JP2016180141A - Aluminum alloy sheet for drawn ironed can excellent in glossiness after making can and resin coated aluminum alloy sheet for drawn ironed can - Google Patents

Aluminum alloy sheet for drawn ironed can excellent in glossiness after making can and resin coated aluminum alloy sheet for drawn ironed can Download PDF

Info

Publication number
JP2016180141A
JP2016180141A JP2015060144A JP2015060144A JP2016180141A JP 2016180141 A JP2016180141 A JP 2016180141A JP 2015060144 A JP2015060144 A JP 2015060144A JP 2015060144 A JP2015060144 A JP 2015060144A JP 2016180141 A JP2016180141 A JP 2016180141A
Authority
JP
Japan
Prior art keywords
aluminum alloy
less
alloy plate
plate
glossiness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP2015060144A
Other languages
Japanese (ja)
Inventor
有賀 康博
Yasuhiro Ariga
康博 有賀
高田 悟
Satoru Takada
悟 高田
良治 正田
Kazuharu Masada
良治 正田
祐志 井上
Yushi Inoue
祐志 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2015060144A priority Critical patent/JP2016180141A/en
Publication of JP2016180141A publication Critical patent/JP2016180141A/en
Ceased legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an aluminum alloy sheet for a can body capable of enhancing glossiness of a drawn ironed can surface.SOLUTION: There is provided an aluminum alloy sheet for a can body having a specific composition, which is made to a drawn ironed can after being coated with a resin in advance, where average percentage of small tilt angle grain boundary with tilt of 5 to 15° which affects largely on glossiness of a drawn ironed can surface, out of a crystal grain structure on the surface part of the sheet, is controlled to make a crystal grain structure mainly containing large tilt grain boundary, and particularly, glossiness of a 0° position part of the can is excellent.SELECTED DRAWING: None

Description

本発明は、絞りしごき加工により、飲料、食品用途に使用される包装容器の缶胴に製缶される、絞りしごき缶用アルミニウム合金板および絞りしごき缶用樹脂被覆アルミニウム合金板に関する。   The present invention relates to an aluminum alloy plate for a squeezed iron can and a resin-coated aluminum alloy plate for a squeezed iron can, which are produced in a can body of a packaging container used for beverages and foods by squeezing and ironing.

包装容器としての飲料缶の胴部(缶胴)は、DI缶とも称される絞りしごき缶が一般的である。DIは「Drawing and wall Ironing」の略であり、素材アルミニウム合金板を先ず絞り加工して、側面継目のない胴部と該胴部に継目なしに一体に接続された底部とから成るカップに成形し、次いで、このカップの胴部にしごき加工をおこなう、多段階の絞り加工−しごき加工(以下、絞りしごき加工とも言う)により製缶される。   The body (can body) of a beverage can as a packaging container is generally a squeezed iron can also called a DI can. DI is an abbreviation for “Drawing and wall Ironing”. A material aluminum alloy sheet is first drawn and formed into a cup consisting of a body part without a side seam and a bottom part integrally connected to the body part without a seam. Then, the can body is made by multi-stage drawing-ironing (hereinafter also referred to as drawing ironing) in which the body of the cup is ironed.

この製缶により、飲料缶では高さのある円筒形状の胴部が成形され、この胴部は、塗装、焼付けされ、ネッキング加工により開口部を縮径されて、フランジング加工により開口部の縁を外側に拡げられて、最終の缶胴となる。   This can makes a cylindrical body with a height in a beverage can, and this body is painted and baked, the diameter of the opening is reduced by necking, and the edge of the opening is formed by flanging. Is expanded to the final can body.

このような絞りしごき缶の素材(材料)として、成形性、耐食性、強度等の面から、AA乃至JIS3000系などの圧延されたアルミニウム合金板に、予め樹脂を被覆した(プレコート)アルミニウム合金板が用いられている。   As a raw material (material) of such a squeezing and ironing can, from the viewpoint of formability, corrosion resistance, strength, etc., a rolled aluminum alloy plate such as AA to JIS3000 series is pre-coated with an aluminum alloy plate (pre-coated). It is used.

この樹脂被覆アルミニウム合金板は、樹脂としてワックス等の潤滑剤を予め製缶前に塗布しているので、ドライな状態での絞りしごき加工ができる。このため、樹脂を被覆していない素材アルミニウム合金板を絞りしごき加工する場合に必要な、アルミニウム合金板と工具との摩擦低減のための、大量の水や水系潤滑剤を用いる必要が無く、環境負荷の少ない製缶プロセスが可能となる。   Since this resin-coated aluminum alloy plate is preliminarily coated with a lubricant such as wax as a resin before making cans, it can be drawn and ironed in a dry state. For this reason, there is no need to use a large amount of water or water-based lubricant for reducing friction between the aluminum alloy plate and the tool, which is necessary when drawing and ironing a material aluminum alloy plate that is not coated with resin. A can-making process with low load is possible.

このような樹脂被覆アルミニウム合金板に対する、絞りしごき缶の側からの特性向上の要求に対して、従来から、板の組成や組織などの観点からの改善提案が数多くなされている。
例えば、特許文献1では、絞りしごき缶の耐突刺し性や、缶胴開口部の拡缶性を十分に有するために、板断面の板厚方向中心部に存在する金属間化合物を規定し、最大長さが1μm以上の金属間化合物の面積率が0.3%を超え1.3%未満であり、最大長が11μm以上の金属間化合物の個数が100個/mm以下とすることが提案されている。
Many proposals have been made to improve the resin-coated aluminum alloy plate from the viewpoint of the composition and structure of the plate in response to the demand for improving the characteristics from the side of the drawn iron can.
For example, in Patent Document 1, in order to sufficiently have the stab resistance of a squeezed iron can and the can expandability of the can body opening, an intermetallic compound existing in the center in the plate thickness direction of the plate cross section is defined, The area ratio of an intermetallic compound having a maximum length of 1 μm or more is more than 0.3% and less than 1.3%, and the number of intermetallic compounds having a maximum length of 11 μm or more is 100 / mm 2 or less. Proposed.

これに対して、近年では、包装容器の意匠性の更なる向上のために、光輝性や鮮鋭性などとも表現される光沢性が優れた外観(外表面)を有する絞りしごき缶が強く求められるようになっている。
この点、樹脂被覆アルミニウム合金板の製缶後の絞りしごき缶としての光沢性は、樹脂被覆を施さないアルミニウム合金板を素材とする絞りしごき缶に比べて劣っている。
On the other hand, in recent years, in order to further improve the design of packaging containers, there is a strong demand for a squeezed iron can having an excellent appearance (outer surface), which is also expressed as glitter or sharpness. It is like that.
In this regard, the glossiness as a squeezed iron can after making a resin-coated aluminum alloy plate is inferior to that of a squeezed iron can made of an aluminum alloy plate not provided with a resin coating.

この理由は、樹脂被覆アルミニウム合金板において、絞り加工、しごき加工で使用されるポンチとダイスに直接接触するのは、あくまで外面側の被覆樹脂であり、内面側となるアルミニウム合金板が直接ポンチやダイスと接触しないことによる。
光沢性は、絞りしごき加工中に、アルミニウム合金板が直接ポンチやダイスと接触し、板表面への圧下あるいは摩擦、摩耗作用により、アルミニウム合金板の表面が平滑化されることによって増す。したがって、樹脂被覆アルミニウム合金板では、外面側の被覆樹脂の存在によって、この効果が無いか小さくなり、光沢性が増すことが無い。
このため、樹脂被覆アルミニウム合金板を製缶した絞りしごき缶表面の光沢性(以下、絞りしごき缶の光沢性とも言う)は、絞りしごき加工などの製缶工程の条件の変更では、効果的に向上させることができない。
The reason for this is that in the resin-coated aluminum alloy plate, the direct contact with the punch and die used in drawing and ironing is the coating resin on the outer surface side, and the aluminum alloy plate on the inner surface side is directly By not contacting the die.
The glossiness is increased when the aluminum alloy plate comes into direct contact with the punch or the die during the drawing and ironing process, and the surface of the aluminum alloy plate is smoothed by the pressing, friction or wear action on the plate surface. Therefore, in the resin-coated aluminum alloy plate, this effect is reduced or reduced due to the presence of the coating resin on the outer surface side, and glossiness does not increase.
For this reason, the gloss of the surface of the squeezed iron can made of a resin-coated aluminum alloy plate (hereinafter also referred to as the gloss of the squeezed iron can) is effective when changing the conditions of the can making process such as squeezing and ironing. It cannot be improved.

したがって、樹脂被覆アルミニウム合金板を製缶した絞りしごき缶の光沢性(光輝性、鮮鋭性)の向上は、必然的に素材側であるアルミニウム合金板に改善が求められることとなる。ただ、このような缶の光沢性向上に関して、公知となっている従来技術はあまり無く、特許文献2が散見される程度である。   Therefore, improvement in the gloss (brightness and sharpness) of the drawn and ironed can made from the resin-coated aluminum alloy plate inevitably requires improvement in the aluminum alloy plate on the material side. However, there is not much known prior art for improving the glossiness of such cans, and only Patent Document 2 is occasionally seen.

