JP2016176700A - Micro-working electrode for local electrochemical phenomena analysis - Google Patents
Micro-working electrode for local electrochemical phenomena analysis Download PDFInfo
- Publication number
- JP2016176700A JP2016176700A JP2015054864A JP2015054864A JP2016176700A JP 2016176700 A JP2016176700 A JP 2016176700A JP 2015054864 A JP2015054864 A JP 2015054864A JP 2015054864 A JP2015054864 A JP 2015054864A JP 2016176700 A JP2016176700 A JP 2016176700A
- Authority
- JP
- Japan
- Prior art keywords
- working electrode
- micro
- coating layer
- electrode surface
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004458 analytical method Methods 0.000 title claims abstract description 33
- 239000011247 coating layer Substances 0.000 claims abstract description 28
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims abstract description 24
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims abstract description 22
- 239000000203 mixture Substances 0.000 claims abstract description 20
- 239000003960 organic solvent Substances 0.000 claims abstract description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 10
- 239000004925 Acrylic resin Substances 0.000 claims abstract description 8
- 229920000178 Acrylic resin Polymers 0.000 claims abstract description 8
- 239000000020 Nitrocellulose Substances 0.000 claims abstract description 8
- 238000001035 drying Methods 0.000 claims abstract description 8
- 229920001220 nitrocellulos Polymers 0.000 claims abstract description 8
- 150000002894 organic compounds Chemical class 0.000 claims abstract description 8
- 229920000915 polyvinyl chloride Polymers 0.000 claims abstract description 8
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 claims abstract description 8
- 229920005989 resin Polymers 0.000 claims abstract description 8
- 239000011347 resin Substances 0.000 claims abstract description 8
- 239000004952 Polyamide Substances 0.000 claims abstract description 7
- 229920002301 cellulose acetate Polymers 0.000 claims abstract description 7
- 229920002239 polyacrylonitrile Polymers 0.000 claims abstract description 7
- 229920002647 polyamide Polymers 0.000 claims abstract description 7
- 230000002093 peripheral effect Effects 0.000 claims abstract description 4
- 239000000126 substance Substances 0.000 claims description 11
- 230000005611 electricity Effects 0.000 claims 1
- 239000007788 liquid Substances 0.000 abstract description 14
- 238000002848 electrochemical method Methods 0.000 description 32
- 239000000463 material Substances 0.000 description 20
- 238000000576 coating method Methods 0.000 description 19
- 239000011248 coating agent Substances 0.000 description 13
- 238000005260 corrosion Methods 0.000 description 13
- 238000000034 method Methods 0.000 description 13
- 239000012212 insulator Substances 0.000 description 12
- 238000012360 testing method Methods 0.000 description 11
- 230000007797 corrosion Effects 0.000 description 10
- 229910001220 stainless steel Inorganic materials 0.000 description 10
- 239000010935 stainless steel Substances 0.000 description 10
- 230000015572 biosynthetic process Effects 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 7
- 238000007747 plating Methods 0.000 description 7
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 6
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- 230000010287 polarization Effects 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 5
- 238000003487 electrochemical reaction Methods 0.000 description 5
- 239000011521 glass Substances 0.000 description 5
- 238000005259 measurement Methods 0.000 description 4
- 230000007547 defect Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000003792 electrolyte Substances 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 239000011780 sodium chloride Substances 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 239000008151 electrolyte solution Substances 0.000 description 2
- 229920002050 silicone resin Polymers 0.000 description 2
- 229910021607 Silver chloride Inorganic materials 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 239000002390 adhesive tape Substances 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 230000005660 hydrophilic surface Effects 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000000879 optical micrograph Methods 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- HKZLPVFGJNLROG-UHFFFAOYSA-M silver monochloride Chemical compound [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
Landscapes
- Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
Abstract
Description
本発明は、ステンレス鋼などの耐食材料の微小な腐食の起点、めっき反応の開始点や微小欠陥の形成過程などを電気化学計測する際に必要となる局部電気化学現象解析のための微小作用電極に関する。 The present invention is a micro-working electrode for analyzing local electrochemical phenomena required for electrochemical measurement of the origin of micro-corrosion of corrosion-resistant materials such as stainless steel, the starting point of plating reaction, and the formation process of micro-defects. About.
実用材料の表面は不均一であり、腐食、電解めっき、陽極酸化などの電気化学反応を制御するためには、材料表面の微小な領域を選び出し、その部分の電気化学特性を解析する必要がある。例えば、ステンレス鋼の孔食は、大きさが数マイクロメートル(μm)のMnSなどの硫化物系介在物を起点とする電気化学反応である。したがって、その介在物を含む微小領域のみの電気化学計測を行うことにより、材料の耐食性改善において非常に有益な情報が得られるものと考えられる。 The surface of practical materials is uneven, and in order to control electrochemical reactions such as corrosion, electrolytic plating, and anodic oxidation, it is necessary to select a small area of the material surface and analyze the electrochemical characteristics of that part . For example, pitting corrosion of stainless steel is an electrochemical reaction starting from sulfide inclusions such as MnS having a size of several micrometers (μm). Therefore, it is considered that very useful information in improving the corrosion resistance of the material can be obtained by performing electrochemical measurement of only a minute region including the inclusion.
