JP2016177875A - Reflector-type photoelectronic sensor - Google Patents

Reflector-type photoelectronic sensor Download PDF

Info

Publication number
JP2016177875A
JP2016177875A JP2015054819A JP2015054819A JP2016177875A JP 2016177875 A JP2016177875 A JP 2016177875A JP 2015054819 A JP2015054819 A JP 2015054819A JP 2015054819 A JP2015054819 A JP 2015054819A JP 2016177875 A JP2016177875 A JP 2016177875A
Authority
JP
Japan
Prior art keywords
light
reflector
polarizing filter
photoelectric sensor
polarized light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015054819A
Other languages
Japanese (ja)
Inventor
永幸 佐藤
Nagayuki Sato
永幸 佐藤
田中 実
Minoru Tanaka
実 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP2015054819A priority Critical patent/JP2016177875A/en
Publication of JP2016177875A publication Critical patent/JP2016177875A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Switches Operated By Changes In Physical Conditions (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a reflector-type photoelectronic sensor capable of stably detecting a birefringent detection object with the use of a structure that can be easily assembled at a reduced cost.SOLUTION: A depolarizing film 8 is provided between a reflector 4 and a region X through which a detection object passes. The depolarizing film 8 is made of a material having high birefringence. The depolarizing film 8 lets a birefringent detection object T2 pass therethrough so as to attenuate its birefringence. The depolarizing film 8 also turns light, which has become elliptically polarized light A5 from vertically polarized light A2, into unpolarized light A6.SELECTED DRAWING: Figure 2

Description

この発明は、戻ってくる光の光量に基づいて検出対象物を検出するリフレクタ形光電センサに関するものである。   The present invention relates to a reflector type photoelectric sensor that detects a detection target object based on the amount of returning light.

図8(a)に、従来のリフレクタ形光電センサを示す。従来のリフレクタ形光電センサでは、まず、投光素子1が発した無偏光の光B1を、投光レンズ2で集光する。集光された無偏光の光B1は、垂直方向が偏光方向である投光側偏光フィルタ3により垂直方向の直線偏光成分のみが通過し、垂直偏光B2としてリフレクタ4に向かう。リフレクタ4は、例えばコーナーキューブリフレクタであり、リフレクタ4で回帰反射した垂直偏光B2は、楕円偏光B3となる。楕円偏光B3は、水平方向が偏光方向である受光側偏光フィルタ5により水平方向の直線偏光成分のみが通過して受光レンズ6で集光され、水平偏光B4として受光素子7で受光される。この受光素子7に入る受光量に基づき、検出対象物の有無が判定される。検出対象物が有る場合は、投光された光が遮られるために、検出対象物が無い場合と比べて受光量が減少するからである。   FIG. 8A shows a conventional reflector type photoelectric sensor. In the conventional reflector type photoelectric sensor, first, the non-polarized light B 1 emitted from the light projecting element 1 is collected by the light projecting lens 2. The collected non-polarized light B1 passes only the linearly polarized light component in the vertical direction by the projection-side polarization filter 3 whose vertical direction is the polarization direction, and travels toward the reflector 4 as the vertical polarization B2. The reflector 4 is, for example, a corner cube reflector, and the vertically polarized light B2 that is regressively reflected by the reflector 4 becomes an elliptically polarized light B3. In the elliptically polarized light B3, only the linearly polarized light component in the horizontal direction passes through the light receiving side polarization filter 5 whose horizontal direction is the polarization direction, and is collected by the light receiving lens 6, and received by the light receiving element 7 as the horizontal polarized light B4. Based on the amount of received light entering the light receiving element 7, the presence or absence of a detection target is determined. This is because when there is a detection target, the amount of light received is reduced compared to when there is no detection target because the projected light is blocked.

また、検出対象物が金属等であり投光素子1からの投光を鏡面反射する場合は、反射した強い光が受光素子7へ向かうことがある。この場合を図8(b)に示す。鏡面反射では、直線偏光がそのまま保たれるため、垂直偏光B2が反射されて垂直偏光B5となる。垂直偏光B5は、受光側偏光フィルタ5により遮られ、受光素子7には入光しない。このように、投光側と受光側とで互いに偏光方向が直交する偏光フィルタを設けることで、投光された光を鏡面反射するような検出対象物T1であっても、その反射光が受光素子7へ入ることを防ぐ。一方、投光側偏光フィルタ3と受光側偏光フィルタ5とが無い場合は、鏡面反射した光が受光素子7へ入り、検出対象物T1が有るにも関わらず、リフレクタ形光電センサは検出対象物無しとの判定を出す可能性がある。つまり、図8のように投光側と受光側とで互いに偏光方向が直交する偏光フィルタを設ければ、鏡面反射による誤動作を防ぐことができるため、図8の構成は従来より広く採用されている。   Further, when the object to be detected is a metal or the like and the light projection from the light projecting element 1 is specularly reflected, the reflected strong light may be directed to the light receiving element 7. This case is shown in FIG. In the specular reflection, the linearly polarized light is kept as it is, so that the vertically polarized light B2 is reflected and becomes the vertically polarized light B5. The vertically polarized light B5 is blocked by the light receiving side polarizing filter 5 and does not enter the light receiving element 7. In this way, by providing the polarizing filters whose polarization directions are orthogonal to each other on the light projecting side and the light receiving side, even if the object to be detected T1 is specularly reflected, the reflected light is received. Prevent entry into element 7. On the other hand, when the light-projecting side polarizing filter 3 and the light-receiving side polarizing filter 5 are not provided, the specularly reflected light enters the light receiving element 7 and the reflector photoelectric sensor is used as a detection target despite the presence of the detection target T1. There is a possibility that it will be judged as none. That is, if a polarizing filter whose polarization directions are orthogonal to each other on the light projecting side and the light receiving side as shown in FIG. 8 can be prevented from malfunctioning due to specular reflection, the configuration of FIG. Yes.

