by mass, and 3 parts by mass of an acrylate copolymer as a binder were added with water as a solvent and dispersed to prepare a third separator layer forming slurry having a solid content pigment of 35% by mass. Modified polyethylene having a melt viscosity of 20 mPa · s at 140 ° C. was used. In addition, melting | fusing point of the modified polyethylene used here is 110 degreeC-115 degreeC.

このスラリーを、第1セパレータ層の片面に厚みが3μmの第2セパレータ層を有するセパレータr3の第2セパレータ層の反対側の面に厚みが2μmの第3セパレータ層を塗布し乾燥して、第1セパレータ層の両面にそれぞれ、第2、第3セパレータ層を有するセパレータa3を得た。溶融充填率を計算した結果、10.2%だった。セパレータ構成の概略図は図1と同様である。   The slurry was applied to a surface of the separator r3 having a second separator layer having a thickness of 3 μm on one side of the first separator layer, and a second separator layer having a thickness of 2 μm was applied to the surface opposite to the second separator layer, followed by drying. A separator a3 having second and third separator layers on both sides of one separator layer was obtained. As a result of calculating the melt filling rate, it was 10.2%. The schematic diagram of the separator configuration is the same as in FIG.

(実施例a4)
ベーマイト微粒子:97質量部、バインダーであるアクリレート共重合体(モノマー成分としてブチルアクリレートを主成分とする市販のアクリレート共重合体)3質量部に、溶媒である水を加えて分散させて、固形分顔料が22質量%の第2セパレータ層形成用スラリーを調製した。
(Example a4)
Boehmite fine particles: 97 parts by mass, 3 parts by mass of an acrylate copolymer as a binder (a commercially available acrylate copolymer having butyl acrylate as a main component as a monomer component), water as a solvent is added and dispersed to obtain a solid content. A slurry for forming a second separator layer having a pigment content of 22% by mass was prepared.

このスラリーを、両面にコロナ放電処理をしたPP/高密度PE/PPの3層構造の微多孔膜(厚み16μm、気孔率49%)の片面に塗布し乾燥して、第1セパレータ層の片面に厚みが3μmの第2セパレータ層を有するセパレータr4を得た。   This slurry was applied to one side of a three-layered microporous film (thickness 16 μm, porosity 49%) of PP / high density PE / PP subjected to corona discharge treatment on both sides, and dried to provide one side of the first separator layer. A separator r4 having a second separator layer with a thickness of 3 μm was obtained.

変性ポリエチレン:97質量部、バインダーであるアクリレート共重合体3質量部に、溶媒である水を加えて分散させて、固形分顔料が35質量%の第3セパレータ層形成用スラリーを調製した。変性ポリエチレンは140℃で溶融粘度20mPa・sのものを用いた。なお、ここで用いた変性ポリエチレンの融点は、110℃〜115℃である。   Modified polyethylene: 97 parts by mass, and 3 parts by mass of an acrylate copolymer as a binder were added with water as a solvent and dispersed to prepare a third separator layer forming slurry having a solid content pigment of 35% by mass. Modified polyethylene having a melt viscosity of 20 mPa · s at 140 ° C. was used. In addition, melting | fusing point of the modified polyethylene used here is 110 degreeC-115 degreeC.

このスラリーを、第1セパレータ層の片面に厚みが3μmの第2セパレータ層を有するセパレータr4の第2セパレータ層の反対側の面に厚みが4μmの第3セパレータ層を塗布し乾燥して、第1セパレータ層の両面にそれぞれ、第2、第3セパレータ層を有するセパレータa4を得た。溶融充填率を計算した結果、27.9%だった。セパレータ構成の概略図は図1と同様である。   The slurry was applied to the surface on the opposite side of the second separator layer of the separator r4 having a second separator layer having a thickness of 3 μm on one side of the first separator layer, dried, and dried. A separator a4 having second and third separator layers on both surfaces of one separator layer was obtained. As a result of calculating the melt filling rate, it was 27.9%. The schematic diagram of the separator configuration is the same as in FIG.

(実施例a5)
ベーマイト微粒子:97質量部、バインダーであるアクリレート共重合体(モノマー成分としてブチルアクリレートを主成分とする市販のアクリレート共重合体)3質量部に、溶媒である水を加えて分散させて、固形分顔料が22質量%の第2セパレータ層形成用スラリーを調製した。
(Example a5)
Boehmite fine particles: 97 parts by mass, 3 parts by mass of an acrylate copolymer as a binder (a commercially available acrylate copolymer having butyl acrylate as a main component as a monomer component), water as a solvent is added and dispersed to obtain a solid content. A slurry for forming a second separator layer having a pigment content of 22% by mass was prepared.

このスラリーを、両面にコロナ放電処理をしたPP/高密度PE/PPの3層構造の微多孔膜(厚み20μm、気孔率52%)の片面に塗布し乾燥して、第1セパレータ層の片面に厚みが3μmの第2セパレータ層を有するセパレータr5を得た。   The slurry was applied to one side of a three-layered microporous film (thickness 20 μm, porosity 52%) of PP / high-density PE / PP subjected to corona discharge treatment on both sides, and dried to provide one side of the first separator layer. A separator r5 having a second separator layer with a thickness of 3 μm was obtained.

変性ポリエチレン:97質量部、バインダーであるアクリレート共重合体3質量部に、溶媒である水を加えて分散させて、固形分顔料が35質量%の第3セパレータ層形成用スラリーを調製した。変性ポリエチレンは140℃で溶融粘度20mPa・sのものを用いた。なお、ここで用いた変性ポリエチレンの融点は、110℃〜115℃である。   Modified polyethylene: 97 parts by mass, and 3 parts by mass of an acrylate copolymer as a binder were added with water as a solvent and dispersed to prepare a third separator layer forming slurry having a solid content pigment of 35% by mass. Modified polyethylene having a melt viscosity of 20 mPa · s at 140 ° C. was used. In addition, melting | fusing point of the modified polyethylene used here is 110 degreeC-115 degreeC.

このスラリーを、第1セパレータ層の片面に厚みが3μmの第2セパレータ層を有するセパレータr5の第2セパレータ層の反対側の面に厚みが2μmの第3セパレータ層を塗布し乾燥して、第1セパレータ層の両面にそれぞれ、第2、第3セパレータ層を有するセパレータa5を得た。溶融充填率を計算した結果、11.3%だった。セパレータ構成の概略図は図1と同様である。   The slurry was applied to a surface of the first separator layer opposite to the second separator layer of the separator r5 having a second separator layer having a thickness of 3 μm on one side, dried, and then dried. A separator a5 having second and third separator layers on both surfaces of one separator layer was obtained. As a result of calculating the melt filling rate, it was 11.3%. The schematic diagram of the separator configuration is the same as in FIG.

(実施例a6)
ベーマイト微粒子:97質量部、バインダーであるアクリレート共重合体(モノマー成分としてブチルアクリレートを主成分とする市販のアクリレート共重合体)3質量部に、溶媒である水を加えて分散させて、固形分顔料が30質量%の第2セパレータ層形成用スラリーを調製した。
(Example a6)
Boehmite fine particles: 97 parts by mass, 3 parts by mass of an acrylate copolymer as a binder (a commercially available acrylate copolymer having butyl acrylate as a main component as a monomer component), water as a solvent is added and dispersed to obtain a solid content. A slurry for forming a second separator layer having a pigment content of 30% by mass was prepared.

このスラリーを、両面にコロナ放電処理をした高密度PEの単層の微多孔膜(厚み16μm、気孔率45%)の片面に塗布し乾燥して、第1セパレータ層の片面に厚みが5μmの第2セパレータ層を有するセパレータr6を得た。   This slurry is applied to one side of a single layer microporous membrane (thickness 16 μm, porosity 45%) of high density PE that has been subjected to corona discharge treatment on both sides and dried, and the first separator layer has a thickness of 5 μm on one side. A separator r6 having a second separator layer was obtained.