従来、このような材料表面の微小領域で生じる電気化学反応を解析するシステムとしては、ガラスキャピラリーを利用したものが一般的である。たとえば、内径10〜200μm程のガラスキャピラリーの内部に電解液を満たし、先端部を介在物を含む領域に押しつけ、局部電気化学現象の計測を行う方法が開示されている(例えば、非特許文献1参照)。これによれば、ガラスキャピラリーは、光学顕微鏡の対物レンズ用レボルバーに装着されている。この方法は、材料表面の電気化学計測を行う部位を光学顕微鏡観察により特定した後、レボルバーを回転し、マイクロキャピラリーを押し当てることで、あらかじめ狙った位置の電気化学計測を行うものである。すなわち、計測位置決定に関しては、マイクロビッカース硬度計と同じ原理である。 Conventionally, a system using a glass capillary is generally used as a system for analyzing an electrochemical reaction occurring in a minute region on the surface of such a material. For example, there is disclosed a method for measuring a local electrochemical phenomenon by filling a glass capillary having an inner diameter of about 10 to 200 μm with an electrolyte and pressing a tip portion against a region containing inclusions (for example, Non-Patent Document 1). reference). According to this, the glass capillary is attached to the objective lens revolver of the optical microscope. In this method, a part to be electrochemically measured on the surface of a material is specified by observation with an optical microscope, and then a revolver is rotated and a microcapillary is pressed to perform electrochemical measurement at a target position in advance. In other words, the measurement position determination is based on the same principle as the micro Vickers hardness tester.
また、キャピラリーを使用しない局部電気化学現象解析のための微小作用電極に関する技術も開示されている。すなわち、2種類以上の絶縁物を組み合わせて、作用電極面を囲むように被覆を構成し、作用電極面を外周の絶縁被覆と共に電解液に浸漬するという方法である(例えば、特許文献1参照)。この場合、キャピラリーを使用しないため、液漏れを容易に回避することができる。しかし、作用電極面と被覆との境界に残存する気泡を完全に除去することは容易ではなく、そのために2種類以上の絶縁物を組み合わせる必要があるとされている。すなわち、電極面外周部の被覆を2種類以上の絶縁物の組み合わせで構成した場合、個々の絶縁物の表面張力の違いにより、微細気泡が1種類の絶縁物の周囲に集まり、凝集・粗大化が起こり、気泡の除去が容易になるとの原理である。 A technique related to a micro working electrode for local electrochemical phenomenon analysis without using a capillary is also disclosed. That is, it is a method in which two or more kinds of insulators are combined to form a coating so as to surround the working electrode surface, and the working electrode surface is immersed in the electrolyte together with the outer peripheral insulating coating (for example, see Patent Document 1). . In this case, since no capillary is used, liquid leakage can be easily avoided. However, it is not easy to completely remove bubbles remaining at the boundary between the working electrode surface and the coating, and it is therefore necessary to combine two or more kinds of insulators. In other words, when the coating on the outer periphery of the electrode surface is composed of a combination of two or more types of insulators, fine bubbles gather around one type of insulator due to the difference in surface tension between the individual insulators, causing aggregation and coarsening. This is the principle that bubbles can be easily removed.
しかしながら、非特許文献1に記載の方法では、細長いガラスキャピラリーを用いているため、キャピラリーを試験片表面に密着させる際、電解液の液漏れや気泡残存による接触不良などを起こす場合が多く、電気化学計測を行うためには習熟が必要であるという課題があった。図7には、液漏れと気泡残存とによる電解液と試験片との接触不良の状態を模式図として示している。気泡の残存を防止するためには、図7に模式的に示すように、キャピラリー先端の液面が凸状になる状態を形成した上で、試験片と接触させることが好ましい。しかし、液面が過度に凸状の場合には、試験片と接触させた際に、液が漏れることになる。このように、マイクロキャピラリーを使用する方式で微小領域の電気化学計測を行うためには高度な習熟が必要である。 However, in the method described in Non-Patent Document 1, since an elongated glass capillary is used, when the capillary is brought into close contact with the surface of the test piece, there are many cases in which leakage of electrolyte solution or contact failure due to remaining bubbles occurs. There was a problem that learning was necessary to perform chemical measurement. FIG. 7 is a schematic diagram showing a state of poor contact between the electrolyte and the test piece due to liquid leakage and remaining bubbles. In order to prevent the bubbles from remaining, it is preferable to form a state in which the liquid level at the tip of the capillary is convex as shown in FIG. However, if the liquid level is excessively convex, the liquid will leak when brought into contact with the test piece. As described above, in order to perform electrochemical measurement of a minute region by using a microcapillary, a high level of skill is required.
また、特許文献1に記載の方法でも、あくまでも気泡を人為的に除去することが容易になるという観点での発明であり、気泡を皆無にすることは不可能であるという課題があった。以上のように、ステンレス鋼などの耐食材料の微小な腐食の起点、めっき反応の開始点や微小欠陥の形成過程などを電気化学計測する際に必要となる局部電気化学現象解析のための微小作用電極に関して、電極面に残存する気泡を無くす簡便な手法は知られていない。 The method described in Patent Document 1 is also an invention from the viewpoint that it is easy to artificially remove bubbles, and there is a problem that it is impossible to eliminate bubbles completely. As described above, the minute action for local electrochemical phenomenon analysis required for electrochemical measurement of the origin of minute corrosion of corrosion resistant materials such as stainless steel, the starting point of plating reaction and the formation process of minute defects, etc. Regarding the electrode, there is no known simple method for eliminating bubbles remaining on the electrode surface.
本発明は上記事情に鑑みなされたもので、その目的とするところは、材料表面の任意の狙った微小領域の電気化学計測において、キャピラリー型や2種類以上の絶縁物を組み合わせた被覆方法が本質的にかかえている液漏れや気泡残存の問題がなく、特段の習熟を必要とせずに局部電気化学現象の解析を行うことができる、局部電気化学現象解析のための微小作用電極の提供にある。 The present invention has been made in view of the above circumstances, and the object of the present invention is essentially a coating method combining a capillary type or two or more types of insulators in electrochemical measurement of an arbitrarily targeted micro area on the surface of a material. There is no problem of liquid leakage or remaining bubbles, and it is possible to analyze local electrochemical phenomena without requiring special learning, and to provide a micro working electrode for local electrochemical phenomenon analysis. .