この特許文献2では、絞りしごき缶の光沢性を増すために、被覆する樹脂(外面塗膜)の膜厚と、素材アルミニウム合金板表面の粗度との関係を規定している。具体的には、絞りしごき缶用の樹脂被覆アルミニウム合金板の、缶外面となる面の算術平均粗さ(Ra)を0.5μm以内とし、このアルミニウム合金板の樹脂被覆の厚みを0.02μm〜6μmとし、その上で、前記Raが0.2μm未満の場合には、樹脂の厚みを6μm以下とするなど、前記Raが小さくなるほど、樹脂の膜厚を厚くしている。   In Patent Document 2, in order to increase the glossiness of the drawn and ironed can, the relationship between the film thickness of the resin (outer coating film) to be coated and the roughness of the material aluminum alloy plate surface is defined. Specifically, the arithmetic average roughness (Ra) of the surface that becomes the outer surface of the resin-coated aluminum alloy plate for drawn iron cans is set to within 0.5 μm, and the thickness of the resin coating of this aluminum alloy plate is 0.02 μm. When the Ra is less than 0.2 μm, the thickness of the resin is increased as the Ra is decreased. For example, the thickness of the resin is 6 μm or less.

特開2010−236075号公報JP 2010-236075 A 特開2011−201198号公報JP2011-201198A

特許文献2に限らず、アルミニウム合金板の表面のRaと樹脂層の厚みとは、従来から光沢性向上のための一般的な制御対象ではあるが、要求される絞りしごき缶の光沢性を得るには十分ではない。   Although not limited to Patent Document 2, the Ra of the surface of the aluminum alloy plate and the thickness of the resin layer are conventionally controlled objects for improving the glossiness, but the required glossiness of the drawn iron can is obtained. Is not enough.

また、前記板の組成や組織などの光沢性向上の観点からの改善提案もこれまではあまり無い。したがって、樹脂被覆アルミニウム合金板を製缶した絞りしごき缶の光沢性に大きく影響する、素材のアルミニウム合金圧延板の組成や組織などの因子の解明も、充分なされているとは言い難い。   In addition, there have not been many improvement proposals from the viewpoint of improving the glossiness of the composition and structure of the plate. Therefore, it is difficult to say that the factors such as the composition and structure of the rolled aluminum alloy sheet, which have a great influence on the gloss of the squeezed iron can made from the resin-coated aluminum alloy sheet, have been sufficiently clarified.

本発明は、このような問題点に鑑みてなされたものであり、樹脂が予め被覆された上で絞りしごき缶に製缶されるアルミニウム合金板であって、絞りしごき缶に要求される諸特性を満足した上で、絞りしごき缶の光沢性を向上させることができるアルミニウム合金板および樹脂被覆アルミニウム合金板を提供することを目的とする。   The present invention has been made in view of such problems, and is an aluminum alloy plate that is made into a squeezed iron can after being pre-coated with a resin, and has various characteristics required for a squeezed iron can. An object of the present invention is to provide an aluminum alloy plate and a resin-coated aluminum alloy plate that can improve the gloss of a squeezed iron can.

前記課題を解決するための、本発明の製缶後の光沢性に優れた絞りしごき缶用アルミニウム合金板の要旨は、質量%で、Mg:0.1〜6.0%、Fe:0.01〜0.5%、Mn:0.01〜0.75%を各々含有し、残部がAl及び不可避的不純物からなり、樹脂が予め被覆された上で絞りしごき缶に製缶されるアルミニウム合金板であって、この板の表面部の、平均結晶粒径が50μm以下であるとともに、傾角5〜15°の小傾角粒界の平均割合が35%以下(但し、0%を含まず)であることとする。   The gist of the aluminum alloy sheet for a drawn and ironed can excellent in gloss after can making of the present invention for solving the above problems is mass%, Mg: 0.1 to 6.0%, Fe: 0.00. An aluminum alloy containing 01 to 0.5% and Mn: 0.01 to 0.75%, the balance being made of Al and inevitable impurities, and pre-coated with a resin and then made into a squeezed iron can The average grain size of the surface portion of the plate is 50 μm or less, and the average proportion of the small-angle grain boundaries with an inclination of 5 to 15 ° is 35% or less (excluding 0%). Suppose that there is.

また、前記課題を解決するための、本発明の絞りしごき缶用樹脂被覆アルミニウム合金板の要旨は、上記アルミニウム合金板に、熱可塑性樹脂フィルムが前記製缶前に予め被覆されていることである。   Moreover, the gist of the resin-coated aluminum alloy plate for a drawn iron can according to the present invention for solving the above-mentioned problems is that the aluminum alloy plate is pre-coated with a thermoplastic resin film before the can making. .

本発明では、これまでは注目されていなかった、絞りしごき缶表面の光沢性に大きく影響する、素材圧延板組織の重要な制御因子を知見し、これを制御する。この重要な制御因子とは、素材アルミニウム合金圧延板の表面部の組織における、傾角5〜15°の小傾角粒界の平均割合である。   In the present invention, an important control factor of the material rolled sheet structure that has not been noticed so far and greatly affects the gloss of the surface of the squeezed iron can is found and controlled. This important control factor is the average ratio of the low-angle grain boundaries with an inclination of 5 to 15 ° in the structure of the surface portion of the rolled aluminum alloy sheet.

素材板表面部の結晶粒組織における、小傾角粒界の平均割合が高いほど、微小な結晶方位差が大きくなって、絞りしごき缶の表面部分の散乱光強度率が高くなり、光沢性が低下する。したがって、本発明では、素材板表面部の小傾角粒界の平均割合を少なくし、一定値以下とする。   The higher the average ratio of the low-angle grain boundaries in the crystal grain structure on the surface of the material plate, the smaller the difference in crystal orientation, and the higher the scattered light intensity ratio on the surface of the squeezed iron can, the lower the glossiness. To do. Therefore, in the present invention, the average ratio of the small-angle grain boundaries on the surface portion of the material plate is reduced to a certain value or less.

これによって、本発明は、絞りしごき缶に要求される諸特性を満足した上で、要求される絞りしごき缶表面の光沢性を得ることができる、絞りしごき缶用のアルミニウム合金板や樹脂被覆アルミニウム合金板を提供できる。   As a result, the present invention can achieve the required gloss of the surface of the squeezed iron can, while satisfying various properties required for the squeezed iron can, and an aluminum alloy plate or resin-coated aluminum for the squeezed iron can Alloy plate can be provided.

以下、本発明の絞りしごき缶用アルミニウム合金板および絞りしごき缶用樹脂被覆アルミニウム合金板(以下、単にアルミニウム合金板あるいは素材板とも言う)を実施するための形態について説明する。   Hereinafter, embodiments for carrying out an aluminum alloy plate for a drawn iron can and a resin-coated aluminum alloy plate for a drawn iron can (hereinafter also simply referred to as an aluminum alloy plate or a material plate) according to the present invention will be described.

本発明のアルミニウム合金板は、絞りしごき缶の缶胴素材としてのアルミニウム合金圧延板(冷延板)であって、樹脂が予め被覆された上で、絞り加工およびしごき加工されて、絞りしごき缶(以下、単に缶とも言う)に製缶される。また、本発明の樹脂被覆アルミニウム合金板は、上記アルミニウム合金板に、結晶性熱可塑性樹脂フィルムが、前記絞りしごき缶への製缶前に予め被覆されたものである。   The aluminum alloy plate of the present invention is an aluminum alloy rolled plate (cold rolled plate) as a can body material of a drawn iron can, and is drawn and ironed after being pre-coated with a resin, and the drawn iron can (Hereinafter simply referred to as a can). In the resin-coated aluminum alloy plate of the present invention, the above-mentioned aluminum alloy plate is coated in advance with a crystalline thermoplastic resin film before making the drawn iron can.

(アルミニウム合金組成)
本発明のアルミニウム合金板(素材板)の合金組成は、絞りしごき缶表面の光沢性の観点だけからではなく、前提として、缶への絞りしごき加工性、缶としての必要強度、耐食性などの、缶の要求諸特性を兼備するために規定される。
(Aluminum alloy composition)
The alloy composition of the aluminum alloy plate (material plate) of the present invention is not only from the viewpoint of the gloss of the surface of the squeezed iron can, but as a premise, such as squeezing iron workability to the can, required strength as a can, corrosion resistance, Defined to combine the required characteristics of cans.

このために、アルミニウム合金板の組成は、質量%で、Mg:0.1〜6.0%、Fe:0.01〜0.5%、Mn:0.01〜0.75%、を各々含有することとする。   For this reason, the composition of the aluminum alloy plate is, by mass%, Mg: 0.1-6.0%, Fe: 0.01-0.5%, Mn: 0.01-0.75%, respectively. To contain.

また、このアルミニウム合金板の組成は、絞りしごき缶として要求される前記諸特性を兼備した上で、素材板の表面部の平均結晶粒径と傾角5〜15°の小傾角粒界の平均割合とを満足し、絞りしごき缶表面の光沢性を得るためにも重要となる。   In addition, the composition of the aluminum alloy plate has the above-mentioned characteristics required as a drawn iron can, and the average ratio of the average crystal grain size of the surface portion of the material plate and the small-angle grain boundaries with an inclination of 5 to 15 °. And is important for obtaining the gloss of the surface of the squeezed and ironed can.

このアルミニウム合金組成に、更に、高強度化のために、Si:2.0%以下(但し、0%を含まず)、Cu:1.0%以下(但し、0%を含まず)、Cr:0.3%以下(但し、0%を含まず)、Zr:0.2%以下(但し、0%を含まず)、V:0.2%以下(但し、0%を含まず)、Ti:0.1%以下(但し、0%を含まず)、Zn:0.5%以下(但し、0%を含まず)、Ag:0.2%以下(但し、0%を含まず)、の1種または2種以上を含む組成としてもよい。   In order to further increase the strength of this aluminum alloy composition, Si: 2.0% or less (excluding 0%), Cu: 1.0% or less (excluding 0%), Cr : 0.3% or less (excluding 0%), Zr: 0.2% or less (excluding 0%), V: 0.2% or less (excluding 0%), Ti: 0.1% or less (excluding 0%), Zn: 0.5% or less (excluding 0%), Ag: 0.2% or less (excluding 0%) It is good also as a composition containing 1 type, or 2 or more types of these.