変性ポリエチレン:97質量部、バインダーであるアクリレート共重合体3質量部に、溶媒である水を加えて分散させて、固形分顔料が30質量%の第3セパレータ層形成用スラリーを調製した。変性ポリエチレンは140℃で溶融粘度300mPa・sのものを用いた。なお、ここで用いた変性ポリエチレンの融点は、110℃〜115℃である。
このスラリーを、第1セパレータ層の片面に厚みが5μmの第2セパレータ層を有するセパレータr6の第2セパレータ層の反対側の面に厚みが5μmの第3セパレータ層を塗布し乾燥して、第1セパレータ層の両面にそれぞれ、第2、第3セパレータ層を有するセパレータa6を得た。溶融充填率を計算した結果、49.3%だった。
Modified polyethylene: 97 parts by mass, and 3 parts by mass of an acrylate copolymer as a binder were added and dispersed water as a solvent to prepare a third separator layer forming slurry having a solid pigment of 30% by mass. Modified polyethylene having a melt viscosity of 300 mPa · s at 140 ° C. was used. In addition, melting | fusing point of the modified polyethylene used here is 110 degreeC-115 degreeC.
The slurry was applied to a third separator layer having a thickness of 5 μm on the surface opposite to the second separator layer of the separator r6 having a second separator layer having a thickness of 5 μm on one side of the first separator layer, and dried. The separator a6 which has a 2nd, 3rd separator layer on both surfaces of 1 separator layer, respectively was obtained. As a result of calculating the melt filling rate, it was 49.3%.

(実施例a7)
ベーマイト微粒子:97質量部、バインダーであるアクリレート共重合体(モノマー成分としてブチルアクリレートを主成分とする市販のアクリレート共重合体)3質量部に、溶媒である水を加えて分散させて、固形分顔料が30質量%の第2セパレータ層形成用スラリーを調製した。
(Example a7)
Boehmite fine particles: 97 parts by mass, 3 parts by mass of an acrylate copolymer as a binder (a commercially available acrylate copolymer having butyl acrylate as a main component as a monomer component), water as a solvent is added and dispersed to obtain a solid content. A slurry for forming a second separator layer having a pigment content of 30% by mass was prepared.

このスラリーを、片面にコロナ放電処理をしたPP/高密度PE/PPの3層構造の微多孔膜(厚み16μm、気孔率49%)の片面(コロナ放電処理面)に塗布し乾燥して、第1セパレータ層の片面に厚みが5μmの第2セパレータ層を有するセパレータr7を得た。   This slurry was applied to one side (corona discharge treatment surface) of a microporous film (thickness 16 μm, porosity 49%) of PP / high density PE / PP having a corona discharge treatment on one side and dried, A separator r7 having a second separator layer having a thickness of 5 μm on one surface of the first separator layer was obtained.

変性ポリエチレン:97質量部、バインダーであるアクリレート共重合体3質量部に、溶媒である水を加えて分散させて、固形分顔料が30質量%の第3セパレータ層形成用スラリーを調製した。変性ポリエチレンは140℃で溶融粘度300mPa・sのものを用いた。なお、ここで用いた変性ポリエチレンの融点は、110℃〜115℃である。   Modified polyethylene: 97 parts by mass, and 3 parts by mass of an acrylate copolymer as a binder were added and dispersed water as a solvent to prepare a third separator layer forming slurry having a solid pigment of 30% by mass. Modified polyethylene having a melt viscosity of 300 mPa · s at 140 ° C. was used. In addition, melting | fusing point of the modified polyethylene used here is 110 degreeC-115 degreeC.

このスラリーを、第1セパレータ層の片面に厚みが5μmの第2セパレータ層を有するセパレータr7の第2セパレータ層の上面に厚みが5μmの第3セパレータ層を重ねて塗布し乾燥して、第1セパレータ層の片面に第2セパレータ層、第3セパレータ層を順に重ね塗りしたセパレータ層を有するセパレータa7を得た。セパレータ構成の概略図を図2に示す。溶融充填率を計算した結果、44.6%だった。   The slurry was applied to the upper surface of the second separator layer of the separator r7 having the second separator layer having a thickness of 5 μm on one side of the first separator layer, and then applied to the first separator layer, followed by drying. A separator a7 having a separator layer in which a second separator layer and a third separator layer were sequentially applied on one side of the separator layer was obtained. A schematic diagram of the separator configuration is shown in FIG. As a result of calculating the melt filling rate, it was 44.6%.

(比較例b1)
ベーマイト微粒子:97質量部、バインダーであるアクリレート共重合体(モノマー成分としてブチルアクリレートを主成分とする市販のアクリレート共重合体)3質量部に、溶媒である水を加えて分散させて、固形分顔料が30質量%の第2セパレータ層形成用スラリーを調製した。
(Comparative Example b1)
Boehmite fine particles: 97 parts by mass, 3 parts by mass of an acrylate copolymer as a binder (a commercially available acrylate copolymer having butyl acrylate as a main component as a monomer component), water as a solvent is added and dispersed to obtain a solid content. A slurry for forming a second separator layer having a pigment content of 30% by mass was prepared.

このスラリーを、片面にコロナ放電処理をしたPP/高密度PE/PPの3層構造の微多孔膜(厚み16μm、気孔率49%)の片面(コロナ放電処理面)に塗布し乾燥して、第1セパレータ層の片面に厚みが5μmの第2セパレータ層を有するセパレータb1を得た。   This slurry was applied to one side (corona discharge treatment surface) of a microporous film (thickness 16 μm, porosity 49%) of PP / high density PE / PP having a corona discharge treatment on one side and dried, A separator b1 having a second separator layer having a thickness of 5 μm on one surface of the first separator layer was obtained.

(比較例b2)
ベーマイト微粒子:97質量部、バインダーであるアクリレート共重合体(モノマー成分としてブチルアクリレートを主成分とする市販のアクリレート共重合体)3質量部に、溶媒である水を加えて分散させて、固形分顔料が25質量%の第2セパレータ層形成用スラリーを調製した。
(Comparative Example b2)
Boehmite fine particles: 97 parts by mass, 3 parts by mass of an acrylate copolymer as a binder (a commercially available acrylate copolymer having butyl acrylate as a main component as a monomer component), water as a solvent is added and dispersed to obtain a solid content. A slurry for forming a second separator layer having a pigment content of 25% by mass was prepared.

このスラリーを、片面にコロナ放電処理をしたPP/高密度PE/PPの3層構造の微多孔膜(厚み20μm、気孔率52%)の片面(コロナ放電処理面)に塗布し乾燥して、第1セパレータ層の片面に厚みが5μmの第2セパレータ層を有するセパレータb2を得た。   This slurry was applied to one side (corona discharge treatment surface) of a three-layered microporous film (thickness 20 μm, porosity 52%) of PP / high density PE / PP treated on one side with corona discharge, and dried. A separator b2 having a second separator layer having a thickness of 5 μm on one surface of the first separator layer was obtained.

(比較例b3)
PP/高密度PE/PPの3層構造の微多孔膜(厚み16μm)から成る第1セパレータ層のみのセパレータb3を種々の実験に用いた。気孔率をウルトラピクノメーターで測定した結果、49%だった。
(Comparative Example b3)
A separator b3 having only a first separator layer made of a microporous membrane (thickness: 16 μm) having a three-layer structure of PP / high density PE / PP was used in various experiments. As a result of measuring the porosity with an ultra pycnometer, it was 49%.

(比較例b4)
PP/高密度PE/PPの3層構造の微多孔膜(厚み20μm)から成る第1セパレータ層のみのセパレータb4を種々の実験に用いた。気孔率をウルトラピクノメーターで測定した結果、52%だった。
(Comparative Example b4)
A separator b4 having only a first separator layer made of a microporous film (thickness 20 μm) having a three-layer structure of PP / high density PE / PP was used in various experiments. As a result of measuring the porosity with an ultra pycnometer, it was 52%.