本発明者等は、このような従来技術の短所を補い、未解決の課題を解決するため種々の試験研究を行い、本発明を完成させた。本発明の主旨は、以下の通りである。 The present inventors made up the present invention by making various test studies to make up for the disadvantages of the prior art and to solve unsolved problems. The gist of the present invention is as follows.
本発明に係る局部電気化学現象解析のための微小作用電極は、面積が0.0003cm2以下の作用電極面と、前記作用電極面の外周部に水滴との接触角が70度以下である親水性の有機化合物から成る被覆層とを備え、前記被覆層の電気抵抗率が10MΩ・cm以上であることを特徴とする。 The micro working electrode for local electrochemical phenomenon analysis according to the present invention has a working electrode surface having an area of 0.0003 cm 2 or less and a hydrophilic surface having a contact angle of 70 ° or less with water droplets on the outer periphery of the working electrode surface. And a coating layer made of a functional organic compound, wherein the coating layer has an electrical resistivity of 10 MΩ · cm or more.
本発明に係る局部電気化学現象解析のための微小作用電極は、前記被覆層が、ニトロセルロース、アクリル樹脂、ポリビニル系樹脂、酢酸セルロース、ポリアミドおよびポリアクリロニトリルの内、少なくとも1種類以上を質量百分率にて20%以上含むことが好ましい。 In the micro working electrode for local electrochemical phenomenon analysis according to the present invention, the coating layer has a mass percentage of at least one of nitrocellulose, acrylic resin, polyvinyl resin, cellulose acetate, polyamide and polyacrylonitrile. 20% or more is preferable.
本発明に係る局部電気化学現象解析のための微小作用電極で、前記被覆層は、有機溶剤と樹脂との混合物で、粘度が0.01Pa・s以上、1Pa・s未満であるものを、前記作用電極面の外周部に塗布した後に乾燥させて形成されていることが好ましい。 The micro working electrode for local electrochemical phenomenon analysis according to the present invention, wherein the coating layer is a mixture of an organic solvent and a resin and has a viscosity of 0.01 Pa · s or more and less than 1 Pa · s, It is preferable to form it by applying to the outer periphery of the working electrode surface and then drying.
本発明に係る局部電気化学現象解析のための微小作用電極は、前記有機溶剤がメタノール、エタノール、プロパノールのいずれか1つ、あるいは、その内の2種類以上の混合物であることが好ましい。 In the micro working electrode for local electrochemical phenomenon analysis according to the present invention, the organic solvent is preferably any one of methanol, ethanol, and propanol, or a mixture of two or more thereof.
本発明によれば、材料表面の任意の狙った微小領域の電気化学計測において、キャピラリー型や2種類以上の絶縁物を組み合わせた被覆方法が本質的にかかえている液漏れや気泡残存の問題がなく、特段の習熟を必要とせずに局部電気化学現象の解析を行うことができる、局部電気化学現象解析のための微小作用電極を提供することができる。 According to the present invention, in electrochemical measurement of an arbitrary minute region on the surface of a material, there is a problem of liquid leakage or bubble remaining which is inherently covered by a capillary type or a coating method combining two or more kinds of insulators. In addition, it is possible to provide a micro working electrode for local electrochemical phenomenon analysis, which can analyze a local electrochemical phenomenon without requiring special learning.
以下に、本発明を実施するための形態について述べる。
図1に本発明の実施の形態にかかる電気化学計測用微小電極システムの概略構成図を示す。図1(a)は微小領域の電気化学計測のみを、図1(b)は微小領域の電気化学計測と電極面の顕微鏡観察とを同時に行う場合の例である。本発明の骨子は、材料表面の微小領域の電気化学計測を行う作用電極において、電極面積0.0003cm2以下であり、電極外周部に水滴との接触角が70度以下である親水性の有機化合物の被覆層を備え、その電気抵抗率が10MΩ・cm以上であることを特徴とする局部電気化学現象解析のための微小作用電極である。
Hereinafter, embodiments for carrying out the present invention will be described.
FIG. 1 shows a schematic configuration diagram of a microelectrode system for electrochemical measurement according to an embodiment of the present invention. FIG. 1A shows an example in which only electrochemical measurement of a minute region is performed, and FIG. 1B shows an example in which electrochemical measurement of a minute region and microscopic observation of an electrode surface are performed simultaneously. The gist of the present invention is a hydrophilic organic electrode having an electrode area of 0.0003 cm 2 or less and a contact angle with water droplets on the outer periphery of the electrode of 70 degrees or less in a working electrode that performs electrochemical measurement of a minute region on the surface of a material. A micro-working electrode for local electrochemical phenomenon analysis, comprising a compound coating layer and having an electrical resistivity of 10 MΩ · cm or more.
図1(a)に示すように、微小領域の電気化学計測においては、鉄鋼材料中の介在物などを対象とする場合には、介在物の大きさが直径1μm程度であるため、作用電極面3の面積は0.0003cm2以下である必要がある。これよりも面積が大きいと、介在物と作用電極面3の面積全体との面積比が小さくなり、介在物の溶解電流を検出することが困難になる。めっきの析出起点や不めっき部の特性解析においても、起点のサイズは直径1μm程度であるため、作用電極面3の面積は0.0003cm2以下である必要がある。 As shown in FIG. 1 (a), in the electrochemical measurement of a minute region, when the inclusion in the steel material is targeted, the size of the inclusion is about 1 μm in diameter. The area of 3 needs to be 0.0003 cm 2 or less. If the area is larger than this, the area ratio between the inclusion and the entire area of the working electrode surface 3 becomes small, and it becomes difficult to detect the dissolution current of the inclusion. Also in the characteristic analysis of the plating starting point and the non-plating part, since the starting point size is about 1 μm in diameter, the area of the working electrode surface 3 needs to be 0.0003 cm 2 or less.
