JP6269015B2 - Photoelectric sensor head - Google Patents

Photoelectric sensor head Download PDF

Info

Publication number
JP6269015B2
JP6269015B2 JP2013258219A JP2013258219A JP6269015B2 JP 6269015 B2 JP6269015 B2 JP 6269015B2 JP 2013258219 A JP2013258219 A JP 2013258219A JP 2013258219 A JP2013258219 A JP 2013258219A JP 6269015 B2 JP6269015 B2 JP 6269015B2
Authority
JP
Japan
Prior art keywords
light
light receiving
sensor head
reflected
photoelectric sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013258219A
Other languages
Japanese (ja)
Other versions
JP2015115278A (en
Inventor
謙治 村田
謙治 村田
木村 和哉
和哉 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corp filed Critical Omron Corp
Priority to JP2013258219A priority Critical patent/JP6269015B2/en
Publication of JP2015115278A publication Critical patent/JP2015115278A/en
Application granted granted Critical
Publication of JP6269015B2 publication Critical patent/JP6269015B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Switches Operated By Changes In Physical Conditions (AREA)

Description

本発明は光電センサヘッドに関し、特に同軸式の回帰反射型光電センサのためのセンサヘッドに関する。   The present invention relates to a photoelectric sensor head, and more particularly to a sensor head for a coaxial retroreflection photoelectric sensor.

物体の有無の検出に用いられる光電センサとして、光の反射を利用した反射型光電センサが知られている。反射型光電センサの中には、回帰反射型光電センサと呼ばれるものがある。
回帰反射型光電センサは、一般に、発光素子及び受光素子を内蔵したセンサヘッドと、回帰反射板(以下、リフレクタとも呼ぶ)を備える。回帰反射型光電センサの使用に際しては、投受光器とリフレクタとを対向して配置する。発光素子から出た光の光路上に物体が存在しない場合、その光はリフレクタで反射して受光素子に入射する。一方、光路上に物体が存在する場合、発光素子から出た光はその物体によって遮られるため受光素子に入射する光の量が減少する。すなわち光路上に物体が存在するか否かによって受光素子の受光量が異なる。回帰反射型光電センサは、この受光量の違いに基づいて物体の有無を検出する。
As a photoelectric sensor used for detecting the presence or absence of an object, a reflection photoelectric sensor using light reflection is known. Among reflective photoelectric sensors, there is a so-called regressive reflective photoelectric sensor.
A retroreflective photoelectric sensor generally includes a sensor head incorporating a light emitting element and a light receiving element, and a retroreflective plate (hereinafter also referred to as a reflector). When using the retro-reflective photoelectric sensor, the light emitter / receiver and the reflector are arranged to face each other. When there is no object on the optical path of the light emitted from the light emitting element, the light is reflected by the reflector and enters the light receiving element. On the other hand, when an object is present on the optical path, the light emitted from the light emitting element is blocked by the object, so that the amount of light incident on the light receiving element is reduced. That is, the amount of light received by the light receiving element varies depending on whether an object is present on the optical path. The retroreflective photoelectric sensor detects the presence or absence of an object based on the difference in the amount of received light.

更に、回帰反射型光電センサには、2眼式のものと同軸式とがあり、同軸式の場合、投光路と受光路が略一致しており、偏光ビームスプリッタ(PBS)等の偏光手段によって、投光路と受光路を分離する。   Further, the retroreflective photoelectric sensor includes a twin-lens type and a coaxial type, and in the case of the coaxial type, the light projecting path and the light receiving path are substantially coincided with each other by a polarizing means such as a polarizing beam splitter (PBS). Separate the light projecting path and the light receiving path.

特開2009−289739号公報JP 2009-289739 A

同軸式の回帰反射型光電センサの場合、投光路と受光路とが物理的に分離されていないため、偏光手段により光路が分離されるが、投光器からの光が一部迷光となってセンサヘッド内で反射し、受光素子に入射する。
迷光の光量は小さいため、通常の物体の有無を簡易的に判別する際には余り影響はない。しかし、物体が例えば透明体である場合、その有無による受光量の差は微小である。よって、迷光が受光量に影響を与えてしまい、SN比を悪くなる。その結果、光電センサによる検出精度の安定性に影響する。
In the case of a coaxial retroreflective photoelectric sensor, the light projecting path and the light receiving path are not physically separated, so the light path is separated by the polarizing means, but the light from the projector partially becomes stray light and the sensor head And is incident on the light receiving element.
Since the amount of stray light is small, there is not much influence when simply determining the presence or absence of a normal object. However, when the object is, for example, a transparent body, the difference in the amount of received light due to the presence or absence is very small. Therefore, stray light affects the amount of received light, and the SN ratio is deteriorated. As a result, it affects the stability of detection accuracy by the photoelectric sensor.

本発明の目的は、光電センサの検出精度を高めることに有効な光電センサヘッドを提供することである。   An object of the present invention is to provide a photoelectric sensor head effective in increasing the detection accuracy of the photoelectric sensor.

本発明の一つの観点によれば、光電センサヘッドは、光を出射する投光部、光分離部、受光部、反射部、及び反射面を有する。光分離部は、投光部からの出射光の光路上に設けられ、出射光と、出射光が外部で反射されて戻る光であって出射光と同軸の光路を形成する反射光とが入射する。受光部は、光分離部により出射光と同軸の光路より分離された反射光を受光する受光面を有する。反射部は、受光面に対向する位置に配され、出射光の光路外に向かう迷光を反射させる。反射面は、反射部に形成され、反射した迷光が受光面の外側方向に進行するように受光面に対し所定の角度を有する。   According to one aspect of the present invention, the photoelectric sensor head includes a light projecting unit that emits light, a light separating unit, a light receiving unit, a reflecting unit, and a reflecting surface. The light separating unit is provided on the optical path of the outgoing light from the light projecting unit, and the outgoing light and the reflected light that is reflected and returned from the outside and forms a coaxial optical path with the outgoing light are incident. To do. The light receiving unit has a light receiving surface that receives the reflected light separated from the optical path coaxial with the outgoing light by the light separating unit. The reflection unit is disposed at a position facing the light receiving surface and reflects stray light that goes out of the optical path of the emitted light. The reflection surface is formed in the reflection portion and has a predetermined angle with respect to the light receiving surface so that the reflected stray light travels in the outward direction of the light receiving surface.

本発明に係る光電センサヘッドは、光電センサヘッド内において反射する迷光が受光部に入光する量を削減できるため、光電センサによる物体検出の精度を向上させることができる。   Since the photoelectric sensor head according to the present invention can reduce the amount of stray light reflected in the photoelectric sensor head that enters the light receiving unit, the accuracy of object detection by the photoelectric sensor can be improved.