続いて、図8(c)のように、検出対象物が複屈折性を有する透明体である場合を考える。この場合、複屈折性を有する検出対象物T2を通過することで、垂直偏光B2は減衰するとともに検出対象物T2の複屈折性により楕円偏光B6となる。楕円偏光B6は、リフレクタ4で回帰反射することで、偏光度の異なる楕円偏光B7となる。楕円偏光B7は、検出対象物T2を通過することで、減衰するとともに検出対象物T2の複屈折性により偏光度の異なる楕円偏光B8となる。そして受光側偏光フィルタ5により、楕円偏光B8の一部、つまり水平方向の直線偏光成分B9のみが受光素子7で受光される。   Next, consider the case where the detection target is a transparent body having birefringence as shown in FIG. In this case, by passing through the detection target T2 having birefringence, the vertically polarized light B2 attenuates and becomes elliptically polarized light B6 due to the birefringence of the detection target T2. The elliptically polarized light B6 is retroreflected by the reflector 4 to become elliptically polarized light B7 having a different degree of polarization. The elliptically polarized light B7 is attenuated by passing through the detection target T2, and becomes elliptically polarized light B8 having a different degree of polarization due to the birefringence of the detection target T2. Then, the light receiving side polarizing filter 5 receives only a part of the elliptically polarized light B8, that is, the horizontal linearly polarized light component B9 by the light receiving element 7.

しかしながら、検出対象物T2での複屈折の量により、受光側偏光フィルタ5に向かう楕円偏光B8の状態が変わるため、受光素子7に入射する直線偏光成分B9の大きさも様々となる。つまり、検出対象物T2が無い場合の受光量と比較してもさほど受光量が減少しなかったり、場合によっては検出対象物T2が無い場合の受光量よりも受光量が大きくなったりさえする。この場合、リフレクタ形光電センサの誤判定を引き起こす。また、複屈折による影響は、検出対象物T2の向きにより異なるため、図8に示すような構成のリフレクタ形光電センサでは、複屈折性を有する検出対象物T2を安定して検出することが難しかった。   However, since the state of the elliptically polarized light B8 toward the light receiving side polarizing filter 5 changes depending on the amount of birefringence at the detection target T2, the size of the linearly polarized light component B9 incident on the light receiving element 7 varies. That is, the amount of received light does not decrease much compared to the amount of received light when there is no detection target T2, or the amount of received light is even greater than the amount of received light when there is no detection target T2. In this case, erroneous determination of the reflector photoelectric sensor is caused. In addition, since the influence of birefringence varies depending on the direction of the detection target T2, it is difficult to stably detect the detection target T2 having birefringence in the reflector photoelectric sensor configured as shown in FIG. It was.

そこで、特許文献1では、検出対象物で発生する鏡面反射光による悪影響を受けにくく、かつ、複屈折性を有する検出対象物を安定して検出するために、偏光フィルタと1/4波長板とから成る円偏光フィルタを、センサ本体及び回帰反射部に設けるようにした構成が記載されている。   Therefore, in Patent Document 1, in order to stably detect a detection target object that is not easily affected by specular reflection light generated by the detection target object and has birefringence, a polarizing filter, a quarter-wave plate, The structure which provided the circularly polarizing filter which consists of this to a sensor main body and a retroreflection part is described.

特許第4158828号公報Japanese Patent No. 4158828

特許文献1の上記構成の場合、円偏光フィルタを構成する偏光フィルタと1/4波長板の2つの部材の方向を精度良く合わせた上で、センサ本体に対してはこの円偏光フィルタを他部品との位置関係等を考慮しながら精密に組み込んでいく必要があった。つまり、組み立てるのが煩雑であった。また、センサ本体と回帰反射部の双方に円偏光フィルタを設ける必要があるので、この点でも組立が煩雑となり、コスト増になる可能性もあった。   In the case of the above configuration of Patent Document 1, the direction of the two members of the polarizing filter and the quarter wave plate constituting the circular polarizing filter are accurately aligned, and this circular polarizing filter is attached to the sensor body with other parts. It was necessary to incorporate it precisely considering the positional relationship with In other words, it was complicated to assemble. Moreover, since it is necessary to provide a circularly polarizing filter in both the sensor main body and the retroreflective portion, the assembly is complicated also in this respect, which may increase the cost.

この発明は、上記のような課題を解決するためになされたもので、組立が容易でコストを抑えられる構成によって、複屈折性を有する検出対象物を安定して検出することができるリフレクタ形光電センサを得ることを目的とする。   The present invention has been made in order to solve the above-described problems, and is a reflector photoelectric detector capable of stably detecting a detection object having birefringence by a structure that is easy to assemble and suppresses costs. The purpose is to obtain a sensor.

この発明に係るリフレクタ形光電センサは、光を発する投光素子と、投光素子により発せられた光が通過する投光側偏光フィルタと、投光側偏光フィルタと偏光方向が直交する受光側偏光フィルタと、受光側偏光フィルタを通過した光を受光する受光素子と、検出対象物が通過する領域を挟んで投光素子及び受光素子に対向し、入射する光を反射する反射部と、領域と反射部との間に設けられ、通過する光の偏光を解消する偏光解消部とを備えることを特徴とするものである。   The reflector type photoelectric sensor according to the present invention includes a light projecting element that emits light, a light projecting side polarizing filter through which light emitted by the light projecting element passes, and a light receiving side polarized light whose polarization direction is orthogonal to the light projecting side polarizing filter. A filter, a light-receiving element that receives light that has passed through the light-receiving side polarizing filter, a light-reflecting element that faces the light-projecting element and the light-receiving element across a region through which the detection object passes, and a region that reflects incident light; A depolarization unit is provided between the reflection unit and the polarization unit to depolarize light passing therethrough.

この発明によれば、組立が容易でコストを抑えられる構成によって、複屈折性を有する検出対象物を安定して検出することができる。   According to the present invention, it is possible to stably detect a detection object having birefringence by a configuration that is easy to assemble and can reduce costs.

この発明の実施の形態1に係るリフレクタ形光電センサの構成図であり、検出対象物が無い状態を示す。It is a block diagram of the reflector type photoelectric sensor which concerns on Embodiment 1 of this invention, and shows the state without a detection target object. この発明の実施の形態1に係るリフレクタ形光電センサの構成図であり、複屈折性を有する検出対象物が有る状態を示す。It is a block diagram of the reflector type photoelectric sensor which concerns on Embodiment 1 of this invention, and shows the state with the detection target object which has birefringence. この発明の実施の形態2に係るリフレクタ形光電センサの構成図であり、検出対象物が無い状態を示す。It is a block diagram of the reflector type photoelectric sensor which concerns on Embodiment 2 of this invention, and shows the state without a detection target object. この発明の実施の形態2に係るリフレクタ形光電センサの構成図であり、複屈折性を有する検出対象物が有る状態を示す。It is a block diagram of the reflector type photoelectric sensor which concerns on Embodiment 2 of this invention, and shows the state with the detection target object which has birefringence. この発明の実施の形態3に係るリフレクタ形光電センサの構成図であり、検出対象物が無い状態を示す。It is a block diagram of the reflector type photoelectric sensor which concerns on Embodiment 3 of this invention, and shows the state without a detection target object. この発明の実施の形態3に係るリフレクタ形光電センサの構成図であり、複屈折性を有する検出対象物が有る状態を示す。It is a block diagram of the reflector type photoelectric sensor which concerns on Embodiment 3 of this invention, and shows the state with the detection target object which has birefringence. この発明の実施の形態3に係るリフレクタ形光電センサの変形例を示す構成図である。It is a block diagram which shows the modification of the reflector type photoelectric sensor which concerns on Embodiment 3 of this invention. 従来のリフレクタ形光電センサの構成図である。It is a block diagram of the conventional reflector type photoelectric sensor. コーナーキューブリフレクタを構成するセルの性質を説明する図である。It is a figure explaining the property of the cell which constitutes a corner cube reflector.

