JP2016178586A - Fm batch conversion signal quality estimation device, method and program - Google Patents

Fm batch conversion signal quality estimation device, method and program Download PDF

Info

Publication number
JP2016178586A
JP2016178586A JP2015059104A JP2015059104A JP2016178586A JP 2016178586 A JP2016178586 A JP 2016178586A JP 2015059104 A JP2015059104 A JP 2015059104A JP 2015059104 A JP2015059104 A JP 2015059104A JP 2016178586 A JP2016178586 A JP 2016178586A
Authority
JP
Japan
Prior art keywords
batch conversion
conversion signal
transmission
signal
batch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015059104A
Other languages
Japanese (ja)
Other versions
JP6297516B2 (en
Inventor
利明 下羽
Toshiaki Shimohane
利明 下羽
尚生 吉永
Hisao Yoshinaga
尚生 吉永
智規 須川
Tomonori Sugawa
智規 須川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2015059104A priority Critical patent/JP6297516B2/en
Publication of JP2016178586A publication Critical patent/JP2016178586A/en
Application granted granted Critical
Publication of JP6297516B2 publication Critical patent/JP6297516B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Communication System (AREA)

Abstract

PROBLEM TO BE SOLVED: To estimate the quality of FM batch conversion signal at a low cost, in a realistic time, even when the transmission carrier plan of FM batch conversion system is changed in an optical transmission system being provided.SOLUTION: At first, an unmodulated signal estimation unit 1 estimates the frequency dependence D(f) of the Duty ratio of an unmodulated sinusoidal signal after transmission in the use band of a FM batch conversion signal, and after a FM signal calculation unit 2 calculated the instantaneous frequency f(T) and the sign of a slope a(T) at the zero cross time Tof the FM batch conversion signal before transmission, a zero cross time shift amount estimation unit 3 estimates the shift amount dT(T) at the zero cross time Tof the FM batch conversion signal before and after transmission, based on these estimates and calculation values. Next, a frequency spectral leakage amount estimation unit 5 estimates the CNR_related to self-phase modulation and wavelength dispersion. Next, a FM demodulation signal estimation unit 7 estimates the CNR_related to all elements of an optical transmission system containing the optical amplification noise.SELECTED DRAWING: Figure 1

Description

本発明は、周波数多重された多チャンネル信号をFM一括変換方式により伝送する光伝送システムにおいて、FM一括変換信号の品質を推定する技術に関する。   The present invention relates to a technique for estimating the quality of an FM batch conversion signal in an optical transmission system that transmits frequency-multiplexed multi-channel signals using the FM batch conversion method.

光映像配信システムに用いられる伝送方式には、(1)周波数多重された多チャンネル映像信号により、光搬送波を強度変調して伝送する強度変調方式と、(2)周波数多重された多チャンネル映像信号をFM搬送波信号の周波数が3GHzである広帯域FM信号に変換し、変換して得られた広帯域FM信号により、光搬送波を強度変調して伝送するFM一括変換方式(非特許文献1を参照)と、がある。以下では、FM一括変換方式を用いる。   The transmission method used in the optical video distribution system includes (1) an intensity modulation method in which an optical carrier wave is intensity-modulated by a frequency-multiplexed multi-channel video signal, and (2) a frequency-multiplexed multi-channel video signal. Is converted into a broadband FM signal having an FM carrier signal frequency of 3 GHz, and the FM carrier signal is intensity-modulated and transmitted by the broadband FM signal obtained by the conversion (see Non-Patent Document 1). There is. Hereinafter, the FM batch conversion method is used.

ところで、光映像配信システムは、近年のFTTH網の普及に伴い、多チャンネルで大容量の映像信号を高品質に伝送することが可能なものとして、FTTH網への導入が進んでいる。そして、光映像配信システムでは、エリア拡大の観点から、伝送距離の長延化が求められている。さらに、FM一括変換方式を用いる光映像配信システムでは、光増幅装置を多段接続することにより、長距離光伝送が可能になっている。   By the way, with the spread of the FTTH network in recent years, the introduction of the optical video distribution system into the FTTH network is progressing as being capable of transmitting a high-capacity video signal with a large number of channels. In the optical video distribution system, the transmission distance is required to be extended from the viewpoint of area expansion. Furthermore, in an optical video distribution system using the FM batch conversion method, long-distance optical transmission is possible by connecting optical amplification devices in multiple stages.

特開2011−151600号公報JP 2011-151600 A

池田智、川附隆人、井筒香、下羽利明、「FM一括変換技術を用いた広域映像配信」、[online]、2007年5月、NTT技術ジャーナル、[平成27年3月6日検索]、インターネット<URL:http://www.ntt.co.jp/journal/0705/files/jn200705044.pdf#search=‘%EF%BC%A6%EF%BC%AD%E4%B8%80%E6%8B%AC%E5%A4%89%E6%8F%9B+%EF%BC%AE%EF%BC%B4%EF%BC%B4’>Satoshi Ikeda, Takato Kawatsuki, Kaori Izutsu, Toshiaki Shimoha, “Wide-area video distribution using FM batch conversion technology”, [online], May 2007, NTT Technical Journal, [March 6, 2015] ] <Internet: <URL: http: // www. ntt. co. jp / journal / 0705 / files / jn200705044. pdf # search = '% EF% BC% A6% EF% BC% AD% E4% B8% 80% E6% 8B% AC% E5% A4% 89% E6% 8F% 9B +% EF% BC% AE% EF% BC% B4% EF% BC% B4 '> 菅原鼎山、「FM無線工学」、日刊工業新聞社、pp.16−18Sugawarayama, “FM Radio Engineering”, Nikkan Kogyo Shimbun, pp. 16-18

特許文献1では、光増幅装置を多段接続し、比較的高い強度で長距離にわたって光信号を伝送する、FM一括変換方式を用いる光映像配信システムにおいて、FM復調信号の品質(具体的には、CNR)を推定する技術が開示されている。   In Patent Document 1, in an optical video distribution system using an FM batch conversion method in which optical amplifiers are connected in multiple stages and an optical signal is transmitted over a long distance with relatively high intensity, the quality of FM demodulated signals (specifically, A technique for estimating (CNR) is disclosed.

特許文献1では、まず、光雑音増幅に関わるCNRを推定する技術が開示されている。しかし、光雑音増幅に関わるCNRを推定するのみでは、自己位相変調及び波長分散の複合効果による波形崩れを考慮することができず、FM復調信号のCNRを実際に生じるCNRより良い方向に見積もってしまう。そこで、伝送前のFM一括変換信号の時間波形について、非線形シュレディンガー方程式を数値計算により解くことにより、伝送後のFM一括変換信号の時間波形を求めることが考えられる。しかし、伝送前のFM一括変換信号は、非常に複雑な周波数スペクトル(非特許文献2を参照)を有するため、その非線形シュレディンガー方程式は、極めて煩雑であり膨大な計算時間を要する。   In Patent Document 1, first, a technique for estimating a CNR related to optical noise amplification is disclosed. However, waveform estimation due to the combined effect of self-phase modulation and chromatic dispersion cannot be considered only by estimating the CNR related to optical noise amplification, and the CNR of the FM demodulated signal is estimated in a better direction than the actually generated CNR. End up. Therefore, it is conceivable to obtain the time waveform of the FM batch conversion signal after transmission by solving the nonlinear Schrodinger equation by numerical calculation for the time waveform of the FM batch conversion signal before transmission. However, since the FM batch conversion signal before transmission has a very complicated frequency spectrum (see Non-Patent Document 2), the nonlinear Schrodinger equation is extremely complicated and requires a large amount of calculation time.

特許文献1では、次に、自己位相変調及び波長分散に関わるCNRを推定する技術が開示されている。ここでは、自己位相変調及び波長分散の複合効果による波形崩れを、伝送前後の無変調FM搬送波信号のゼロクロス時刻のずれ量として、あるいは、伝送後の無変調FM搬送波信号のDuty比として、推定する。その前に、伝送後の無変調FM搬送波信号のDuty比に対する、自己位相変調及び波長分散に関わるCNRの依存性を、「予め測定」しておく。よって、推定したDuty比及び「予め測定」した依存性に基づいて、自己位相変調及び波長分散に関わるCNRを推定することができる。そして、光雑音増幅に関わるCNR並びに自己位相変調及び波長分散に関わるCNRに基づいて、光映像配信システムの全要素に関わるCNRを定量的にかつ短時間に推定することができる。   Patent Document 1 discloses a technique for estimating CNR related to self-phase modulation and chromatic dispersion. Here, the waveform collapse due to the combined effect of self-phase modulation and chromatic dispersion is estimated as the zero-cross time shift amount of the unmodulated FM carrier signal before and after transmission, or as the duty ratio of the unmodulated FM carrier signal after transmission. . Before that, the dependency of CNR related to self-phase modulation and chromatic dispersion on the duty ratio of the unmodulated FM carrier signal after transmission is “measured in advance”. Therefore, the CNR related to self-phase modulation and chromatic dispersion can be estimated based on the estimated duty ratio and the “pre-measured” dependency. Based on the CNR related to optical noise amplification and the CNR related to self-phase modulation and chromatic dispersion, the CNR related to all elements of the optical video distribution system can be estimated quantitatively in a short time.