(比較例b5)
高密度PEの単層の微多孔膜(厚み16μm、気孔率45%)から成る第1セパレータ層のみのセパレータをセパレータb5とする。
(Comparative Example b5)
A separator having only a first separator layer composed of a single layer microporous film of high density PE (thickness 16 μm, porosity 45%) is defined as a separator b5.

以上のセパレータa1〜a7、b1〜b5の構成は、図3(a)の欄に示した。   The configuration of the separators a1 to a7 and b1 to b5 is shown in the column of FIG.

<電気化学素子の実施例>
(負極の作製)製造例1
負極活物質である黒鉛:95質量部と、バインダーであるPVDF:5質量部とを、NMPを溶剤として均一になるように混合して負極合剤含有ペーストを調製した。この負極合剤含有ペーストを、集電体となる厚さ10μmの銅箔の両面に、塗布長が630mmになるように間欠塗布し、乾燥した後、カレンダー処理を行って、全厚が131μmになるように負極合剤層の厚みを調整し、幅56mmになるように切断して、長さ650mm、幅56mmの負極を作製した。更に、この負極の銅箔の露出部にタブを溶接してリード部を形成した。
<Example of electrochemical device>
(Preparation of negative electrode) Production Example 1
A negative electrode mixture-containing paste was prepared by mixing 95 parts by mass of graphite as a negative electrode active material and 5 parts by mass of PVDF as a binder so as to be uniform using NMP as a solvent. This negative electrode mixture-containing paste is intermittently applied on both sides of a 10 μm thick copper foil serving as a current collector to a coating length of 630 mm, dried, and calendered to a total thickness of 131 μm. The thickness of the negative electrode mixture layer was adjusted so that the width was 56 mm, and a negative electrode having a length of 650 mm and a width of 56 mm was produced. Further, a tab was welded to the exposed portion of the copper foil of the negative electrode to form a lead portion.

(正極の作製)製造例2
正極活物質であるLiCoO:85質量部、導電助剤であるアセチレンブラック:10質量部、およびバインダーであるPVDF:5質量部を、NMPを溶剤として均一になるように混合して、正極合剤含有ペーストを調製した。このペーストを、集電体となる厚さ20μmのアルミニウム箔の両面に塗布し、乾燥した後、カレンダー処理を行って、全厚が125μmになるように正極合剤層の厚みを調整し、幅54mmになるように切断して、長さ610mm、幅54mmの正極を作製した。更に、この正極のアルミニウム箔の露出部にタブを溶接してリード部を形成した。
(Preparation of positive electrode) Production Example 2
The positive electrode active material LiCoO 2 : 85 parts by mass, the conductive auxiliary agent acetylene black: 10 parts by mass, and the binder PVDF: 5 parts by mass are mixed uniformly using NMP as a solvent. An agent-containing paste was prepared. This paste was applied to both sides of a 20 μm thick aluminum foil serving as a current collector, dried, and then subjected to calendering to adjust the thickness of the positive electrode mixture layer so that the total thickness was 125 μm. A positive electrode having a length of 610 mm and a width of 54 mm was produced by cutting to 54 mm. Further, a tab was welded to the exposed portion of the aluminum foil of the positive electrode to form a lead portion.

(実施例A1)
製造例1で作製した負極と、製造例2で作製した正極とを、実施例a1で作製したセパレータa1を介在させつつ重ね、渦巻状に巻回して巻回電極体を作製した。なお、この巻回電極体では、セパレータの第2セパレータ層が正極と対向するようにした。上記の巻回電極体を18650仕様の電池容器内に装填した。また、非水電解液、すなわち、エチレンカーボネートとプロピレンカーボネートを体積比3:7で混合した溶媒にLiPFを1mol/Lの濃度で溶解させた溶液を電池容器内に注入した後、封止を行って、リチウムイオン二次電池A1を得た。
(Example A1)
The negative electrode produced in Production Example 1 and the positive electrode produced in Production Example 2 were overlapped with the separator a1 produced in Example a1 interposed, and wound in a spiral shape to produce a wound electrode body. In this wound electrode body, the second separator layer of the separator was made to face the positive electrode. The above wound electrode body was loaded into a battery container of 18650 specifications. In addition, after injecting a non-aqueous electrolyte, that is, a solution in which LiPF 6 was dissolved at a concentration of 1 mol / L in a solvent in which ethylene carbonate and propylene carbonate were mixed at a volume ratio of 3: 7, into the battery container, sealing was performed. As a result, a lithium ion secondary battery A1 was obtained.

(実施例A2)
製造例1で作製した負極と、製造例2で作製した正極とを、実施例a2で作製したセパレータa2を介在させつつ重ね、渦巻状に巻回して巻回電極体を作製した。なお、この巻回電極体では、セパレータの第2セパレータ層が正極と対向するようにした。上記の巻回電極体を18650仕様の電池容器内に装填した。また、非水電解液、すなわち、エチレンカーボネートとプロピレンカーボネートを体積比3:7で混合した溶媒にLiPFを1mol/Lの濃度で溶解させた溶液を電池容器内に注入した後、封止を行って、リチウムイオン二次電池A2を得た。
(Example A2)
The negative electrode produced in Production Example 1 and the positive electrode produced in Production Example 2 were overlapped with the separator a2 produced in Example a2 interposed, and wound in a spiral shape to produce a wound electrode body. In this wound electrode body, the second separator layer of the separator was made to face the positive electrode. The above wound electrode body was loaded into a battery container of 18650 specifications. In addition, after injecting a non-aqueous electrolyte, that is, a solution in which LiPF 6 was dissolved at a concentration of 1 mol / L in a solvent in which ethylene carbonate and propylene carbonate were mixed at a volume ratio of 3: 7, into the battery container, sealing was performed. As a result, a lithium ion secondary battery A2 was obtained.

(実施例A3)
製造例1で作製した負極と、製造例2で作製した正極とを、実施例a3で作製したセパレータa3を介在させつつ重ね、渦巻状に巻回して巻回電極体を作製した。なお、この巻回電極体では、セパレータの第2セパレータ層が正極と対向するようにした。上記の巻回電極体を18650仕様の電池容器内に装填した。また、非水電解液、すなわち、エチレンカーボネートとプロピレンカーボネートを体積比3:7で混合した溶媒にLiPFを1mol/Lの濃度で溶解させた溶液を電池容器内に注入した後、封止を行って、リチウムイオン二次電池A3を得た。
(Example A3)
The negative electrode produced in Production Example 1 and the positive electrode produced in Production Example 2 were overlapped with the separator a3 produced in Example a3 interposed, and wound in a spiral shape to produce a wound electrode body. In this wound electrode body, the second separator layer of the separator was made to face the positive electrode. The above wound electrode body was loaded into a battery container of 18650 specifications. In addition, after injecting a non-aqueous electrolyte, that is, a solution in which LiPF 6 was dissolved at a concentration of 1 mol / L in a solvent in which ethylene carbonate and propylene carbonate were mixed at a volume ratio of 3: 7, into the battery container, sealing was performed. As a result, a lithium ion secondary battery A3 was obtained.

(実施例A4)
製造例1で作製した負極と、製造例2で作製した正極とを、実施例a4で作製したセパレータa4を介在させつつ重ね、渦巻状に巻回して巻回電極体を作製した。なお、この巻回電極体では、セパレータの第2セパレータ層が正極と対向するようにした。上記の巻回電極体を18650仕様の電池容器内に装填した。また、非水電解液、すなわち、エチレンカーボネートとプロピレンカーボネートを体積比3:7で混合した溶媒にLiPFを1mol/Lの濃度で溶解させた溶液を電池容器内に注入した後、封止を行って、リチウムイオン二次電池A4を得た。
(Example A4)
The negative electrode produced in Production Example 1 and the positive electrode produced in Production Example 2 were overlapped with the separator a4 produced in Example a4 interposed, and wound into a spiral shape to produce a wound electrode body. In this wound electrode body, the second separator layer of the separator was made to face the positive electrode. The above wound electrode body was loaded into a battery container of 18650 specifications. In addition, after injecting a non-aqueous electrolyte, that is, a solution in which LiPF 6 was dissolved at a concentration of 1 mol / L in a solvent in which ethylene carbonate and propylene carbonate were mixed at a volume ratio of 3: 7, into the battery container, sealing was performed. As a result, a lithium ion secondary battery A4 was obtained.

(実施例A5)
製造例1で作製した負極と、製造例2で作製した正極とを、実施例a5で作製したセパレータa5を介在させつつ重ね、渦巻状に巻回して巻回電極体を作製した。なお、この巻回電極体では、セパレータの第2セパレータ層が正極と対向するようにした。上記の巻回電極体を18650仕様の電池容器内に装填した。また、非水電解液、すなわち、エチレンカーボネートとプロピレンカーボネートを体積比3:7で混合した溶媒にLiPFを1mol/Lの濃度で溶解させた溶液を電池容器内に注入した後、封止を行って、リチウムイオン二次電池A5を得た。
(Example A5)
The negative electrode produced in Production Example 1 and the positive electrode produced in Production Example 2 were overlapped with the separator a5 produced in Example a5 interposed, and wound in a spiral shape to produce a wound electrode body. In this wound electrode body, the second separator layer of the separator was made to face the positive electrode. The above wound electrode body was loaded into a battery container of 18650 specifications. In addition, after injecting a non-aqueous electrolyte, that is, a solution in which LiPF 6 was dissolved at a concentration of 1 mol / L in a solvent in which ethylene carbonate and propylene carbonate were mixed at a volume ratio of 3: 7, into the battery container, sealing was performed. As a result, a lithium ion secondary battery A5 was obtained.

(実施例A6)
製造例1で作製した負極と、製造例2で作製した正極とを、実施例a6で作製したセパレータa6を介在させつつ重ね、渦巻状に巻回して巻回電極体を作製した。なお、この巻回電極体では、セパレータの第2セパレータ層が正極と対向するようにした。上記の巻回電極体を18650仕様の電池容器内に装填した。また、非水電解液、すなわち、エチレンカーボネートとプロピレンカーボネートを体積比3:7で混合した溶媒にLiPFを1mol/Lの濃度で溶解させた溶液を電池容器内に注入した後、封止を行って、リチウムイオン二次電池A6を得た。
(Example A6)
The negative electrode produced in Production Example 1 and the positive electrode produced in Production Example 2 were overlapped with the separator a6 produced in Example a6 interposed, and wound into a spiral shape to produce a wound electrode body. In this wound electrode body, the second separator layer of the separator was made to face the positive electrode. The above wound electrode body was loaded into a battery container of 18650 specifications. In addition, after injecting a non-aqueous electrolyte, that is, a solution in which LiPF 6 was dissolved at a concentration of 1 mol / L in a solvent in which ethylene carbonate and propylene carbonate were mixed at a volume ratio of 3: 7, into the battery container, sealing was performed. Then, a lithium ion secondary battery A6 was obtained.

(比較例B1)
製造例1で作製した負極と、製造例2で作製した正極とを、比較例b1で作製したセパレータb1を介在させつつ重ね、渦巻状に巻回して巻回電極体を作製した。なお、この巻回電極体では、セパレータの第2セパレータ層が正極と対向するようにした。上記の巻回電極体を18650仕様の電池容器内に装填した。また、非水電解液、すなわち、エチレンカーボネートとプロピレンカーボネートを体積比3:7で混合した溶媒にLiPFを1mol/Lの濃度で溶解させた溶液を電池容器内に注入した後、封止を行って、リチウムイオン二次電池B1を得た。
(Comparative Example B1)
The negative electrode produced in Production Example 1 and the positive electrode produced in Production Example 2 were stacked while interposing the separator b1 produced in Comparative Example b1, and wound into a spiral shape to produce a wound electrode body. In this wound electrode body, the second separator layer of the separator was made to face the positive electrode. The above wound electrode body was loaded into a battery container of 18650 specifications. In addition, after injecting a non-aqueous electrolyte, that is, a solution in which LiPF 6 was dissolved at a concentration of 1 mol / L in a solvent in which ethylene carbonate and propylene carbonate were mixed at a volume ratio of 3: 7, into the battery container, sealing was performed. As a result, a lithium ion secondary battery B1 was obtained.

(比較例B2)
製造例1で作製した負極と、製造例2で作製した正極とを、比較例b2で作製したセパレータb2を介在させつつ重ね、渦巻状に巻回して巻回電極体を作製した。なお、この巻回電極体では、セパレータの第2セパレータ層が正極と対向するようにした。上記の巻回電極体を18650仕様の電池容器内に装填した。また、非水電解液、すなわち、エチレンカーボネートとプロピレンカーボネートを体積比3:7で混合した溶媒にLiPFを1mol/Lの濃度で溶解させた溶液を電池容器内に注入した後、封止を行って、リチウムイオン二次電池B2を得た。
(Comparative Example B2)
The negative electrode produced in Production Example 1 and the positive electrode produced in Production Example 2 were stacked while interposing the separator b2 produced in Comparative Example b2, and wound in a spiral shape to produce a wound electrode body. In this wound electrode body, the second separator layer of the separator was made to face the positive electrode. The above wound electrode body was loaded into a battery container of 18650 specifications. In addition, after injecting a non-aqueous electrolyte, that is, a solution in which LiPF 6 was dissolved at a concentration of 1 mol / L in a solvent in which ethylene carbonate and propylene carbonate were mixed at a volume ratio of 3: 7, into the battery container, sealing was performed. As a result, a lithium ion secondary battery B2 was obtained.

上記実施例a1〜a7のセパレータ、比較例b1〜b5のセパレータ、実施例A1〜A6のリチウムイオン二次電池、比較例B1、B2のリチウムイオン二次電池を用いて測定及び試験を行った。具体的には、
(I)実施例a1および比較例b3のセパレータについて、電極で挟んだセパレータの電解液中での加熱による抵抗変化の測定を行った。
(II)実施例a1〜a7および比較例b1〜b5のセパレータについて、透気度測定を行った。
(III)実施例a1〜a7および比較例b1〜b5について、下記の熱収縮率測定を行った。
(IV)また、実施例A1〜A6と比較例B1、B2のリチウムイオン二次電池について、下記の過充電試験を行った。
Measurements and tests were performed using the separators of Examples a1 to a7, the separators of Comparative Examples b1 to b5, the lithium ion secondary batteries of Examples A1 to A6, and the lithium ion secondary batteries of Comparative Examples B1 and B2. In particular,
(I) With respect to the separators of Example a1 and Comparative Example b3, the resistance change due to heating in the electrolytic solution of the separator sandwiched between the electrodes was measured.
(II) The air permeability was measured for the separators of Examples a1 to a7 and Comparative Examples b1 to b5.
(III) For Examples a1 to a7 and Comparative Examples b1 to b5, the following thermal contraction rate was measured.
(IV) The following overcharge tests were conducted on the lithium ion secondary batteries of Examples A1 to A6 and Comparative Examples B1 and B2.

(I)<電極で挟んだセパレータの電解液中での加熱による抵抗変化の測定>
実施例a1で作製したセパレータa1、比較例b3で作製したセパレータb3に関して以下に示す抵抗変化の測定を行った。
(I) <Measurement of resistance change due to heating in an electrolyte solution of a separator sandwiched between electrodes>
The resistance change shown below was measured for the separator a1 produced in Example a1 and the separator b3 produced in Comparative Example b3.

電極として配置したアルミ箔と銅箔の間にセパレータを配置し、耐圧容器(10気圧)の中に入れ、セパレータ部分に非水電解液、すなわち、エチレンカーボネート、エチルメチルカーボネート、ジメチルカーボネートを体積比2:4:4で混合した溶媒にLiPF6を1.2mol/Lの濃度で溶解させた溶液を加え、密閉した。耐圧容器の外側から内部の電極に接続する端子を設け、内部の電極と接触し、電極間の抵抗を測定できる構造とし、同時にセパレータ部位に熱電対の先端が配置されるように温度計を接続した。耐圧容器を恒温槽の中に入れ、1時間当たり約100℃の温度上昇速度で、電極に挟まれたセパレータの抵抗と温度をモニタリングした。   A separator is placed between an aluminum foil and a copper foil placed as an electrode, placed in a pressure vessel (10 atm), and a non-aqueous electrolyte, ie, ethylene carbonate, ethylmethyl carbonate, dimethyl carbonate, is added to the separator in a volume ratio. A solution in which LiPF6 was dissolved at a concentration of 1.2 mol / L was added to the solvent mixed at 2: 4: 4 and sealed. A terminal that connects to the internal electrode from the outside of the pressure vessel is provided, and it is configured to be able to measure the resistance between the electrodes by contacting the internal electrode. At the same time, a thermometer is connected so that the tip of the thermocouple is placed at the separator site did. The pressure vessel was placed in a thermostatic bath, and the resistance and temperature of the separator sandwiched between the electrodes were monitored at a rate of temperature increase of about 100 ° C. per hour.

実施例a1および比較例b3のセパレータに関する抵抗変化の測定結果をそれぞれ、図4、図5に示す。実施例a1のセパレータa1ではシャットダウンに相当する抵抗値の上昇が100℃付近で開始し、110℃付近で飽和に達している。これに対して、比較例b3のセパレータb3では抵抗の飽和値を示す温度が128℃付近となり、セパレータa1のシャットダウン温度を上回っている。第1、第2、第3セパレータ層を有するセパレータa1は第3セパレータ層を形成する低融点材である変性ポリエチレンにより110℃付近でシャットダウンを起こす。一方、第1セパレータ層のみから形成されるセパレータb3は高密度ポリエチレンの融解により高温でのシャットダウンとなる。以上より、実施例a1のセパレータa1は、比較例b3のセパレータb3に比べて、低温でシャットダウンが可能で、より安全性が高い電池用セパレータであると考えられる。   The measurement results of the resistance change for the separators of Example a1 and Comparative Example b3 are shown in FIGS. 4 and 5, respectively. In the separator a1 of Example a1, the increase in the resistance value corresponding to shutdown starts near 100 ° C. and reaches saturation near 110 ° C. On the other hand, in the separator b3 of the comparative example b3, the temperature indicating the saturation value of the resistance is around 128 ° C., which is higher than the shutdown temperature of the separator a1. The separator a1 having the first, second and third separator layers is shut down at around 110 ° C. by the modified polyethylene which is a low melting point material forming the third separator layer. On the other hand, the separator b3 formed only from the first separator layer is shut down at a high temperature due to melting of the high-density polyethylene. From the above, it is considered that the separator a1 of Example a1 is a battery separator that can be shut down at a low temperature and has higher safety than the separator b3 of Comparative Example b3.

本測定での抵抗値が飽和に達する温度は、当該セパレータのシャットダウン温度と考えられる。図3(b)「セパレータの特性」欄の、(d)「抵抗値から見るシャットダウン温度(℃)」欄に、セパレータa1およびセパレータb3の当該温度をそれぞれ示した。   The temperature at which the resistance value in this measurement reaches saturation is considered the shutdown temperature of the separator. FIG. 3B shows the temperatures of the separator a1 and the separator b3 in the column “d)“ Shutdown temperature as seen from the resistance value (° C.) ”in the“ Separator characteristics ”column.

(II)<セパレータの透気抵抗度測定>
実施例a1〜a7および比較例b1〜b5のセパレータの単体について、室温に保持したまま、非加熱での透気抵抗度と110℃で30分加熱した後の室温での透気抵抗度を測定した。上記透気抵抗度の測定結果を、溶融充填率とともに図3(e)の欄に示す。
(II) <Measurement of air resistance of separator>
With respect to the separators of Examples a1 to a7 and Comparative Examples b1 to b5, the non-heated air resistance and the air resistance at room temperature after heating at 110 ° C. for 30 minutes while being kept at room temperature were measured. did. The measurement result of the air resistance is shown in the column of FIG.

まず、室温での透気抵抗度について述べる。図3(e)の欄に示すように、第1セパレータ層のみで構成されているセパレータが透気抵抗度を最も低く示す傾向にある。値としては、270〜290.6秒となっている。続いて、第1セパレータ層と第2セパレータ層のみで構成されているセパレータが、それに準じた結果を示す傾向にある。値としては、278〜318.1秒となっている。最後に、第1セパレータ層、第2セパレータ層、第3セパレータ層のすべてを有するセパレータが最も高い透気抵抗度を示す傾向にある。値としては、329〜414秒となっている。セパレータの構成のその他の違いなどもあるため、透気抵抗度の値が前後するところもあるが、全体的に見てセパレータ層が多くなるほど透気抵抗度が高くなることが分かる。しかし、測定不能という結果にまでは至っておらず、第1、第2、第3セパレータ層をすべて有していてもイオン透過性があることが分かる。これは、すなわち、第1セパレータ層のみならず、第2セパレータ層や第3セパレータ層においても、イオン透過性を有していることを示している。   First, the air resistance at room temperature will be described. As shown in the column of FIG. 3 (e), a separator composed only of the first separator layer tends to exhibit the lowest air resistance. The value is 270 to 290.6 seconds. Then, the separator comprised only by the 1st separator layer and the 2nd separator layer tends to show the result according to it. The value is 278 to 318.1 seconds. Finally, a separator having all of the first separator layer, the second separator layer, and the third separator layer tends to exhibit the highest air resistance. The value is 329 to 414 seconds. Since there are other differences in the configuration of the separator, the value of the air resistance may vary, but it can be seen that the air resistance increases as the separator layer increases as a whole. However, it has not reached the result that measurement is impossible, and it can be seen that even if all of the first, second, and third separator layers are provided, there is ion permeability. This indicates that not only the first separator layer but also the second separator layer and the third separator layer have ion permeability.

次に、110℃で30分加熱したときの透気抵抗度について述べる。図3(e)の欄に示すように、実施例a2、a4、a6、a7において、110℃で30分加熱において測定不能となり、セパレータが閉塞(シャットダウン)したことが示された。測定不能とは、セパレータを装置にセットし、測定を開始しても、内筒がほとんど動かず、計測が開始されなかったことを示す。これは、セパレータ膜の閉塞を意味する。実施例a1についても1990と大きく上昇し、実施例a3、a5においてもそれぞれ、646、539と大きく上昇した。これに対して、比較例b1〜b5ではそれぞれ、342.8、285、315.2、280、325.2となり、110℃ではセパレータが閉塞していないことがわかった。これにより、110℃で低融点材層によるセパレータの閉塞が確認された。   Next, the air resistance when heated at 110 ° C. for 30 minutes will be described. As shown in the column of FIG. 3 (e), in Examples a2, a4, a6, and a7, it became impossible to measure after heating at 110 ° C. for 30 minutes, indicating that the separator was blocked (shut down). “Unmeasurable” means that even when the separator was set in the apparatus and measurement was started, the inner cylinder hardly moved and measurement was not started. This means that the separator membrane is blocked. Example a1 also rose significantly to 1990, and Examples a3 and a5 also rose significantly to 646 and 539, respectively. In contrast, Comparative Examples b1 to b5 were 342.8, 285, 315.2, 280, 325.2, respectively, and it was found that the separator was not closed at 110 ° C. Thereby, the blockage | closure of the separator by the low melting-point material layer was confirmed at 110 degreeC.