実施の形態1.
図1に、この発明の実施の形態1に係るリフレクタ形光電センサの構成を示す。このリフレクタ形光電センサは、投光側である投光素子1と投光レンズ2と投光側偏光フィルタ3と、光を反射するリフレクタ4と、受光側である受光側偏光フィルタ5と受光レンズ6と受光素子7と、偏光を解消する偏光解消フィルム8とで構成される。つまり、図8に示した従来のリフレクタ形光電センサに、偏光解消フィルム8を追加したものとなっている。
Embodiment 1 FIG.
FIG. 1 shows the configuration of a reflector type photoelectric sensor according to Embodiment 1 of the present invention. The reflector type photoelectric sensor includes a light projecting element 1, a light projecting lens 2, a light projecting side polarizing filter 3, a light reflecting side reflector 4, a light receiving side polarizing filter 5, and a light receiving lens. 6, a light receiving element 7, and a depolarizing film 8 that depolarizes the polarized light. That is, the depolarization film 8 is added to the conventional reflector type photoelectric sensor shown in FIG.

投光素子1は、光を発するものであり、例えば発光ダイオードである。
投光レンズ2は、投光素子1からの光を集光して投光する。
投光側偏光フィルタ3は、垂直方向が偏光方向の偏光フィルタである。
リフレクタ4は、検出対象物が通過する領域Xを挟んで投光素子1及び受光素子7に対向して光を回帰反射するものであり、ここではコーナーキューブリフレクタとする。
The light projecting element 1 emits light, and is, for example, a light emitting diode.
The light projecting lens 2 collects and projects the light from the light projecting element 1.
The light projecting side polarizing filter 3 is a polarizing filter whose vertical direction is the polarization direction.
The reflector 4 recursively reflects light facing the light projecting element 1 and the light receiving element 7 across the region X through which the detection object passes, and is a corner cube reflector here.

受光側偏光フィルタ5は、水平方向が偏光方向の偏光フィルタである。つまり、投光側偏光フィルタ3の偏光方向と、受光側偏光フィルタ5の偏光方向は、直交している。なお、投光側偏光フィルタ3の偏光方向を水平方向、受光側偏光フィルタ5の偏光方向を垂直方向としてもよい。
受光レンズ6は、光を受光素子7に集光する。
受光素子7は、光を受光して電気信号を出力するものであり、例えばフォトダイオードである。
The light-receiving side polarizing filter 5 is a polarizing filter whose horizontal direction is the polarization direction. That is, the polarization direction of the light projecting side polarizing filter 3 and the polarization direction of the light receiving side polarizing filter 5 are orthogonal. Note that the polarization direction of the light projecting side polarizing filter 3 may be the horizontal direction, and the polarization direction of the light receiving side polarizing filter 5 may be the vertical direction.
The light receiving lens 6 condenses the light on the light receiving element 7.
The light receiving element 7 receives light and outputs an electrical signal, and is, for example, a photodiode.

偏光解消フィルム8は、通過する光の偏光を解消するものであり、複屈折性を有する材料で構成される。例えば、ポリカーボネート、ポリアリレート、ポリエチレンテレフタレート等である。強い複屈折性を有する材料であるほど望ましい。
偏光解消フィルム8は、リフレクタ4の不図示のカバーに組み込んで設けてもよいし、リフレクタ4に直接貼り付けてもよい。いずれにせよ、検出対象物が通過する領域Xとリフレクタ4との間に設けられていればよく、細かな設置精度等は不要である。
The depolarization film 8 depolarizes the light passing therethrough and is made of a material having birefringence. For example, polycarbonate, polyarylate, polyethylene terephthalate and the like. A material having strong birefringence is more desirable.
The depolarizing film 8 may be provided by being incorporated in a cover (not shown) of the reflector 4 or may be directly attached to the reflector 4. In any case, it is only necessary to be provided between the region X through which the detection object passes and the reflector 4, and fine installation accuracy and the like are unnecessary.

図1に示すリフレクタ形光電センサにおいて、偏光解消フィルム8及びリフレクタ4以外の構成が、センサ本体となる。また、リフレクタ4及び後述のリフレクタ41等の、投光素子1からの光を反射して受光素子7へ向かわせる部材が、反射部を構成する。また、偏光解消フィルム8が偏光解消部を構成する。   In the reflector type photoelectric sensor shown in FIG. 1, the configuration other than the depolarization film 8 and the reflector 4 is a sensor body. Further, members that reflect light from the light projecting element 1 and direct it toward the light receiving element 7 such as the reflector 4 and the reflector 41 described later constitute a reflecting portion. Moreover, the depolarization film 8 comprises a depolarization part.

続いて、図1のように構成されたリフレクタ形光電センサによる検出動作について説明する。
投光素子1が発した無偏光の光A1を、投光レンズ2で集光する。集光された無偏光の光A1は、垂直方向が偏光方向である投光側偏光フィルタ3により垂直方向の直線偏光成分のみが通過し、垂直偏光A2として偏光解消フィルム8に向かう。垂直偏光A2は、偏光解消フィルム8を通過すると偏光が解消され、無偏光の光A3となり、リフレクタ4に向かう。
Next, a detection operation by the reflector type photoelectric sensor configured as shown in FIG. 1 will be described.
The non-polarized light A 1 emitted from the light projecting element 1 is collected by the light projecting lens 2. The collected non-polarized light A1 passes only the linearly polarized light component in the vertical direction by the projection-side polarizing filter 3 whose vertical direction is the polarization direction, and travels to the depolarization film 8 as the vertical polarized light A2. When the vertically polarized light A <b> 2 passes through the depolarizing film 8, the polarized light is canceled and becomes non-polarized light A <b> 3 and travels toward the reflector 4.