このように、特許文献1では、伝送後の無変調FM搬送波信号のDuty比に対する、自己位相変調及び波長分散に関わるCNRの依存性を、「予め測定」しておく必要がある。ところで、提供中の光映像配信システムにおいて、FM一括変換方式の伝送キャリアプランが変更される場合がある。すると、FM一括変換信号の周波数スペクトルが変化するため、FM復調信号の周波数スペクトルに対するFM一括変換信号の周波数スペクトルの漏れ量も変化してしまい、「予め測定」した依存性も変化してしまう。よって、FM一括変換方式の伝送キャリアプランが変更されるたびに、当該依存性を「再度測定」する必要があり、人的稼働及び測定時間等の高コストが発生するという課題がある。   As described above, in Patent Document 1, it is necessary to “measure in advance” the dependency of CNR related to self-phase modulation and chromatic dispersion on the duty ratio of an unmodulated FM carrier signal after transmission. By the way, the transmission carrier plan of the FM batch conversion method may be changed in the optical video distribution system being provided. Then, since the frequency spectrum of the FM batch conversion signal changes, the leakage amount of the frequency spectrum of the FM batch conversion signal with respect to the frequency spectrum of the FM demodulated signal also changes, and the “measured in advance” dependency also changes. Therefore, every time the FM carrier conversion scheme transmission carrier plan is changed, it is necessary to “measure again” the dependency, which causes a problem of high costs such as human operation and measurement time.

そこで、前記課題を解決するために、本発明は、提供中の光伝送システムにおいて、FM一括変換方式の伝送キャリアプランが変更される場合でも、低コストでかつ現実的な時間内で、FM一括変換信号の品質を推定する技術を提供することを目的とする。   Therefore, in order to solve the above-described problems, the present invention provides an FM batch process in a low cost and within a realistic time even when a transmission carrier plan of the FM batch conversion method is changed in a provided optical transmission system. An object of the present invention is to provide a technique for estimating the quality of a converted signal.

上記目的を達成するために、FM一括変換信号の使用帯域内における伝送後の無変調正弦波信号のDuty比の周波数依存性を推定するとともに、伝送前のFM一括変換信号のゼロクロス時刻での瞬時周波数及び傾きの符号を計算したうえで、これらの推定値及び計算値に基づいて、伝送前後のFM一括変換信号のゼロクロス時刻のずれ量を推定する。   In order to achieve the above object, the frequency dependence of the duty ratio of the unmodulated sine wave signal after transmission within the use band of the FM batch conversion signal is estimated, and the instantaneous instant at the zero crossing time of the FM batch conversion signal before transmission is estimated. After calculating the frequency and the sign of the slope, the deviation amount of the zero crossing time of the FM batch conversion signal before and after transmission is estimated based on these estimated values and calculated values.

具体的には、本発明は、FM一括変換信号が光伝送システムで伝送された後における、前記FM一括変換信号の品質を推定するFM一括変換信号品質推定装置であって、前記FM一括変換信号の使用帯域内において、伝送後の無変調正弦波信号のDuty比の周波数依存性を推定する無変調信号推定部と、伝送前の前記FM一括変換信号のゼロクロス時刻と、伝送前の前記FM一括変換信号のゼロクロス時刻での瞬時周波数と、伝送前の前記FM一括変換信号のゼロクロス時刻での傾きの符号と、を計算するFM信号計算部と、前記無変調信号推定部が推定した伝送後の前記無変調正弦波信号のDuty比の周波数依存性と、前記FM信号計算部が計算した伝送前の前記FM一括変換信号のゼロクロス時刻での瞬時周波数と、前記FM信号計算部が計算した伝送前の前記FM一括変換信号のゼロクロス時刻での傾きの符号と、に基づいて、伝送前後の前記FM一括変換信号のゼロクロス時刻のずれ量を推定するゼロクロス時刻ずれ量推定部と、を備えることを特徴とするFM一括変換信号品質推定装置である。   Specifically, the present invention is an FM batch conversion signal quality estimation apparatus that estimates the quality of the FM batch conversion signal after the FM batch conversion signal is transmitted in an optical transmission system, the FM batch conversion signal , A non-modulated signal estimator for estimating the frequency dependence of the duty ratio of an unmodulated sine wave signal after transmission, a zero-cross time of the FM batch converted signal before transmission, and the FM batch before transmission An FM signal calculation unit that calculates an instantaneous frequency at the zero crossing time of the converted signal and a sign of a slope at the zero crossing time of the FM batch conversion signal before transmission, and a post-transmission estimated by the unmodulated signal estimation unit The frequency dependence of the duty ratio of the unmodulated sine wave signal, the instantaneous frequency at the zero crossing time of the FM batch conversion signal before transmission calculated by the FM signal calculation unit, and the FM signal meter A zero-cross time shift estimation unit that estimates the shift amount of the zero-cross time of the FM batch conversion signal before and after transmission based on the sign of the slope at the zero-cross time of the FM batch conversion signal before transmission calculated by the unit; The FM batch conversion signal quality estimation apparatus comprising:

具体的には、本発明は、FM一括変換信号が光伝送システムで伝送された後における、前記FM一括変換信号の品質を推定するFM一括変換信号品質推定方法であって、前記FM一括変換信号の使用帯域内において、伝送後の無変調正弦波信号のDuty比の周波数依存性を推定する無変調信号推定ステップと、伝送前の前記FM一括変換信号のゼロクロス時刻と、伝送前の前記FM一括変換信号のゼロクロス時刻での瞬時周波数と、伝送前の前記FM一括変換信号のゼロクロス時刻での傾きの符号と、を計算するFM信号計算ステップと、前記無変調信号推定ステップが推定した伝送後の前記無変調正弦波信号のDuty比の周波数依存性と、前記FM信号計算ステップが計算した伝送前の前記FM一括変換信号のゼロクロス時刻での瞬時周波数と、前記FM信号計算ステップが計算した伝送前の前記FM一括変換信号のゼロクロス時刻での傾きの符号と、に基づいて、伝送前後の前記FM一括変換信号のゼロクロス時刻のずれ量を推定するゼロクロス時刻ずれ量推定ステップと、を備えることを特徴とするFM一括変換信号品質推定方法である。   Specifically, the present invention is an FM batch conversion signal quality estimation method for estimating the quality of the FM batch conversion signal after the FM batch conversion signal is transmitted in an optical transmission system, and the FM batch conversion signal , A non-modulated signal estimation step for estimating the frequency dependence of the duty ratio of an unmodulated sine wave signal after transmission, the zero-cross time of the FM batch conversion signal before transmission, and the FM batch before transmission FM signal calculation step for calculating the instantaneous frequency at the zero-crossing time of the converted signal and the sign of the slope at the zero-crossing time of the FM batch conversion signal before transmission, and the post-transmission estimated by the unmodulated signal estimation step The frequency dependence of the duty ratio of the unmodulated sine wave signal and the instant at the zero crossing time of the FM batch conversion signal before transmission calculated by the FM signal calculation step Based on the wave number and the sign of the slope at the zero crossing time of the FM batch conversion signal before transmission calculated by the FM signal calculation step, the amount of shift of the zero batch time of the FM batch conversion signal before and after transmission is estimated. An FM batch conversion signal quality estimation method comprising: a zero-cross time lag estimation step.

この構成によれば、伝送後の無変調FM搬送波信号のDuty比に対する、自己位相変調及び波長分散に関わるCNRの依存性を、「予め測定」しておく必要がない。そして、伝送前の無変調正弦波信号の時間波形について、非線形シュレディンガー方程式を数値計算により解くことにより、伝送後の無変調正弦波信号の時間波形を求めれば十分である。   According to this configuration, it is not necessary to “measure in advance” the dependency of CNR related to self-phase modulation and chromatic dispersion on the duty ratio of an unmodulated FM carrier signal after transmission. For the time waveform of the unmodulated sine wave signal before transmission, it is sufficient to obtain the time waveform of the unmodulated sine wave signal after transmission by solving the nonlinear Schrodinger equation by numerical calculation.

また、本発明は、前記FM信号計算部が計算した伝送前の前記FM一括変換信号のゼロクロス時刻と、前記ゼロクロス時刻ずれ量推定部が推定した伝送前後の前記FM一括変換信号のゼロクロス時刻のずれ量と、に基づいて、伝送後の前記FM一括変換信号の遅延検波時間波形を推定する遅延検波時間波形推定部と、前記遅延検波時間波形推定部が推定した伝送後の前記FM一括変換信号の遅延検波時間波形に基づいて、伝送後の前記FM一括変換信号からFM復調で生成されたFM復調信号の周波数スペクトルに対する、伝送後の前記FM一括変換信号の周波数スペクトルの漏れ量を推定する周波数スペクトル漏れ量推定部と、をさらに備えることを特徴とするFM一括変換信号品質推定装置である。   Further, the present invention provides a difference between a zero cross time of the FM batch conversion signal before transmission calculated by the FM signal calculation unit and a zero cross time of the FM batch conversion signal before and after transmission estimated by the zero cross time shift estimation unit. A delay detection time waveform estimation unit that estimates a delay detection time waveform of the FM batch conversion signal after transmission based on the amount, and the FM batch conversion signal after transmission estimated by the delay detection time waveform estimation unit A frequency spectrum for estimating a leak amount of the frequency spectrum of the FM batch converted signal after transmission with respect to the frequency spectrum of the FM demodulated signal generated by FM demodulation from the FM batch converted signal after transmission based on the delay detection time waveform An FM batch conversion signal quality estimation device, further comprising a leakage amount estimation unit.