そして、これらのアルミニウム合金組成は、前記必須元素や選択的添加元素の残部を、Alおよび不可避的不純物とする。なお、組成(各元素含有量)に関する%表示は全て質量%の意味である。   In these aluminum alloy compositions, the balance of the essential elements and the selectively added elements is Al and inevitable impurities. In addition, all the% display regarding a composition (each element content) means the mass%.

(Mg:0.1〜6.0%)
Mgは、固溶強化によってアルミニウム合金の強度を向上させる効果がある。
Mgの含有量が0.1%未満では、アルミニウム合金板が缶胴に成形されたときに、薄肉な側壁強度が低くなって、缶としての耐圧性や耐突刺し性が不足する。
一方、Mgの含有量が6.0%を超えると、絞りしごき缶表面となる最終の素材板表面のアルミニウム合金板の傾角5〜15°の小傾角粒界の平均割合が大きくなりやすく、しごき加工時のティアオフ(胴体割れ)等の割れ、ネッキング加工時のシワやスジ等の不良も発生し易くなる。
したがって、Mgの含有量は、0.1〜6.0%の範囲とし、好ましくは0.2〜5.2%、より好ましくは0.3〜3.0%とする。
(Mg: 0.1-6.0%)
Mg has the effect of improving the strength of the aluminum alloy by solid solution strengthening.
When the Mg content is less than 0.1%, when the aluminum alloy plate is formed on the can body, the thin side wall strength becomes low, and the pressure resistance and puncture resistance as a can are insufficient.
On the other hand, if the Mg content exceeds 6.0%, the average ratio of the low-angle grain boundaries of 5 to 15 degrees of inclination of the aluminum alloy plate on the surface of the final material plate that becomes the surface of the drawn iron can tends to increase. Cracks such as tear-off (fuselage cracks) during processing, wrinkles and streaks during necking, and other defects are likely to occur.
Therefore, the Mg content is in the range of 0.1 to 6.0%, preferably 0.2 to 5.2%, more preferably 0.3 to 3.0%.

(Fe:0.01〜0.5%)
Feは、アルミニウム合金板組織中で、A1−Fe(−Mn)系、A1−Fe(−Mn)−Si系などのAl−Fe系の晶出物(金属聞化合物)を形成する。これらの晶出物は缶の強度向上にも寄与するが、絞りしごき缶表面の光沢性(光輝性)を阻害する弊害も大きい。
すなわち、製缶時のしごき加工の際に、アルミニウム合金板が延ばされると、アルミニウム合金板表面近傍のAl−Fe系の晶出物は延性がないため、そのままの形をとどめるか、砕けながら、缶表面に現れるか、あるいは缶表面近傍に分布することになる。そして、これが、缶表面(外面、外表面)の粗化の原因となり、缶の光沢性を低下させる。
Feは地金やスクラップなどのアルミニウム合金の溶解原料から混入しやすく、その含有量が光沢性を低下させない許容量(上限値)である0.5%を超えて多くなりやすい。
このため、缶の強度向上のためには、Feの含有量を0.01%以上とするが、Feの含有量が0.5%を超えると、Al−Fe系の晶出物量が増えてMnやSiの固溶量が少なくなり、最終板の板表面のアルミニウム合金板の平均結晶粒径が大きくなる。
以上のことから、Feの含有量は0.01〜0.5%の範囲に制御する。
(Fe: 0.01-0.5%)
Fe forms Al-Fe-based crystallized compounds (metal compounds) such as A1-Fe (-Mn) -based and A1-Fe (-Mn) -Si-based in the aluminum alloy plate structure. These crystallized substances also contribute to the improvement of the strength of the can, but also have a great detrimental effect on the gloss (brightness) of the squeezed and ironed can surface.
That is, when the aluminum alloy plate is stretched during the ironing process during can making, the Al-Fe-based crystallized material in the vicinity of the aluminum alloy plate surface is not ductile, so it remains as it is, or while being crushed, It appears on the surface of the can or distributed near the surface of the can. This causes roughening of the can surface (outer surface, outer surface), and lowers the gloss of the can.
Fe is likely to be mixed from aluminum alloy melting raw materials such as bullion and scrap, and its content tends to increase beyond 0.5%, which is an allowable amount (upper limit value) that does not reduce glossiness.
For this reason, in order to improve the strength of the can, the Fe content is set to 0.01% or more. However, if the Fe content exceeds 0.5%, the amount of Al-Fe-based crystallized substances increases. The solid solution amount of Mn and Si decreases, and the average crystal grain size of the aluminum alloy plate on the surface of the final plate increases.
From the above, the Fe content is controlled in the range of 0.01 to 0.5%.

(Mn:0.01〜0.75%)
Mnも、アルミニウム合金板組織中で、A1−Fe−Mn系、A1−Fe−Mn−Si系などの晶出物(金属間化合物)を形成する。これらの晶出物は缶の強度向上にも寄与するが、絞りしごき缶表面の光沢性に悪影響を与えるAl−Fe系の晶出物周りに、前記晶出物として形成されやすく、缶の光沢性を低下させる。
更に、前記Al-Fe-Mn系の晶出物は、絞りしごき加工性(DI成形性)や、缶の耐圧強度や耐突き刺し性も低下させる。しかも、Mnも地金やスクラップなどのアルミニウム合金の溶解原料から混入しやすく、その含有量が、光沢性を低下させない許容量(上限値)である0.75%を超えて多くなりやすい。
この点、缶の強度向上のためには、Mnの含有量を0.01%以上とするが、Mnの含有量が0.75%を超えると、Mnの固溶量が多くなり、最終板の板表面のアルミニウム合金板の傾角5〜15°の小傾角粒界の平均割合が大きくなる。
以上のことから、Mnの含有量は0.01〜0.75%の範囲に制御する。なお、光沢性の観点からは、Mnの含有量の上限を好ましくは0.5%とする。
(Mn: 0.01 to 0.75%)
Mn also forms crystallized substances (intermetallic compounds) such as A1-Fe-Mn and A1-Fe-Mn-Si in the aluminum alloy sheet structure. Although these crystallized substances contribute to the improvement of the strength of the can, they are easily formed as the above-mentioned crystallized substances around the Al-Fe-based crystallized substance that adversely affects the gloss of the squeezed and ironed can surface. Reduce sex.
Furthermore, the Al—Fe—Mn-based crystallized product also reduces draw ironing workability (DI moldability), can withstand pressure strength and puncture resistance. Moreover, Mn is also likely to be mixed from the melting raw materials of aluminum alloys such as bullion and scrap, and its content tends to exceed 0.75%, which is an allowable amount (upper limit value) that does not reduce glossiness.
In this respect, in order to improve the strength of the can, the Mn content is set to 0.01% or more. However, if the Mn content exceeds 0.75%, the solid solution amount of Mn increases, and the final plate The average ratio of the low-angle grain boundaries having an inclination angle of 5 to 15 ° of the aluminum alloy plate on the plate surface becomes large.
From the above, the content of Mn is controlled in the range of 0.01 to 0.75%. From the viewpoint of glossiness, the upper limit of the Mn content is preferably 0.5%.

(その他の元素)
以上の元素の他、本発明では、アルミニウム合金板の高強度化のために、Si:2.0%以下(但し、0%を含まず)、Cu:1.0%以下(但し、0%を含まず)、Cr:0.3%以下(但し、0%を含まず)、Zr:0.2%以下(但し、0%を含まず)、V:0.2%以下(但し、0%を含まず)、Ti:0.1%以下(但し、0%を含まず)、Zn:0.5%以下(但し、0%を含まず)、Ag:0.2%以下(但し、0%を含まず)の1種または2種以上を含んでも良い。
(Other elements)
In addition to the above elements, in the present invention, in order to increase the strength of the aluminum alloy plate, Si: 2.0% or less (excluding 0%), Cu: 1.0% or less (however, 0% Cr: 0.3% or less (excluding 0%), Zr: 0.2% or less (excluding 0%), V: 0.2% or less (excluding 0%) %), Ti: 0.1% or less (excluding 0%), Zn: 0.5% or less (excluding 0%), Ag: 0.2% or less (provided that One type or two or more types may be included.

これらの元素は、共通して板を高強度化させる効果があり、結晶粒を微細化する役割を果たす点で同効元素として扱う。但し、これらの元素各々の含有量が多すぎると、熱延板の再結晶が不完全になる可能性が高い。その結果、冷間圧延後の平均結晶粒径と小傾角粒界の平均割合が共に高くなる。また、粗大な化合物を形成するなどして、板の製造が困難となり、強度や曲げ加工性、また、耐食性も低下する。したがって、含有させる場合には、前記した各上限値以下の含有量とする。   These elements are commonly treated as synergistic elements in that they have the effect of increasing the strength of the plate and play the role of refining the crystal grains. However, if the content of each of these elements is too large, there is a high possibility that recrystallization of the hot-rolled sheet will be incomplete. As a result, both the average crystal grain size after cold rolling and the average ratio of low-angle grain boundaries become high. In addition, it becomes difficult to produce a plate by forming a coarse compound, and strength, bending workability, and corrosion resistance are also lowered. Therefore, when it contains, it shall be content below each above-mentioned upper limit.

(アルミニウム合金板表面部)
本発明で言う素材アルミニウム合金板の表面部とは、板の最表面から板厚方向に30μmの深さまでの表層部を言う。
(Aluminum alloy plate surface)
The surface portion of the material aluminum alloy plate referred to in the present invention refers to a surface layer portion from the outermost surface of the plate to a depth of 30 μm in the plate thickness direction.