無偏光の光A3は、リフレクタ4で回帰反射する。このとき、光A3は無偏光状態なので、コーナーキューブリフレクタであるリフレクタ4で反射しても無偏光状態のままである。反射後、無偏光の光A3は、偏光解消フィルム8を通過して、受光側偏光フィルタ5へ向かう。そして、無偏光の光A3は、水平方向が偏光方向である受光側偏光フィルタ5により水平方向の直線偏光成分のみが通過して受光レンズ6で集光され、水平偏光A4として受光素子7で受光される。   The unpolarized light A3 is retroreflected by the reflector 4. At this time, since the light A3 is in a non-polarized state, it remains in the non-polarized state even if it is reflected by the reflector 4 which is a corner cube reflector. After the reflection, the non-polarized light A3 passes through the depolarization film 8 and travels toward the light receiving side polarizing filter 5. The non-polarized light A3 passes through only the linearly polarized light component in the horizontal direction by the light receiving side polarizing filter 5 whose horizontal direction is the polarization direction, and is collected by the light receiving lens 6, and received by the light receiving element 7 as the horizontal polarized light A4. Is done.

以上、図1を用いて検出対象物が無いときについて説明をした。図2は、複屈折性を有する透明体である検出対象物T2が、領域Xを通過する際に光路内に置かれた状態を示す。図1を用いて既に説明した動作については、適宜省略する。このとき、垂直偏光A2は、検出対象物T2を通過することで、減衰するとともに検出対象物T2の複屈折性により楕円偏光A5となる。続いて楕円偏光A5は、偏光解消フィルム8を通過すると偏光が解消され、無偏光の光A6となり、リフレクタ4に向かう。   The case where there is no detection target has been described above with reference to FIG. FIG. 2 shows a state in which the detection target T2 that is a transparent body having birefringence is placed in the optical path when passing through the region X. The operations already described with reference to FIG. 1 are omitted as appropriate. At this time, the vertically polarized light A2 passes through the detection target T2, and is attenuated and becomes elliptically polarized light A5 due to the birefringence of the detection target T2. Subsequently, when the elliptically polarized light A5 passes through the depolarizing film 8, the polarized light is canceled, and the light becomes an unpolarized light A6 and travels toward the reflector 4.

無偏光の光A6は、リフレクタ4で回帰反射し、偏光解消フィルム8を通過して、更に検出対象物T2を通過する。無偏光の光A6は、検出対象物T2を通過することで、減衰する。検出対象物T2は複屈折性を有するが、光A6が無偏光であるので、光A6の偏光状態が乱されることは無い。つまり、無偏光の光A6が検出対象物T2を通過すると、減衰した無偏光の光A7となる。そして、無偏光の光A7は、水平方向が偏光方向である受光側偏光フィルタ5により水平方向の直線偏光成分のみが通過して受光レンズ6で集光され、水平偏光A8として受光素子7で受光される。   The non-polarized light A6 is retroreflected by the reflector 4, passes through the depolarization film 8, and further passes through the detection target T2. The non-polarized light A6 is attenuated by passing through the detection target T2. Although the detection target T2 has birefringence, the polarization state of the light A6 is not disturbed because the light A6 is unpolarized. That is, when the non-polarized light A6 passes through the detection target T2, it becomes attenuated non-polarized light A7. Then, the non-polarized light A7 passes through only the linearly polarized light component in the horizontal direction through the light receiving side polarization filter 5 whose horizontal direction is the polarization direction, and is collected by the light receiving lens 6, and received by the light receiving element 7 as the horizontal polarized light A8. Is done.

図2で受光素子7が受光する水平偏光A8は、検出対象物T2を通過するぶん減衰しており、図1で受光素子7が受光する水平偏光A4よりも光量が小さくなる。この光量差によって、リフレクタ形光電センサは、検出対象物の有無を判定することができる。
検出対象物T2とリフレクタ4との間に偏光解消フィルム8を設けることにより、一度検出対象物T2を通過して楕円偏光A5となっても、偏光解消フィルム8通過後は無偏光の光として偏光状態が乱れることなく受光側偏光フィルタ5へ入射するので、検出対象物T2による光の減衰が安定して反映された水平偏光A8を、受光素子7は受光する。
これに対し、図8(c)で示した従来のリフレクタ形光電センサは、検出対象物T2を通過して楕円偏光B6となった後も、リフレクタ4での反射及び検出対象物T2の通過の度に偏光状態が変化してしまうので、検出対象物T2による減衰の影響が水平偏光B9に安定して反映されなかった。従って、安定した検出ができなかった。
The horizontal polarized light A8 received by the light receiving element 7 in FIG. 2 is attenuated to the extent that it passes through the detection target T2, and the amount of light is smaller than the horizontal polarized light A4 received by the light receiving element 7 in FIG. Based on this light amount difference, the reflector photoelectric sensor can determine the presence or absence of an object to be detected.
By providing the depolarization film 8 between the detection target T2 and the reflector 4, even if it passes through the detection target T2 and becomes elliptically polarized light A5, it is polarized as non-polarized light after passing through the depolarization film 8. Since the light is incident on the light receiving side polarizing filter 5 without being disturbed, the light receiving element 7 receives the horizontally polarized light A8 in which the attenuation of light by the detection target T2 is stably reflected.
On the other hand, the conventional reflector type photoelectric sensor shown in FIG. 8 (c) does not reflect the reflection at the reflector 4 and the passage of the detection target T2 even after passing through the detection target T2 to become the elliptically polarized light B6. Since the polarization state changes every time, the influence of attenuation by the detection target T2 was not stably reflected in the horizontally polarized light B9. Therefore, stable detection could not be performed.

また、コーナーキューブリフレクタは、複数の平面板を交差させて成るセルを構成単位とし、このセルを複数個並べて作られている。そして、セルのどの部分で光が反射するかによって、偏光の変化の度合いが異なる。図9には、一例として垂直偏光が入射した場合に反射して戻ってくる際の光の偏光状態を、1つのセルについて示している。図示するように、1つのセルの中でも、反射して戻ってくる光が垂直偏光となる領域C1、反射して戻ってくる光が垂直方向から傾いた方向の偏光となる領域C2、反射して戻ってくる光が楕円偏光となる領域C3等が混在している。
このため、図8(a)で示した従来のリフレクタ形光電センサでセル1つのサイズよりも小さい物体を検出対象物とする場合、垂直偏光B2が反射した後の偏光の変化の度合いにムラが生じてしまい、安定した検出ができなかった。
一方、実施の形態1に係るリフレクタ形光電センサであれば、偏光解消フィルム8により偏光が解消されるためにムラが消え、小さい検出対象物でも安定した検出が可能となる。
In addition, the corner cube reflector is formed by arranging a plurality of cells, each of which includes a cell formed by intersecting a plurality of plane plates. The degree of change in polarization varies depending on which part of the cell reflects the light. FIG. 9 shows, as an example, the polarization state of light that is reflected back when vertically polarized light is incident on one cell. As shown in the figure, in one cell, the light reflected and returned is a region C1 in which the light is vertically polarized, and the light reflected and returned light is a region C2 in which the light is polarized in a direction inclined from the vertical direction. A region C3 where the returning light is elliptically polarized is mixed.
For this reason, when an object smaller than one cell size is set as the detection target in the conventional reflector type photoelectric sensor shown in FIG. 8A, the degree of change in polarization after the vertical polarization B2 is reflected is uneven. As a result, stable detection could not be performed.
On the other hand, in the case of the reflector type photoelectric sensor according to the first embodiment, since the polarization is eliminated by the depolarization film 8, unevenness disappears, and even a small detection object can be stably detected.

なお、偏光解消フィルム8をリフレクタ4の不図示のカバーに組み込んだり、リフレクタ4に直接貼り付けたりするのではなく、リフレクタ4と偏光解消フィルム8とを一体的に形成してもよい。つまり、上記した偏光解消フィルム8の材料を用いてコーナーキューブリフレクタを作り、当該リフレクタをリフレクタ4としてもよい。この場合、コーナーキューブリフレクタのセルを構成する平面板を、上記した偏光解消フィルム8の材料で形成する。なお、反射性を持たせるために、偏光解消フィルム8の材料で形成した平面板の裏面に、金属を蒸着させるなどの処理を施せばよい。
実施の形態2で後述するビーズタイプのリフレクタの場合も同様に、上記した偏光解消フィルム8の材料を用いたビーズを金属板等の表面に複数配置したビーズタイプのリフレクタを作り、当該リフレクタを使用すればよい。
Instead of incorporating the depolarizing film 8 into a cover (not shown) of the reflector 4 or attaching it directly to the reflector 4, the reflector 4 and the depolarizing film 8 may be formed integrally. That is, a corner cube reflector may be made using the material of the depolarizing film 8 described above, and the reflector may be used as the reflector 4. In this case, the flat plate which comprises the cell of a corner cube reflector is formed with the material of the depolarizing film 8 mentioned above. In addition, in order to give reflectivity, what is necessary is just to perform the process of vapor-depositing a metal on the back surface of the plane plate formed with the material of the depolarization film 8.
Similarly, in the case of the bead type reflector described later in the second embodiment, a bead type reflector in which a plurality of beads using the material of the depolarization film 8 described above is arranged on the surface of a metal plate or the like is used, and the reflector is used. do it.

以上のように、この発明の実施の形態1に係るリフレクタ形光電センサによれば、偏光解消フィルム8を設ける構成とすることで、複屈折性を有する透明体が検出対象物の場合であっても、当該検出対象物による光の減衰が安定して反映された光を、受光素子7は受光できる。
偏光解消フィルム8は、リフレクタ4の不図示のカバーに組み込んだり、リフレクタ4に直接貼り付けたりして設置するが、特に細かい精度が要求されるものではない。また、当初から偏光解消フィルム8の材料を用いてリフレクタ4を作成してしまえば、組立工程数が増えることはない。
偏光解消フィルム8としては、ポリエチレンテレフタレート等の安価なものを適宜選択することが可能である。また、センサ本体自体は、図8のような従来のものを流用できる。
As described above, according to the reflector type photoelectric sensor according to the first embodiment of the present invention, the configuration in which the depolarization film 8 is provided allows the transparent body having birefringence to be a detection target. In addition, the light receiving element 7 can receive light in which attenuation of light by the detection target is stably reflected.
The depolarization film 8 is installed in a cover (not shown) of the reflector 4 or directly attached to the reflector 4, but does not require particularly fine accuracy. Moreover, if the reflector 4 is produced using the material of the depolarization film 8 from the beginning, the number of assembly steps will not increase.
As the depolarizing film 8, an inexpensive material such as polyethylene terephthalate can be appropriately selected. The sensor body itself can be a conventional one as shown in FIG.

実施の形態2.
図3に、この発明の実施の形態2に係るリフレクタ形光電センサの構成を示す。このリフレクタ形光電センサは、実施の形態1で示したコーナーキューブリフレクタであるリフレクタ4に替えて、複数のビーズが配置されたビーズタイプのリフレクタ41を用いたものである。それ以外の構成については、図1に示したリフレクタ形光電センサと同様である。従って、図3において図1及び図2と同一または相当の部分については、同一の符号を付してその説明を省略する。
Embodiment 2. FIG.
FIG. 3 shows the configuration of a reflector type photoelectric sensor according to Embodiment 2 of the present invention. This reflector type photoelectric sensor uses a bead type reflector 41 in which a plurality of beads are arranged instead of the reflector 4 which is the corner cube reflector shown in the first embodiment. About another structure, it is the same as that of the reflector type photoelectric sensor shown in FIG. Therefore, in FIG. 3, the same or corresponding parts as those in FIGS. 1 and 2 are denoted by the same reference numerals and description thereof is omitted.

図8を用いて説明したように、コーナーキューブリフレクタには反射前後で光の偏光を変化させる性質がある。一方、ビーズタイプのリフレクタ41では、反射前後で光の偏光はほとんど変わらない。このため、図8(a)で示した従来のリフレクタ形光電センサにビーズタイプのリフレクタ41を用いた場合、垂直偏光B2はリフレクタ41で反射しても垂直偏光のままであり、その後受光側偏光フィルタ5でカットされる。つまり、検出対象物が無い場合でも、有る場合と同じような受光量が検出されて、検出対象物の有無判定が行えなかった。   As described with reference to FIG. 8, the corner cube reflector has the property of changing the polarization of light before and after reflection. On the other hand, in the bead-type reflector 41, the polarization of light hardly changes before and after reflection. For this reason, when the bead type reflector 41 is used in the conventional reflector type photoelectric sensor shown in FIG. 8A, the vertical polarization B2 remains vertical polarization even if it is reflected by the reflector 41, and then the light receiving side polarization. Cut by filter 5. That is, even when there is no detection target, the same amount of received light as in the case where there is a detection is detected, and the presence / absence of the detection target cannot be determined.