また、本発明は、前記FM信号計算ステップが計算した伝送前の前記FM一括変換信号のゼロクロス時刻と、前記ゼロクロス時刻ずれ量推定ステップが推定した伝送前後の前記FM一括変換信号のゼロクロス時刻のずれ量と、に基づいて、伝送後の前記FM一括変換信号の遅延検波時間波形を推定する遅延検波時間波形推定ステップと、前記遅延検波時間波形推定ステップが推定した伝送後の前記FM一括変換信号の遅延検波時間波形に基づいて、伝送後の前記FM一括変換信号からFM復調で生成されたFM復調信号の周波数スペクトルに対する、伝送後の前記FM一括変換信号の周波数スペクトルの漏れ量を推定する周波数スペクトル漏れ量推定ステップと、をさらに備えることを特徴とするFM一括変換信号品質推定方法である。   Further, the present invention provides a shift between a zero cross time of the FM batch conversion signal before transmission calculated by the FM signal calculation step and a zero cross time of the FM batch conversion signal before and after transmission estimated by the zero cross time offset estimation step. A delay detection time waveform estimation step for estimating a delay detection time waveform of the FM batch conversion signal after transmission based on the amount of the FM batch conversion signal after transmission estimated by the delay detection time waveform estimation step. A frequency spectrum for estimating a leak amount of the frequency spectrum of the FM batch converted signal after transmission with respect to the frequency spectrum of the FM demodulated signal generated by FM demodulation from the FM batch converted signal after transmission based on the delay detection time waveform The FM batch conversion signal quality estimation method further comprising a leakage amount estimation step.

この構成によれば、伝送前後のFM一括変換信号のゼロクロス時刻のずれ量のみならず、自己位相変調及び波長分散に関わるCNRを推定することができる。   According to this configuration, it is possible to estimate not only the shift amount of the zero cross time of the FM batch conversion signal before and after transmission but also the CNR related to self-phase modulation and chromatic dispersion.

また、本発明は、伝送中の前記FM一括変換信号に対して、前記光伝送システムに接続される光増幅装置により蓄積された雑音量を推定する光増幅雑音量推定部と、前記周波数スペクトル漏れ量推定部が推定した伝送後の前記FM一括変換信号の周波数スペクトルの漏れ量と、前記光増幅雑音量推定部が推定した伝送中の前記FM一括変換信号に対して蓄積された雑音量と、に基づいて、伝送後の前記FM一括変換信号からFM復調で生成された前記FM復調信号の品質を推定するFM復調信号品質推定部と、をさらに備えることを特徴とするFM一括変換信号品質推定装置である。   The present invention also provides an optical amplification noise amount estimation unit that estimates an amount of noise accumulated by an optical amplification device connected to the optical transmission system for the FM batch conversion signal being transmitted, and the frequency spectrum leakage A leakage amount of the frequency spectrum of the FM batch conversion signal after transmission estimated by the amount estimation unit, and a noise amount accumulated for the FM batch conversion signal during transmission estimated by the optical amplification noise amount estimation unit; An FM demodulated signal quality estimation unit for estimating the quality of the FM demodulated signal generated by FM demodulation from the FM batch converted signal after transmission based on the FM demodulated signal Device.

また、本発明は、伝送中の前記FM一括変換信号に対して、前記光伝送システムに接続される光増幅装置により蓄積された雑音量を推定する光増幅雑音量推定ステップと、前記周波数スペクトル漏れ量推定ステップが推定した伝送後の前記FM一括変換信号の周波数スペクトルの漏れ量と、前記光増幅雑音量推定ステップが推定した伝送中の前記FM一括変換信号に対して蓄積された雑音量と、に基づいて、伝送後の前記FM一括変換信号からFM復調で生成された前記FM復調信号の品質を推定するFM復調信号品質推定ステップと、をさらに備えることを特徴とするFM一括変換信号品質推定方法である。   The present invention also provides an optical amplification noise amount estimation step for estimating an amount of noise accumulated by an optical amplification device connected to the optical transmission system for the FM batch conversion signal being transmitted, and the frequency spectrum leakage A leakage amount of the frequency spectrum of the FM batch conversion signal after transmission estimated by the amount estimation step, and a noise amount accumulated for the FM batch conversion signal during transmission estimated by the optical amplification noise amount estimation step; And FM demodulated signal quality estimation step for estimating the quality of the FM demodulated signal generated by FM demodulation from the FM batch converted signal after transmission. Is the method.

この構成によれば、自己位相変調及び波長分散に関わるCNRのみならず、光増幅雑音を含む光伝送システムの全要素に関わるCNRを推定することができる。   According to this configuration, it is possible to estimate not only CNR related to self-phase modulation and chromatic dispersion but also CNR related to all elements of the optical transmission system including optical amplification noise.

また、本発明は、以上に記載のFM一括変換信号品質推定方法をコンピュータに実行させるためのFM一括変換信号品質推定プログラムである。   The present invention is also an FM batch conversion signal quality estimation program for causing a computer to execute the FM batch conversion signal quality estimation method described above.

この構成によれば、以上に記載の効果を奏するプログラムを提供することができる。   According to this configuration, it is possible to provide a program that exhibits the effects described above.

このように、本発明は、提供中の光伝送システムにおいて、FM一括変換方式の伝送キャリアプランが変更される場合でも、低コストでかつ現実的な時間内で、FM一括変換信号の品質を推定する技術を提供することができる。   As described above, the present invention estimates the quality of the FM batch conversion signal at a low cost and within a realistic time even when the FM carrier conversion scheme transmission carrier plan is changed in the optical transmission system being provided. Technology can be provided.

本発明のFM一括変換信号品質推定装置の構成を示すブロック図である。It is a block diagram which shows the structure of the FM batch conversion signal quality estimation apparatus of this invention. 本発明のFM一括変換信号品質推定方法の処理を示すフローチャートである。It is a flowchart which shows the process of the FM batch conversion signal quality estimation method of this invention. 伝送後の無変調正弦波信号のDuty比の周波数依存性を示す図である。It is a figure which shows the frequency dependence of Duty ratio of the unmodulated sine wave signal after transmission. 伝送前のFM一括変換信号の時間波形を示す図である。It is a figure which shows the time waveform of the FM batch conversion signal before transmission. 伝送前のFM一括変換信号の瞬時周波数を示す図である。It is a figure which shows the instantaneous frequency of the FM batch conversion signal before transmission. 伝送前後のFM一括変換信号のゼロクロス時刻のずれ量を示す図である。It is a figure which shows the deviation | shift amount of the zero crossing time of FM batch conversion signal before and behind transmission. シフト前後のFM一括変換信号の遅延検波時間波形のずれ量を示す図である。It is a figure which shows the deviation | shift amount of the delay detection time waveform of the FM batch conversion signal before and behind a shift. 伝送後のFM復調信号の周波数スペクトルを示す図である。It is a figure which shows the frequency spectrum of the FM demodulated signal after transmission.

添付の図面を参照して本発明の実施形態を説明する。以下に説明する実施形態は本発明の実施の例であり、本発明は以下の実施形態に制限されるものではない。   Embodiments of the present invention will be described with reference to the accompanying drawings. The embodiments described below are examples of the present invention, and the present invention is not limited to the following embodiments.

(本発明の概要)
まず、FM一括変換信号の使用帯域内における伝送後の無変調正弦波信号のDuty比の周波数依存性D(f)を推定するとともに、伝送前のFM一括変換信号のゼロクロス時刻Tでの瞬時周波数f(T)及び傾きa(T)の符号を計算したうえで、これらの推定値及び計算値に基づいて、伝送前後のFM一括変換信号のゼロクロス時刻Tのずれ量dT(T)を推定する。次に、自己位相変調及び波長分散に関わるCNRDutyを推定する。次に、光増幅雑音を含む光伝送システムの全要素に関わるCNRTotalを推定する。
(Outline of the present invention)
First, the frequency dependency D (f) of the duty ratio of the unmodulated sine wave signal after transmission within the use band of the FM batch conversion signal is estimated, and the FM batch conversion signal before transmission instantaneously at the zero crossing time T 0. After calculating the sign of the frequency f (T 0 ) and the slope a (T 0 ), based on these estimated values and calculated values, the shift amount dT (T of the zero-cross time T 0 of the FM batch conversion signal before and after transmission is calculated. 0 ). Next, CNR Duty related to self-phase modulation and chromatic dispersion is estimated. Next, CNR Total relating to all elements of the optical transmission system including optical amplification noise is estimated.

本発明のFM一括変換信号品質推定装置の構成を示すブロック図を図1に示す。本発明のFM一括変換信号品質推定方法の処理を示すフローチャートを図2に示す。   A block diagram showing the configuration of the FM batch conversion signal quality estimation apparatus of the present invention is shown in FIG. A flowchart showing the processing of the FM batch conversion signal quality estimation method of the present invention is shown in FIG.

FM一括変換信号品質推定装置Fは、無変調信号推定部1、FM信号計算部2、ゼロクロス時刻ずれ量推定部3、遅延検波時間波形推定部4、周波数スペクトル漏れ量推定部5、光増幅雑音量推定部6及びFM復調信号品質推定部7から構成される。   The FM batch conversion signal quality estimation device F includes an unmodulated signal estimation unit 1, an FM signal calculation unit 2, a zero-cross time lag estimation unit 3, a delay detection time waveform estimation unit 4, a frequency spectrum leakage amount estimation unit 5, an optical amplification noise. It comprises a quantity estimation unit 6 and an FM demodulated signal quality estimation unit 7.

FM一括変換信号品質推定処理は、無変調信号推定ステップS1、FM信号計算ステップS2、ゼロクロス時刻ずれ量推定ステップS3、遅延検波時間波形推定ステップS4、周波数スペクトル漏れ量推定ステップS5、光増幅雑音量推定ステップS6及びFM復調信号品質推定ステップS7から構成される。   The FM batch conversion signal quality estimation process includes: a non-modulation signal estimation step S1, an FM signal calculation step S2, a zero cross time lag estimation step S3, a delay detection time waveform estimation step S4, a frequency spectrum leakage amount estimation step S5, and an optical amplification noise amount. It comprises an estimation step S6 and an FM demodulated signal quality estimation step S7.

無変調信号推定ステップS1、FM信号計算ステップS2及び光増幅雑音量推定ステップS6は、それぞれ独立に行われ、順序を問わない。ゼロクロス時刻ずれ量推定ステップS3、遅延検波時間波形推定ステップS4、周波数スペクトル漏れ量推定ステップS5及びFM復調信号品質推定ステップS7は、それぞれ前提のステップの後に行われる。   The unmodulated signal estimation step S1, the FM signal calculation step S2, and the optical amplification noise amount estimation step S6 are performed independently, and the order is not limited. The zero-cross time lag estimation step S3, the delay detection time waveform estimation step S4, the frequency spectrum leakage amount estimation step S5, and the FM demodulated signal quality estimation step S7 are each performed after the premise steps.

なお、図2に示したFM一括変換信号品質推定方法を、図1に示したFM一括変換信号品質推定装置Fに実行させるために、FM一括変換信号品質推定プログラムをネットワーク又は記憶媒体を介して提供・取得することも可能である。   In order to cause the FM batch conversion signal quality estimation apparatus F shown in FIG. 1 to execute the FM batch conversion signal quality estimation method shown in FIG. 2, the FM batch conversion signal quality estimation program is transmitted via a network or a storage medium. It is also possible to provide / acquire.

(無変調信号推定処理)
無変調信号推定部1は、FM一括変換信号の使用帯域内において、伝送後の無変調正弦波信号のDuty比の周波数依存性D(f)を推定する(S1参照)。伝送後の無変調正弦波信号のDuty比の周波数依存性を図3に示す。
(Unmodulated signal estimation processing)
The unmodulated signal estimation unit 1 estimates the frequency dependence D (f) of the duty ratio of the unmodulated sine wave signal after transmission within the use band of the FM batch conversion signal (see S1). FIG. 3 shows the frequency dependence of the duty ratio of the unmodulated sine wave signal after transmission.

無変調信号推定部1は、自己位相変調及び波長分散に関わる光伝送システムのパラメータとして、伝送距離、光増幅装置の段数、光信号強度、光ファイバ非線形定数及び波長分散等のパラメータを入力される。そして、無変調信号推定部1は、FM一括変換信号の使用帯域内において、伝送前の無変調正弦波信号の時間波形について、非線形シュレディンガー方程式を数値計算により解くことにより、伝送後の無変調正弦波信号の時間波形を求める。さらに、無変調信号推定部1は、FM一括変換信号の使用帯域内において、伝送後の無変調正弦波信号の時間波形について、Duty比を推定する。   The unmodulated signal estimation unit 1 receives parameters such as a transmission distance, the number of stages of an optical amplification device, an optical signal intensity, an optical fiber nonlinear constant, and chromatic dispersion as parameters of an optical transmission system related to self-phase modulation and chromatic dispersion. . The unmodulated signal estimation unit 1 solves the non-modulated sine after transmission by solving the nonlinear Schrodinger equation by numerical calculation for the time waveform of the unmodulated sine wave signal before transmission within the use band of the FM batch conversion signal. Find the time waveform of the wave signal. Further, the unmodulated signal estimation unit 1 estimates the duty ratio for the time waveform of the unmodulated sine wave signal after transmission within the use band of the FM batch conversion signal.

図3では、50km×4段の光伝送システムを想定している。そして、FM搬送波信号の周波数3GHzのまわりの、無変調正弦波信号の周波数1、2、3、4、5、6GHzにおいて、伝送後の無変調正弦波信号のDuty比の周波数依存性D(f)を推定している。さらに、2次の近似曲線を用いて、D(f)の補間処理を行っている。   In FIG. 3, a 50 km × 4 stage optical transmission system is assumed. The frequency dependence D (f) of the duty ratio of the unmodulated sine wave signal after transmission at frequencies 1, 2, 3, 4, 5, 6 GHz of the unmodulated sine wave signal around the frequency 3 GHz of the FM carrier signal. ). Further, interpolation processing of D (f) is performed using a quadratic approximate curve.

(FM信号計算処理)
FM信号計算部2は、伝送前のFM一括変換信号のゼロクロス時刻Tと、伝送前のFM一括変換信号のゼロクロス時刻Tでの瞬時周波数f(T)と、伝送前のFM一括変換信号のゼロクロス時刻Tでの傾きa(T)の符号と、を計算する(S2参照)。伝送前のFM一括変換信号の時間波形及び瞬時周波数を図4、5に示す。
(FM signal calculation processing)
The FM signal calculation unit 2 includes a zero-crossing time T 0 of the FM batch conversion signal before transmission, an instantaneous frequency f (T 0 ) at the zero-crossing time T 0 of the FM batch conversion signal before transmission, and an FM batch conversion before transmission. The sign of the slope a (T 0 ) at the zero crossing time T 0 of the signal is calculated (see S2). The time waveform and instantaneous frequency of the FM batch conversion signal before transmission are shown in FIGS.

FM信号計算部2は、FM一括変換信号のパラメータとして、FM搬送波信号の周波数並びにFM搬送波信号を変調する伝送キャリア信号の周波数及び周波数偏移量等のパラメータを入力される。そして、FM信号計算部2は、伝送前のFM一括変換信号の時間波形S(t)を、数式1に基づいて計算する。さらに、FM信号計算部2は、伝送前のFM一括変換信号の瞬時周波数f(t)を、数式2に基づいて計算する。   The FM signal calculation unit 2 receives parameters such as the frequency of the FM carrier signal, the frequency of the transmission carrier signal that modulates the FM carrier signal, and the frequency shift amount as parameters of the FM batch conversion signal. Then, the FM signal calculation unit 2 calculates the time waveform S (t) of the FM batch conversion signal before transmission based on Equation 1. Further, the FM signal calculation unit 2 calculates the instantaneous frequency f (t) of the FM batch conversion signal before transmission based on Equation 2.

Figure 2016178586
Figure 2016178586
ここで、数式1、2の文字の定義は、以下の通りである。
A:FM一括変換信号の最大振幅
:FM搬送波信号の周波数
:i番目の伝送キャリア信号の周波数
ΔF:i番目の伝送キャリア信号の最大周波数偏移
φ:i番目の伝送キャリア信号の初期位相
Figure 2016178586
Figure 2016178586
Here, the definitions of the characters in Equations 1 and 2 are as follows.
A: Maximum amplitude of FM batch conversion signal f c : Frequency of FM carrier signal f i : Frequency of i-th transmission carrier signal ΔF i : Maximum frequency shift of i-th transmission carrier signal φ i : i-th transmission carrier Initial phase of signal

よって、FM信号計算部2は、伝送前のFM一括変換信号の時間波形S(t)に基づいて、伝送前のFM一括変換信号のゼロクロス時刻Tと、伝送前のFM一括変換信号のゼロクロス時刻Tでの傾きa(T)の符号と、を推定可能である。そして、FM信号計算部2は、伝送前のFM一括変換信号の瞬時周波数f(t)に基づいて、伝送前のFM一括変換信号のゼロクロス時刻Tでの瞬時周波数f(T)を推定可能である。 Therefore, the FM signal calculation unit 2 determines the zero cross time T 0 of the FM batch conversion signal before transmission and the zero cross of the FM batch conversion signal before transmission based on the time waveform S (t) of the FM batch conversion signal before transmission. The sign of the slope a (T 0 ) at time T 0 can be estimated. Then, the FM signal calculation unit 2 estimates the instantaneous frequency f (T 0 ) at the zero crossing time T 0 of the FM batch conversion signal before transmission based on the instantaneous frequency f (t) of the FM batch conversion signal before transmission. Is possible.

(ゼロクロス時刻ずれ量推定処理)
ゼロクロス時刻ずれ量推定部3は、伝送後の無変調正弦波信号のDuty比の周波数依存性D(f)と、伝送前のFM一括変換信号のゼロクロス時刻Tでの瞬時周波数f(T)と、伝送前のFM一括変換信号のゼロクロス時刻Tでの傾きa(T)の符号と、に基づいて、伝送前後のFM一括変換信号のゼロクロス時刻Tのずれ量dT(T)を推定する(S3参照)。伝送前後のFM一括変換信号のゼロクロス時刻のずれ量を図6に示す。
(Zero cross time lag estimation processing)
Zero-crossing time shift amount estimate section 3, frequency-dependent D of Duty ratio of the non-modulation sine wave signal after transmission and (f), the instantaneous frequency f (T 0 at a zero-crossing point time T 0 of the FM batch conversion signal before transmission ), a sign of the slope a (T 0) at the zero-crossing time T 0 before the FM batch conversion signal transmission, based on the shift amount dT (T 0 of the zero-cross time T 0 of the FM batch conversion signals before and after transmission ) Is estimated (see S3). FIG. 6 shows the shift amount of the zero cross time of the FM batch conversion signal before and after transmission.

ゼロクロス時刻ずれ量推定部3は、伝送後の無変調正弦波信号のDuty比の周波数依存性D(f)と、伝送前のFM一括変換信号のゼロクロス時刻Tでの瞬時周波数f(T)と、に基づいて、瞬時周波数f(T)におけるDuty比D(f(T))を推定する(図3参照)。そして、ゼロクロス時刻ずれ量推定部3は、伝送前後のFM一括変換信号のゼロクロス時刻Tのずれ量dT(T)の絶対値を、数式3に基づいて推定する。さらに、ゼロクロス時刻ずれ量推定部3は、伝送前後のFM一括変換信号のゼロクロス時刻Tのずれ量dT(T)のずれ方向を、数式4に基づいて推定する。 Zero-crossing time shift amount estimate section 3, frequency-dependent D of Duty ratio of the non-modulation sine wave signal after transmission and (f), the instantaneous frequency f (T 0 at a zero-crossing point time T 0 of the FM batch conversion signal before transmission ) And the duty ratio D (f (T 0 )) at the instantaneous frequency f (T 0 ) is estimated (see FIG. 3). Then, the zero-cross time shift estimation unit 3 estimates the absolute value of the shift amount dT (T 0 ) at the zero-cross time T 0 of the FM batch conversion signal before and after transmission based on Equation 3. Further, the zero-cross time shift estimation unit 3 estimates the shift direction of the shift amount dT (T 0 ) at the zero-cross time T 0 of the FM batch conversion signal before and after transmission based on Equation 4.

Figure 2016178586
Figure 2016178586
ここで、sgnは、正、0、負の引数に応じ、それぞれ、+1、0、−1の出力を行う。
Figure 2016178586
Figure 2016178586
Here, sgn outputs +1, 0, and −1 according to positive, zero, and negative arguments, respectively.

図6では、伝送前及び伝送後のFM一括変換信号の時間波形S(t)を、それぞれ、点線及び破線で示している。そして、伝送前のFM一括変換信号のn番目のゼロクロス時刻T(n)での傾きa(T(n))の符号は正であるため、伝送前後のFM一括変換信号のn番目のゼロクロス時刻T(n)のずれ量dT(T(n))は正の方向である。一方で、伝送前のFM一括変換信号の(n+1)番目のゼロクロス時刻T(n+1)での傾きa(T(n+1))の符号は負であるため、伝送前後のFM一括変換信号の(n+1)番目のゼロクロス時刻T(n+1)のずれ量dT(T(n+1))は負の方向である。 In FIG. 6, the time waveform S (t) of the FM batch conversion signal before and after transmission is indicated by a dotted line and a broken line, respectively. Since the sign of the slope a (T 0 (n)) at the nth zero-crossing time T 0 (n) of the FM batch conversion signal before transmission is positive, the nth of the FM batch conversion signal before and after transmission is positive. The shift amount dT (T 0 (n)) at the zero crossing time T 0 (n) is in the positive direction. On the other hand, since the sign of the slope a (T 0 (n + 1)) at the (n + 1) -th zero-cross time T 0 (n + 1) of the FM batch conversion signal before transmission is negative, the FM batch conversion signal before and after transmission is The shift amount dT (T 0 (n + 1)) at the (n + 1) th zero crossing time T 0 (n + 1) is in the negative direction.

このように、伝送前後のFM一括変換信号のゼロクロス時刻Tのずれ量dT(T)を推定することにより、自己位相変調及び波長分散の複合効果による、伝送前後のFM一括変換信号の時間波形S(t)における時間軸方向の波形歪品質を推定することができる。 In this way, by estimating the shift amount dT (T 0 ) of the zero-crossing time T 0 of the FM batch conversion signal before and after transmission, the time of the FM batch conversion signal before and after transmission due to the combined effect of self-phase modulation and chromatic dispersion. The waveform distortion quality in the time axis direction in the waveform S (t) can be estimated.

(遅延検波時間波形推定処理)
遅延検波時間波形推定部4は、伝送前のFM一括変換信号のゼロクロス時刻Tと、伝送前後のFM一括変換信号のゼロクロス時刻Tのずれ量dT(T)と、に基づいて、伝送後のFM一括変換信号の遅延検波時間波形Vdemod_shift(t)を推定する(S4参照)。シフト前後のFM一括変換信号の遅延検波時間波形のずれ量を図7に示す。
(Delay detection time waveform estimation processing)
The delay detection time waveform estimation unit 4 performs transmission based on the zero-cross time T 0 of the FM batch conversion signal before transmission and the shift amount dT (T 0 ) between the zero-cross time T 0 of the FM batch conversion signal before and after transmission. The delay detection time waveform Vdemod_shift (t) of the subsequent FM batch conversion signal is estimated (see S4). FIG. 7 shows the shift amount of the delay detection time waveform of the FM batch conversion signal before and after the shift.

遅延検波時間波形推定部4は、伝送前のFM一括変換信号の立ち上がり及び立ち下がりのゼロクロス時刻Tにおいて、幅一定かつ高さ一定のパルスを出力する遅延検波時間波形Vdemod(t)を計算する。そして、遅延検波時間波形推定部4は、伝送後のFM一括変換信号の立ち上がり及び立ち下がりのゼロクロス時刻T±dT(T)において、幅一定かつ高さ一定のパルスを出力する遅延検波時間波形Vdemod_shift(t)を推定する。ここで、パルスの発生頻度は、FM一括変換信号の周波数に対応する。 The delay detection time waveform estimation unit 4 calculates a delay detection time waveform Vdemod (t) that outputs a pulse having a constant width and a constant height at the zero crossing time T 0 of the rising and falling of the FM batch conversion signal before transmission. . The delay detection time waveform estimator 4 outputs a delay detection time for outputting a pulse having a constant width and a constant height at the zero-cross time T 0 ± dT (T 0 ) of the rising and falling of the FM batch conversion signal after transmission. Estimate the waveform Vdemod_shift (t). Here, the pulse generation frequency corresponds to the frequency of the FM batch conversion signal.

図7では、伝送前及び伝送後のFM一括変換信号の遅延検波時間波形Vdemod(t)及びVdemod_shift(t)を、それぞれ、実線及び破線で示している。そして、伝送前後のFM一括変換信号のn番目のゼロクロス時刻T(n)のずれ量dT(T(n))は正の方向であるため、伝送前のFM一括変換信号のn番目のゼロクロス時刻T(n)のまわりで、Vdemod_shift(t)はVdemod(t)を正の方向にシフトしたものとなる。一方で、伝送前後のFM一括変換信号の(n+1)番目のゼロクロス時刻T(n+1)のずれ量dT(T(n+1))は負の方向であるため、伝送前のFM一括変換信号の(n+1)番目のゼロクロス時刻T(n+1)のまわりで、Vdemod_shift(t)はVdemod(t)を負の方向にシフトしたものとなる。 In FIG. 7, the delay detection time waveforms Vdemod (t) and Vdemod_shift (t) of the FM batch conversion signal before and after transmission are indicated by a solid line and a broken line, respectively. Since the shift amount dT (T 0 (n)) of the nth zero-crossing time T 0 (n) of the FM batch conversion signal before and after transmission is in the positive direction, the nth of the FM batch conversion signal before transmission is Around the zero crossing time T 0 (n), Vdemod_shift (t) is obtained by shifting Vdemod (t) in the positive direction. On the other hand, since the shift amount dT (T 0 (n + 1)) of the (n + 1) -th zero-crossing time T 0 (n + 1) of the FM batch conversion signal before and after transmission is in the negative direction, the FM batch conversion signal before transmission Around the (n + 1) th zero crossing time T 0 (n + 1), Vdemod_shift (t) is obtained by shifting Vdemod (t) in the negative direction.

このように、伝送前後のFM一括変換信号のゼロクロス時刻Tのずれ量dT(T)を推定することにより、自己位相変調及び波長分散の複合効果による、伝送前後のFM一括変換信号の遅延検波時間波形における時間軸方向の波形歪品質を推定することができる。 Thus, by estimating the shift amount dT (T 0 ) of the zero-crossing time T 0 of the FM batch conversion signal before and after transmission, the delay of the FM batch conversion signal before and after transmission due to the combined effect of self-phase modulation and chromatic dispersion. The waveform distortion quality in the time axis direction in the detection time waveform can be estimated.

(周波数スペクトル漏れ量推定処理)
周波数スペクトル漏れ量推定部5は、伝送後のFM一括変換信号の遅延検波時間波形Vdemod_shift(t)に基づいて、伝送後のFM一括変換信号からFM復調で生成されたFM復調信号の周波数スペクトルに対する、伝送後のFM一括変換信号の周波数スペクトルの漏れ量を推定し、自己位相変調及び波長分散に関わるCNRDutyを推定する(S5参照)。伝送後のFM復調信号の周波数スペクトルを図8に示す。
(Frequency spectrum leakage estimation processing)
The frequency spectrum leakage amount estimation unit 5 applies a frequency spectrum of the FM demodulated signal generated by FM demodulation from the FM batch conversion signal after transmission based on the delay detection time waveform Vdemod_shift (t) of the FM batch conversion signal after transmission. Then, the leakage amount of the frequency spectrum of the FM batch conversion signal after transmission is estimated, and the CNR duty related to self-phase modulation and chromatic dispersion is estimated (see S5). The frequency spectrum of the FM demodulated signal after transmission is shown in FIG.

周波数スペクトル漏れ量推定部5は、高速フーリエ変換を用いて、伝送後のFM一括変換信号の遅延検波時間波形Vdemod_shift(t)を、伝送後のFM復調信号の周波数スペクトルに変換する。そして、周波数スペクトル漏れ量推定部5は、伝送後のFM復調信号の周波数スペクトルに対する、伝送後のFM一括変換信号の周波数スペクトルの漏れ量に基づいて、自己位相変調及び波長分散に関わるCNRDutyを推定する。 The frequency spectrum leakage amount estimation unit 5 converts the delayed detection time waveform Vdemod_shift (t) of the FM batch conversion signal after transmission into the frequency spectrum of the FM demodulated signal after transmission using fast Fourier transform. Then, the frequency spectrum leakage amount estimation unit 5 calculates the CNR duty related to self-phase modulation and chromatic dispersion based on the leakage amount of the frequency spectrum of the FM batch conversion signal after transmission with respect to the frequency spectrum of the FM demodulated signal after transmission. presume.

図8では、50km×4段の光伝送システムを想定しており、FM搬送波信号の周波数を3GHzとしている。ここでは、FM一括変換信号の立ち上がり及び立ち下がりの両方のゼロクロス時刻Tにおいて、パルスを出力する遅延検波を行っている。よって、2種類の遅延検波を並列で行う必要があるものの、FM一括変換信号の周波数スペクトルは、見かけ上6GHzを中心とするものとなり、FM復調信号の周波数スペクトルに漏れ込みにくい。もちろん、FM一括変換信号の立ち上がり及び立ち下がりの一方のゼロクロス時刻Tにおいて、パルスを出力する遅延検波を行ってもよい。すると、FM一括変換信号の周波数スペクトルは、実際通り3GHzを中心とするものとなり、FM復調信号の周波数スペクトルに漏れ込みやすいものの、1種類の遅延検波を単独で行えば十分である。 In FIG. 8, a 50 km × 4 stage optical transmission system is assumed, and the frequency of the FM carrier signal is 3 GHz. Here, delayed detection of outputting a pulse is performed at both the zero crossing time T 0 of the rising edge and falling edge of the FM batch conversion signal. Therefore, although it is necessary to perform two types of delay detection in parallel, the frequency spectrum of the FM batch conversion signal is apparently centered on 6 GHz, and is difficult to leak into the frequency spectrum of the FM demodulated signal. Of course, delayed detection for outputting a pulse may be performed at zero crossing time T 0 of one of rising and falling of the FM batch conversion signal. Then, the frequency spectrum of the FM batch conversion signal is centered on 3 GHz as it is, and it is easy to leak into the frequency spectrum of the FM demodulated signal, but it is sufficient to perform one kind of delayed detection alone.

(光増幅雑音量推定処理)
光増幅雑音量推定部6は、伝送中のFM一括変換信号に対して、光伝送システムに接続される光増幅装置により蓄積された雑音量を推定し、光増幅雑音量に関わるCNRRINを推定する(S6参照)。特許文献1でも説明があるが、本出願でも説明する。
(Optical amplification noise amount estimation processing)
The optical amplification noise amount estimation unit 6 estimates the noise amount accumulated by the optical amplification device connected to the optical transmission system for the FM batch conversion signal being transmitted, and estimates the CNR RIN related to the optical amplification noise amount (Refer to S6). Although there is description also in patent document 1, it demonstrates also in this application.

光増幅雑音量推定部6は、光増幅雑音に関わる光伝送システムのパラメータ(数式5から8までを参照)を入力される。そして、光増幅雑音量推定部6は、光増幅雑音量に関わるCNRRINを、数式5から8までに基づいて推定する。 The optical amplification noise amount estimation unit 6 receives the parameters of the optical transmission system related to the optical amplification noise (see Equations 5 to 8). Then, the optical amplification noise amount estimation unit 6 estimates CNR RIN related to the optical amplification noise amount based on Equations 5 to 8.

Figure 2016178586
ここで、数式5の文字の定義は、以下の通りである。
in:光増幅装置への入力光電力(mW)
RINin:光増幅装置への入力光信号の相対強度雑音(Hz−1
RINout:光増幅装置からの出力光信号の相対強度雑音(Hz−1
NF:光増幅雑音指数
E:光子エネルギー(1.278×10−19J)
光増幅装置を多段接続する場合には、数式5の計算を接続段数分繰り返し、最遠端の光増幅装置からの出力光信号の相対強度雑音RINoutを計算する。
Figure 2016178586
Here, the definition of the character of Formula 5 is as follows.
P in: input optical power to the optical amplifier (mW)
RIN in : Relative intensity noise (Hz −1 ) of the optical signal input to the optical amplifier
RIN out : Relative intensity noise (Hz −1 ) of the output optical signal from the optical amplifier
NF: optical amplification noise figure E: photon energy (1.278 × 10 −19 J)
When optical amplifiers are connected in multiple stages, the calculation of Equation 5 is repeated for the number of connected stages, and the relative intensity noise RIN out of the output optical signal from the farthest end optical amplifier is calculated.

Figure 2016178586
ここで、数式6の文字の定義は、以下の通りである。
f:キャリア周波数(MHz)
ΔF(f):周波数偏移量(MHz0−p/ch)
:雑音帯域幅(MHz)
Figure 2016178586
Here, the definition of the character of Formula 6 is as follows.
f: Carrier frequency (MHz)
ΔF (f): Frequency deviation (MHz 0-p / ch)
B N : Noise bandwidth (MHz)

Figure 2016178586
ここで、数式7の文字の定義は、以下の通りである。
CNRphase(f)=Δν・10/2πf
Δν:ビート線幅(Hz)
CNRheterodyne:FM伝送区間の雑音
Figure 2016178586
Here, the definition of the character of Formula 7 is as follows.
CNR phase (f) = Δν · 10 6 / 2πf 2
Δν: Beat line width (Hz)
CNR heterodyne : FM transmission section noise

Figure 2016178586
ここで、数式8の文字の定義は、以下の通りである。
m:ONUへの入力信号光の光変調度
R:受光素子のO/E変換効率(A/W)
:受光電力(W)
RIN:ONUへの入力信号光の相対強度雑音(dB/Hz)
e:電気素量(1.602×10−19C)
d0:受光素子の暗電流(nA)
:受光素子の入力換算雑音(pA/Hz1/2
光増幅装置を多段接続する場合には、ONUへの入力信号光の相対強度雑音RINは、最遠端の光増幅装置からの出力光信号の相対強度雑音RINoutに等しい。
Figure 2016178586
Here, the definition of the character of Formula 8 is as follows.
m: degree of optical modulation of input signal light to ONU R: O / E conversion efficiency (A / W) of light receiving element
P r : received light power (W)
RIN: Relative intensity noise of input signal light to ONU (dB / Hz)
e: Elementary electric quantity (1.602 × 10 −19 C)
I d0 : dark current of the light receiving element (nA)
N F : Input conversion noise of the light receiving element (pA / Hz 1/2 )
When optical amplifiers are connected in multiple stages, the relative intensity noise RIN of the input signal light to the ONU is equal to the relative intensity noise RIN out of the output optical signal from the farthest end optical amplifier.

(FM復調信号品質推定処理)
FM復調信号品質推定部7は、伝送後のFM一括変換信号の周波数スペクトルの漏れ量と、伝送中のFM一括変換信号に対して蓄積された雑音量と、に基づいて、伝送後のFM一括変換信号からFM復調で生成されたFM復調信号の品質CNRTotalを推定する(S7参照)。ここで、伝送後のFM一括変換信号の周波数スペクトルの漏れ量は、自己位相変調及び波長分散に関わるCNRDutyに対応する。そして、伝送中のFM一括変換信号に対して蓄積された雑音量は、光増幅雑音量に関わるCNRRINに対応する。
(FM demodulated signal quality estimation processing)
The FM demodulated signal quality estimator 7 calculates the FM batch after transmission based on the leakage amount of the frequency spectrum of the FM batch conversion signal after transmission and the noise amount accumulated for the FM batch conversion signal during transmission. The quality CNR Total of the FM demodulated signal generated by FM demodulation from the converted signal is estimated (see S7). Here, the leakage amount of the frequency spectrum of the FM batch conversion signal after transmission corresponds to CNR Duty related to self-phase modulation and chromatic dispersion. The amount of noise accumulated for the FM batch conversion signal being transmitted corresponds to CNR RIN related to the amount of optical amplification noise.

FM復調信号品質推定部7は、数式9に基づいて、自己位相変調及び波長分散に関わるCNRDutyと、光増幅雑音量に関わるCNRRINと、を電力的に加算することにより、伝送後のFM復調信号の品質CNRTotalを推定する。

Figure 2016178586
The FM demodulated signal quality estimator 7 adds the CNR Duty related to self-phase modulation and chromatic dispersion and the CNR RIN related to the amount of optical amplification noise in terms of power based on Equation 9 to obtain FM after transmission. The quality CNR Total of the demodulated signal is estimated.
Figure 2016178586

(本発明の効果)
このように、伝送後の無変調FM搬送波信号のDuty比に対する、自己位相変調及び波長分散に関わるCNRDutyの依存性を、「予め測定」しておく必要がない。そして、伝送前の無変調正弦波信号の時間波形について、非線形シュレディンガー方程式を数値計算により解くことにより、伝送後の無変調正弦波信号の時間波形を求めれば十分である。
(Effect of the present invention)
Thus, it is not necessary to “measure in advance” the dependency of CNR Duty related to self-phase modulation and chromatic dispersion on the duty ratio of the unmodulated FM carrier signal after transmission. For the time waveform of the unmodulated sine wave signal before transmission, it is sufficient to obtain the time waveform of the unmodulated sine wave signal after transmission by solving the nonlinear Schrodinger equation by numerical calculation.

さらに、伝送前後のFM一括変換信号のゼロクロス時刻Tのずれ量dT(T)のみならず、自己位相変調及び波長分散に関わるCNRDuty及び光増幅雑音を含む光伝送システムの全要素に関わるCNRTotalを推定することができる。よって、提供中の光伝送システムにおいて、FM一括変換方式の伝送キャリアプランが変更される場合でも、低コストでかつ現実的な時間内で、FM復調信号の品質を推定する技術を提供することができる。 Furthermore, not only the shift amount dT (T 0 ) of the zero-crossing time T 0 of the FM batch conversion signal before and after transmission but also all elements of the optical transmission system including CNR Duty and optical amplification noise related to self-phase modulation and chromatic dispersion. CNR Total can be estimated. Therefore, it is possible to provide a technique for estimating the quality of an FM demodulated signal at a low cost and within a practical time even when an FM batch conversion scheme transmission carrier plan is changed in a provided optical transmission system. it can.

本発明のFM一括変換信号品質推定装置、方法及びプログラムは、FM一括変換方式を用いる光映像配信システムに適用することができる。   The FM batch conversion signal quality estimation apparatus, method, and program of the present invention can be applied to an optical video distribution system using the FM batch conversion method.

F:FM一括変換信号品質推定装置
1:無変調信号推定部
2:FM信号計算部
3:ゼロクロス時刻ずれ量推定部
4:遅延検波時間波形推定部
5:周波数スペクトル漏れ量推定部
6:光増幅雑音量推定部
7:FM復調信号品質推定部

F: FM batch conversion signal quality estimation device 1: Unmodulated signal estimation unit 2: FM signal calculation unit 3: Zero-cross time lag estimation unit 4: Delay detection time waveform estimation unit 5: Frequency spectrum leakage amount estimation unit 6: Optical amplification Noise amount estimation unit 7: FM demodulated signal quality estimation unit

Claims (7)

FM一括変換信号が光伝送システムで伝送された後における、前記FM一括変換信号の品質を推定するFM一括変換信号品質推定装置であって、
前記FM一括変換信号の使用帯域内において、伝送後の無変調正弦波信号のDuty比の周波数依存性を推定する無変調信号推定部と、
伝送前の前記FM一括変換信号のゼロクロス時刻と、伝送前の前記FM一括変換信号のゼロクロス時刻での瞬時周波数と、伝送前の前記FM一括変換信号のゼロクロス時刻での傾きの符号と、を計算するFM信号計算部と、
前記無変調信号推定部が推定した伝送後の前記無変調正弦波信号のDuty比の周波数依存性と、前記FM信号計算部が計算した伝送前の前記FM一括変換信号のゼロクロス時刻での瞬時周波数と、前記FM信号計算部が計算した伝送前の前記FM一括変換信号のゼロクロス時刻での傾きの符号と、に基づいて、伝送前後の前記FM一括変換信号のゼロクロス時刻のずれ量を推定するゼロクロス時刻ずれ量推定部と、
を備えることを特徴とするFM一括変換信号品質推定装置。
An FM batch conversion signal quality estimation device for estimating the quality of the FM batch conversion signal after the FM batch conversion signal is transmitted by an optical transmission system,
An unmodulated signal estimator for estimating the frequency dependence of the duty ratio of the unmodulated sine wave signal after transmission within the use band of the FM batch conversion signal;
Calculates the zero-cross time of the FM batch conversion signal before transmission, the instantaneous frequency at the zero-cross time of the FM batch conversion signal before transmission, and the sign of the slope at the zero-cross time of the FM batch conversion signal before transmission An FM signal calculator to
The frequency dependence of the duty ratio of the unmodulated sine wave signal after transmission estimated by the unmodulated signal estimation unit and the instantaneous frequency at the zero-crossing time of the FM batch conversion signal before transmission calculated by the FM signal calculation unit And the zero cross time that estimates the deviation amount of the zero batch time of the FM batch conversion signal before and after transmission based on the sign of the slope at the zero cross time of the FM batch conversion signal before transmission calculated by the FM signal calculation unit A time lag estimation unit;
An FM batch conversion signal quality estimation apparatus comprising:
前記FM信号計算部が計算した伝送前の前記FM一括変換信号のゼロクロス時刻と、前記ゼロクロス時刻ずれ量推定部が推定した伝送前後の前記FM一括変換信号のゼロクロス時刻のずれ量と、に基づいて、伝送後の前記FM一括変換信号の遅延検波時間波形を推定する遅延検波時間波形推定部と、
前記遅延検波時間波形推定部が推定した伝送後の前記FM一括変換信号の遅延検波時間波形に基づいて、伝送後の前記FM一括変換信号からFM復調で生成されたFM復調信号の周波数スペクトルに対する、伝送後の前記FM一括変換信号の周波数スペクトルの漏れ量を推定する周波数スペクトル漏れ量推定部と、
をさらに備えることを特徴とする請求項1に記載のFM一括変換信号品質推定装置。
Based on the zero cross time of the FM batch conversion signal before transmission calculated by the FM signal calculation unit and the shift amount of the zero cross time of the FM batch conversion signal before and after transmission estimated by the zero cross time shift estimation unit. A delay detection time waveform estimation unit for estimating a delay detection time waveform of the FM batch conversion signal after transmission;
Based on the delayed detection time waveform of the FM batch conversion signal after transmission estimated by the delay detection time waveform estimation unit, with respect to the frequency spectrum of the FM demodulated signal generated by FM demodulation from the FM batch conversion signal after transmission, A frequency spectrum leakage amount estimation unit for estimating a frequency spectrum leakage amount of the FM batch conversion signal after transmission;
The FM batch conversion signal quality estimation apparatus according to claim 1, further comprising:
伝送中の前記FM一括変換信号に対して、前記光伝送システムに接続される光増幅装置により蓄積された雑音量を推定する光増幅雑音量推定部と、
前記周波数スペクトル漏れ量推定部が推定した伝送後の前記FM一括変換信号の周波数スペクトルの漏れ量と、前記光増幅雑音量推定部が推定した伝送中の前記FM一括変換信号に対して蓄積された雑音量と、に基づいて、伝送後の前記FM一括変換信号からFM復調で生成された前記FM復調信号の品質を推定するFM復調信号品質推定部と、
をさらに備えることを特徴とする請求項2に記載のFM一括変換信号品質推定装置。
An optical amplification noise amount estimation unit that estimates an amount of noise accumulated by an optical amplification device connected to the optical transmission system with respect to the FM batch conversion signal being transmitted;
The frequency spectrum leakage amount of the FM batch conversion signal after transmission estimated by the frequency spectrum leakage amount estimation unit and the FM batch conversion signal being transmitted estimated by the optical amplification noise amount estimation unit are stored. An FM demodulated signal quality estimation unit that estimates the quality of the FM demodulated signal generated by FM demodulation from the FM batch converted signal after transmission based on the amount of noise;
The FM batch conversion signal quality estimation apparatus according to claim 2, further comprising:
FM一括変換信号が光伝送システムで伝送された後における、前記FM一括変換信号の品質を推定するFM一括変換信号品質推定方法であって、
前記FM一括変換信号の使用帯域内において、伝送後の無変調正弦波信号のDuty比の周波数依存性を推定する無変調信号推定ステップと、
伝送前の前記FM一括変換信号のゼロクロス時刻と、伝送前の前記FM一括変換信号のゼロクロス時刻での瞬時周波数と、伝送前の前記FM一括変換信号のゼロクロス時刻での傾きの符号と、を計算するFM信号計算ステップと、
前記無変調信号推定ステップが推定した伝送後の前記無変調正弦波信号のDuty比の周波数依存性と、前記FM信号計算ステップが計算した伝送前の前記FM一括変換信号のゼロクロス時刻での瞬時周波数と、前記FM信号計算ステップが計算した伝送前の前記FM一括変換信号のゼロクロス時刻での傾きの符号と、に基づいて、伝送前後の前記FM一括変換信号のゼロクロス時刻のずれ量を推定するゼロクロス時刻ずれ量推定ステップと、
を備えることを特徴とするFM一括変換信号品質推定方法。
An FM batch conversion signal quality estimation method for estimating the quality of the FM batch conversion signal after the FM batch conversion signal is transmitted by an optical transmission system,
An unmodulated signal estimation step of estimating the frequency dependence of the duty ratio of the unmodulated sine wave signal after transmission within the use band of the FM batch conversion signal;
Calculates the zero-cross time of the FM batch conversion signal before transmission, the instantaneous frequency at the zero-cross time of the FM batch conversion signal before transmission, and the sign of the slope at the zero-cross time of the FM batch conversion signal before transmission FM signal calculation step to perform,
The frequency dependence of the duty ratio of the unmodulated sine wave signal after transmission estimated by the unmodulated signal estimation step and the instantaneous frequency at the zero crossing time of the FM batch conversion signal before transmission calculated by the FM signal calculation step And the zero cross time for estimating the shift amount of the FM batch conversion signal before and after transmission based on the sign of the slope at the zero cross time of the FM batch conversion signal before transmission calculated by the FM signal calculation step. A time lag estimation step;
An FM batch conversion signal quality estimation method comprising:
前記FM信号計算ステップが計算した伝送前の前記FM一括変換信号のゼロクロス時刻と、前記ゼロクロス時刻ずれ量推定ステップが推定した伝送前後の前記FM一括変換信号のゼロクロス時刻のずれ量と、に基づいて、伝送後の前記FM一括変換信号の遅延検波時間波形を推定する遅延検波時間波形推定ステップと、
前記遅延検波時間波形推定ステップが推定した伝送後の前記FM一括変換信号の遅延検波時間波形に基づいて、伝送後の前記FM一括変換信号からFM復調で生成されたFM復調信号の周波数スペクトルに対する、伝送後の前記FM一括変換信号の周波数スペクトルの漏れ量を推定する周波数スペクトル漏れ量推定ステップと、
をさらに備えることを特徴とする請求項4に記載のFM一括変換信号品質推定方法。
Based on the zero cross time of the FM batch conversion signal before transmission calculated by the FM signal calculation step and the shift amount of the zero cross time of the FM batch conversion signal before and after transmission estimated by the zero cross time shift estimation step. A delay detection time waveform estimation step for estimating a delay detection time waveform of the FM batch conversion signal after transmission;
Based on the delay detection time waveform of the FM batch conversion signal after transmission estimated by the delay detection time waveform estimation step, with respect to the frequency spectrum of the FM demodulated signal generated by FM demodulation from the FM batch conversion signal after transmission, A frequency spectrum leakage amount estimation step for estimating a leakage amount of the frequency spectrum of the FM batch conversion signal after transmission;
The FM batch conversion signal quality estimation method according to claim 4, further comprising:
伝送中の前記FM一括変換信号に対して、前記光伝送システムに接続される光増幅装置により蓄積された雑音量を推定する光増幅雑音量推定ステップと、
前記周波数スペクトル漏れ量推定ステップが推定した伝送後の前記FM一括変換信号の周波数スペクトルの漏れ量と、前記光増幅雑音量推定ステップが推定した伝送中の前記FM一括変換信号に対して蓄積された雑音量と、に基づいて、伝送後の前記FM一括変換信号からFM復調で生成された前記FM復調信号の品質を推定するFM復調信号品質推定ステップと、
をさらに備えることを特徴とする請求項5に記載のFM一括変換信号品質推定方法。
An optical amplification noise amount estimation step for estimating an amount of noise accumulated by an optical amplification device connected to the optical transmission system with respect to the FM batch conversion signal being transmitted;
The frequency spectrum leakage amount of the FM batch conversion signal after transmission estimated by the frequency spectrum leakage amount estimation step and the FM batch conversion signal during transmission estimated by the optical amplification noise amount estimation step are stored. An FM demodulated signal quality estimation step for estimating the quality of the FM demodulated signal generated by FM demodulation from the FM batch converted signal after transmission based on the amount of noise;
The FM batch conversion signal quality estimation method according to claim 5, further comprising:
請求項4から6のいずれかに記載のFM一括変換信号品質推定方法をコンピュータに実行させるためのFM一括変換信号品質推定プログラム。   An FM batch conversion signal quality estimation program for causing a computer to execute the FM batch conversion signal quality estimation method according to claim 4.
JP2015059104A 2015-03-23 2015-03-23 FM batch conversion signal quality estimation apparatus, method and program Active JP6297516B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015059104A JP6297516B2 (en) 2015-03-23 2015-03-23 FM batch conversion signal quality estimation apparatus, method and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015059104A JP6297516B2 (en) 2015-03-23 2015-03-23 FM batch conversion signal quality estimation apparatus, method and program

Publications (2)

Publication Number Publication Date
JP2016178586A true JP2016178586A (en) 2016-10-06
JP6297516B2 JP6297516B2 (en) 2018-03-20

Family

ID=57070353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015059104A Active JP6297516B2 (en) 2015-03-23 2015-03-23 FM batch conversion signal quality estimation apparatus, method and program

Country Status (1)

Country Link
JP (1) JP6297516B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023026397A1 (en) * 2021-08-25 2023-03-02 日本電信電話株式会社 Signal amplification method and optical receiver

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010045685A (en) * 2008-08-15 2010-02-25 Nippon Telegr & Teleph Corp <Ntt> Optical repeater and optical transmission system
JP2011151600A (en) * 2010-01-21 2011-08-04 Nippon Telegr & Teleph Corp <Ntt> Method and device for estimation of video quality in optical video distribution system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010045685A (en) * 2008-08-15 2010-02-25 Nippon Telegr & Teleph Corp <Ntt> Optical repeater and optical transmission system
JP2011151600A (en) * 2010-01-21 2011-08-04 Nippon Telegr & Teleph Corp <Ntt> Method and device for estimation of video quality in optical video distribution system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023026397A1 (en) * 2021-08-25 2023-03-02 日本電信電話株式会社 Signal amplification method and optical receiver

Also Published As

Publication number Publication date
JP6297516B2 (en) 2018-03-20

Similar Documents

Publication Publication Date Title
Chen et al. Symbol synchronization and sampling frequency synchronization techniques in real-time DDO-OFDM systems
JP6186075B2 (en) Optical signal transmission apparatus and optical signal transmission method
US10263698B2 (en) Monitoring apparatus for optical signal to noise ratio, signal transmission apparatus and receiver
McKinney et al. Optical comb sources for high dynamic-range single-span long-haul analog optical links
Zheng et al. Comb spacing multiplication enabled widely spaced flexible frequency comb generation
Zhu et al. Optical millimeter-wave signal generation by frequency quadrupling using one dual-drive Mach–Zehnder modulator to overcome chromatic dispersion
CN107947867B (en) Single-sideband spectrum generation device and method based on multi-frequency phase modulation
Zhu et al. A novel OCS millimeter-wave generation scheme with data carried only by one sideband and wavelength reuse for uplink connection
Kumar et al. Performance analysis of an OSSB RoF link using 90o & 120o Hybrid coupler
JP6297516B2 (en) FM batch conversion signal quality estimation apparatus, method and program
US10263697B2 (en) Method and apparatus for monitoring chromatic dispersion in optical communications network
CN105471507A (en) Nonlinear compensation method and device
Wang et al. Photonic generation of frequency-quadrupled triangular waveform based on a DP-QPSK modulator with tunable modulation index
Ma et al. Transmission performance of the optical mm-wave generated by double-sideband intensity-modulation
Yang et al. Photonic generation and transmission of dual-chirp microwave waveform with bandwidth and frequency-doubling
JP2013195225A (en) Device and method for measuring brillouin gain spectrum
CN103795669A (en) Method and device for receiving optical signals
JP5312821B2 (en) Optical pulse speed control device and optical pulse speed control method
Zhao et al. Blind identification of the number of sub-carriers for orthogonal frequency division multiplexing-based elastic optical networking
Shao et al. Research on optical 32QAM-OFDM-PON access scheme with different numbers of sub-carriers using DMT modulation
US11463169B2 (en) Wavelength dispersion amount estimation apparatus
Zhang et al. Precoding research on vector signal 16QAM applied in the frequency doubling scheme of ROF link
Chitravelu et al. Performance analysis of CSRZ-DQPSK transmitter configurations for SBS tolerance in single mode fiber link
JP5139454B2 (en) Image quality estimation method and image quality estimation apparatus for optical image distribution system
RU208857U1 (en) Device for determining the Doppler frequency measurement of the reflected radar signal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180221

R150 Certificate of patent or registration of utility model

Ref document number: 6297516

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150