本発明では、以上のアルミニウム合金組成を前提として、絞りしごき缶表面の光沢性の向上のために、本発明では、絞りしごき缶表面の光沢性に大きく影響する、素材板組織の重要な制御因子として、素材板の前記表面部の平均結晶粒径と、この素材板の前記表面部の組織における、傾角5〜15°の小傾角粒界の平均割合を制御する。   In the present invention, on the premise of the above aluminum alloy composition, in order to improve the gloss of the surface of the squeezed and ironed can, in the present invention, an important control factor of the material plate structure that greatly affects the gloss of the surface of the squeezed and ironed can. As described above, the average crystal grain size of the surface portion of the material plate and the average ratio of the low-inclination grain boundaries having an inclination angle of 5 to 15 ° in the structure of the surface portion of the material plate are controlled.

(板表面部の平均結晶粒径)
アルミニウム合金板の板表面部の平均結晶粒径は、絞りしごき缶表面の光沢性を確保する前提条件とも言える。
板表面部の平均結晶粒径が大きいほど、製缶時のしごき加工後の平均結晶粒径も大きくなり、缶軸方向に対して垂直に筋状の凹凸が出やすくなって、絞りしごき缶の表面部分の散乱光強度率が高くなり、光沢性が低下する。
したがって、アルミニウム合金板の板表面部の平均結晶粒径は50μm以下(但し、0μmを含まず)のできるだけ小さい平均結晶粒径とする。なお、製造限界からすると、板表面部の平均結晶粒径の下限は5μm程度である。
(Average crystal grain size of the plate surface)
It can be said that the average crystal grain size of the surface portion of the aluminum alloy plate is a precondition for securing the gloss of the surface of the drawn and ironed can.
The larger the average crystal grain size of the surface of the plate, the larger the average crystal grain size after ironing during can making, and it becomes easier for streaks to appear perpendicular to the can axis direction. The scattered light intensity ratio at the surface portion increases, and the glossiness decreases.
Accordingly, the average crystal grain size of the surface portion of the aluminum alloy plate is set to the smallest possible average crystal grain size of 50 μm or less (excluding 0 μm). From the production limit, the lower limit of the average crystal grain size of the plate surface portion is about 5 μm.

(傾角5〜15°の小傾角粒界の平均割合)
アルミニウム合金板の板表面部の傾角5〜15°の小傾角粒界の平均割合が高いほど、微小な結晶方位差が大きくなって、絞りしごき缶の表面部分の散乱光強度率が高くなり、光沢性が低下する。
したがって、本発明では、アルミニウム合金板の板表面部の傾角5〜15°の小傾角粒界をできるだけ少なくして、この小傾角粒界の平均割合を、上限を35%以下(但し、0%を含まず)とした、できるだけ小さい値とする。なお、製造の限界から、5〜15°の小傾角粒界の平均割合の下限は10%程度である。
(Average ratio of small-angle grain boundaries with an inclination of 5 to 15 °)
The higher the average ratio of the low-angle grain boundaries with an inclination of 5 to 15 ° of the plate surface portion of the aluminum alloy plate, the smaller the difference in crystal orientation, and the higher the scattered light intensity ratio of the surface portion of the squeezed iron can, Glossiness decreases.
Therefore, in the present invention, the number of small-angle boundaries with an inclination of 5 to 15 ° of the plate surface portion of the aluminum alloy plate is reduced as much as possible, and the upper limit of the average ratio of these small-angle boundaries is 35% or less (however, 0% The value is as small as possible. From the production limit, the lower limit of the average ratio of the low-angle grain boundaries of 5 to 15 ° is about 10%.

本発明で言う小傾角粒界とは、後述するSEM/EBSP法により測定した結晶方位の内、結晶方位の相違(傾角)が5〜15°と小さい結晶粒の間の粒界である。
また、前記小傾角粒界の平均割合とは、測定した小傾角粒界の結晶粒界の全長(測定された全小傾角粒の結晶粒界の合計の長さ)の、同じく測定した、結晶方位の相違が2〜180°の結晶粒界の全長(測定された全結晶粒の結晶粒界の合計の長さ)に対する平均割合である。
すなわち、規定する傾角5〜15°の小傾角粒界の割合(%)は、〔(5−15°の結晶粒界の全長)/(2−180°の結晶粒界の全長)〕×100として計算でき、この値の平均を35%以下とする。
The small-angle grain boundary referred to in the present invention is a grain boundary between crystal grains having a small crystal orientation difference (tilt angle) of 5 to 15 ° among crystal orientations measured by the SEM / EBSP method described later.
In addition, the average ratio of the low-angle grain boundaries is the same as the total crystal grain boundary measured (the total length of the crystal grain boundaries of all the small-angle grains measured) The difference in orientation is an average ratio to the total length of crystal grain boundaries of 2 to 180 ° (total length of crystal grain boundaries of all crystal grains measured).
That is, the ratio (%) of the specified low-angle grain boundaries with an inclination angle of 5 to 15 ° is [(total length of 5-15 ° crystal grain boundaries) / (total length of 2-180 ° crystal grain boundaries)] × 100. The average of this value is 35% or less.

したがって、本発明のアルミニウム合金板の板表面部は、大傾角粒界が主として存在する結晶粒組織となるが、この大傾角粒界とは、この結晶方位の相違(傾角)が15°を超え、180°以下の結晶粒の間の粒界である。この大傾角粒界が多いと、前記小傾角粒界とは逆に、微小な結晶方位差が小さくなり、絞りしごき缶の表面部分の散乱光強度率が低くなって抑えられ、光沢性が向上する。これによって、要求される絞りしごき缶表面の光沢性を得ることができる。   Therefore, the plate surface portion of the aluminum alloy plate of the present invention has a crystal grain structure in which large-angle grain boundaries mainly exist. The difference between the crystal orientations (tilt angle) exceeds 15 ° from this large-angle grain boundary. , A grain boundary between crystal grains of 180 ° or less. If there are many large tilt grain boundaries, contrary to the small tilt grain boundaries, the difference in crystal orientation becomes small, the scattered light intensity ratio on the surface portion of the squeezed iron can is suppressed, and gloss is improved. To do. As a result, the required gloss of the surface of the squeezed iron can can be obtained.

ここで、方位差が5°未満の結晶粒界は、光沢性への影響がごく小さいので、本発明においては考慮せず、規定しない。このため、後述する結晶粒径と小傾角粒界割合の測定でも、結晶面から±5°未満の方位のずれ(傾角)のものは同一の結晶面(方位因子)に属するものとし、隣り合う結晶粒の方位差(傾角)が5°以上の結晶粒の境界を結晶粒界と定義して測定する。   Here, the crystal grain boundary having a misorientation of less than 5 ° has a very small effect on the glossiness, and is not considered and not defined in the present invention. For this reason, even in the measurement of the crystal grain size and the small-angle grain boundary ratio, which will be described later, those whose orientation deviation (tilt angle) is less than ± 5 ° from the crystal plane belong to the same crystal plane (orientation factor) and are adjacent to each other. A crystal grain boundary having a crystal grain orientation difference (tilt angle) of 5 ° or more is defined as a grain boundary and measured.

結晶粒径と小傾角粒界割合の測定:
これら本発明で規定する平均結晶粒径や小傾角粒界の平均割合は、いずれもSEM/EBSP法によって測定する。この場合の板の組織の測定部位は、通常のこの種組織の測定部位と同じく、この板の幅方向断面とする。そして、この板の幅方向断面の任意の箇所から採取した5個の測定試験片(5箇所の測定箇所)の各測定値を平均化したものを、本発明で規定する平均結晶粒径や、小傾角粒界の平均割合とする。
Measurement of grain size and small-angle grain boundary ratio:
The average crystal grain size and the average ratio of the low-angle grain boundaries defined in the present invention are all measured by the SEM / EBSP method. The measurement site | part of the structure | tissue of the board in this case is taken as the cross section of this board in the width direction similarly to the measurement part of this normal structure | tissue. And what averaged each measured value of five measurement specimens (5 measurement locations) taken from any location of the cross section in the width direction of this plate, the average crystal grain size defined in the present invention, The average ratio of the low-angle grain boundaries.

前記SEM/EBSP法は、集合組織の測定方法として汎用され、電界放出型走査電子顕微鏡(Field Emission Scanning Electron Microscope:FESEM)に、後方散乱電子回折像[EBSP: Electron Back Scattering (Scattered) Pattern] システムを搭載した結晶方位解析法である。この測定方法は、他の集合組織の測定方法に比して、高分解能ゆえに高測定精度である。そして、この方法によって、板の同じ測定部位の平均結晶粒径と結晶粒界の平均割合を同時に高精度に測定できる利点がある。アルミニウム合金板の結晶粒界の平均割合や平均結晶粒径の測定を、このSEM/EBSP法により行うことは、従来から、例えば特開2014−62287号などの公報で開示される通り公知であり、本発明でもこの公知の方法で行う。   The SEM / EBSP method is widely used as a texture measurement method, and is applied to a field emission scanning electron microscope (FESEM) in a backscattered electron diffraction image (EBSP: Electron Back Scattering (Scattered) Pattern) system. Is a crystal orientation analysis method. This measurement method has high measurement accuracy because of its high resolution as compared with other texture measurement methods. This method has an advantage that the average crystal grain size and the average ratio of crystal grain boundaries at the same measurement site of the plate can be simultaneously measured with high accuracy. The measurement of the average ratio of crystal grain boundaries and the average crystal grain size of an aluminum alloy plate by this SEM / EBSP method has been conventionally known as disclosed in, for example, Japanese Patent Application Laid-Open No. 2014-62287. In the present invention, this known method is used.