図3に示す実施の形態2に係るリフレクタ形光電センサでは、偏光解消フィルム8を通過して無偏光となった光A3が、リフレクタ41で回帰反射されて無偏光のまま受光側偏光フィルタ5に向かう。無偏光の光A3は、水平方向が偏光方向である受光側偏光フィルタ5により水平方向の直線偏光成分のみが通過して、水平偏光A4として受光素子7で受光される。光路上の各位置での光の偏光状態は、図1と図3とで同様である。   In the reflector type photoelectric sensor according to the second embodiment shown in FIG. 3, the light A3 that has passed through the depolarization film 8 and has become non-polarized light is recursively reflected by the reflector 41 and remains unpolarized in the light-receiving side polarizing filter 5. Head. The non-polarized light A3 passes through only the linearly polarized light component in the horizontal direction by the light receiving side polarization filter 5 whose horizontal direction is the polarization direction, and is received by the light receiving element 7 as the horizontally polarized light A4. The polarization state of light at each position on the optical path is the same in FIGS.

図4は、複屈折性を有する透明体である検出対象物T2が、領域Xを通過する際に光路内に置かれた状態を示す。この場合は、図2を用いて説明したのと同様に、無偏光の光A6がリフレクタ41に向かう。そして、この無偏光の光A6がリフレクタ41で無偏光のまま回帰反射し、最終的に図2を用いて説明したのと同様に、水平偏光A8が受光素子7で受光される。
図4で受光素子7が受光する水平偏光A8は、検出対象物T2を通過するぶん減衰しており、図3で受光素子7が受光する水平偏光A4よりも光量が小さくなる。この光量差によって、リフレクタ41で構成されたリフレクタ形光電センサは、検出対象物の有無を判定することができる。このように、ビーズタイプのリフレクタ41を用いた検出動作を行うことができる。
FIG. 4 shows a state in which the detection target T2 that is a transparent body having birefringence is placed in the optical path when passing through the region X. In this case, the unpolarized light A6 travels toward the reflector 41 as described with reference to FIG. Then, the non-polarized light A6 is recursively reflected by the reflector 41 without being polarized, and finally the horizontally polarized light A8 is received by the light receiving element 7 as described with reference to FIG.
The horizontal polarized light A8 received by the light receiving element 7 in FIG. 4 is attenuated to the extent that it passes through the detection target T2, and the amount of light is smaller than the horizontal polarized light A4 received by the light receiving element 7 in FIG. Based on this light amount difference, the reflector type photoelectric sensor configured by the reflector 41 can determine the presence or absence of the detection target. Thus, the detection operation using the bead type reflector 41 can be performed.

以上のように、この発明の実施の形態2に係るリフレクタ形光電センサによれば、実施の形態1と同様の効果を得ることができる。また、偏光解消フィルム8を設けた場合、図8で示した従来のリフレクタ形光電センサでは使用することができなかったビーズタイプのリフレクタ41を用いても、検出動作が可能であることを実施の形態2で示した。   As described above, according to the reflector photoelectric sensor according to the second embodiment of the present invention, the same effect as in the first embodiment can be obtained. In addition, when the depolarizing film 8 is provided, it is possible to perform the detection operation using the bead type reflector 41 that cannot be used in the conventional reflector type photoelectric sensor shown in FIG. Shown in Form 2.

実施の形態3.
図5に、この発明の実施の形態3に係るリフレクタ形光電センサの構成を示す。このリフレクタ形光電センサでは、投光側円偏光フィルタ31及び受光側円偏光フィルタ51という偏光方向が同じ円偏光フィルタを設けて円偏光を用いる点で、実施の形態1及び実施の形態2と異なる。それ以外の構成については、図1〜図4に示したリフレクタ形光電センサと同様である。従って、図5において図1〜図4と同一または相当の部分については、同一の符号を付してその説明を省略する。
Embodiment 3 FIG.
FIG. 5 shows a configuration of a reflector type photoelectric sensor according to Embodiment 3 of the present invention. This reflector type photoelectric sensor is different from the first and second embodiments in that circularly polarized light is used by providing a circularly polarizing filter having the same polarization direction as the light emitting side circularly polarizing filter 31 and the light receiving side circularly polarizing filter 51. . About another structure, it is the same as that of the reflector type photoelectric sensor shown in FIGS. Therefore, in FIG. 5, the same or corresponding parts as those in FIGS. 1 to 4 are denoted by the same reference numerals and the description thereof is omitted.

投光レンズ2で集光された無偏光の光A1は、円偏光フィルタである投光側円偏光フィルタ31を通過し、円偏光A9となり偏光解消フィルム8に向かう。円偏光A9は、偏光解消フィルム8を通過すると偏光が解消され、無偏光の光A10となり、リフレクタ4に向かう。
無偏光の光A10は、リフレクタ4で回帰反射する。そして無偏光の光A10は、偏光解消フィルム8を通過して、受光側円偏光フィルタ51へ向かう。そして、無偏光の光A3は、円偏光フィルタである受光側円偏光フィルタ51を通過して受光レンズ6で集光され、円偏光A11として受光素子7で受光される。
The non-polarized light A1 collected by the light projecting lens 2 passes through the light projecting side circular polarization filter 31 that is a circular polarization filter, becomes circularly polarized light A9, and travels toward the depolarization film 8. When the circularly polarized light A <b> 9 passes through the depolarization film 8, the polarized light is removed, and the light becomes unpolarized light A <b> 10 and travels toward the reflector 4.
The non-polarized light A10 is recursively reflected by the reflector 4. The unpolarized light A <b> 10 passes through the depolarization film 8 and travels toward the light-receiving side circularly polarizing filter 51. The non-polarized light A3 passes through the light receiving side circular polarizing filter 51, which is a circular polarizing filter, and is collected by the light receiving lens 6, and is received by the light receiving element 7 as circularly polarized light A11.

図6は、複屈折性を有する透明体である検出対象物T2が、領域Xを通過する際に光路内に置かれた状態を示す。図5を用いて既に説明した動作については、適宜省略する。このとき、円偏光A9は、検出対象物T2を通過することで、減衰するとともに検出対象物T2の複屈折性により偏光度が変化した光A12となる。この光A12は、例えば図示のように楕円偏光であり、偏光解消フィルム8を通過すると偏光が解消され、無偏光の光A13となり、リフレクタ4に向かう。   FIG. 6 shows a state in which the detection target T2 that is a transparent body having birefringence is placed in the optical path when passing through the region X. The operations already described with reference to FIG. 5 are omitted as appropriate. At this time, the circularly polarized light A9 is attenuated by passing through the detection target T2, and becomes the light A12 whose polarization degree is changed due to the birefringence of the detection target T2. The light A12 is, for example, elliptically polarized light as shown in the figure. When the light A12 passes through the depolarization film 8, the light is depolarized to become non-polarized light A13 and travels toward the reflector 4.