一実施の形態に係る光電センサの全体の概略構成図。1 is a schematic configuration diagram of an entire photoelectric sensor according to an embodiment. FIG. 同光電センサのセンサヘッドの内部を一部省略して示す構成図。The block diagram which abbreviate | omits and shows the inside of the sensor head of the photoelectric sensor. 同光電センサのセンサヘッドのケースの斜視図。The perspective view of the case of the sensor head of the photoelectric sensor. 比較例による光電センサのセンサヘッドの内部における光路を示す図。The figure which shows the optical path in the inside of the sensor head of the photoelectric sensor by a comparative example. 本実施の形態に係る光電センサのセンサヘッド内部における光路を示す図。The figure which shows the optical path in the sensor head of the photoelectric sensor which concerns on this Embodiment. 同光電センサの反射部の構造を模式的に示す図。The figure which shows typically the structure of the reflection part of the photoelectric sensor. 同反射部の位置と迷光の光路を概略的に示す図。The figure which shows schematically the position of the said reflection part, and the optical path of a stray light. 同反射部の構造を説明するための図。The figure for demonstrating the structure of the reflection part. 変形例1に係る反射部の構造を模式的に示す図。The figure which shows the structure of the reflection part which concerns on the modification 1 typically. 変形例2に係る反射部の構造を模式的に示す図。The figure which shows the structure of the reflection part which concerns on the modification 2 typically. 変形例3に係る反射部の構造を模式的に示す図。The figure which shows the structure of the reflection part which concerns on the modification 3 typically. 変形例4に係る反射部の構造を模式的に示す図。The figure which shows the structure of the reflection part which concerns on the modification 4 typically.

以下、適宜図面を参照しながら、実施の形態を詳細に説明する。但し、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明や実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が不必要に冗長になるのを避け、当業者の理解を容易にするためである。
なお、当業者が本開示を十分に理解するために添付図面および以下の説明を提供するのであって、これらによって特許請求の範囲に記載の主題を限定することを意図するものではない。
Hereinafter, embodiments will be described in detail with reference to the drawings as appropriate. However, more detailed description than necessary may be omitted. For example, detailed descriptions of already well-known matters and repeated descriptions for substantially the same configuration may be omitted. This is to avoid the following description from becoming unnecessarily redundant and to facilitate understanding by those skilled in the art.
In addition, in order for those skilled in the art to provide a thorough understanding of the present disclosure, the accompanying drawings and the following description are provided, and are not intended to limit the subject matter described in the claims.

(実施の形態)
[1−1 構成]
[1−1−1 光電センサの構成]
図1は、本発明の一実施の形態に係る光電センサの全体構成を概略的に示す。光電センサ1は、センサヘッド10(光電センサヘッドの一例)と、リフレクタ30と、ケーブル40と、アンプユニット50とを備える。光電センサ1は、投光路と受光路とがセンサヘッド10の内部で光学素子(偏光ビームスプリッタ、ハーフミラー等)により分離される、いわゆる同軸回帰反射型光電センサである。
(Embodiment)
[1-1 Configuration]
[1-1-1 Configuration of Photoelectric Sensor]
FIG. 1 schematically shows the overall configuration of a photoelectric sensor according to an embodiment of the present invention. The photoelectric sensor 1 includes a sensor head 10 (an example of a photoelectric sensor head), a reflector 30, a cable 40, and an amplifier unit 50. The photoelectric sensor 1 is a so-called coaxial retroreflective photoelectric sensor in which a light projecting path and a light receiving path are separated by an optical element (polarizing beam splitter, half mirror, etc.) inside the sensor head 10.

センサヘッド10は、後述するように投光部と受光部とを備え、リフレクタ30との間において、投光部からの出射光LPと受光部への反射光LRを含む光路を形成する。リフレクタ30は、例えば多数のコーナーキューブが配置された回帰反射板であり、一定の検出距離を置いてセンサヘッド10に対向して配置される。対向して配置されたセンサヘッド10とリフレクタ30との間には、出射光LPと反射光LRの光路が形成される。検出物体Sは、同光路を横切るように配された移送路上を通過する。センサヘッド10は、電源ラインや信号ライン等が一体化されたケーブル40を介してアンプユニット50に接続される。アンプユニット50は、増幅部、制御部及び電源部を備え、センサヘッド10からの信号を受信すると共に、センサヘッド10に対し電源部より駆動電圧を供給する。
なお、図示例ではセンサヘッド10とアンプユニット50は分離しているが、アンプユニット50はその一部又は全部がセンサヘッド10に内蔵されていてもよい。
As will be described later, the sensor head 10 includes a light projecting unit and a light receiving unit, and forms an optical path including the emitted light LP from the light projecting unit and the reflected light LR to the light receiving unit with the reflector 30. The reflector 30 is, for example, a retroreflective plate in which a large number of corner cubes are arranged, and is arranged to face the sensor head 10 with a certain detection distance. Between the sensor head 10 and the reflector 30 disposed so as to face each other, an optical path of the emitted light LP and the reflected light LR is formed. The detection object S passes on a transfer path arranged so as to cross the optical path. The sensor head 10 is connected to the amplifier unit 50 via a cable 40 in which a power supply line, a signal line, and the like are integrated. The amplifier unit 50 includes an amplifying unit, a control unit, and a power supply unit. The amplifier unit 50 receives a signal from the sensor head 10 and supplies a driving voltage to the sensor head 10 from the power supply unit.
In the illustrated example, the sensor head 10 and the amplifier unit 50 are separated, but a part or all of the amplifier unit 50 may be built in the sensor head 10.

[1−1−2 センサヘッドの構成]
図2は、センサヘッド10の内部構成を一部省略して示す。センサヘッド10は、ケース11と、ケース11内に設けられた発光素子13と、投光レンズ14と、偏光ビームスプリッタ17(光分離部の一例)と、受光レンズ15と、受光素子16と、投受光口18と、本実施形態の特徴である反射部19と、を備える。発光素子13と投光レンズ14は投光部21(投光部の一例)を構成する。受光レンズ15と受光素子16は受光部22(受光部の一例)を構成する。
[1-1-2 Configuration of sensor head]
FIG. 2 shows the sensor head 10 with a part of the internal configuration omitted. The sensor head 10 includes a case 11, a light emitting element 13 provided in the case 11, a light projecting lens 14, a polarization beam splitter 17 (an example of a light separation unit), a light receiving lens 15, a light receiving element 16, The light projecting / receiving port 18 and the reflecting portion 19 which is a feature of the present embodiment are provided. The light emitting element 13 and the light projecting lens 14 constitute a light projecting unit 21 (an example of a light projecting unit). The light receiving lens 15 and the light receiving element 16 constitute a light receiving unit 22 (an example of a light receiving unit).