これら開示されたSEM/EBSP法は、前記FESEM(FE−SEM)の鏡筒内にセットしたAl合金板の試料に、電子線を照射してスクリーン上にEBSPを投影する。これを高感度カメラで撮影して、コンピュータに画像として取り込む。コンピュータでは、この画像を解析して、既知の結晶系を用いたシミュレーションによるパターンとの比較によって、結晶の方位が決定される。算出された結晶の各方位は3次元オイラー角として、位置座標(x、y)などとともに記録される。このプロセスが全測定点に対して自動的に行なわれるので、測定終了時には数万〜数十万点の結晶方位データが得られる。   In these disclosed SEM / EBSP methods, an EBSP is projected onto a screen by irradiating an electron beam onto a sample of an Al alloy plate set in a lens barrel of the FESEM (FE-SEM). This is taken with a high-sensitivity camera and captured as an image on a computer. In the computer, the orientation of the crystal is determined by analyzing this image and comparing it with a pattern obtained by simulation using a known crystal system. Each calculated orientation of the crystal is recorded as a three-dimensional Euler angle together with position coordinates (x, y) and the like. Since this process is automatically performed for all measurement points, tens of thousands to hundreds of thousands of crystal orientation data can be obtained at the end of measurement.

このように、SEM/EBSP法には、透過電子顕微鏡を用いた電子線回折法よりも、観察視野が広く、数百個以上の多数の結晶粒に対する、平均結晶粒径、平均結晶粒径の標準偏差、あるいは方位解析の情報を、数時間以内で得られる利点がある。また、結晶粒毎の測定ではなく、指定した領域を任意の一定間隔で走査して測定するために、測定領域全体を網羅した上記多数の測定ポイントに関する、上記各情報を得ることができる利点もある。これらFESEMにEBSPシステムを搭載した結晶方位解析法の詳細は、神戸製鋼技報/Vol.52 No.2(Sep.2002)P66-70などに詳細に記載されている。   Thus, the SEM / EBSP method has a wider field of view than the electron diffraction method using a transmission electron microscope, and has an average crystal grain size and an average crystal grain size of hundreds of crystal grains. There is an advantage that information on standard deviation or orientation analysis can be obtained within a few hours. In addition, since the measurement is performed by scanning a specified region at an arbitrary fixed interval instead of measurement for each crystal grain, there is also an advantage that each of the above-described information on the numerous measurement points covering the entire measurement region can be obtained. is there. Details of the crystal orientation analysis method in which the EBSP system is mounted on these FESEMs are described in detail in Kobe Steel Engineering Reports / Vol.52 No.2 (Sep.2002) P66-70 and the like.

ここで、平均結晶粒径は、平均結晶粒径=(Σx)/n(ここで、nは測定した結晶粒の数、xはそれぞれの結晶粒径を示す)の式により算出する。   Here, the average crystal grain size is calculated by the formula: average crystal grain size = (Σx) / n (where n is the number of measured crystal grains and x is the crystal grain size).

(光沢性の評価方法)
ここで、光沢性評価の客観性や再現性のためには、見た目である光沢性を機械的に測定して数値化することが重要であり、市販の光沢計による反射率など各種方法を検討した。その結果、見た目の光沢性と一致する方法で、かつ簡易に評価できる方法として見出したのが、コピー機による散乱光を評価する方法である。
(Glossiness evaluation method)
Here, for the objectivity and reproducibility of glossiness evaluation, it is important to measure the appearance glossiness mechanically and digitize it, and consider various methods such as reflectance using a commercially available glossometer. did. As a result, a method for evaluating scattered light by a copying machine has been found as a method that can be easily evaluated by a method that matches the apparent glossiness.

このコピー機による散乱光を評価する方法は、絞りしごき缶を平坦な板状に展開した試験片を、素材板の圧延痕がコピー機のスキャン方向に平行になる様に、コピー機上に配置し、コピーした画像をデジタル化し、そのデジタル化した画像を画像処理して、散乱光を評価するものである。これによると測定したい部位、面積を任意で選択できることから、正確かつ容易に測定が可能となる。
この散乱光は、白紙の散乱光強度率が1、アルミ蒸着板の反射率が0.9であることから、アルミ蒸着板の散乱光強度率を0.1(=白紙の散乱光強度率−アルミ蒸着板の反射率)とし、この白紙とアルミ蒸着板の2種の標準試料をコピー機によりスキャンし、画像の濃淡、すなわち白紙の画像(散乱光強度率:1)とアルミ蒸着板の画像(散乱光強度率:0.1)の濃淡の差異は散乱光強度率の差に基づくものとして、且つ、通常この両者の中間の散乱光強度率を有する試験片では、画像の濃淡の変化は散乱光強度率と比例の関係にあるとして、当該試験片の画像から求めた値を散乱光強度率とした。
The method for evaluating the scattered light by this copying machine is to place a test piece in which a squeezed iron can is developed into a flat plate shape on the copying machine so that the rolling trace of the material plate is parallel to the scanning direction of the copying machine. Then, the copied image is digitized, the digitized image is processed, and the scattered light is evaluated. According to this, since the part and area to be measured can be arbitrarily selected, the measurement can be performed accurately and easily.
Since this scattered light has a scattered light intensity factor of 1 and an aluminum vapor deposition plate has a reflectance of 0.9, the scattered light intensity factor of the aluminum vapor deposition plate is 0.1 (= the scattered light intensity factor of the blank paper−the aluminum vapor deposition plate Reflectance), two types of standard samples, white paper and aluminum vapor-deposited plate, were scanned by a copier, and the image density, that is, white paper image (scattered light intensity ratio: 1) and aluminum vapor-deposited plate image (scattered light intensity) The difference in density of 0.1) is based on the difference in the scattered light intensity ratio, and in the specimen having the scattered light intensity ratio that is usually between the two, the change in the density of the image is the scattered light intensity ratio. The value obtained from the image of the test piece was regarded as the scattered light intensity ratio.

そして、本発明では、素材板の絞りしごき缶の光沢性として、目視による優れた光沢性の経験値と関係づけて、絞りしごき缶の0°位置部分の表面部分の散乱光強度率が0.4未満ものものを、光沢性が優れていると評価する。   In the present invention, as the glossiness of the squeezed iron can of the material plate, the scattered light intensity ratio of the surface portion of the 0 ° position portion of the squeezed iron can is 0 in relation to the visual experience of excellent glossiness. Those less than 4 are evaluated as having excellent gloss.

前記した絞りしごき缶の0°位置部分は、圧延痕としごき加工の方向がともに缶軸方向の直線状となって、互いに略平行で一致している表面部分である。このような、缶の0°位置部分は、他の90°、−90°の位置部分に比して、缶表面部位の中で、もっとも光沢性が高くなる。このため、絞りしごき缶の光沢性は、主として、この0°位置部分の表面部分の光沢性で評価される。
ちなみに、缶の90°、−90°の位置部分では、圧延痕の延在方向が絞りしごき加工によって、円弧状に湾曲しており、缶軸方向の直線状のしごき加工痕の延在方向とは大きく異なっており、両者が一致していない。このような缶の表面部分は、当然ながら前記缶の0°位置部分に比して、光沢性が低くなる。
The 0 ° portion of the drawn and ironed can described above is a surface portion in which the rolling marks and the ironing direction are both linear in the can axis direction and are substantially parallel to each other. Such a 0 ° position portion of the can has the highest glossiness among the can surface portions as compared with the other 90 ° and −90 ° position portions. For this reason, the glossiness of the squeezed iron can is mainly evaluated by the glossiness of the surface portion at the 0 ° position.
By the way, at the 90 ° and −90 ° positions of the can, the extending direction of the rolling trace is curved in an arc shape by drawing and ironing, and the extending direction of the linear ironing trace in the can axis direction Are very different and they do not match. Naturally, the surface portion of such a can is less glossy than the 0 ° position portion of the can.

(製造方法)
次に、本発明における素材缶胴用アルミニウム合金板の製造方法を説明する。本発明のアルミニウム合金板は、前記組成のアルミニウム合金を溶解、鋳造して鋳塊とする鋳造工程と、鋳塊を熱処理により均質化する均熱処理工程と、均質化した鋳塊を熱間圧延して熱間圧延板とする熱間圧延工程と、熱間圧延板を焼鈍することなく冷間圧延する冷間圧延工程からなる常法によって製造される。但し、幾つかの工程を、常法とは異なる条件で行い、冷延後のアルミニウム合金板の表面部の、平均結晶粒径が50μm以下であるとともに、傾角5〜15°の小傾角粒界の平均割合が35%以下(但し、0%を含まず)とする。
(Production method)
Next, the manufacturing method of the aluminum alloy plate for raw material can bodies in this invention is demonstrated. The aluminum alloy sheet of the present invention includes a casting process in which an aluminum alloy having the above composition is melted and cast into an ingot, a soaking process in which the ingot is homogenized by heat treatment, and the homogenized ingot is hot-rolled. It is manufactured by a conventional method comprising a hot rolling step for forming a hot rolled plate and a cold rolling step for cold rolling without annealing the hot rolled plate. However, some steps are performed under conditions different from the usual method, and the average grain size of the surface portion of the aluminum alloy sheet after cold rolling is 50 μm or less, and a small-angle grain boundary having an inclination angle of 5 to 15 °. The average ratio is 35% or less (excluding 0%).

(溶解、鋳造)
先ず、アルミニウム合金を溶解し、DC鋳造法等の公知の半連続鋳造法により鋳造し、アルミニウム合金の固相線温度未満まで冷却して鋳塊とする。
(Melting, casting)
First, an aluminum alloy is melted, cast by a known semi-continuous casting method such as a DC casting method, and cooled to below the solidus temperature of the aluminum alloy to form an ingot.

(均熱処理)
鋳塊の均熱処理(均質化熱処理)は、540℃以下の、鋳塊を均質化できる温度範囲で、1時間以上、均質化に必要な時間保持する条件で行う。540℃よりも高い温度で保持すると、結晶粒の粗大化が促進する可能性がある。
(Soaking)
The soaking heat treatment (homogenization heat treatment) of the ingot is performed under a temperature range of 540 ° C. or lower where the ingot can be homogenized for 1 hour or longer and for the time required for homogenization. When held at a temperature higher than 540 ° C., coarsening of crystal grains may be promoted.

(熱間圧延)
次いで、均質化された鋳塊に熱間圧延を行うが、まず鋳塊を粗圧延して、さらに仕上げ圧延により、所定の板厚のアルミニウム合金熱間圧延板とする。
熱間粗圧延は10分以内で行うことが好ましく、このため、全てのパスの定常速度を最低でも25m/分以上とする。これらのパスのうち、1パスでも、25m/分未満の速度となると、圧延時間が長くなって平均結晶粒径が大きくなる可能性がある。
この熱間粗圧延に続いて、終了温度を330℃以上とする熱間仕上圧延を行う。熱間仕上圧延の終了温度が330℃未満では、熱延板の再結晶が不完全になる可能性が高い。その結果、冷間圧延後の平均結晶粒径と小傾角粒界の平均割合が共に高くなる。
(Hot rolling)
Next, hot rolling is performed on the homogenized ingot. First, the ingot is roughly rolled, and then the aluminum alloy hot rolled plate having a predetermined thickness is obtained by finish rolling.
The hot rough rolling is preferably performed within 10 minutes. For this reason, the steady speed of all passes is at least 25 m / min. Among these passes, even at one pass, if the speed is less than 25 m / min, the rolling time may be increased and the average crystal grain size may be increased.
Following this hot rough rolling, hot finish rolling is performed at an end temperature of 330 ° C. or higher. When the finish temperature of hot finish rolling is less than 330 ° C., there is a high possibility that recrystallization of the hot-rolled sheet will be incomplete. As a result, both the average crystal grain size after cold rolling and the average ratio of low-angle grain boundaries become high.

(冷間圧延)
熱間圧延板は、必要により、300〜580℃で中間焼鈍を行いながら冷間圧延して、所定の板厚のアルミニウム合金板に仕上げる。冷間圧延の総加工率は70〜90%とする。この総加工率が低すぎると、平均結晶粒径が大きくなる可能性があり、一方で、高すぎると小傾角粒界の平均割合が高くなる可能性がある。冷間圧延の総加工率の下限は、好ましくは80%以上とする。
(Cold rolling)
If necessary, the hot-rolled sheet is cold-rolled while performing intermediate annealing at 300 to 580 ° C. to finish an aluminum alloy sheet having a predetermined thickness. The total processing rate of cold rolling is 70 to 90%. If this total processing rate is too low, the average crystal grain size may increase, while if it is too high, the average ratio of low-angle grain boundaries may increase. The lower limit of the total processing rate of cold rolling is preferably 80% or more.

冷延板は、そのまま樹脂を被覆して、絞りしごき缶素材として使用しても良いが、必要に応じて調質(熱処理)を行っても良い。但し、熱処理温度が高すぎると、再結晶がおこり、これが冷延板の平均結晶粒径を粗大化させるので、注意を要する。この点、例えば、300℃以下の熱処理(低温での焼鈍や人工時効硬化処理)などは施しても良いが、400℃を超える熱処理などは、冷延板の平均結晶粒径を粗大化させるために不可である。   The cold-rolled plate may be directly coated with a resin and used as a squeezed iron material, but may be tempered (heat treated) as necessary. However, if the heat treatment temperature is too high, recrystallization occurs, which causes coarsening of the average crystal grain size of the cold-rolled sheet, so care must be taken. In this respect, for example, heat treatment at 300 ° C. or lower (annealing at low temperature or artificial age hardening treatment) may be applied, but heat treatment exceeding 400 ° C. is to coarsen the average crystal grain size of the cold rolled sheet. It is impossible.

(絞りしごき缶の作製方法)
本発明素材アルミニウム合金板(冷延板)から、絞りしごき缶(DI缶)の缶胴を作製する製缶方法の一例を以下に説明する。先ず、本発明に係るアルミニウム合金板に、耐食性皮膜を形成するため、例えばリン酸クロメート処理を施す。そして、アルミニウム合金板の保護層として、ポリエステル樹脂やポリプロピレン樹脂等の熱可塑性樹脂からなるフィルムを両面にラミネートして、缶胴用樹脂被覆アルミニウム合金板とする。このような保護層を被覆することで、アルミニウム合金板の表面がしごきダイス等の工具に接触しないため、DI成形時の焼付きや焼付き起因のティアオフの発生を防止できて、成形歩留を向上させることができる。
(Method for making squeezed iron can)
An example of a can-making method for producing a can body of a drawn and ironed can (DI can) from the aluminum alloy plate (cold rolled plate) of the present invention will be described below. First, in order to form a corrosion-resistant film on the aluminum alloy plate according to the present invention, for example, phosphoric acid chromate treatment is performed. And as a protective layer of an aluminum alloy plate, the film which consists of thermoplastic resins, such as a polyester resin and a polypropylene resin, is laminated on both surfaces, and it is set as the resin coating aluminum alloy plate for can bodies. By covering such a protective layer, the surface of the aluminum alloy plate does not come into contact with tools such as ironing dies, so it is possible to prevent seizure during DI molding and the occurrence of tear-off due to seizure, thereby reducing the molding yield. Can be improved.

この缶胴用樹脂被覆アルミニウム合金板を円板形状に打ち抜いて(ブランキング加工)、浅いカップ形状に絞り加工(カッピング加工)を施す。そして、これらの絞り加工、更にはしごき加工を複数回繰り返して徐々に側壁を高くして、所定の底面形状および側壁高さの有底筒形状とする。この際、これらの絞り加工さらにしごき加工による缶胴の側壁の板厚減少率(絞りしごき加工率)は、40%以上とすることが好ましく、更に好ましくは60%以上である。そして、側壁(開口部)の縁を切り落として整えるトリミング加工を行う。この状態で、最薄部の側壁厚さが0.085〜0.110mmの範囲の薄肉の缶胴に成形される。   The resin-coated aluminum alloy plate for the can body is punched into a disk shape (blanking process), and is subjected to a drawing process (cupping process) into a shallow cup shape. Then, these drawing processes and further ironing processes are repeated a plurality of times to gradually increase the side wall, thereby obtaining a bottomed cylindrical shape having a predetermined bottom surface shape and side wall height. At this time, the plate thickness reduction rate (drawing and ironing rate) of the side wall of the can body by the drawing and ironing is preferably 40% or more, and more preferably 60% or more. Then, trimming is performed to cut off and trim the edge of the side wall (opening). In this state, the thinnest can body is formed such that the thinnest side wall has a thickness of 0.085 to 0.110 mm.

次いで、缶胴は脱脂洗浄され、外面、内面にそれぞれ塗装、塗膜の焼付け(ベーキング)を施され、高強度化される。塗膜焼付け後の缶胴は、開口部を縮径し(ネッキング加工)、開口部の縁を外側に拡げて(フランジング加工)、最終の缶胴となる。飲料、食品用途に使用する際には、開口部から内容物(飲料、食品)が缶胴に充填され、別工程で作製された缶蓋を開口部に巻き締めて封止される。   Next, the can body is degreased and cleaned, and the outer surface and the inner surface are respectively painted and baked (baked) to increase the strength. The can body after the coating film is baked has a diameter of the opening (necking process), and an edge of the opening is expanded outward (flanging process) to become a final can body. When used for beverages and foods, the contents (beverages and food) are filled into the can body from the opening, and a can lid produced in a separate process is wound around the opening and sealed.

以上、本発明を実施するための形態について述べたが、以下に、本発明の効果を確認した実施例を、本発明の要件を満たさない比較例と対比して具体的に説明する。なお、本発明はこの実施例に限定されるものではない。   As mentioned above, although the form for implementing this invention was described, the Example which confirmed the effect of this invention is demonstrated concretely compared with the comparative example which does not satisfy | fill the requirements of this invention below. In addition, this invention is not limited to this Example.

(供試材アルミニウム合金板)
表1に示す化学成分組成の各アルミニウム合金を、溶解、DC鋳造し、厚さ600mmの鋳塊を作製した。なお、表1に示す化学成分組成において、元素の含有量が空欄の場合は、検出限界以下(実質的に0%)であることを示す。
この鋳塊に、表1に示す各均熱温度にて、共通して5時間、均熱処理を施した後に、熱間圧延を行った。熱間圧延は、前記各均熱温度で熱間粗圧延を開始するとともに、各パスの最低定常速度を表1に示すように各例で変えて終了させ、次いで、直ちに、終了温度を表1に示すように各例で変えて熱間仕上圧延を行い、板厚を0.95〜6.3mmtとした。
(Sample aluminum alloy plate)
Each aluminum alloy having the chemical composition shown in Table 1 was melted and DC casted to produce an ingot having a thickness of 600 mm. In the chemical composition shown in Table 1, when the element content is blank, it indicates that it is below the detection limit (substantially 0%).
The ingot was subjected to soaking treatment at each soaking temperature shown in Table 1 for 5 hours in common, and then hot rolled. The hot rolling starts the hot rough rolling at each soaking temperature and is finished by changing the minimum steady speed of each pass in each example as shown in Table 1, and then immediately finishes the end temperature in Table 1. As shown in Fig. 5, hot finish rolling was performed in each example, and the plate thickness was set to 0.95 to 6.3 mmt.