無偏光の光A13は、リフレクタ4で回帰反射し、偏光解消フィルム8を通過して、更に検出対象物T2を通過する。無偏光の光A13は、検出対象物T2を通過することで、減衰する。検出対象物T2は複屈折性を有するが、光A13が無偏光であるので、光A13の偏光状態が乱されることは無い。つまり、無偏光の光A13が検出対象物T2を通過すると、減衰した無偏光の光A14となる。そして、無偏光の光A14は、円偏光フィルタである受光側円偏光フィルタ51を通過して受光レンズ6で集光され、円偏光A15として受光素子7で受光される。   The unpolarized light A13 is retroreflected by the reflector 4, passes through the depolarization film 8, and further passes through the detection target T2. The non-polarized light A13 is attenuated by passing through the detection target T2. Although the detection target T2 has birefringence, the polarization state of the light A13 is not disturbed because the light A13 is non-polarized light. That is, when the non-polarized light A13 passes through the detection target T2, it becomes attenuated non-polarized light A14. The non-polarized light A14 passes through the light receiving side circular polarizing filter 51, which is a circular polarizing filter, and is collected by the light receiving lens 6 and received by the light receiving element 7 as circularly polarized light A15.

図6で受光素子7が受光する円偏光A15は、検出対象物T2を通過するぶん減衰しており、図5で受光素子7が受光する円偏光A11よりも光量が小さくなる。この光量差によって、リフレクタ形光電センサは、検出対象物の有無を判定することができる。このように、円偏光を用いた検出動作を行うことができる。   The circularly polarized light A15 received by the light receiving element 7 in FIG. 6 is attenuated to the extent that it passes through the detection target T2, and the amount of light is smaller than the circularly polarized light A11 received by the light receiving element 7 in FIG. Based on this light amount difference, the reflector photoelectric sensor can determine the presence or absence of an object to be detected. Thus, the detection operation using circularly polarized light can be performed.

なお、投光及び受光に円偏光を用いる場合は、図7に示すように同軸光学系のリフレクタ形光電センサとしてもよい。この場合、投光レンズ2と受光レンズ6は投受光レンズ9に統合され、また、投光側円偏光フィルタ31と受光側円偏光フィルタ51は円偏光フィルタ10に統合される。円偏光フィルタ10には、例えばコレステリック液晶を用いて構成されたものを用いる。そして、円偏光フィルタ10を偏光解消フィルム8とで挟む位置に、ハーフミラー11が設けられる。   When circularly polarized light is used for light projection and light reception, a reflector type photoelectric sensor of a coaxial optical system may be used as shown in FIG. In this case, the light projecting lens 2 and the light receiving lens 6 are integrated into the light projecting / receiving lens 9, and the light projecting side circular polarizing filter 31 and the light receiving side circular polarizing filter 51 are integrated into the circular polarizing filter 10. As the circularly polarizing filter 10, for example, a filter configured using cholesteric liquid crystal is used. A half mirror 11 is provided at a position where the circularly polarizing filter 10 is sandwiched between the depolarizing film 8.

投光素子1が発した無偏光の光A1は、ハーフミラー11を通過して投受光レンズ9に入り、円偏光フィルタ10を通過し円偏光A9となり偏光解消フィルム8へ向かう。また、リフレクタ4で回帰反射し偏光解消フィルム8を通過した無偏光の光A10は、円偏光フィルタ10及び投受光レンズ9を通過して円偏光A11として戻り、ハーフミラー11で反射して、受光素子7に入る。このように、投光軸と受光軸をほぼ同軸にできる。なお、投光素子1が発した無偏光の光A1がハーフミラー11で反射し投受光レンズ9に向かい、投受光レンズ9から受光素子7に向かう円偏光A11がハーフミラー11を通過するように、投光素子1と受光素子7とハーフミラー11とを配置してもよい。   The non-polarized light A1 emitted from the light projecting element 1 passes through the half mirror 11, enters the light projecting / receiving lens 9, passes through the circular polarizing filter 10, becomes circularly polarized light A9, and travels toward the depolarization film 8. Further, the non-polarized light A10 that has been retro-reflected by the reflector 4 and passed through the depolarization film 8 passes through the circular polarizing filter 10 and the light projecting / receiving lens 9 and returns as circularly polarized light A11, and is reflected by the half mirror 11 and received. Element 7 is entered. Thus, the light projecting axis and the light receiving axis can be made substantially coaxial. The non-polarized light A1 emitted from the light projecting element 1 is reflected by the half mirror 11 toward the light projecting / receiving lens 9, and the circularly polarized light A11 from the light projecting / receiving lens 9 toward the light receiving element 7 passes through the half mirror 11. The light projecting element 1, the light receiving element 7, and the half mirror 11 may be disposed.

また、実施の形態3に係るリフレクタ形光電センサに対しても、コーナーキューブリフレクタであるリフレクタ4に替えて、ビーズタイプのリフレクタ41を用いてよい。   Also for the reflector photoelectric sensor according to the third embodiment, a bead type reflector 41 may be used instead of the reflector 4 which is a corner cube reflector.

以上のように、この発明の実施の形態3に係るリフレクタ形光電センサによれば、実施の形態1と同様の効果を得ることができる。また、偏光解消フィルム8を設けた場合、実施の形態1で示した直線偏光だけでなく、この実施の形態3のように円偏光を用いても検出動作が可能であることを示した。   As described above, according to the reflector photoelectric sensor according to the third embodiment of the present invention, the same effect as in the first embodiment can be obtained. In addition, when the depolarizing film 8 is provided, the detection operation can be performed not only with the linearly polarized light shown in the first embodiment but also with circularly polarized light as in the third embodiment.

なお、本願発明はその発明の範囲内において、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。   In the present invention, within the scope of the invention, any combination of the embodiments, or any modification of any component in each embodiment, or omission of any component in each embodiment is possible. .