また、図1(b)に示すように、微小領域の電気化学計測と電極面の顕微鏡観察とを同時に行う場合には、顕微鏡で観察できる視野と、作用電極面3の大きさが概ね一致している必要がある。顕微鏡での観察倍率を小さくすれば、観察領域は大きくなるが、画像の解像度は低下する。金属材料表面の形態が電気化学反応に伴って変化する状況を観察するためには、対物レンズの倍率が100倍以上であることが好ましく、そのためにも、作用電極面3の面積は0.0003cm2以下である必要がある。 In addition, as shown in FIG. 1B, when performing electrochemical measurement of a minute region and microscopic observation of the electrode surface at the same time, the field of view that can be observed with a microscope and the size of the working electrode surface 3 are almost the same. Need to be. If the observation magnification with a microscope is reduced, the observation area increases, but the resolution of the image decreases. In order to observe the situation where the shape of the surface of the metal material changes with the electrochemical reaction, the magnification of the objective lens is preferably 100 times or more. For this reason, the area of the working electrode surface 3 is 0.0003 cm. Must be 2 or less.
次に、作用電極面3の周囲の絶縁被覆層1であるが、一般的な電気化学計測においては、絶縁被覆層1は粘着テープや硬化樹脂などの絶縁物で実施されている。しかし、作用電極面3が微小になり電極面積が0.0003cm2以下となった場合には、通常の絶縁物で被覆を行うと、図2(a)に示すように、作用電極面3と絶縁物の被覆層1との境界部に微細気泡(空気)が残存し、空気/金属界面で目的としない特異な電気化学反応が生じ、計測の誤差となる。さらに、作用電極面3の面積を正確に確定することが不可能になるなど、電気化学計測に不具合が生じる。 Next, the insulating coating layer 1 around the working electrode surface 3, but in a general electrochemical measurement, the insulating coating layer 1 is implemented with an insulator such as an adhesive tape or a cured resin. However, when the working electrode surface 3 becomes very small and the electrode area becomes 0.0003 cm 2 or less, as shown in FIG. Fine bubbles (air) remain at the boundary between the insulating coating layer 1 and undesired electrochemical reactions at the air / metal interface, resulting in measurement errors. In addition, there is a problem in electrochemical measurement such that it becomes impossible to accurately determine the area of the working electrode surface 3.
しかし、図2(b)に示すように、水滴との接触角が70度以下である親水性の有機化合物を用いて被覆層1を形成することにより、気泡の残存が軽減される。好ましくは、水滴との接触角が60度以下である親水性の有機化合物の被覆層1を用いることが望ましい。さらに、気泡の残存を皆無にするためには、水滴との接触角が30度以下である親水性の有機化合物の被覆層1を用いる必要がある。 However, as shown in FIG. 2B, the formation of the coating layer 1 using a hydrophilic organic compound having a contact angle with water droplets of 70 degrees or less reduces the remaining of bubbles. Preferably, it is desirable to use a hydrophilic organic compound coating layer 1 having a contact angle with water droplets of 60 degrees or less. Furthermore, in order to eliminate any remaining bubbles, it is necessary to use a hydrophilic organic compound coating layer 1 having a contact angle with water droplets of 30 degrees or less.
このように、親水性の有機化合物の被覆層1を用いることで、気泡の残存が軽減する理由は、その詳細は不明であるが、図2(a)よりも図2(b)の方が界面エネルギー的に安定な状態に近づくためではないかと考えられる。なお、作用電極面3を電気化学計測と同時に顕微鏡観察する場合には、気泡が過度に残存すると、顕微鏡の光源からの光が乱反射・散乱され、顕微鏡観察が困難になるという大きな問題も生じる。なお、ここでいう接触角は、JIS R 3257(1999)記載の「基板ガラス表面のぬれ性試験方法」に準拠して計測したものである。 As described above, the reason why the remaining bubbles are reduced by using the coating layer 1 of the hydrophilic organic compound is unknown in detail, but FIG. 2B is more preferable than FIG. 2A. This may be due to the approach to a stable state in terms of interfacial energy. When the working electrode surface 3 is observed with a microscope simultaneously with the electrochemical measurement, if bubbles remain excessively, light from the light source of the microscope is irregularly reflected and scattered, which causes a serious problem that the microscope observation becomes difficult. In addition, the contact angle here is measured according to the “wetting test method for substrate glass surface” described in JIS R 3257 (1999).
被覆層1としては、電気化学計測の作用電極の領域を確定するために使用するものであり、電気絶縁性である必要がある。電気抵抗率は高いほど好適であるが、電気化学計測の電流誤差を小さくするという観点から、電気抵抗率が10MΩ・cm以上であることが必要である。 The covering layer 1 is used to determine the region of the working electrode for electrochemical measurement and needs to be electrically insulating. The higher the electrical resistivity, the better. However, from the viewpoint of reducing the current error in electrochemical measurement, the electrical resistivity needs to be 10 MΩ · cm or more.