この熱間圧延板を、総加工率を表1に示すように各例で変え、中間焼鈍を施すことなく、0.315mmtまで冷間圧延を行った。そして、これら冷延板を調質(熱処理)することなく、以下に示す組織や特性を測定した。これらの結果も表1に示す。   The hot-rolled sheet was subjected to cold rolling to 0.315 mmt without changing the total processing rate in each example as shown in Table 1 and performing intermediate annealing. And the structure | tissue and characteristic shown below were measured, without tempering (heat processing) these cold-rolled sheets. These results are also shown in Table 1.

(結晶粒径と小傾角粒界割合の測定)
前記冷延板から、表面部を含む供試材10個を任意に切り出して樹脂埋めし、板の最表面から5μm内側の板表面が観察面となるように、機械研磨と電解研磨を行い、鏡面とした。そして、供試材の最表面から30μmの深さの表面部の、平均結晶粒径(μm)、傾角5〜15°の小傾角粒界の平均割合(%)を、前記FESEMを用いて測定し、供試材10個により平均化した。EBSP測定・解析システムは、EBSP:TSL社製(OIM)を用いた。
(Measurement of crystal grain size and small-angle grain boundary ratio)
From the cold-rolled plate, 10 specimens including the surface portion are arbitrarily cut out and filled with resin, and mechanical polishing and electrolytic polishing are performed so that the plate surface inside 5 μm from the outermost surface of the plate becomes an observation surface, The mirror surface. Then, using the FESEM, the average crystal grain size (μm) and the average proportion (%) of the small tilt grain boundaries with the tilt angle of 5 to 15 ° in the surface portion 30 μm deep from the outermost surface of the test material are measured. And averaged with 10 specimens. As the EBSP measurement / analysis system, EBSP: manufactured by TSL (OIM) was used.

(絞りしごき缶の作製)
前記冷延板に、リン酸クロメート処理を施し、板両面に厚さ20μmのポリエチレンテレフタレート樹脂フィルムをラミネートした。このフィルムラミネートを施されたアルミニウム合金板を、カッピング、DI成形し、表2に示す、各製缶加工率とした。そして、開口部をトリミングして、外径約66mm、フィルムを含まない側壁厚さは0.15〜0.1mmtの有底筒形状の缶胴とした。さらに、塗装時の焼付けを想定した270℃×30秒間の熱処理をおこなった。
(Preparation of squeezed iron can)
The cold-rolled plate was subjected to phosphoric acid chromate treatment, and a polyethylene terephthalate resin film having a thickness of 20 μm was laminated on both sides of the plate. The aluminum alloy plate to which this film laminate was applied was cupped and DI-molded to obtain each can manufacturing rate shown in Table 2. The opening was trimmed to obtain a bottomed cylindrical can body having an outer diameter of about 66 mm and a side wall thickness not including a film of 0.15 to 0.1 mm. Furthermore, heat treatment was performed at 270 ° C. for 30 seconds assuming baking during painting.

(光沢性=散乱光強度率)
この缶胴の散乱光強度率は、前記缶胴の0°位置部分の、圧延痕としごき加工の方向が一致する表面部分を、前記した要領にて、市販のコピー機(FUJIXEROX社製:型式Apeos Port IVC4475)で測定した。
(Glossiness = Scattered light intensity ratio)
The scattered light intensity ratio of this can body was determined by using a commercially available copying machine (manufactured by FUJIXEROX: model number) on the surface portion of the can body at the 0 ° position where the rolling mark and the ironing direction coincided with each other. Apeos Port IVC4475).

表1に示すように、各発明例は、アルミニウム合金の組成が本発明範囲内であり、好ましい製造条件で、素材冷延板や絞りしごき缶が製造されている。このため、各発明例は、表1の通り、素材冷延板が本発明で規定した通り、この板の表面部の、平均結晶粒径が50μm以下であるとともに、傾角5〜15°の小傾角粒界の平均割合が35%以下(但し、0%を含まず)である。   As shown in Table 1, in each invention example, the composition of the aluminum alloy is within the range of the present invention, and the material cold-rolled plate and the squeezed iron can are manufactured under preferable manufacturing conditions. For this reason, as shown in Table 1, each example of the invention has an average crystal grain size of 50 μm or less and a small inclination angle of 5 to 15 ° on the surface portion of the cold-rolled sheet as defined in the present invention. The average proportion of the tilted grain boundaries is 35% or less (excluding 0%).

この結果、各発明例は、素材アルミニウム合金冷延板を絞りしごき加工した、絞りしごき缶の前記0°位置部分の表面の散乱光強度率が0.4%未満であり、実際の目視による光沢性評価でも、優れた光沢性が得られた。   As a result, in each of the invention examples, the scattered light intensity ratio of the surface of the squeezed iron can obtained by squeezing and squeezing the raw aluminum alloy cold-rolled sheet is less than 0.4%, and the actual visual gloss In the evaluation of properties, excellent gloss was obtained.

一方、比較例1〜4は、表1に示すように、好ましい製造条件で、素材冷延板や絞りしごき缶が製造されているものの、アルミニウム合金の組成が本発明範囲から外れている。
比較例1はMgの含有量が、比較例2はFeの含有量が、比較例3はMnの含有量が、比較例4はCuとZrの含有量が、各々の上限値を超えて高すぎる。
このため、これら比較例は、表1の通り、素材冷延板の表面部の、平均結晶粒径が50μmを超えて大きくなるか、傾角5〜15°の小傾角粒界の平均割合が35%を超えて大きくなっている。
この結果、これら比較例は、素材冷延板の絞りしごき缶の前記0°位置部分の表面の散乱光強度率が0.4%を超えており、実際の目視による光沢性評価でも、発明例に比して著しく光沢性が劣る。
On the other hand, as shown in Table 1, in Comparative Examples 1 to 4, although the material cold-rolled plate and the drawn iron can are manufactured under preferable manufacturing conditions, the composition of the aluminum alloy is out of the scope of the present invention.
Comparative Example 1 has an Mg content, Comparative Example 2 has an Fe content, Comparative Example 3 has an Mn content, and Comparative Example 4 has a Cu and Zr content exceeding the respective upper limit values. Too much.
For this reason, in these comparative examples, as shown in Table 1, the average crystal grain size of the surface portion of the cold-rolled sheet is larger than 50 μm, or the average ratio of the low-angle grain boundaries with an inclination angle of 5 to 15 ° is 35. It is larger than%.
As a result, in these comparative examples, the scattered light intensity ratio of the surface of the squeezed and ironed can of the cold-rolled sheet of the material exceeds 0.4%. The gloss is remarkably inferior to that of.

比較例5〜9は、アルミニウム合金の組成が本発明範囲内であるものの、表1に示す板の製造条件が好ましい範囲から外れて製造されている。
比較例5は鋳塊の均熱処理温度が、好ましい上限温度540℃を超えている。
比較例6は熱間粗圧延のパスの最低の定常速度が、好ましい下限の25m/分未満である。
比較例7は熱間仕上げ圧延の終了温度が、好ましい下限の330℃未満である。
比較例8は冷延率が、好ましい下限の70%未満である。
比較例9は冷延率が、好ましい上限の90%を超えている。
In Comparative Examples 5 to 9, although the composition of the aluminum alloy is within the range of the present invention, the production conditions of the plate shown in Table 1 are manufactured outside the preferable range.
In Comparative Example 5, the soaking temperature of the ingot exceeds the preferable upper limit temperature of 540 ° C.
In Comparative Example 6, the minimum steady speed of the hot rough rolling pass is less than the preferred lower limit of 25 m / min.
In Comparative Example 7, the finish temperature of hot finish rolling is less than the preferred lower limit of 330 ° C.
In Comparative Example 8, the cold rolling rate is less than 70% of the preferable lower limit.
In Comparative Example 9, the cold rolling rate exceeds 90% of the preferable upper limit.

このため、これら比較例は、表1の通り、素材冷延板の表面部の、平均結晶粒径が50μmを超えて大きくなるか、傾角5〜15°の小傾角粒界の平均割合が35%を超えて大きくなっている。
この結果、これら比較例は、素材冷延板の絞りしごき缶の前記0°位置部分の表面の散乱光強度率が0.4%を超えており、実際の目視による光沢性評価でも、発明例に比して著しく光沢性が劣る。
For this reason, in these comparative examples, as shown in Table 1, the average crystal grain size of the surface portion of the cold-rolled sheet is larger than 50 μm, or the average ratio of the low-angle grain boundaries with an inclination angle of 5 to 15 ° is 35. It is larger than%.
As a result, in these comparative examples, the scattered light intensity ratio of the surface of the squeezed and ironed can of the cold-rolled sheet of the material exceeds 0.4%. The gloss is remarkably inferior to that of.

これらの実施例の結果から、本発明の要件の、絞りしごき缶の表面の光沢性を向上させることの技術的な意義が裏付けられる。   The results of these examples support the technical significance of improving the gloss of the surface of the squeezed iron can, which is a requirement of the present invention.

以上、本発明は、樹脂が予め被覆された上で絞りしごき缶に製缶されるアルミニウム合金板であって、絞りしごき缶表面の光沢性を向上させることができる缶胴用アルミニウム合金板を提供することができる。このため、缶壁厚さが薄肉化、高強度化され、より厳しい製缶条件での光沢性が要求されるDI缶胴に用いられるアルミニウム合金冷延板に最適である。   As described above, the present invention provides an aluminum alloy plate for a can body that can be made into a squeezed and ironed can after being pre-coated with a resin and can improve the gloss of the surface of the squeezed and ironed can. can do. For this reason, the thickness of the can wall is reduced, the strength is increased, and it is most suitable for an aluminum alloy cold-rolled sheet used for a DI can body that requires gloss under more severe can-making conditions.