1 投光素子
2 投光レンズ
3 投光側偏光フィルタ
4 リフレクタ
5 受光側偏光フィルタ
6 受光レンズ
7 受光素子
8 偏光解消フィルム
9 投受光レンズ
10 円偏光フィルタ
11 ハーフミラー
31 投光側円偏光フィルタ
41 リフレクタ
51 受光側円偏光フィルタ
DESCRIPTION OF SYMBOLS 1 Light projecting element 2 Light projecting lens 3 Light projecting side polarizing filter 4 Reflector 5 Light receiving side polarizing filter 6 Light receiving lens 7 Light receiving element 8 Depolarization film 9 Light projecting / receiving lens 10 Circular polarizing filter 11 Half mirror 31 Light projecting side circular polarizing filter 41 Reflector 51 Light-receiving side circular polarization filter

Claims (5)

光を発する投光素子と、
前記投光素子により発せられた光が通過する投光側偏光フィルタと、
前記投光側偏光フィルタと偏光方向が直交する受光側偏光フィルタと、
前記受光側偏光フィルタを通過した光を受光する受光素子と、
検出対象物が通過する領域を挟んで前記投光素子及び前記受光素子に対向し、入射する光を反射する反射部と、
前記領域と前記反射部との間に設けられ、通過する光の偏光を解消する偏光解消部とを備えることを特徴とするリフレクタ形光電センサ。
A light emitting element that emits light;
A light projecting side polarizing filter through which the light emitted by the light projecting element passes;
A light receiving side polarizing filter whose polarization direction is orthogonal to the light emitting side polarizing filter;
A light receiving element that receives light that has passed through the light receiving side polarizing filter;
A reflecting portion that faces the light projecting element and the light receiving element across a region through which a detection object passes, and reflects incident light;
A reflector-type photoelectric sensor comprising a depolarization unit that is provided between the region and the reflection unit and depolarizes light passing therethrough.
光を発する投光素子と、
前記投光素子により発せられた光が通過する投光側円偏光フィルタと、
受光側円偏光フィルタと、
前記受光側円偏光フィルタを通過した光を受光する受光素子と、
検出対象物が通過する領域を挟んで前記投光素子及び前記受光素子に対向し、入射する光を反射する反射部と、
前記領域と前記反射部との間に設けられ、通過する光の偏光を解消する偏光解消部とを備えることを特徴とするリフレクタ形光電センサ。
A light emitting element that emits light;
A light-projecting side circularly polarizing filter through which light emitted by the light projecting element passes;
A light-receiving side circular polarization filter;
A light receiving element that receives light that has passed through the light receiving side circularly polarizing filter;
A reflecting portion that faces the light projecting element and the light receiving element across a region through which a detection object passes, and reflects incident light;
A reflector-type photoelectric sensor comprising a depolarization unit that is provided between the region and the reflection unit and depolarizes light passing therethrough.
前記反射部は、入射する光を回帰反射させるコーナーキューブリフレクタ又はビーズタイプのリフレクタであることを特徴とする請求項1または請求項2記載のリフレクタ形光電センサ。   The reflector type photoelectric sensor according to claim 1, wherein the reflection part is a corner cube reflector or a bead type reflector that recursively reflects incident light. 前記反射部と前記偏光解消部は、一体的に形成されていることを特徴とする請求項1から請求項3のうちのいずれか1項記載のリフレクタ形光電センサ。   The reflector type photoelectric sensor according to any one of claims 1 to 3, wherein the reflection portion and the depolarization portion are integrally formed. 円偏光フィルタを前記偏光解消部とで挟む位置に設けられ、前記投光素子により発せられた光と前記受光素子が受光する光のうちの一方を通過させ、他方を反射するハーフミラーを備え、
前記円偏光フィルタは、前記投光側円偏光フィルタ及び前記受光側円偏光フィルタとして機能することを特徴とする請求項2記載のリフレクタ形光電センサ。
A circular mirror is provided at a position sandwiched between the depolarization unit, and includes a half mirror that transmits one of the light emitted by the light projecting element and the light received by the light receiving element and reflects the other,
The reflector type photoelectric sensor according to claim 2, wherein the circularly polarizing filter functions as the light projecting side circularly polarizing filter and the light receiving side circularly polarizing filter.
JP2015054819A 2015-03-18 2015-03-18 Reflector-type photoelectronic sensor Pending JP2016177875A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015054819A JP2016177875A (en) 2015-03-18 2015-03-18 Reflector-type photoelectronic sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015054819A JP2016177875A (en) 2015-03-18 2015-03-18 Reflector-type photoelectronic sensor

Publications (1)

Publication Number Publication Date
JP2016177875A true JP2016177875A (en) 2016-10-06

Family

ID=57069314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015054819A Pending JP2016177875A (en) 2015-03-18 2015-03-18 Reflector-type photoelectronic sensor

Country Status (1)

Country Link
JP (1) JP2016177875A (en)

Similar Documents

Publication Publication Date Title
JP7124125B2 (en) Protective film and method and apparatus for cutting protective film
JP2008217023A (en) Polarizer based detector
JP2008112629A (en) Regressive reflection type photoelectric sensor, sensor body and regressive reflection part of regressive reflection type photoelectric sensor
EP2672295B1 (en) Photoelectric sensor
JP5336029B2 (en) Retroreflective photoelectric switch
CN111868563B (en) Sensor at lower part of display
JP3578214B2 (en) Retro-reflective photoelectric sensor
JP5251641B2 (en) Photoelectric sensor
JP2016177875A (en) Reflector-type photoelectronic sensor
US20210011162A1 (en) Polarization Filtering in LiDAR System
JP4114771B2 (en) Reflector and reflector reflective photoelectric switch
WO2014103437A1 (en) Reflector, reflector-based reflective photoelectric sensor and multiple-optical-axis photoelectric sensor
JP7497122B2 (en) Optical Displacement Sensor
JP2001216877A (en) Reflector reflection-type photoelectric sensor
CN217637390U (en) Optical sensor
JP2015115186A (en) Photoelectric switch
JP2015115182A (en) Photoelectric switch and object detection system
CN214470935U (en) Mirror reflection type photoelectric sensor and system
JP2002245912A (en) Recurrent reflection plate with phase difference plate, photoelectric switch, and received light amount adjusting method
JPS63254774A (en) Reflecting type photoelectric switch
JP2002246636A (en) Coaxial recursive reflection type photoelectric switch
US11598629B2 (en) Optical displacement sensor
JP6269015B2 (en) Photoelectric sensor head
JP2015115189A (en) Photoelectric switch and object detection system
KR20160017718A (en) Optical device of providing parallel output beams