また、実施例a1〜a5において、溶融充填率も含めて、透気抵抗度の測定結果を考察するに、溶融充填率が高いセパレータの方が、室温、110℃ともに高い値を示すことが分かる。   Moreover, in Examples a1 to a5, when considering the measurement results of the air resistance including the melt filling rate, it can be seen that the separator having a high melt filling rate shows higher values at both room temperature and 110 ° C. .

(III)<セパレータの熱収縮率測定>
実施例a1〜a7および比較例b1〜b5の各セパレータを、10cm×5cmのサイズに切り出して試験片を作製した。なお、この試験片では、10cmとする方向(長手方向)を、セパレータに係る3層構造の微多孔膜の長手方向(微多孔膜の製造時の延伸方向)と平行にした。各試験片を150℃に調整した恒温槽内に入れ、30分後に取り出して熱収縮の度合いを測定した。
(III) <Measurement of heat shrinkage rate of separator>
Each separator of Examples a1 to a7 and Comparative Examples b1 to b5 was cut into a size of 10 cm × 5 cm to prepare a test piece. In this test piece, the direction of 10 cm (longitudinal direction) was made parallel to the longitudinal direction of the microporous membrane having a three-layer structure according to the separator (stretching direction during the production of the microporous membrane). Each test piece was put in a thermostat adjusted to 150 ° C., taken out after 30 minutes, and the degree of heat shrinkage was measured.

図3(f)の欄に、実施例a1〜a7および比較例b1〜b5の熱収縮率測定結果を示す。3層構造の微多孔膜である比較例b3、b4のセパレータb3、b4は長手方向に40%収縮、比較例b5の単層のセパレータb5は長手方向に50%収縮したのに対し、実施例a1、a2のセパレータa1、a2は3%以内、実施例a3のセパレータa3は6%、実施例a4のセパレータa4は8%、実施例a5のセパレータa5は13%、実施例a6のセパレータa6は25%、実施例a7のセパレータa7は26%、比較例b1のセパレータb1は3%以内、比較例b2のセパレータb2は4%だった。セパレータa1〜a5は、耐熱材層である第2セパレータ層と低融点材層である第3セパレータ層を有し、第2セパレータ層に係る無機フィラーの作用によって良好な耐熱収縮性を確保できている。また、セパレータa6、a7はセパレータb3、b4、b5に比べて一定の耐熱収縮性を確保できていると言える。第1、第2、第3セパレータ層を有するセパレータを用いることで、リチウムイオン二次電池などの電気化学素子では、内部短絡の発生を抑制でき、温度上昇を低減することができる。   In the column of FIG. 3 (f), the thermal contraction rate measurement results of Examples a1 to a7 and Comparative Examples b1 to b5 are shown. The separators b3 and b4 of Comparative Examples b3 and b4, which are three-layer microporous membranes, contracted by 40% in the longitudinal direction, and the single-layer separator b5 of Comparative Example b5 contracted by 50% in the longitudinal direction. The separators a1 and a2 of a1 and a2 are within 3%, the separator a3 of Example a3 is 6%, the separator a4 of Example a4 is 8%, the separator a5 of Example a5 is 13%, and the separator a6 of Example a6 is The separator a7 of Example a7 was 26%, the separator b1 of Comparative Example b1 was within 3%, and the separator b2 of Comparative Example b2 was 4%. The separators a1 to a5 have a second separator layer that is a heat-resistant material layer and a third separator layer that is a low-melting-point material layer, and can ensure good heat shrinkage by the action of the inorganic filler related to the second separator layer. Yes. In addition, it can be said that the separators a6 and a7 have a certain heat shrinkage resistance compared to the separators b3, b4, and b5. By using the separator having the first, second, and third separator layers, an electrochemical element such as a lithium ion secondary battery can suppress the occurrence of an internal short circuit and can reduce the temperature rise.

(IV)<過充電試験>
実施例A1〜A6と比較例B1、B2で作製したリチウムイオン二次電池A1〜A6、B1、B2の過充電試験を行った。それぞれのリチウムイオン二次電池を満充電し、さらに充電レート2C、上限電圧8.4VのCC/CV充電で過充電を行った。なお、実施例A1〜A6のリチウムイオン二次電池A1〜A6は、それぞれ実施例a1〜a6のセパレータa1〜a6を用いて作製したリチウムイオン二次電池である。同様に、比較例B1、B2のリチウムイオン二次電池B1、B2は、それぞれ比較例b1、b2のセパレータb1、b2を用いて作製したリチウムイオン二次電池である。
(IV) <Overcharge test>
Overcharge tests were performed on the lithium ion secondary batteries A1 to A6, B1, and B2 prepared in Examples A1 to A6 and Comparative Examples B1 and B2. Each lithium ion secondary battery was fully charged, and further overcharged by CC / CV charging with a charging rate of 2 C and an upper limit voltage of 8.4 V. In addition, lithium ion secondary battery A1-A6 of Example A1-A6 is a lithium ion secondary battery produced using separator a1-a6 of Example a1-a6, respectively. Similarly, the lithium ion secondary batteries B1 and B2 of Comparative Examples B1 and B2 are lithium ion secondary batteries manufactured using the separators b1 and b2 of Comparative Examples b1 and b2, respectively.

図3(c)に、当該過充電試験の結果を示す。過充電を行うことにより、徐々に温度上昇が起こり、実施例A1〜A6のリチウムイオン二次電池A1〜A6では、110℃付近でシャットダウンし、ピーク温度は140℃でさらなる発熱を抑制した。比較例B1、B2のリチウムイオン二次電池B1、B2では、135℃付近でシャットダウンし、ピーク温度は160℃でさらなる発熱を抑制した。セパレータa1〜a6はセパレータb1、b2に比べて、より低温でリチウムイオン二次電池のシャットダウンを可能とする。このことにより、第1、第2、第3セパレータ層を有するセパレータa1〜a6を部材とするリチウムイオン二次電池A1〜A6は、セパレータb1、b2を部材とするリチウムイオン二次電池B1、B2より低温でシャットダウンすることから、より安全性が高いリチウムイオン二次電池であると言える。   FIG. 3C shows the result of the overcharge test. By overcharging, the temperature gradually increased, and in the lithium ion secondary batteries A1 to A6 of Examples A1 to A6, shutdown was performed at around 110 ° C., and the peak temperature was 140 ° C., and further heat generation was suppressed. In the lithium ion secondary batteries B1 and B2 of Comparative Examples B1 and B2, shutdown was performed at around 135 ° C., and the peak temperature was 160 ° C., and further heat generation was suppressed. The separators a1 to a6 can shut down the lithium ion secondary battery at a lower temperature than the separators b1 and b2. Accordingly, the lithium ion secondary batteries A1 to A6 having the separators a1 to a6 having the first, second, and third separator layers as members are the lithium ion secondary batteries B1 and B2 having the separators b1 and b2 as members. Since it shuts down at a lower temperature, it can be said that it is a lithium ion secondary battery with higher safety.