ケース11は、図3に示すように、黒色の樹脂材料により一体成形され、センサヘッド10の各部品を被覆する。また、同図に示すように、ケース11の内壁の一部においては、投受光口18の近傍であって受光部22に対向する位置に反射部19が形成される。
発光素子13は、レーザ光を発光するレーザダイオード等から構成され、出射光LPを発光する。出射光LPは、投光レンズ14及び偏光ビームスプリッタ17を通過して、投受光口18よりセンサヘッド10の外部に向けて出射される。投光レンズ14は、発光素子13の前方(投光側)に配される。
As shown in FIG. 3, the case 11 is integrally formed of a black resin material and covers each component of the sensor head 10. Further, as shown in the figure, in a part of the inner wall of the case 11, a reflection portion 19 is formed at a position near the light projecting / receiving port 18 and facing the light receiving portion 22.
The light emitting element 13 is composed of a laser diode or the like that emits laser light, and emits outgoing light LP. The emitted light LP passes through the light projecting lens 14 and the polarization beam splitter 17 and is emitted from the light projecting / receiving port 18 toward the outside of the sensor head 10. The light projecting lens 14 is disposed in front of the light emitting element 13 (light projecting side).

偏光ビームスプリッタ17は、出射光LPの光路上であって投光レンズ14の前方に配される。偏光ビームスプリッタ17は、発光素子13から出射された出射光LPの光路と、出射光LPがリフレクタ30に反射して戻る光である反射光LRの光路とを分離させる光学素子である。なお、偏光ビームスプリッタ17は、ハーフミラーに代えてもよい。
受光レンズ15は、偏光ビームスプリッタ17に対向する位置に配され、出射光LPの出射方向にほぼ直交して配される。受光素子16は、フォトダイオードやフォトトランジスタ等から構成され、受光レンズ15を挟んで偏光ビームスプリッタ17に対向して配される。受光素子16は、受光レンズ15を介して偏光ビームスプリッタ17からの反射光LRを受光する。
The polarization beam splitter 17 is disposed in front of the light projecting lens 14 on the optical path of the outgoing light LP. The polarization beam splitter 17 is an optical element that separates the optical path of the outgoing light LP emitted from the light emitting element 13 and the optical path of the reflected light LR that is the light reflected from the outgoing light LP and returned to the reflector 30. The polarization beam splitter 17 may be replaced with a half mirror.
The light receiving lens 15 is disposed at a position facing the polarization beam splitter 17 and is disposed substantially orthogonal to the emission direction of the emitted light LP. The light receiving element 16 is configured by a photodiode, a phototransistor, or the like, and is disposed to face the polarization beam splitter 17 with the light receiving lens 15 interposed therebetween. The light receiving element 16 receives the reflected light LR from the polarization beam splitter 17 through the light receiving lens 15.

投受光口18は、投光部21から出射光LPをセンサヘッド10の外部へ通し、リフレクタ30からの反射光LRをセンサヘッド10の内部へ通す。
反射部19は、ケース11内壁の一部であって偏光ビームスプリッタ17に対向する位置に形成される。反射部19はまた、偏光ビームスプリッタ17を挟んで受光部22に対向する。反射部19の大きさ(範囲)は、発光素子13より発光されるレーザ光の径に比例して決められる。つまり、反射部19は、レーザ径が大きい程広く形成される。反射部19の詳細については後述する。
The light projecting / receiving port 18 passes the emitted light LP from the light projecting unit 21 to the outside of the sensor head 10 and passes the reflected light LR from the reflector 30 to the inside of the sensor head 10.
The reflection portion 19 is a part of the inner wall of the case 11 and is formed at a position facing the polarization beam splitter 17. The reflection unit 19 also faces the light receiving unit 22 with the polarization beam splitter 17 interposed therebetween. The size (range) of the reflection portion 19 is determined in proportion to the diameter of the laser light emitted from the light emitting element 13. That is, the reflecting portion 19 is formed wider as the laser diameter is larger. Details of the reflection unit 19 will be described later.

[1−2 動作]
以下、図1及び図2を参照して光電センサ1の動作について説明する。
アンプユニット50は、ケーブル40を介してセンサヘッド10に駆動電圧を供給する。センサヘッド10は、この駆動電圧を受けて、投光部21よりレーザ光を発光する。センサヘッド10から出射されたレーザ光である出射光LPは、投光部21と同じ光軸上に配された投光レンズ14に入射する。出射光LPは、投光レンズ14を通過した後、偏光ビームスプリッタ17に入射する。出射光LPは、偏光ビームスプリッタ17を透過し、投受光口18よりリフレクタ30に向けてセンサヘッド10の外部に出射される。出射光LPは、リフレクタ30で反射して反射光LRとなり、投受光口18を介してセンサヘッド10内に戻る。この結果、センサヘッド10とリフレクタ30間において出射光LPと反射光LRの光路が形成される。つまり、反射光LRは、出射光LPと同軸の光路を有し、出射光LPとは逆向きの方向に進む。なお、ここでの同軸の光路とは、図1に示すように、偏光ビームスプリッタ17に入射して外部に出射される出射光LPの経路と、外部から戻って偏光ビームスプリッタ17に入射する反射光LRの経路を含む、同一軸に沿った光路である。
[1-2 Operation]
Hereinafter, the operation of the photoelectric sensor 1 will be described with reference to FIGS. 1 and 2.
The amplifier unit 50 supplies a drive voltage to the sensor head 10 via the cable 40. The sensor head 10 receives this drive voltage and emits laser light from the light projecting unit 21. The emitted light LP, which is laser light emitted from the sensor head 10, is incident on the light projecting lens 14 disposed on the same optical axis as the light projecting unit 21. The outgoing light LP passes through the light projection lens 14 and then enters the polarization beam splitter 17. The outgoing light LP passes through the polarization beam splitter 17 and is emitted from the light projecting / receiving port 18 toward the reflector 30 to the outside of the sensor head 10. The emitted light LP is reflected by the reflector 30 to become reflected light LR, and returns into the sensor head 10 through the light projecting / receiving port 18. As a result, an optical path for the outgoing light LP and the reflected light LR is formed between the sensor head 10 and the reflector 30. That is, the reflected light LR has an optical path coaxial with the outgoing light LP and travels in a direction opposite to the outgoing light LP. As shown in FIG. 1, the coaxial optical path here refers to the path of the outgoing light LP that enters the polarization beam splitter 17 and exits to the outside, and the reflection that returns from the outside and enters the polarization beam splitter 17. It is an optical path along the same axis including the path of the light LR.