本発明は、被覆層1の組成を限定するものではないが、被覆作業の正確性・容易性や作業環境の安全性の観点から、ニトロセルロース、アクリル樹脂、ポリビニル系樹脂、酢酸セルロース、ポリアミドおよびポリアクリロニトリルの内、少なくとも1種類以上を質量百分率にて20%以上含むことが好ましい。これらの物質が、微小作用電極を作製する際の被覆層1を構成する物質として優れた特性を発現する理由は、分子内に極性の高い結合構造を有しており、水分子との間に水素結合を形成しやすいことが主要な原因ではないかと推察される。このような化学特性を有する物質は、ニトロセルロース、アクリル樹脂、ポリビニル系樹脂、酢酸セルロース、ポリアミド、ポリアクリロニトリルのみに限定されるものではないが、入手の容易性やコスト、保管時の安全性などの観点から、これらの物質が好ましい。また、これらは単独で使用しても良いが、必要に応じて他の物質と混合してもよい。そして、ニトロセルロース、アクリル樹脂、ポリビニル系樹脂、酢酸セルロース、ポリアミド、ポリアクリロニトリル以外のものと混合して使用する際は、これらの内の1種類以上が質量百分率にて20%以上含むことが好適である。 The present invention does not limit the composition of the coating layer 1, but from the viewpoint of accuracy and ease of coating work and safety of the working environment, nitrocellulose, acrylic resin, polyvinyl resin, cellulose acetate, polyamide and It is preferable that at least one of polyacrylonitriles is contained in a mass percentage of 20% or more. The reason why these substances exhibit excellent characteristics as the substances constituting the coating layer 1 when producing the micro working electrode is that they have a highly polar bond structure in the molecule, and between the water molecules. It is assumed that the main cause is that hydrogen bonds are easily formed. Substances having such chemical characteristics are not limited to nitrocellulose, acrylic resin, polyvinyl resin, cellulose acetate, polyamide, polyacrylonitrile, but are easy to obtain and cost, safe during storage, etc. From these viewpoints, these substances are preferable. These may be used alone, but may be mixed with other substances as necessary. And when mixing and using things other than nitrocellulose, acrylic resin, polyvinyl resin, cellulose acetate, polyamide, and polyacrylonitrile, it is preferable that at least one of these contains 20% or more by mass percentage. It is.
また、よりいっそう被覆作業の正確性・容易性を必要とする際には、有機溶剤と樹脂との混合物で、粘度が0.01Pa・s以上、1Pa・s未満であるものを、作用電極とする材料(試験片2)表面に塗布した後に乾燥させることで、親水性の有機化合物から成る被覆層1を形成することが好ましい。被覆作業時の粘度が0.01Pa・s未満の場合、混合物が材料表面を流れやすく、目的の微小領域を被覆することが困難になる。すなわち、マイクロメートルオーダーで所定の部分や位置のみに、混合物を塗布することが難しくなる。また、粘度が1Pa・s以上の場合には、粘性が高く絶縁被覆の表面を平滑に保つことが困難になり、気泡の残存をもたらす可能性が高くなり、被覆作業に高度な熟練が必要となる。 Further, when the accuracy and ease of coating work are required, a mixture of an organic solvent and a resin having a viscosity of 0.01 Pa · s or more and less than 1 Pa · s is used as a working electrode. It is preferable to form the coating layer 1 made of a hydrophilic organic compound by drying after applying to the surface of the material (test piece 2). When the viscosity at the time of coating is less than 0.01 Pa · s, the mixture tends to flow on the surface of the material, and it becomes difficult to cover a target minute region. That is, it becomes difficult to apply the mixture only to a predetermined portion or position on the micrometer order. In addition, when the viscosity is 1 Pa · s or more, it is difficult to keep the surface of the insulating coating smooth because the viscosity is high, and there is a high possibility that bubbles will remain. Become.
有機溶剤と樹脂との混合物は、被覆後に乾燥することで、電気化学計測の作用電極の領域を確定するための絶縁被覆として使用することができるようになる。 The mixture of the organic solvent and the resin can be used as an insulating coating for determining the region of the working electrode for electrochemical measurement by drying after coating.
なお、材料表面の微小領域の電気化学計測を行った後に、電子顕微鏡などにより電極面を観察したり分析したりする必要が生じる場合がある。そのような場合、絶縁被覆を容易に剥離できることが重要である。そのためには、有機溶剤がメタノール、エタノール、プロパノールのいずれか、あるいはその内の2種類以上の混合物であることが望ましい。これにより、被覆された試験後の試験片2をメタノール、エタノール、プロパノールのいずれか、あるいはその内の2種類以上の混合物に浸漬することで、絶縁被覆を容易に、剥離することが可能となる。また、その際に、作用電極面3の汚染も問題にならないという利点も有している。メタノール、エタノール、プロパノールは作業環境としても、安全上の管理が行いやすい。 Note that it may be necessary to observe or analyze the electrode surface with an electron microscope or the like after electrochemical measurement of a minute region on the material surface. In such a case, it is important that the insulating coating can be easily peeled off. For that purpose, it is desirable that the organic solvent is methanol, ethanol, propanol, or a mixture of two or more thereof. Thereby, the insulation coating can be easily peeled by immersing the coated test piece 2 after the test in one of methanol, ethanol, propanol, or a mixture of two or more thereof. . At this time, there is also an advantage that contamination of the working electrode surface 3 does not become a problem. Methanol, ethanol, and propanol are easy to manage for safety even in the work environment.
以下、実施例に基づき本発明を詳細に説明するが、本発明は実施例の記載に限定されるものではない。 EXAMPLES Hereinafter, although this invention is demonstrated in detail based on an Example, this invention is not limited to description of an Example.