以上の実施形態および実施例による、電気化学素子用セパレータおよび電気化学素子は、以下のような作用効果を奏する。
(1)本発明の電気化学素子用セパレータは異なる温度でシャットダウンすることが可能である。すなわち、イオン透過性を持つ微多孔を有し、かつ、温度上昇により微多孔を閉塞してイオン透過性を停止する第1シャットダウン機能を有する微多孔膜と、第1シャットダウン機能が発揮される温度よりも低い温度で溶融し、微多孔を閉塞してイオン透過性を停止する第2シャットダウン機能を有する低融点材、たとえば第3セパレータ層30とを含むものである。
異なる温度でシャットダウンすることにより、電池の温度が上昇する過程において、はじめに低融点材が溶融して微多孔膜の孔が閉塞され、そのシャットダウンで電池の温度上昇が十分に抑制されない場合は、微多孔膜自身がシャットダウンすることで温度上昇を抑制することができる。このように、多段階のシャットダウンをすることが可能となり、温度上昇を多段階に抑制することが可能となる。
(2)本発明の電気化学素子用セパレータは、低融点材の140℃における溶融粘度が、5mPa・s以上、100000mPa・s以下であるので、溶融した低融点材がセパレータ1にとどまって、且つ、微多孔膜の孔に浸入し孔を閉塞した状態を継続することができる。
(3)本発明の電気化学素子用セパレータは3層構造であり、第1〜第3セパレータ層10〜30を有する。第1セパレータ層10は、微多孔膜からなる層が複数積層され、複数の層11,12のそれぞれが、たとえば137℃と170℃でシャットダウン機能を発揮する。第2セパレータ20は、第1セパレータ層10の一方の面に設けられ、耐熱性を有する。第3セパレータ層は低融点材から成り、第1セパレータ層10の他方の面に設けられるか、または、第1セパレータ層10の一方の面に設けられた第2セパレータ20の上に重ねて設けられる第3セパレータ層30の低融点材が最初に電池の温度上昇を抑制することができ、仮に十分に温度が抑制されない場合は、第1セパレータ層10の複数積層された微多孔膜であるA層11,B層12によって、多段階に温度上昇を抑制することができる。また、第2セパレータ層20によって、第1セパレータ層10の熱収縮を抑制し、破膜を防ぐことができる。
このように、何重にもシャットダウンをすることができ、さらに温度が上昇しすぎても破膜することのない安全なセパレータおよび、電気化学素子を提供することができる。
(4)第3セパレータ層30の低融点材を、第1セパレータ層に対する溶融充填率を3%以上にすれば、第1セパレータ層10の孔を閉塞するのに十分である。
(5)本発明の電気化学素子用セパレータの微多孔膜を、融点が125℃以上170℃以下の範囲の熱可塑性樹脂とし、低融点材を、融点が微多孔膜より低く、且つ、80℃以上140℃以下の範囲での熱可塑性樹脂とすることにより、一般的なシャットダウン温度の範囲でシャットダウンする微多孔膜を用いて、かつ、低融点材が電池の実使用に影響を与えることなく、微多孔膜のシャットダウンよりも先に低融点材によりシャットダウンできる。
(6)本発明の電気化学素子用セパレータの第2セパレータ層20が無機フィラーを含むようにすれば、第1セパレータ層10の熱収縮を無機フィラー21が抑制し、破膜を防ぐことができる。
(7)本発明の電気化学素子用セパレータの無機フィラー21を、水酸化アルミニウム、ベーマイトおよびアルミナよりなる群から選択される少なくとも1種とすることにより、上記化合物(群)が、第1セパレータ層10の熱収縮をより一層抑制し、破膜を効果的に防ぐことができる。
(8)本発明の電気化学素子は、正極、負極、本発明の電気化学素子用セパレータ、非水電解液を有するようにしたので、多段階に電池温度の上昇を抑制することができる。
(9)本発明の電気化学素子の第3セパレータ層30を、負極に対向するように配置することにより、シャットダウン時間の短縮が可能となる。
(10)本発明の電気化学素子のセパレータは正極と負極の少なくともいずれか一方に固定されて一体化されている。これにより、少なくとも一方の電極の面に対してセパレータがずれることがないので、その電極面を常に覆うことができ、正極と負極の短絡を防ぐことができる。
The separator for an electrochemical element and the electrochemical element according to the above embodiment and examples have the following operational effects.
(1) The electrochemical element separator of the present invention can be shut down at different temperatures. That is, a microporous membrane having a microporous having ion permeability and having a first shutdown function for closing the microporous by increasing the temperature to stop the ion permeability, and a temperature at which the first shutdown function is exhibited. A low-melting-point material having a second shutdown function that melts at a lower temperature, closes the micropores, and stops ion permeability, such as the third separator layer 30.
When the battery temperature rises by shutting down at different temperatures, the low melting point material first melts to close the pores of the microporous membrane, and if the shutdown does not sufficiently suppress the battery temperature rise, The temperature rise can be suppressed by shutting down the porous membrane itself. As described above, it is possible to perform multi-stage shutdown, and it is possible to suppress the temperature increase in multiple stages.
(2) Since the melt viscosity at 140 ° C. of the low melting point material of the separator for an electrochemical element of the present invention is 5 mPa · s or more and 100000 mPa · s or less, the melted low melting point material remains in the separator 1 and It is possible to continue the state of entering the pores of the microporous membrane and closing the pores.
(3) The separator for electrochemical elements of the present invention has a three-layer structure and has first to third separator layers 10 to 30. The first separator layer 10 includes a plurality of layers made of microporous films, and each of the plurality of layers 11 and 12 exhibits a shutdown function at, for example, 137 ° C. and 170 ° C. The second separator 20 is provided on one surface of the first separator layer 10 and has heat resistance. The third separator layer is made of a low-melting-point material, and is provided on the other surface of the first separator layer 10 or on the second separator 20 provided on one surface of the first separator layer 10. The low melting point material of the third separator layer 30 that can suppress the temperature rise of the battery first, and if the temperature is not sufficiently suppressed, is a microporous film in which a plurality of first separator layers 10 are laminated A The layer 11 and the B layer 12 can suppress a temperature increase in multiple stages. Further, the second separator layer 20 can suppress thermal contraction of the first separator layer 10 and prevent film breakage.
In this way, it is possible to provide a safe separator and an electrochemical element that can be shut down many times and that do not break even if the temperature rises excessively.
(4) If the low melting point material of the third separator layer 30 has a melt filling rate of 3% or more with respect to the first separator layer, it is sufficient to close the holes of the first separator layer 10.
(5) The microporous film of the separator for electrochemical elements of the present invention is a thermoplastic resin having a melting point of 125 ° C. or higher and 170 ° C. or lower, and the low melting point material is lower in melting point than the microporous film and is 80 ° C. By using a thermoplastic resin in a range of 140 ° C. or less, using a microporous film that shuts down in a general shutdown temperature range, and without affecting the actual use of the battery, the low melting point material, It can be shut down with a low melting point material before the microporous membrane is shut down.
(6) If the 2nd separator layer 20 of the separator for electrochemical devices of this invention contains an inorganic filler, the thermal contraction of the 1st separator layer 10 will suppress the inorganic filler 21, and it can prevent a film breakage. .
(7) By using the inorganic filler 21 of the separator for an electrochemical element of the present invention as at least one selected from the group consisting of aluminum hydroxide, boehmite, and alumina, the above compound (group) becomes the first separator layer. 10 can be further suppressed, and membrane breakage can be effectively prevented.
(8) Since the electrochemical device of the present invention includes the positive electrode, the negative electrode, the separator for electrochemical devices of the present invention, and the non-aqueous electrolyte, the increase in battery temperature can be suppressed in multiple stages.
(9) By disposing the third separator layer 30 of the electrochemical device of the present invention so as to face the negative electrode, the shutdown time can be shortened.
(10) The separator of the electrochemical device of the present invention is fixed and integrated with at least one of the positive electrode and the negative electrode. Thereby, since a separator does not shift | deviate with respect to the surface of at least one electrode, the electrode surface can always be covered and the short circuit of a positive electrode and a negative electrode can be prevented.

以上の説明はあくまで一例であり、発明は、上記の実施形態及び実施例に何ら限定されるものではない。   The above description is merely an example, and the present invention is not limited to the above-described embodiments and examples.