Claims (4)

質量%で、Mg:0.1〜6.0%、Fe:0.01〜0.5%、Mn:0.01〜0.75%を各々含有し、残部がAl及び不可避的不純物からなり、樹脂が予め被覆された上で絞りしごき缶に製缶されるアルミニウム合金板であって、この板の表面部の、平均結晶粒径が50μm以下であるとともに、傾角5〜15°の小傾角粒界の平均割合が35%以下(但し、0%を含まず)であることを特徴とする、製缶後の光沢性に優れた絞りしごき缶用アルミニウム合金板。   In mass%, Mg: 0.1-6.0%, Fe: 0.01-0.5%, Mn: 0.01-0.75%, respectively, with the balance being Al and inevitable impurities An aluminum alloy plate that is pre-coated with resin and can be made into a squeezed iron can, the average crystal grain size of the surface portion of which is 50 μm or less, and a small tilt angle of 5 to 15 ° An aluminum alloy plate for squeezed and ironed cans having excellent gloss after canning, wherein the average proportion of grain boundaries is 35% or less (excluding 0%). 前記アルミニウム合金板が、更に、Si:2.0%以下(但し、0%を含まず)、Cu:1.0%以下(但し、0%を含まず)、Cr:0.3%以下(但し、0%を含まず)、Zr:0.2%以下(但し、0%を含まず)、V:0.2%以下(但し、0%を含まず)、Ti:0.1%以下(但し、0%を含まず)、Zn:0.5%以下(但し、0%を含まず)、Ag:0.2%以下(但し、0%を含まず)、の1種または2種以上を含む請求項1に記載の絞りしごき缶用アルミニウム合金板。   The aluminum alloy plate further comprises Si: 2.0% or less (excluding 0%), Cu: 1.0% or less (excluding 0%), Cr: 0.3% or less ( However, 0% is not included), Zr: 0.2% or less (however, 0% is not included), V: 0.2% or less (however, 0% is not included), Ti: 0.1% or less (However, 0% is not included), Zn: 0.5% or less (however, 0% is not included), Ag: 0.2% or less (however, 0% is not included) The aluminum alloy plate for a drawn and ironed can according to claim 1 including the above. 前記Mnの含有量の上限が0.5%である、請求項1または2に記載の絞りしごき缶用アルミニウム合金板。   The aluminum alloy plate for a drawn iron can according to claim 1 or 2, wherein the upper limit of the Mn content is 0.5%. 請求項1乃至3のいずれかのアルミニウム合金板に、熱可塑性樹脂フィルムが前記製缶前に予め被覆されている絞りしごき缶用樹脂被覆アルミニウム合金板。   A resin-coated aluminum alloy plate for a drawn iron can, wherein the aluminum alloy plate according to any one of claims 1 to 3 is coated with a thermoplastic resin film in advance before making the can.
JP2015060144A 2015-03-23 2015-03-23 Aluminum alloy sheet for drawn ironed can excellent in glossiness after making can and resin coated aluminum alloy sheet for drawn ironed can Ceased JP2016180141A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015060144A JP2016180141A (en) 2015-03-23 2015-03-23 Aluminum alloy sheet for drawn ironed can excellent in glossiness after making can and resin coated aluminum alloy sheet for drawn ironed can

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015060144A JP2016180141A (en) 2015-03-23 2015-03-23 Aluminum alloy sheet for drawn ironed can excellent in glossiness after making can and resin coated aluminum alloy sheet for drawn ironed can

Publications (1)

Publication Number Publication Date
JP2016180141A true JP2016180141A (en) 2016-10-13

Family

ID=57132040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015060144A Ceased JP2016180141A (en) 2015-03-23 2015-03-23 Aluminum alloy sheet for drawn ironed can excellent in glossiness after making can and resin coated aluminum alloy sheet for drawn ironed can

Country Status (1)

Country Link
JP (1) JP2016180141A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016191137A (en) * 2015-03-31 2016-11-10 株式会社神戸製鋼所 Aluminum alloy sheet for resin coated can body
JP2018199866A (en) * 2018-08-24 2018-12-20 株式会社神戸製鋼所 Aluminum alloy sheet for resin coated can body
CN113508185A (en) * 2019-12-27 2021-10-15 俄罗斯工程技术中心有限责任公司 Aluminium base alloy
JP7432352B2 (en) 2019-12-19 2024-02-16 Maアルミニウム株式会社 Aluminum alloy plate for cap material and its manufacturing method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09279321A (en) * 1996-04-10 1997-10-28 Toyo Kohan Co Ltd Production of resin-coated aluminum alloy sheet for can formed by deep drawing and ironing
JPH10310837A (en) * 1997-05-12 1998-11-24 Furukawa Electric Co Ltd:The Production of aluminum alloy sheet for can body, reduced in earing rate
JPH11256290A (en) * 1998-03-06 1999-09-21 Sky Alum Co Ltd Manufacture of aluminum alloy sheet for can body
JP2009173972A (en) * 2008-01-22 2009-08-06 Kobe Steel Ltd Aluminum alloy sheet having excellent ridging mark property upon forming
JP2012092431A (en) * 2010-09-30 2012-05-17 Kobe Steel Ltd Aluminum alloy cold-rolled sheet for bottle can
JP2012188703A (en) * 2011-03-10 2012-10-04 Kobe Steel Ltd Aluminum-alloy sheet for resin coated can body, and method for producing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09279321A (en) * 1996-04-10 1997-10-28 Toyo Kohan Co Ltd Production of resin-coated aluminum alloy sheet for can formed by deep drawing and ironing
JPH10310837A (en) * 1997-05-12 1998-11-24 Furukawa Electric Co Ltd:The Production of aluminum alloy sheet for can body, reduced in earing rate
JPH11256290A (en) * 1998-03-06 1999-09-21 Sky Alum Co Ltd Manufacture of aluminum alloy sheet for can body
JP2009173972A (en) * 2008-01-22 2009-08-06 Kobe Steel Ltd Aluminum alloy sheet having excellent ridging mark property upon forming
JP2012092431A (en) * 2010-09-30 2012-05-17 Kobe Steel Ltd Aluminum alloy cold-rolled sheet for bottle can
JP2012188703A (en) * 2011-03-10 2012-10-04 Kobe Steel Ltd Aluminum-alloy sheet for resin coated can body, and method for producing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016191137A (en) * 2015-03-31 2016-11-10 株式会社神戸製鋼所 Aluminum alloy sheet for resin coated can body
JP2018199866A (en) * 2018-08-24 2018-12-20 株式会社神戸製鋼所 Aluminum alloy sheet for resin coated can body
JP7432352B2 (en) 2019-12-19 2024-02-16 Maアルミニウム株式会社 Aluminum alloy plate for cap material and its manufacturing method
CN113508185A (en) * 2019-12-27 2021-10-15 俄罗斯工程技术中心有限责任公司 Aluminium base alloy

Similar Documents

Publication Publication Date Title
JP4312819B2 (en) Aluminum alloy sheet with excellent ridging marks during molding
CN100489133C (en) Aluminum alloy sheet with excellent high-temperature property for bottle can
JP2009242904A (en) Aluminum alloy sheet superior in paint baking hardenability and invulnerable to room temperature aging, and method for production thereof
JP6054658B2 (en) Aluminum alloy plate for can body and manufacturing method thereof
JP2016180141A (en) Aluminum alloy sheet for drawn ironed can excellent in glossiness after making can and resin coated aluminum alloy sheet for drawn ironed can
JP2012092431A (en) Aluminum alloy cold-rolled sheet for bottle can
US9546411B2 (en) Aluminum-alloy sheet and method for producing the same
JP6336434B2 (en) Aluminum alloy plate for can body and manufacturing method thereof
JP5568031B2 (en) Aluminum alloy cold rolled sheet for bottle cans
JP2016141886A (en) Aluminum alloy sheet for can top
JP7202257B2 (en) Aluminum alloy plate for can body
JP2016180175A (en) Resin-coated aluminum alloy sheet for drawn ironed can excellent in glossiness after making can and resin coated aluminum alloy sheet for drawn ironed can
JP2005240113A (en) Aluminum alloy sheet having excellent ridging mark property
JP4334979B2 (en) Aluminum alloy plate for wide-mouth bottle can cap
JP4019084B2 (en) Aluminum alloy cold rolled sheet for bottle cans with excellent high temperature characteristics
WO2016152790A1 (en) Aluminum alloy sheet for resin-coated drawn and wall-ironed cans having excellent post-manufacture gloss and resin-coated aluminum alloy sheet for drawn and wall-ironed cans
TWI607095B (en) Aluminum plate for can lid
JP4763976B2 (en) Aluminum alloy plate for wide-mouth bottle can cap
WO2016063876A1 (en) Aluminium alloy sheet for can lid
JP2002322530A (en) Aluminum foil for container and production method therefor
JP4246109B2 (en) Aluminum alloy plate for wide-mouth bottle can cap
JP5224717B2 (en) Aluminum alloy plate for can body
JP2017206765A (en) Aluminum alloy sheet for can top
JP2011214109A (en) Aluminum alloy sheet for packaging container top, and method for producing the same
JP2016079502A (en) Aluminum alloy sheet for can-top

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20160713

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180626

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181019

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190108

A045 Written measure of dismissal of application [lapsed due to lack of payment]

Free format text: JAPANESE INTERMEDIATE CODE: A045

Effective date: 20190528