図3に示すように、表面研磨したSUS304ステンレス鋼の表面に露出したMnS系介在物を狙って、エタノールを有機溶剤として、ニトロセルロース、アクリル樹脂、ポリビニル系樹脂の比率が質量比で1:1:1になるように混合し、エタノールの量を調整して粘度が0.01Pa・sになるようにしたもので作用電極面3を構成した。作用電極面3の面積は、0.00025cm2とした。被覆後12時間、室温にて自然乾燥した。乾燥後の被覆層1の電気抵抗率は100MΩ・cmで、水滴との接触角は55度であった。 As shown in FIG. 3, aiming at the MnS inclusions exposed on the surface of the surface-polished SUS304 stainless steel, the ratio of nitrocellulose, acrylic resin, and polyvinyl resin is 1: 1 by mass using ethanol as the organic solvent. The working electrode surface 3 was composed of a mixture having a viscosity of 0.01 Pa · s by adjusting the amount of ethanol. The area of the working electrode surface 3 was 0.00025 cm 2 . After coating, it was naturally dried at room temperature for 12 hours. The electric resistivity of the coating layer 1 after drying was 100 MΩ · cm, and the contact angle with water droplets was 55 degrees.
これを作用電極面3として、アクリル製の液溜部を作製し、0.1M NaCl水溶液(非脱気)で計測したアノード分極曲線を、図4に示す。電位は、−0.3V(内部液を0.1M NaClとするAg/AgCl電極基準)からアノード分極方向へ、23mV/minで、動電位で走査した。図4に示すように、カソード電流およびアノード電流、ステンレス鋼の不働態域、MnS系介在物のアノード溶解電流による電流増加、さらには介在物を起点とする微小ピット形成に伴う電流振動が計測できている。 FIG. 4 shows an anodic polarization curve obtained by preparing an acrylic liquid reservoir using this as the working electrode surface 3 and measuring with a 0.1 M NaCl aqueous solution (non-deaerated). The potential was scanned at a dynamic potential of 23 mV / min in the anodic polarization direction from −0.3 V (Ag / AgCl electrode standard in which the internal solution was 0.1 M NaCl). As shown in FIG. 4, it is possible to measure the cathode current and anode current, the passive state region of stainless steel, the current increase due to the anode dissolution current of MnS inclusions, and the current oscillations associated with the formation of micropits starting from the inclusions. ing.
このように、本発明の実施の形態の電気化学計測用微小電極システムにより、非常に小さい微小電極面であっても電気化学計測が可能であることが分かる。なお、図5は、図4に示した試験後に、試験片2をエタノールに30分間、自然浸漬した後に、表面を光学顕微鏡で観察したものである。異物の付着など表面汚染が見られないことが分かる。 Thus, it can be seen that electrochemical measurement is possible even with a very small microelectrode surface by the electrochemical microelectrode system according to the embodiment of the present invention. FIG. 5 shows the surface observed with an optical microscope after the test piece 2 was naturally immersed in ethanol for 30 minutes after the test shown in FIG. It can be seen that there is no surface contamination such as adhesion of foreign matter.
図6は、本発明の比較例として、シリコーン樹脂とトルエンとの混合物で、表面研磨したSUS304ステンレス鋼の表面に露出したMnS系介在物を狙って被覆した際の、0.1M NaCl水溶液(非脱気)で計測したアノード分極曲線である。作用電極面3の面積は、0.00025cm2とした。シリコーン樹脂とトルエンとの混合物を乾燥させた後の電気伝導率は200MΩ・cmであったが、水滴との接触角は85度であった。電流の挙動が不自然であるが、これは作用電極面3と被覆層1との境界部に気泡が存在しているためであると判断される。 FIG. 6 shows, as a comparative example of the present invention, a 0.1 M NaCl aqueous solution (non-coated) when a MnS-based inclusion exposed on the surface of a surface-polished SUS304 stainless steel is coated with a mixture of a silicone resin and toluene. It is an anodic polarization curve measured by deaeration. The area of the working electrode surface 3 was 0.00025 cm 2 . The electric conductivity after drying the mixture of the silicone resin and toluene was 200 MΩ · cm, but the contact angle with water droplets was 85 degrees. The behavior of the current is unnatural, but this is determined to be due to the presence of bubbles at the boundary between the working electrode surface 3 and the coating layer 1.
本発明の活用例としては、ステンレス鋼の非金属介在物などの微小な腐食起点、めっき反応の開始点や微小な不具合箇所の形成過程などを電気化学計測するための、局部電気化学現象解析のための微小作用電極として利用可能である。 Examples of utilization of the present invention include local electrochemical phenomenon analysis for electrochemical measurement of the origin of minute corrosion such as non-metallic inclusions in stainless steel, the starting point of plating reaction, and the formation process of minute defects. Therefore, it can be used as a micro working electrode.
1 被覆層
2 試験片
3 作用電極面
1 Coating layer 2 Test piece 3 Working electrode surface
本発明は、ステンレス鋼などの耐食材料の微小な腐食の起点、めっき反応の開始点や微小欠陥の形成過程などを電気化学計測する際に必要となる局部電気化学現象解析のための微小作用電極およびその製造方法に関する。
The present invention is a micro-working electrode for analyzing local electrochemical phenomena required for electrochemical measurement of the origin of micro-corrosion of corrosion-resistant materials such as stainless steel, the starting point of plating reaction, and the formation process of micro-defects. And a manufacturing method thereof .
本発明は上記事情に鑑みなされたもので、その目的とするところは、材料表面の任意の狙った微小領域の電気化学計測において、キャピラリー型や2種類以上の絶縁物を組み合わせた被覆方法が本質的にかかえている液漏れや気泡残存の問題がなく、特段の習熟を必要とせずに局部電気化学現象の解析を行うことができる、局部電気化学現象解析のための微小作用電極およびその製造方法の提供にある。
The present invention has been made in view of the above circumstances, and the object of the present invention is essentially a coating method combining a capillary type or two or more types of insulators in electrochemical measurement of an arbitrarily targeted micro area on the surface of a material. A micro-working electrode for local electrochemical phenomenon analysis and a method for manufacturing the same , which can analyze local electrochemical phenomena without requiring special learning without any problems of liquid leakage or residual bubbles Is in the provision of.