センサヘッド10内に入射した反射光LRは、偏光ビームスプリッタ17に入射する。そして、反射光LRは、偏光ビームスプリッタ17により上記出射光LPと同軸の光路から受光部22方向に分離され、受光レンズ15を介して受光素子16に入射する。受光素子16は、反射光LRを受光して、反射光LRの受光量に応じた強度を有する電気信号を生成する。センサヘッド10は、その生成した電気信号を、ケーブル40を介してアンプユニット50に出力する。アンプユニット50は、その電気信号に基づいて物体の有無を検出したり、センサヘッド10における受光量を示す信号を出力したりする。   The reflected light LR that has entered the sensor head 10 enters the polarization beam splitter 17. The reflected light LR is separated from the optical path coaxial with the outgoing light LP by the polarizing beam splitter 17 in the direction of the light receiving unit 22 and enters the light receiving element 16 via the light receiving lens 15. The light receiving element 16 receives the reflected light LR and generates an electrical signal having an intensity corresponding to the amount of the reflected light LR received. The sensor head 10 outputs the generated electrical signal to the amplifier unit 50 via the cable 40. The amplifier unit 50 detects the presence or absence of an object based on the electrical signal, or outputs a signal indicating the amount of light received by the sensor head 10.

以上のような投受光動作によって、光電センサ1は、センサヘッド10の受光量に基づいて物体の有無を検出する。検出物体Sが出射光LPの光路上の所定の検出領域に位置しない場合、センサヘッド10から出た出射光LPは、リフレクタ30で反射して反射光LRとなりセンサヘッド10の受光部22に入射する。一方、検出物体Sが光路上の検出領域に位置する場合には、センサヘッド10の投光部21からの出射光LPが検出物体Sによって遮られるので、受光部22が受ける反射光LRの光量が減少する。つまり、検出物体Sが検出領域に位置するか否かによってセンサヘッド10の受光部22の受光量が異なるので、その受光量の差に基づいて物体の有無を検出する。   Through the light projecting / receiving operation as described above, the photoelectric sensor 1 detects the presence or absence of an object based on the amount of light received by the sensor head 10. When the detection object S is not located in a predetermined detection region on the optical path of the emitted light LP, the emitted light LP emitted from the sensor head 10 is reflected by the reflector 30 to become reflected light LR and enters the light receiving unit 22 of the sensor head 10. To do. On the other hand, when the detection object S is located in the detection region on the optical path, the emitted light LP from the light projecting unit 21 of the sensor head 10 is blocked by the detection object S, so that the amount of reflected light LR received by the light receiving unit 22 Decrease. That is, since the amount of light received by the light receiving unit 22 of the sensor head 10 differs depending on whether or not the detection object S is located in the detection region, the presence or absence of the object is detected based on the difference in the amount of received light.

[1−3 反射部]
[1−3−1 比較例]
図4は、比較例によるセンサヘッド10´とその光路を概略的に示す。同センサヘッド10´は、ケース11´に反射部19を形成しない点において本実施の形態に係るセンサヘッド10と異なる。以下、比較例によるセンサヘッド10´による投受光動作について説明する。
[1-3 Reflector]
[1-3-1 Comparative Example]
FIG. 4 schematically shows a sensor head 10 ′ according to a comparative example and its optical path. The sensor head 10 ′ is different from the sensor head 10 according to the present embodiment in that the reflecting portion 19 is not formed on the case 11 ′. Hereinafter, the light projecting / receiving operation by the sensor head 10 'according to the comparative example will be described.

発光素子13からの出射光LPは、投光レンズ14を介して偏光ビームスプリッタ17を透過し、投受光口18を通過して外部に出射される。出射光LPは、リフレクタ30に反射して反射光LRとなり、反射光LRは投受光口18から偏光ビームスプリッタ17に戻る。偏光ビームスプリッタ17からの反射光LRは、受光レンズ15を通り受光素子16に入射される。   The outgoing light LP from the light emitting element 13 passes through the polarizing beam splitter 17 through the light projecting lens 14, passes through the light projecting / receiving port 18, and is emitted outside. The emitted light LP is reflected by the reflector 30 to become reflected light LR, and the reflected light LR returns from the light projecting / receiving port 18 to the polarization beam splitter 17. The reflected light LR from the polarization beam splitter 17 passes through the light receiving lens 15 and enters the light receiving element 16.

上記において、発光素子13から発光された光成分のうち一部は、全て偏光ビームスプリッタ17を透過せず、図4に示すように迷光LSとしてケース11の内壁面に向かう。ケース11の内壁面に反射した迷光LSR´は、同内壁面に対向する位置にある受光部22に戻る。この結果、迷光LSR´により受光素子16の受光量が変化し、SN比が悪くなるという問題が生じる。   In the above, some of the light components emitted from the light emitting element 13 do not pass through the polarization beam splitter 17 and travel toward the inner wall surface of the case 11 as stray light LS as shown in FIG. The stray light LSR ′ reflected on the inner wall surface of the case 11 returns to the light receiving unit 22 at a position facing the inner wall surface. As a result, the amount of light received by the light receiving element 16 changes due to the stray light LSR ′, resulting in a problem that the SN ratio is deteriorated.

反射した迷光LSR´のうち受光部22に入射する光の量は、比較的小さいことから、従来は、検出物体Sの有無を検出する等の簡易的な検出には余り影響がなかった。しかし、検出物体Sが透明体等の物体である場合、微小な受光量の差に基づいて検出が行われる。よって、迷光LSR´が受光部22に入射する量がわずかであっても、検出の精度の安定性に問題があった。
例えば、レーザ発光による検出の場合、偏光ビームスプリッタ17からの迷光LSは、全体の発光量100%に対しおよそ5%である。その迷光LSのうち、ケース11の内壁面で反射した迷光LSR´は全体の発光量100%に対しおよそ0.5%であり、そのうち受光部22に入る量はおよそ0.05%であった。一方、検出物体Sが透明体等であるとき、受光部22で受光される反射光LRの量は、検出物体の有無によって生じる差が小さい。よって、迷光LSR´が受光部22に入る量が上記のようにわずかであっても、透明体等の物体の検出には影響してしまい、正確な物体検出ができなくなるおそれがある。
Of the reflected stray light LSR ′, the amount of light incident on the light receiving unit 22 is relatively small, and conventionally, there was not much influence on simple detection such as detecting the presence or absence of the detection object S. However, when the detection object S is an object such as a transparent body, detection is performed based on a minute difference in the amount of received light. Therefore, even if the amount of the stray light LSR ′ incident on the light receiving unit 22 is small, there is a problem in the stability of detection accuracy.
For example, in the case of detection by laser light emission, the stray light LS from the polarization beam splitter 17 is approximately 5% with respect to the total light emission amount of 100%. Of the stray light LS, the stray light LSR ′ reflected by the inner wall surface of the case 11 is approximately 0.5% of the total light emission amount of 100%, and the amount entering the light receiving unit 22 is approximately 0.05%. . On the other hand, when the detection object S is a transparent body or the like, the amount of the reflected light LR received by the light receiving unit 22 has a small difference caused by the presence or absence of the detection object. Therefore, even if the amount of stray light LSR ′ entering the light receiving unit 22 is small as described above, detection of an object such as a transparent body is affected, and there is a possibility that accurate object detection cannot be performed.

[1−3−2 反射部の機能及び構成]
本実施の形態に係るセンサヘッド10は、ケース11の内壁面において反射した迷光LSRが受光部22に戻るのを防ぐ構造を備える。以下、図5から図8を参照しながら、反射部の機能及び構成について説明する。
[1-3-2 Function and Configuration of Reflector]
The sensor head 10 according to the present embodiment includes a structure that prevents stray light LSR reflected on the inner wall surface of the case 11 from returning to the light receiving unit 22. Hereinafter, the function and configuration of the reflection unit will be described with reference to FIGS. 5 to 8.

図5は、本実施の形態に係るセンサヘッド10とその光路を概略的に示す。
発光素子13から発光された出射光LPは、投光レンズ14を介して偏光ビームスプリッタ17を透過し、投受光口18を通過して外部に出射される。出射光LPは、リフレクタ30に反射して反射光LRとなり、反射光LRは投受光口18から偏光ビームスプリッタ17に戻る。偏光ビームスプリッタ17からの反射光LRは、受光レンズ15を通り受光素子16に入射される。
FIG. 5 schematically shows the sensor head 10 and its optical path according to the present embodiment.
The outgoing light LP emitted from the light emitting element 13 passes through the polarizing beam splitter 17 through the light projecting lens 14, passes through the light projecting / receiving port 18, and is emitted to the outside. The emitted light LP is reflected by the reflector 30 to become reflected light LR, and the reflected light LR returns from the light projecting / receiving port 18 to the polarization beam splitter 17. The reflected light LR from the polarization beam splitter 17 passes through the light receiving lens 15 and enters the light receiving element 16.

発光素子13からの出射光LPの光成分は、全て偏光ビームスプリッタ17を透過せず反射し、図5に示すように迷光LSとしてケース11の内壁面に向かう。ケース11の内壁面に反射した迷光LSRは、同内面に形成された反射部19によって所定の角度をもって進む。その結果、反射した迷光LSRが偏光ビームスプリッタ17を介して受光部22に戻る量を大幅に低減することが可能となる。   All the light components of the outgoing light LP from the light emitting element 13 are reflected without passing through the polarization beam splitter 17 and travel to the inner wall surface of the case 11 as stray light LS as shown in FIG. The stray light LSR reflected on the inner wall surface of the case 11 travels at a predetermined angle by the reflecting portion 19 formed on the inner surface. As a result, the amount of the reflected stray light LSR returning to the light receiving unit 22 via the polarization beam splitter 17 can be significantly reduced.

図6は、反射部19の構造を模式的に示す。図6(a)は反射部19の断面図であり、図6(b)は反射部19の平面図である。図6(a)に示すように、反射部19は断面が複数の三角形状で、平面視で複数列の三角柱の形状を有する。
図7は、受光部22に対する反射部19の位置と迷光の光路を概略的に示す。同図において、符号22aは、受光素子16の受光面を指す。受光面22aは、受光素子16に光が入る面を示す。反射部19は、偏光ビームスプリッタ17(図7では省略)を挟んで受光面22aに対向するように配される。反射部19は更に、受光面22aに対して、すべての反射面19aが所定の角度を有するように形成されている。反射面19aは2方向を向き、受光面22aに平行な面がないように形成されている。
FIG. 6 schematically shows the structure of the reflecting portion 19. FIG. 6A is a cross-sectional view of the reflecting portion 19, and FIG. 6B is a plan view of the reflecting portion 19. As shown in FIG. 6A, the reflection section 19 has a plurality of triangular prisms in cross section and a plurality of rows of triangular prisms in plan view.
FIG. 7 schematically shows the position of the reflection unit 19 with respect to the light receiving unit 22 and the optical path of stray light. In the drawing, reference numeral 22 a indicates a light receiving surface of the light receiving element 16. The light receiving surface 22 a is a surface through which light enters the light receiving element 16. The reflection unit 19 is disposed so as to face the light receiving surface 22a with the polarization beam splitter 17 (not shown in FIG. 7) interposed therebetween. The reflection part 19 is further formed such that all the reflection surfaces 19a have a predetermined angle with respect to the light receiving surface 22a. The reflection surface 19a is formed so as to face in two directions and have no surface parallel to the light receiving surface 22a.

図7に示すように、偏光ビームスプリッタ17(図7では省略)からの迷光LSは、反射部19に向かって進行する。反射部19においては、迷光LSの進行方向に対し直交する面(つまり、受光面22aに平行な面)は形成されていない。一方、反射部19に形成された複数の反射面19aは、受光面22aに対して全て所定の角度を有するように形成されている。よって、迷光LSのうち反射面19aにあたる光は、反射面19aの角度に応じて反射する。   As shown in FIG. 7, the stray light LS from the polarization beam splitter 17 (not shown in FIG. 7) travels toward the reflection unit 19. In the reflection part 19, the surface (namely, surface parallel to the light-receiving surface 22a) orthogonal to the advancing direction of the stray light LS is not formed. On the other hand, the plurality of reflecting surfaces 19a formed on the reflecting portion 19 are all formed to have a predetermined angle with respect to the light receiving surface 22a. Therefore, the light which hits the reflective surface 19a among the stray light LS is reflected according to the angle of the reflective surface 19a.

図8に示すように、反射面19aの受光面22aに対する所定の角度θ1は、例えばおよそ45°に形成される。これは、受光面22aに対しほぼ垂直に進む迷光LSの反射面19aに対する入射角θ2(図8のVLは反射面19aの垂線)に相当する。
以上のような構成により、偏光ビームスプリッタ17からの迷光LSは反射面19aによって反射し、反射した迷光LSRのほとんどが反射面19aの垂線VLより外側(受光面22aの外側方向)を進行する。この結果、反射した迷光LSRは、受光部22を避けるように進行するため、反射した迷光LSRが受光部22に入射する量を大幅に減少させることができる。
As shown in FIG. 8, the predetermined angle θ1 of the reflecting surface 19a with respect to the light receiving surface 22a is, for example, about 45 °. This corresponds to the incident angle θ2 of the stray light LS traveling substantially perpendicular to the light receiving surface 22a with respect to the reflecting surface 19a (VL in FIG. 8 is a perpendicular to the reflecting surface 19a).
With the above configuration, the stray light LS from the polarization beam splitter 17 is reflected by the reflection surface 19a, and most of the reflected stray light LSR travels outside the perpendicular VL of the reflection surface 19a (outward direction of the light receiving surface 22a). As a result, since the reflected stray light LSR travels so as to avoid the light receiving unit 22, the amount of the reflected stray light LSR incident on the light receiving unit 22 can be significantly reduced.

[1−4 変形例]
上記実施の形態においては、反射部19の形態は、上記のものに限定されない。以下、反射部19の変形例について説明する。
[1−4−1 変形例1]
図9は、変形例1によるケース11の内面に形成された反射部119の構造を示す。図9(a)は反射部119の断面図であり、図9(b)は反射部119の平面図であり、図9(c)は反射部119を受光部22側から見た斜視図である。同図に示すように、反射部119は、断面は上記実施の形態と同様に複数の三角形状であるが、平面視では整列した複数の三角錐を形成している。このような構造を有することにより、反射部119は4方向を向いた反射面119aを有し、受光面22aに平行な面を形成しないため、反射した迷光LSRが受光部22に入射する量を大幅に減少させることができる。
[1-4 Modification]
In the said embodiment, the form of the reflection part 19 is not limited to said thing. Hereinafter, modified examples of the reflection unit 19 will be described.
[1-4-1 Modification 1]
FIG. 9 shows the structure of the reflecting portion 119 formed on the inner surface of the case 11 according to the first modification. 9A is a cross-sectional view of the reflecting portion 119, FIG. 9B is a plan view of the reflecting portion 119, and FIG. 9C is a perspective view of the reflecting portion 119 viewed from the light receiving portion 22 side. is there. As shown in the figure, the reflecting portion 119 has a plurality of triangular shapes in cross section as in the above-described embodiment, but forms a plurality of triangular pyramids aligned in a plan view. By having such a structure, the reflecting portion 119 has the reflecting surface 119a facing in four directions and does not form a surface parallel to the light receiving surface 22a. Therefore, the amount of reflected stray light LSR incident on the light receiving portion 22 can be reduced. Can be greatly reduced.

[1−4−2 変形例2]
図10は、変形例2によるケース11の内面に形成された反射部219の構造を示す。図10(a)は反射部219の断面図であり、図10(b)は反射部219の平面図であり、図10(c)は反射部219を受光部22側から見た斜視図である。同図に示すように、反射部219は、全体にわたって所定の角度を有する一つの反射面219aを形成する。このような構造であっても、反射部219は、受光面22aに平行な面を形成しないため、反射した迷光LSRが受光部22に入射する量を大幅に減少させることができる。
[1-4-2 Modification 2]
FIG. 10 shows the structure of the reflecting portion 219 formed on the inner surface of the case 11 according to the second modification. 10A is a cross-sectional view of the reflecting portion 219, FIG. 10B is a plan view of the reflecting portion 219, and FIG. 10C is a perspective view of the reflecting portion 219 viewed from the light receiving portion 22 side. is there. As shown in the figure, the reflecting portion 219 forms one reflecting surface 219a having a predetermined angle throughout. Even with such a structure, since the reflecting portion 219 does not form a surface parallel to the light receiving surface 22a, the amount of the reflected stray light LSR incident on the light receiving portion 22 can be greatly reduced.

[1−4−3 変形例3]
図11は、変形例3によるケース11の内面に形成された反射部319の構造を示す。図11(a)は反射部319の断面図であり、図11(b)は反射部319の平面図であり、図11(c)は反射部319を受光部22側から見た斜視図である。同図に示すように、反射部319は、断面は複数の三角形状であり、平面視で複数列の三角柱の形状を有する。反射部319は、図6に示す例とは異なり、一方向を向いた複数の反射面319aのみを形成する。このような構造であっても、反射面319aは全て、受光面22aに平行な面を形成しないため、反射した迷光LSRが受光部22に入射する量を大幅に減少させることができる。
[1-4-3 Modification 3]
FIG. 11 shows the structure of the reflecting portion 319 formed on the inner surface of the case 11 according to the third modification. 11A is a cross-sectional view of the reflecting portion 319, FIG. 11B is a plan view of the reflecting portion 319, and FIG. 11C is a perspective view of the reflecting portion 319 as viewed from the light receiving portion 22 side. is there. As shown in the figure, the reflecting section 319 has a plurality of triangular cross sections, and a plurality of rows of triangular prisms in plan view. Unlike the example shown in FIG. 6, the reflecting portion 319 forms only a plurality of reflecting surfaces 319 a facing one direction. Even with such a structure, since all the reflecting surfaces 319a do not form a surface parallel to the light receiving surface 22a, the amount of the reflected stray light LSR incident on the light receiving unit 22 can be greatly reduced.

[1−4−4 変形例4]
図12は、変形例4によるケース11の内面に形成された反射部419の構造を示す。図12(a)は反射部419の断面図であり、図12(b)は反射部419の平面図であり、図12(c)は反射部419を受光部22側から見た斜視図である。同図に示すように、反射部419は、断面が上記変形例3と同様に複数の三角形状であるが、平面視で整列した複数の三角錐を形成している点において異なる。反射部419は、このような構造を有することにより、少なくとも2方向を向いた複数の反射面419aを形成し、受光面22aに平行な面を形成しないため、反射した迷光LSRが受光部22に入射する量を大幅に減少させることができる。
[1-4-4 Modification 4]
FIG. 12 shows a structure of a reflection portion 419 formed on the inner surface of the case 11 according to the fourth modification. 12A is a cross-sectional view of the reflecting portion 419, FIG. 12B is a plan view of the reflecting portion 419, and FIG. 12C is a perspective view of the reflecting portion 419 viewed from the light receiving portion 22 side. is there. As shown in the figure, the reflecting portion 419 has a plurality of triangular cross sections as in the third modification, but differs in that it forms a plurality of triangular pyramids aligned in plan view. Since the reflecting portion 419 has such a structure, it forms a plurality of reflecting surfaces 419a facing at least two directions and does not form a surface parallel to the light receiving surface 22a. Therefore, the reflected stray light LSR is incident on the light receiving portion 22. The amount of incident light can be greatly reduced.

[1−5 効果等]
上記実施の形態に係る光電センサ1のセンサヘッド10は、投光部21、偏光ビームスプリッタ17、受光部22、反射部19、及び反射面19aを備える。偏光ビームスプリッタ17は、投光部21からの出射光LPの光路上に設けられ、出射光LPと、出射光LPと同軸の光路を形成する反射光LRとを入射する。受光部22は、偏光ビームスプリッタ17により上記出射光と同軸の光路より分離された反射光LRを受光する受光面22aを有する。反射部19は、受光面22aに対向する位置に配され、出射光LPの光路外に向かう迷光LSを反射させる。反射面19aは、反射部19に形成され、反射した迷光LSRが受光面22aの外側方向に進行するように受光面22aに対し所定の角度を有する。このため、反射部19に反射した迷光LSRが受光部22に入光する量を大幅に削減できるため、光電センサ1による物体検出の精度を向上させることができる。具体的には、従来に比して、受光部22に入る反射した迷光LSRの量はおよそ10分の1(レーザ発光量に対しおよそ0.005%)まで削減することができる。
[1-5 effects, etc.]
The sensor head 10 of the photoelectric sensor 1 according to the above embodiment includes a light projecting unit 21, a polarizing beam splitter 17, a light receiving unit 22, a reflecting unit 19, and a reflecting surface 19a. The polarization beam splitter 17 is provided on the optical path of the outgoing light LP from the light projecting unit 21, and receives the outgoing light LP and the reflected light LR that forms an optical path coaxial with the outgoing light LP. The light receiving unit 22 includes a light receiving surface 22a that receives the reflected light LR separated from the optical path coaxial with the emitted light by the polarization beam splitter 17. The reflection unit 19 is disposed at a position facing the light receiving surface 22a, and reflects the stray light LS that goes outside the optical path of the emitted light LP. The reflecting surface 19a is formed in the reflecting portion 19, and has a predetermined angle with respect to the light receiving surface 22a so that the reflected stray light LSR travels in the outward direction of the light receiving surface 22a. For this reason, since the amount of the stray light LSR reflected by the reflecting unit 19 entering the light receiving unit 22 can be significantly reduced, the accuracy of object detection by the photoelectric sensor 1 can be improved. Specifically, the amount of reflected stray light LSR entering the light receiving unit 22 can be reduced to about 1/10 (about 0.005% with respect to the laser emission amount) as compared with the conventional case.

反射部19は黒色であるため、迷光LSの光成分を吸収し、反射した迷光LSRが受光部22に入光する量をより効果的に削減できる。よって、光電センサ1による物体検出の測定の精度を向上させることができる。
反射部19はまた、ケース11に一体成形されるため、製造が容易であると共に、製造コストも抑制できる。
Since the reflection part 19 is black, the light component of the stray light LS is absorbed, and the amount of the reflected stray light LSR entering the light receiving part 22 can be more effectively reduced. Therefore, the accuracy of object detection measurement by the photoelectric sensor 1 can be improved.
Moreover, since the reflection part 19 is integrally molded by the case 11, while being easy to manufacture, the manufacturing cost can also be suppressed.

(その他の実施の形態)
以上のように、本出願において開示する技術の例示として、実施の形態及びその変形例を説明した。しかしながら、本開示における技術は、これに限定されず、適宜、変更、置き換え、付加、省略などを行った実施の形態にも適用可能である。
そこで、以下、他の実施の形態を例示する。
(Other embodiments)
As described above, the embodiments and the modifications thereof have been described as examples of the technology disclosed in the present application. However, the technology in the present disclosure is not limited to this, and can also be applied to an embodiment in which changes, replacements, additions, omissions, and the like are appropriately performed.
Therefore, other embodiments will be exemplified below.

[1]
上記実施の形態及び変形例において、受光面22aに対する反射部19の所定の角度は45°前後に限定されない。90°未満の範囲内であって、受光部22への迷光LSRの戻り量を減少させる角度であればよい。
また、反射部19において複数の反射面19aが形成されている場合、上記受光面22aに対する所定の角度はそれぞれ異なる角度であってもよい。
[1]
In the said embodiment and modification, the predetermined angle of the reflection part 19 with respect to the light-receiving surface 22a is not limited to around 45 degrees. Any angle that is within a range of less than 90 ° and that reduces the return amount of the stray light LSR to the light receiving unit 22 may be used.
Further, when a plurality of reflecting surfaces 19a are formed in the reflecting portion 19, the predetermined angles with respect to the light receiving surface 22a may be different angles.

[2]
反射部19はケース11とは別体でケース11内面に取り付けてもよい。
また、反射部19は、上記実施の形態に代えて或いは上記実施の形態に加えて、偏光フィルタを含んでいてもよい。この場合、偏光フィルタは、例えば投光部21からの出射光LPと異なる偏光成分のフィルタ(例えば、出射光LPがP偏光ならS偏光のフィルタ)を、上記実施の形態の反射部19と同様に配置する。この偏光フィルタにより、迷光LSの光成分が透過するため、反射した迷光LSRの量を削減することができ、この結果、受光部22に入る反射した迷光LSRの量を削減することできる。
[2]
The reflector 19 may be attached to the inner surface of the case 11 separately from the case 11.
The reflection unit 19 may include a polarizing filter instead of or in addition to the above embodiment. In this case, the polarizing filter is, for example, a filter having a polarization component different from that of the outgoing light LP from the light projecting unit 21 (for example, an S-polarized filter if the outgoing light LP is P-polarized light), as in the reflective unit 19 of the above embodiment. To place. Since this polarization filter transmits the light component of the stray light LS, the amount of the reflected stray light LSR can be reduced. As a result, the amount of the reflected stray light LSR entering the light receiving unit 22 can be reduced.

[3]
反射部19の反射面19aは、粗面に形成してもよい。反射面19aを粗面に形成することにより、迷光LSは拡散されるため、受光部22に入る反射した迷光LSRの量を削減することできる。
[3]
The reflection surface 19a of the reflection part 19 may be formed on a rough surface. By forming the reflection surface 19a as a rough surface, the stray light LS is diffused, so that the amount of the reflected stray light LSR entering the light receiving unit 22 can be reduced.

[4]
上記実施の形態及び変形例においては、発光素子13としてレーザダイオードを用いているが、LEDを用いてもよい。つまり、リフレクタ30によって回帰反射される光を発するものであればよく、その波長領域は特に限定されるものではない。
[4]
In the above embodiment and the modification, a laser diode is used as the light emitting element 13, but an LED may be used. That is, the wavelength region is not particularly limited as long as it emits light that is recursively reflected by the reflector 30.

以上のように、本開示における技術の例示として、実施の形態を説明した。そのために、添付図面および詳細な説明を提供した。
したがって、添付図面および詳細な説明に記載された構成要素の中には、課題解決のために必須な構成要素だけでなく、上記技術を例示するために、課題解決のためには必須でない構成要素も含まれ得る。そのため、それらの必須ではない構成要素が添付図面や詳細な説明に記載されていることをもって、直ちに、それらの必須ではない構成要素が必須であるとの認定をするべきではない。
As described above, the embodiments have been described as examples of the technology in the present disclosure. For this purpose, the accompanying drawings and detailed description are provided.
Accordingly, among the components described in the accompanying drawings and the detailed description, not only the components essential for solving the problem, but also the components not essential for solving the problem in order to illustrate the above technique. May also be included. Therefore, it should not be immediately recognized that these non-essential components are essential as those non-essential components are described in the accompanying drawings and detailed description.

また、上述の実施の形態は、本開示における技術を例示するためのものであるから、特許請求の範囲またはその均等の範囲において種々の変更、置き換え、付加、省略などを行うことができる。   Moreover, since the above-mentioned embodiment is for demonstrating the technique in this indication, a various change, replacement, addition, abbreviation, etc. can be performed in a claim or its equivalent range.

1 光電センサ
10 センサヘッド
11 ケース
13 発光素子
14 投光レンズ
15 受光レンズ
16 受光素子
17 偏光ビームスプリッタ
18 投受光口
19 反射部
21 投光部
22 受光部
30 リフレクタ
40 ケーブル
50 アンプユニット
S 検出物体
DESCRIPTION OF SYMBOLS 1 Photoelectric sensor 10 Sensor head 11 Case 13 Light emitting element 14 Light emitting lens 15 Light receiving lens 16 Light receiving element 17 Polarizing beam splitter 18 Light projecting / receiving opening 19 Reflecting part 21 Light projecting part 22 Light receiving part 30 Reflector 40 Cable 50 Amplifier unit S Detection object

Claims (7)

光を出射する投光部、
前記投光部からの出射光の光路上に設けられ、前記出射光と、前記出射光が外部で反射されて戻る光であって前記出射光と同軸の光路を形成する反射光とが入射する光分離部、
前記光分離部により前記出射光と同軸の光路より分離された前記反射光を受光する受光面を有する受光部、
前記受光面に対向する位置に配され、前記出射光の光路外に向かう迷光を反射させる反射部、及び、
前記反射部に形成され、反射した前記迷光が前記受光面の外側方向に進行するように前記受光面に対し所定の角度を有する反射面、
を備える、光電センサヘッド。
A light projecting unit that emits light;
Provided on the optical path of the outgoing light from the light projecting unit, the outgoing light and the reflected light that is reflected and returned from the outside and forms a coaxial optical path with the outgoing light are incident. Light separation unit,
A light receiving portion having a light receiving surface for receiving the reflected light separated from the light path coaxial with the outgoing light by the light separating portion;
A reflecting portion that is arranged at a position facing the light receiving surface and reflects stray light that goes out of the optical path of the emitted light; and
A reflecting surface formed at the reflecting portion and having a predetermined angle with respect to the light receiving surface so that the reflected stray light travels in an outer direction of the light receiving surface;
A photoelectric sensor head comprising:
前記反射部は、複数の前記反射面からなる、
請求項1に記載の光電センサヘッド。
The reflecting portion is composed of a plurality of the reflecting surfaces.
The photoelectric sensor head according to claim 1.
前記反射部は、二以上の方向を向く反射面からなる、
請求項2に記載の光電センサヘッド。
The reflecting portion is composed of a reflecting surface facing two or more directions.
The photoelectric sensor head according to claim 2.
前記所定の角度は、90度未満である、
請求項1から3のいずれかに記載の光電センサヘッド。
The predetermined angle is less than 90 degrees;
The photoelectric sensor head according to claim 1.
前記投光部と前記受光部と前記光分離部とを被覆するケースを備え、
前記反射部は、前記ケースの一部に形成されてなる、
請求項1から4のいずれかに記載の光電センサヘッド。
A case that covers the light projecting unit, the light receiving unit, and the light separating unit;
The reflection part is formed on a part of the case.
The photoelectric sensor head according to claim 1.
前記受光部は、受光レンズと前記受光レンズを介して前記光分離部からの光を受光する受光素子とを含み、
前記反射面の所定の角度は、前記反射した迷光が前記受光レンズに入射する量を低減するように形成されてなる、
請求項1から5のいずれかに記載の光電センサヘッド。
The light receiving unit includes a light receiving lens and a light receiving element that receives light from the light separating unit through the light receiving lens,
The predetermined angle of the reflecting surface is formed so as to reduce the amount of the reflected stray light incident on the light receiving lens.
The photoelectric sensor head according to claim 1.
前記迷光は、前記出射光の一部が前記光分離部によって前記反射部側に向けられる光成分である、
請求項1から6のいずれかに記載の光電センサヘッド。

The stray light is a light component in which a part of the emitted light is directed to the reflecting portion side by the light separating portion.
The photoelectric sensor head according to claim 1.

JP2013258219A 2013-12-13 2013-12-13 Photoelectric sensor head Active JP6269015B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013258219A JP6269015B2 (en) 2013-12-13 2013-12-13 Photoelectric sensor head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013258219A JP6269015B2 (en) 2013-12-13 2013-12-13 Photoelectric sensor head

Publications (2)

Publication Number Publication Date
JP2015115278A JP2015115278A (en) 2015-06-22
JP6269015B2 true JP6269015B2 (en) 2018-01-31

Family

ID=53528883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013258219A Active JP6269015B2 (en) 2013-12-13 2013-12-13 Photoelectric sensor head

Country Status (1)

Country Link
JP (1) JP6269015B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09288939A (en) * 1996-04-23 1997-11-04 Omron Corp Reflected light detecting device

Also Published As

Publication number Publication date
JP2015115278A (en) 2015-06-22

Similar Documents

Publication Publication Date Title
JP6011040B2 (en) Photoelectric sensor
US20140285817A1 (en) Limited reflection type photoelectric sensor
KR101640989B1 (en) Limited area reflective optical sensor and electronic device
US10067222B2 (en) Laser rangefinder
JP2016033482A (en) Laser range finer
JP2018166039A5 (en)
JP5452245B2 (en) Lightwave distance measuring device
JP6388383B2 (en) Laser range finder
JP5251641B2 (en) Photoelectric sensor
JP6269015B2 (en) Photoelectric sensor head
JP5128232B2 (en) Reflective photoelectric sensor
JP2010256183A (en) Reflection-type photoelectric sensor
JP6584201B2 (en) Retro-reflective photoelectric sensor
JP3548092B2 (en) Liquid detector
CN217637390U (en) Optical sensor
JP2004125554A (en) Mirror angle detection device
JP2010078520A (en) Photoelectric sensor
JP6598556B2 (en) Photoelectric sensor
KR20130070102A (en) Optical structure for photo sensor
JP2015115186A (en) Photoelectric switch
JP2014174136A (en) Photoreceiver and space information detector
JPH0345192Y2 (en)
JP2015115182A (en) Photoelectric switch and object detection system
JP2018147579A (en) Photoelectric sensor
JPH09288939A (en) Reflected light detecting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170711

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20170726

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171218

R150 Certificate of patent or registration of utility model

Ref document number: 6269015

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150