1:セパレータ、
10:第1セパレータ層、
11:A層、
12:B層、
20:第2セパレータ層、
21:無機フィラー、
30:第3セパレータ層、
a1〜a7:実施例のセパレータ、
b1〜b5:比較例のセパレータ、
A1〜A6:実施例のリチウムイオン二次電池、
B1、B2:比較例のリチウムイオン二次電池
1: separator,
10: first separator layer,
11: A layer,
12: B layer
20: second separator layer,
21: inorganic filler,
30: Third separator layer,
a1 to a7: Examples of separators,
b1 to b5: separators of comparative examples,
A1 to A6: lithium ion secondary batteries of Examples,
B1, B2: Lithium ion secondary batteries of comparative examples

Claims (11)

熱可塑性樹脂を主体とし、所定の温度でシャットダウンを行う微多孔性の第1セパレータ層と、
耐熱性を有し、かつ微多孔性の第2セパレータ層と、
前記熱可塑性樹脂よりも低い温度で溶融する低融点材を含有し、前記第1セパレータ層のシャットダウン温度よりも低温でシャットダウンを行う微多孔性の第3セパレータ層とを有し、
前記低融点材の140℃における溶融粘度が、5mPa・s以上、100000mPa・s以下であることを特徴とする電気化学素子用セパレータ。
A microporous first separator layer mainly composed of a thermoplastic resin and shut down at a predetermined temperature;
A heat-resistant and microporous second separator layer;
A low melting point material that melts at a temperature lower than that of the thermoplastic resin, and a microporous third separator layer that performs shutdown at a temperature lower than the shutdown temperature of the first separator layer,
The separator for an electrochemical element, wherein the low-melting-point material has a melt viscosity at 140 ° C. of 5 mPa · s or more and 100000 mPa · s or less.
前記第1セパレータ層の一方の面に前記第2セパレータ層が積層され、他方の面に前記第3セパレータ層が積層されたことを特徴とする請求項1に記載の電気化学素子用セパレータ。   The separator for an electrochemical element according to claim 1, wherein the second separator layer is laminated on one surface of the first separator layer, and the third separator layer is laminated on the other surface. 前記第3セパレータ層の前記第1セパレータ層に対する140℃での溶融充填率が、3%以上200%以下であることを特徴とする請求項2に記載の電気化学素子用セパレータ。   The separator for an electrochemical element according to claim 2, wherein a melt filling rate at 140 ° C of the third separator layer with respect to the first separator layer is 3% or more and 200% or less. 前記第1セパレータ層が、融点の異なる複数の微多孔膜より形成されていることを特徴とする請求項1〜3のいずれか一項に記載の電気化学素子用セパレータ。   The said 1st separator layer is formed from the several microporous film from which melting | fusing point differs, The separator for electrochemical elements as described in any one of Claims 1-3 characterized by the above-mentioned. 前記熱可塑性樹脂の融点が125℃以上170℃以下であり、
前記低融点材の融点が、80℃以上140℃以下であることを特徴とする請求項1〜4のいずれか一項に記載の電気化学素子用セパレータ。
The melting point of the thermoplastic resin is 125 ° C. or more and 170 ° C. or less,
The melting point of the low melting point material is 80 ° C or higher and 140 ° C or lower, and the separator for an electrochemical element according to any one of claims 1 to 4.
前記第2セパレータ層が、無機フィラーを含有することを特徴とする請求項1〜5のいずれか一項に記載の電気化学素子用セパレータ。   The said 2nd separator layer contains an inorganic filler, The separator for electrochemical elements as described in any one of Claims 1-5 characterized by the above-mentioned. 前記無機フィラーが、水酸化アルミニウム、ベーマイトおよびアルミナよりなる群から選択される少なくとも1種を含むことを特徴とする請求項6に記載の電気化学素子用セパレータ。   The said inorganic filler contains at least 1 sort (s) selected from the group which consists of aluminum hydroxide, boehmite, and an alumina, The separator for electrochemical elements of Claim 6 characterized by the above-mentioned. 前記第1セパレータ層は延伸法及び空孔形成法の少なくともいずれか一方を用いて形成された微多孔膜であって、前記第2セパレータ層及び前記第3セパレータ層は、前記第1セパレータ層にセパレータ層形成用組成物を塗布して形成されたものであることを特徴とする請求項1〜7のいずれか一項に記載の電気化学素子用セパレータ。   The first separator layer is a microporous film formed using at least one of a stretching method and a pore forming method, and the second separator layer and the third separator layer are formed on the first separator layer. The separator for an electrochemical element according to any one of claims 1 to 7, which is formed by applying a composition for forming a separator layer. 正極、負極、セパレータおよび非水電解液を有し、
前記セパレータが、請求項1〜8のいずれか一項に記載の電気化学素子用セパレータであることを特徴とする電気化学素子。
Having a positive electrode, a negative electrode, a separator and a non-aqueous electrolyte,
The said separator is a separator for electrochemical elements as described in any one of Claims 1-8, The electrochemical element characterized by the above-mentioned.
前記第3セパレータ層が、負極に対向することを特徴とする請求項9に記載の電気化学素子。   The electrochemical device according to claim 9, wherein the third separator layer faces the negative electrode. 前記セパレータが、正極または負極の少なくとも一方と一体化されていることを特徴とする請求項9または10に記載の電気化学素子。

The electrochemical device according to claim 9 or 10, wherein the separator is integrated with at least one of a positive electrode and a negative electrode.

JP2013168174A 2013-08-13 2013-08-13 Separator for electrochemical device and electrochemical device Pending JP2016181323A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013168174A JP2016181323A (en) 2013-08-13 2013-08-13 Separator for electrochemical device and electrochemical device
PCT/JP2014/070105 WO2015022862A1 (en) 2013-08-13 2014-07-30 Separator for electrochemical devices, and electrochemical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013168174A JP2016181323A (en) 2013-08-13 2013-08-13 Separator for electrochemical device and electrochemical device

Publications (1)

Publication Number Publication Date
JP2016181323A true JP2016181323A (en) 2016-10-13

Family

ID=57131808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013168174A Pending JP2016181323A (en) 2013-08-13 2013-08-13 Separator for electrochemical device and electrochemical device

Country Status (1)

Country Link
JP (1) JP2016181323A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015037078A (en) * 2013-08-14 2015-02-23 三星エスディアイ株式会社Samsung SDI Co.,Ltd. Rechargeable lithium battery
JP2016201255A (en) * 2015-04-10 2016-12-01 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015037078A (en) * 2013-08-14 2015-02-23 三星エスディアイ株式会社Samsung SDI Co.,Ltd. Rechargeable lithium battery
JP2016201255A (en) * 2015-04-10 2016-12-01 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery

Similar Documents

Publication Publication Date Title
JP5937776B2 (en) Battery separator and battery
KR101105748B1 (en) Separator for electrochemical device and method for producing same, and electrochemical device and method for manufacturing same
JP5879018B2 (en) Electrochemical element and method for producing the same
JP5611505B2 (en) Battery separator and lithium secondary battery
JP5193998B2 (en) Electrochemical element separator, electrode for electrochemical element, and electrochemical element
JP5576740B2 (en) Electrochemical element
JP5650738B2 (en) Battery separator and battery
JP2016181324A (en) Separator for electrochemical device
WO2013051079A1 (en) Heat resistant porous membrane, separator for nonaqueous cell, and nonaqueous cell
JP2008027839A (en) Porous membrane with liner, method of manufacturing porous membrane, and method of manufacturing lithium secondary battery
JP2012033268A (en) Electrochemical element
JP2014007089A (en) Separator for electrochemical element, and electrochemical element
JP2008004442A (en) Separator for lithium secondary battery, and lithium secondary battery
JP2012155914A (en) Separator for electrochemical element and electrochemical element
JP5804712B2 (en) Nonaqueous electrolyte secondary battery
JP2012003938A (en) Separator for cell and lithium secondary cell
JP2012009150A (en) Nonaqueous secondary battery
JP2017204368A (en) Separator for electrochemical element, electrochemical element, composition for resin particle layer formation, and method for manufacturing separator for electrochemical element
JP2010277723A (en) Electrochemical element
JP2014022051A (en) Separator for electrochemical element and electrochemical element
JP6343468B2 (en) Electrochemical element separator and electrochemical element
JP5376622B2 (en) Electrochemical element separator and electrochemical element
JP2012204243A (en) Nonaqueous secondary battery
WO2015022862A1 (en) Separator for electrochemical devices, and electrochemical device
JP2011228188A (en) Separator for electrochemical element, electrochemical element, and method of manufacturing the same