本発明に係る局部電気化学現象解析のための微小作用電極は、前記被覆層が、ニトロセルロース、アクリル樹脂、ポリビニル系樹脂、酢酸セルロース、ポリアミドおよびポリアクリロニトリルの内の1種類の物質を質量百分率にて20%以上含み、さらにその物質以外の物質を含むことが好ましい。
In the micro working electrode for local electrochemical phenomenon analysis according to the present invention, the coating layer has a mass percentage of one kind of substance selected from nitrocellulose, acrylic resin, polyvinyl resin, cellulose acetate, polyamide and polyacrylonitrile. unrealized least 20% Te, preferably further contains a substance other than the substance.
本発明に係る局部電気化学現象解析のための微小作用電極の製造方法は、有機溶剤と樹脂との混合物で、粘度が0.01Pa・s以上、1Pa・s未満であるものを、本発明に係る局部電気化学現象解析のための微小作用電極の前記作用電極面の外周部に塗布した後に乾燥させることで、前記被覆層を形成することを特徴とする。
Manufacturing method for a micro working electrode for the local electrochemical phenomena analysis according to the present invention is a mixture of an organic solvent and a resin, a viscosity of 0.01 Pa · s or more, what is less than 1 Pa · s, the present invention in Rukoto dried after application to the outer periphery of the working electrode surface of the micro working electrode for the local electrochemical phenomena analysis according, and forming the coating layer.
本発明に係る局部電気化学現象解析のための微小作用電極の製造方法は、前記有機溶剤がメタノール、エタノール、プロパノールのいずれか1つ、あるいは、その内の2種類以上の混合物であることが好ましい。
In the method for producing a micro working electrode for local electrochemical phenomenon analysis according to the present invention, the organic solvent is preferably any one of methanol, ethanol, and propanol, or a mixture of two or more thereof. .
本発明によれば、材料表面の任意の狙った微小領域の電気化学計測において、キャピラリー型や2種類以上の絶縁物を組み合わせた被覆方法が本質的にかかえている液漏れや気泡残存の問題がなく、特段の習熟を必要とせずに局部電気化学現象の解析を行うことができる、局部電気化学現象解析のための微小作用電極およびその製造方法を提供することができる。
According to the present invention, in electrochemical measurement of an arbitrary minute region on the surface of a material, there is a problem of liquid leakage or bubble remaining which is inherently covered by a capillary type or a coating method combining two or more kinds of insulators. In addition, it is possible to provide a micro-working electrode for local electrochemical phenomenon analysis and a method of manufacturing the same , which can analyze the local electrochemical phenomenon without requiring special learning.
本発明は、ステンレス鋼などの耐食材料の微小な腐食の起点、めっき反応の開始点や微小欠陥の形成過程などを電気化学計測する際に必要となる局部電気化学現象解析のための微小作用電極に関する。
The present invention is a micro-working electrode for analyzing local electrochemical phenomena required for electrochemical measurement of the origin of micro-corrosion of corrosion-resistant materials such as stainless steel, the starting point of plating reaction, and the formation process of micro-defects. about the.
本発明は上記事情に鑑みなされたもので、その目的とするところは、材料表面の任意の狙った微小領域の電気化学計測において、キャピラリー型や2種類以上の絶縁物を組み合わせた被覆方法が本質的にかかえている液漏れや気泡残存の問題がなく、特段の習熟を必要とせずに局部電気化学現象の解析を行うことができる、局部電気化学現象解析のための微小作用電極の提供にある。
The present invention has been made in view of the above circumstances, and the object of the present invention is essentially a coating method combining a capillary type or two or more types of insulators in electrochemical measurement of an arbitrarily targeted micro area on the surface of a material. There is no problem of liquid leakage or remaining bubbles, and it is possible to analyze local electrochemical phenomena without requiring special learning, and to provide a micro working electrode for local electrochemical phenomenon analysis. .
本発明に関する局部電気化学現象解析のための微小作用電極の製造方法は、有機溶剤と樹脂との混合物で、粘度が0.01Pa・s以上、1Pa・s未満であるものを、本発明に係る局部電気化学現象解析のための微小作用電極の前記作用電極面の外周部に塗布した後に乾燥させることで、前記被覆層を形成することを特徴とする。
Manufacturing method for a micro working electrode for the local electrochemical phenomena analysis about the present invention is a mixture of an organic solvent and a resin, a viscosity of 0.01 Pa · s or more, what is less than 1 Pa · s, the present invention The coating layer is formed by applying the fine working electrode to the outer peripheral portion of the working electrode surface for local electrochemical phenomenon analysis and then drying the coated electrode.
本発明に関する局部電気化学現象解析のための微小作用電極の製造方法は、前記有機溶剤がメタノール、エタノール、プロパノールのいずれか1つ、あるいは、その内の2種類以上の混合物であることが好ましい。
Manufacturing method for a micro working electrode for the local electrochemical phenomena analysis concerning the present invention, the organic solvent is methanol, ethanol, one of propanol, or preferably a mixture of two or more of them .
本発明によれば、材料表面の任意の狙った微小領域の電気化学計測において、キャピラリー型や2種類以上の絶縁物を組み合わせた被覆方法が本質的にかかえている液漏れや気泡残存の問題がなく、特段の習熟を必要とせずに局部電気化学現象の解析を行うことができる、局部電気化学現象解析のための微小作用電極を提供することができる。
According to the present invention, in electrochemical measurement of an arbitrary minute region on the surface of a material, there is a problem of liquid leakage or bubble remaining which is inherently covered by a capillary type or a coating method combining two or more kinds of insulators. In addition, it is possible to provide a micro working electrode for local electrochemical phenomenon analysis, which can analyze a local electrochemical phenomenon without requiring special learning.
Claims (4)
前記作用電極面の外周部に、水滴との接触角が70度以下である親水性の有機化合物から成る被覆層とを備え、
前記被覆層の電気抵抗率が10MΩ・cm以上であることを
特徴とする局部電気化学現象解析のための微小作用電極。 A working electrode surface having an area of 0.0003 cm 2 or less;
A coating layer made of a hydrophilic organic compound having a contact angle with water droplets of 70 degrees or less on the outer periphery of the working electrode surface;
An electrical resistivity of the coating layer is 10 MΩ · cm or more. A micro working electrode for local electrochemical phenomenon analysis.
4. The micro working electrode for local electrochemical phenomenon analysis according to claim 3, wherein the organic solvent is any one of methanol, ethanol and propanol, or a mixture of two or more thereof.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015054864A JP5987230B1 (en) | 2015-03-18 | 2015-03-18 | A micro-working electrode for analysis of local electrochemical phenomena |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015054864A JP5987230B1 (en) | 2015-03-18 | 2015-03-18 | A micro-working electrode for analysis of local electrochemical phenomena |
Publications (2)
Publication Number | Publication Date |
---|---|
JP5987230B1 JP5987230B1 (en) | 2016-09-07 |
JP2016176700A true JP2016176700A (en) | 2016-10-06 |
Family
ID=56871769
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015054864A Active JP5987230B1 (en) | 2015-03-18 | 2015-03-18 | A micro-working electrode for analysis of local electrochemical phenomena |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5987230B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6143040B1 (en) * | 2017-02-20 | 2017-06-07 | 国立大学法人東北大学 | Micro-working electrode for high-precision local electrochemical measurement, manufacturing method of micro-working electrode for high-accuracy local electrochemical measurement, and peeling method of insulating coating layer of micro-working electrode for high-precision local electrochemical measurement |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5136997B2 (en) * | 2011-01-26 | 2013-02-06 | 国立大学法人東北大学 | Microelectrode system for electrochemical measurement with optical microscope observation function |
-
2015
- 2015-03-18 JP JP2015054864A patent/JP5987230B1/en active Active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6143040B1 (en) * | 2017-02-20 | 2017-06-07 | 国立大学法人東北大学 | Micro-working electrode for high-precision local electrochemical measurement, manufacturing method of micro-working electrode for high-accuracy local electrochemical measurement, and peeling method of insulating coating layer of micro-working electrode for high-precision local electrochemical measurement |
Also Published As
Publication number | Publication date |
---|---|
JP5987230B1 (en) | 2016-09-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5136997B2 (en) | Microelectrode system for electrochemical measurement with optical microscope observation function | |
Fayyad et al. | Evaluation techniques for the corrosion resistance of selfhealing coatings | |
Daviddi et al. | Nanoscale electrochemistry in a copper/aqueous/oil three-phase system: surface structure–activity-corrosion potential relationships | |
US8016987B2 (en) | Evaluation of the corrosion inhibiting activity of a coating | |
Hu et al. | Platinized carbon nanoelectrodes as potentiometric and amperometric SECM probes | |
Abrahami et al. | Interface strength and degradation of adhesively bonded porous aluminum oxides | |
NO321731B1 (en) | Anodizing Method for Forming a Composite Film on a Metal Substrate or Silicon Substrate | |
Conde et al. | Anti-corrosion coating for metal surfaces based on superhydrophobic electrosprayed carbon layers | |
Lamaka et al. | Novel Solid‐Contact Ion‐Selective Microelectrodes for Localized Potentiometric Measurements | |
US3530045A (en) | Electrically responsive color-forming method of nondestructive testing | |
Eslami et al. | Electropolymerization and possible corrosion protection effect of polypyrrole coatings on AA1050 (UNS A91050) in NaCl solutions | |
JP5987230B1 (en) | A micro-working electrode for analysis of local electrochemical phenomena | |
Fernández-Álvarez et al. | Corrosion protection in chloride environments of nanosilica containing epoxy powder coatings with defects | |
Ruhlig et al. | Spatial imaging of Cu2+‐ion release by combining alternating current and underpotential stripping mode Scanning Electrochemical Microscopy | |
Taryba et al. | Plasticizer-free solid-contact pH-selective microelectrode for visualization of local corrosion | |
Brett et al. | Nafion‐Coated Mercury Thin Film and Glassy Carbon Electrodes for Electroanalysis: Characterization by Electrochemical Impedance | |
CN112986125A (en) | Sample for measuring galvanic corrosion between conductive coating and protected substrate and evaluation method | |
JP2012127869A (en) | Insulation-coated probe pin and method for manufacturing the same | |
JP6143040B1 (en) | Micro-working electrode for high-precision local electrochemical measurement, manufacturing method of micro-working electrode for high-accuracy local electrochemical measurement, and peeling method of insulating coating layer of micro-working electrode for high-precision local electrochemical measurement | |
JP2012088122A (en) | Insulation-coated probe pin and method of manufacturing the same | |
El‐Giar et al. | Preparation of Tip‐Protected Poly (oxyphenylene) Coated Carbon‐Fiber Ultramicroelectrodes | |
Yang et al. | A study on effects of mechanical stress and cathodic protection on marine coatings on mild steel in artificial seawater | |
Kyrisoglou et al. | Bismuth‐Coated Iridium Microwire Electrode for the Determination of Trace Metals by Anodic Stripping Voltammetry | |
Trinh et al. | Measurement of water profiles released from composite material by using the SECM technique | |
Daniele et al. | Use of Nafion® coated carbon disk microelectrodes in solution without and with different concentrations of supporting electrolyte |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160615 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20160616 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160719 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160720 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5987230 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |