JP2016176430A - Exhaust emission control device for engine - Google Patents

Exhaust emission control device for engine Download PDF

Info

Publication number
JP2016176430A
JP2016176430A JP2015058255A JP2015058255A JP2016176430A JP 2016176430 A JP2016176430 A JP 2016176430A JP 2015058255 A JP2015058255 A JP 2015058255A JP 2015058255 A JP2015058255 A JP 2015058255A JP 2016176430 A JP2016176430 A JP 2016176430A
Authority
JP
Japan
Prior art keywords
nitrogen oxide
engine
nox
catalyst
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015058255A
Other languages
Japanese (ja)
Other versions
JP6590140B2 (en
Inventor
洋 阿野田
Hiroshi Anoda
洋 阿野田
田代 圭介
Keisuke Tashiro
圭介 田代
川島 一仁
Kazuhito Kawashima
川島  一仁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2015058255A priority Critical patent/JP6590140B2/en
Publication of JP2016176430A publication Critical patent/JP2016176430A/en
Application granted granted Critical
Publication of JP6590140B2 publication Critical patent/JP6590140B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve exhaust emission control performance.SOLUTION: An exhaust passage 10 of an engine 2 includes: an NOx occlusion catalyst 11 for occluding NOx in exhaust gas; and a selective reduction catalyst 13 provided downstream of the NOx occlusion catalyst 11 for reducing and eliminating NOx by using ammonia generated by hydrolyzing urea water. An engine control unit 30 of the engine estimates NOx occlusion amount Qa of the NOx occlusion catalyst 11, performs purge control for reducing and eliminating NOx occluded in the NOx occlusion catalyst 11 by increasing an exhaust temperature of the engine 2 and making an air-fuel ratio of the exhaust gas stoichiometric or rich when the NOx occlusion amount Qa exceeds a predetermined value A, and performs temperature increase control for making the air-fuel ratio of the exhaust gas lean and increasing the exhaust temperature to an activation temperature of the selective reduction catalyst 13 or higher when the NOx occlusion amount Qa becomes larger than a predetermined value C that is set larger than the predetermined value A and larger than a slip determination value B of the NOx occlusion catalyst 11.SELECTED DRAWING: Figure 1

Description

本発明は、排気中の窒素酸化物を浄化する排気浄化触媒を備えたエンジンの排気浄化装置に関する。   The present invention relates to an exhaust emission control device for an engine provided with an exhaust purification catalyst that purifies nitrogen oxides in exhaust gas.

エンジンの排気通路には、排気を浄化するための排気浄化装置が備えられている。例えば、エンジンの排気中のNOx(窒素酸化物)を浄化するために、NOx吸蔵触媒等の排気浄化触媒が開発されている。
NOx吸蔵触媒は、リーン雰囲気下でNOxを吸蔵し、ストイキまたはリッチ雰囲気下でNOxを窒素に還元する。更に、排気中のNOxの浄化率を向上させるために、エンジンの排気通路に、窒素酸化物を浄化するNOx浄化触媒をNOx吸蔵触媒と直列に配置するものもある。
The exhaust passage of the engine is provided with an exhaust purification device for purifying the exhaust. For example, in order to purify NOx (nitrogen oxide) in engine exhaust, an exhaust purification catalyst such as a NOx storage catalyst has been developed.
The NOx storage catalyst stores NOx under a lean atmosphere and reduces NOx to nitrogen under a stoichiometric or rich atmosphere. Furthermore, in order to improve the purification rate of NOx in the exhaust gas, there are some which arrange an NOx purification catalyst for purifying nitrogen oxides in series with the NOx storage catalyst in the exhaust passage of the engine.

例えば特許文献1には、ディーゼルエンジンの排気通路に、NOx吸蔵触媒を備えるとともに、その下流側に排気中のPM(粒子状物質)を捕集するディーゼルパティキュレートフィルタと、NOxを浄化する選択還元触媒(NOx浄化触媒)を備えた排気浄化装置が開示されている。   For example, Patent Document 1 discloses a diesel particulate filter that includes a NOx storage catalyst in an exhaust passage of a diesel engine and collects PM (particulate matter) in exhaust gas downstream thereof, and selective reduction that purifies NOx. An exhaust purification device including a catalyst (NOx purification catalyst) is disclosed.

特許第4730336号公報Japanese Patent No. 4730336

ところで、排気通路にNOx吸蔵触媒を備えたエンジンでは、NOx吸蔵触媒に吸蔵したNOxを除去するために、例えばエンジンの燃料噴射制御によってNOx吸蔵触媒にリッチ空燃比の排気を供給するNOxパージが必要に応じて行われる。
しかしながら、例えば低負荷運転が続いてNOx吸蔵触媒の温度が低下している場合には、NOxパージをすることができない。特許文献1のようにNOx吸蔵触媒の下流に選択還元触媒等のNOx浄化触媒を設けている構成では、NOx吸蔵触媒から流出したNOxを下流のNOx浄化触媒にて浄化可能であるものの、低負荷運転が続いていた状態ではNOx吸蔵触媒の温度低下とともにNOx浄化触媒の温度も低下しており、NOx浄化触媒においてNOxを十分に除去できず下流に流出してしまうといった虞がある。
By the way, in an engine provided with a NOx storage catalyst in the exhaust passage, in order to remove NOx stored in the NOx storage catalyst, for example, NOx purge for supplying exhaust gas of rich air-fuel ratio to the NOx storage catalyst by engine fuel injection control is required. Is done according to.
However, for example, when the temperature of the NOx storage catalyst is lowered due to low load operation, the NOx purge cannot be performed. In the configuration in which the NOx purification catalyst such as the selective reduction catalyst is provided downstream of the NOx storage catalyst as in Patent Document 1, the NOx flowing out from the NOx storage catalyst can be purified by the downstream NOx purification catalyst, but the load is low. In the state where the operation has continued, the temperature of the NOx purification catalyst is lowered along with the temperature decline of the NOx storage catalyst, and there is a risk that the NOx purification catalyst cannot sufficiently remove NOx and flows downstream.

本発明はこのような問題点を解決するためになされたもので、排気通路に窒素酸化物吸蔵還元触媒及び窒素酸化物浄化触媒を備えたエンジンにおいて、排気浄化性能の優れた排気浄化装置を提供することにある。   The present invention has been made to solve such problems, and provides an exhaust purification device having excellent exhaust purification performance in an engine provided with a nitrogen oxide storage reduction catalyst and a nitrogen oxide purification catalyst in an exhaust passage. There is to do.

上記の目的を達成するために、本願発明のエンジンの排気浄化装置は、エンジンの排気通路に設けられ、排気中の窒素酸化物を吸蔵する窒素酸化物吸蔵還元触媒と、前記窒素酸化物吸蔵還元触媒の下流側の前記排気通路に設けられ、窒素酸化物を浄化する窒素酸化物浄化触媒と、前記窒素酸化物吸蔵還元触媒の窒素酸化物吸蔵量を推定する窒素酸化物吸蔵量推定部と、前記窒素酸化物吸蔵量が所定の第1の吸蔵量より大きくなった状態で、所定のパージ条件が成立した場合に、排気の空燃比をストイキまたはリッチにして、前記窒素酸化物吸蔵還元触媒に吸蔵した前記窒素酸化物を還元するパージ制御を実行するパージ制御部と、前記パージ条件が成立しない場合には、前記窒素酸化物吸蔵量が前記所定の第1の吸蔵量より大きく設定された所定の第2の吸蔵量になるまで前記パージ制御を実施しないパージ制御待機状態を維持し、前記窒素酸化物吸蔵量が前記せずに前記窒素酸化物吸蔵量が前記第1の吸蔵量より大きく設定された所定の第2の吸蔵量より大きくなった際には、排気の空燃比をリーンにするとともに、前記エンジンの排気温度を活性温度以上に上昇させる昇温制御を実行する昇温制御部と、を備えることを特徴とする。   In order to achieve the above object, an exhaust emission control device for an engine of the present invention includes a nitrogen oxide storage reduction catalyst that is provided in an exhaust passage of an engine and stores nitrogen oxides in the exhaust, and the nitrogen oxide storage reduction A nitrogen oxide purification catalyst that is provided in the exhaust passage on the downstream side of the catalyst and purifies nitrogen oxide; and a nitrogen oxide storage amount estimation unit that estimates a nitrogen oxide storage amount of the nitrogen oxide storage reduction catalyst; When the predetermined purge condition is satisfied in a state where the nitrogen oxide storage amount is larger than the predetermined first storage amount, the air-fuel ratio of the exhaust is made stoichiometric or rich so that the nitrogen oxide storage reduction catalyst A purge control unit that executes purge control for reducing the stored nitrogen oxides, and when the purge condition is not satisfied, the nitrogen oxide storage amount is set to be larger than the predetermined first storage amount. The purge control standby state in which the purge control is not performed is maintained until the predetermined second storage amount is reached, and the nitrogen oxide storage amount is not increased and the nitrogen oxide storage amount is greater than the first storage amount. A temperature increase control unit that executes a temperature increase control that makes the air-fuel ratio of the exhaust lean and raises the exhaust temperature of the engine to an activation temperature or higher when it exceeds a predetermined second storage amount that is set And.

また、好ましくは、前記所定の第2の吸蔵量は、前記パージ制御の実行の際に前記窒素酸化物吸蔵還元触媒で前記窒素酸化物が還元されずに放出が開始される前記窒素酸化物吸蔵還元触媒の吸蔵量より小さく設定されるとよい
また、好ましくは、前記昇温制御は、前記エンジンの負荷が所定値より低い状態では、前記エンジンの吸気量を減少させて行うとよい。
Preferably, the predetermined second occlusion amount is the nitrogen oxide occlusion in which release of the nitrogen oxide is not reduced by the nitrogen oxide occlusion reduction catalyst when the purge control is performed. Preferably, the temperature increase control is performed by decreasing the intake air amount of the engine when the engine load is lower than a predetermined value.

また、好ましくは、前記昇温制御は、前記エンジンの負荷が前記所定値以上の状態では、前記エンジンの燃料噴射量を増加させて行うとよい。
また、好ましくは、前記窒素酸化物浄化触媒は、アンモニアを用いて窒素酸化物を浄化する選択還元触媒であり、前記窒素酸化物浄化触媒の上流側の前記排気通路に尿素水溶液を供給する尿素水溶液供給部を備え、前記昇温制御は、前記尿素水溶液供給部により供給された尿素水溶液を加水分解してアンモニアが生成される温度に前記排気温度を上昇させるとよい。
Preferably, the temperature increase control is performed by increasing the fuel injection amount of the engine when the engine load is equal to or greater than the predetermined value.
Preferably, the nitrogen oxide purification catalyst is a selective reduction catalyst that purifies nitrogen oxide using ammonia, and the urea aqueous solution that supplies the urea aqueous solution to the exhaust passage upstream of the nitrogen oxide purification catalyst. It is preferable to provide a supply unit, and the temperature increase control may raise the exhaust gas temperature to a temperature at which ammonia is generated by hydrolyzing the urea aqueous solution supplied by the urea aqueous solution supply unit.

本発明のエンジンの排気浄化装置によれば、排気通路に窒素酸化物吸蔵還元触媒が設けられるとともに、その下流に窒素酸化物浄化触媒が設けられているので、排気中の窒素酸化物は始めに窒素酸化物吸蔵還元触媒に吸蔵される。そして、窒素酸化物吸蔵還元触媒の窒素酸化物吸蔵量が第1の吸蔵量より大きくなりパージ条件が成立するとパージ制御により窒素酸化物が還元除去され、窒素酸化物吸蔵還元触媒の吸蔵性能が回復する。   According to the exhaust purification device for an engine of the present invention, the nitrogen oxide storage reduction catalyst is provided in the exhaust passage, and the nitrogen oxide purification catalyst is provided downstream thereof, so that the nitrogen oxide in the exhaust is first introduced. It is stored in the nitrogen oxide storage reduction catalyst. When the nitrogen oxide storage amount of the nitrogen oxide storage reduction catalyst becomes larger than the first storage amount and the purge condition is satisfied, the nitrogen oxide is reduced and removed by purge control, and the storage performance of the nitrogen oxide storage reduction catalyst is restored. To do.

ここで、例えば窒素酸化物吸蔵還元触媒が低温で窒素酸化物の還元除去が不能であってパージ条件が成立しない場合には、パージ制御が待機され、窒素酸化物吸蔵量が第2の吸蔵量よりも大きくなった際には、排気の空燃比をリーンにするとともに窒素酸化物浄化触媒を活性温度以上に上昇させる昇温制御を実行することで、燃料消費を抑制しつつ窒素酸化物浄化触媒における浄化を可能にすることができる。   Here, for example, when the nitrogen oxide storage / reduction catalyst is at a low temperature and the nitrogen oxide cannot be reduced and removed and the purge condition is not satisfied, the purge control is waited, and the nitrogen oxide storage amount becomes the second storage amount. When the air-fuel ratio becomes larger, the temperature of the exhaust gas is made lean and the temperature rise control is performed to raise the nitrogen oxide purification catalyst to the activation temperature or higher, thereby suppressing the fuel consumption and the nitrogen oxide purification catalyst. Purification can be made possible.

本発明の実施形態におけるエンジンの吸排気系の概略構成図である。1 is a schematic configuration diagram of an intake / exhaust system of an engine in an embodiment of the present invention. 本実施形態のエンジンコントロールユニットにおける排気浄化装置の制御手順を示すフローチャートである。It is a flowchart which shows the control procedure of the exhaust gas purification apparatus in the engine control unit of this embodiment.

以下、図面に基づき本発明の実施形態について説明する。
図1は、本発明の排気浄化装置1が適用された第1の実施形態のディーゼルエンジン(以下、エンジン2という)の吸排気系の概略構成図である。
エンジン2は、走行駆動源として車両に搭載されており、多気筒の筒内直接噴射式エンジンであって、図1では簡略して1つの気筒のみ記載している。エンジン2は、各気筒に設けられた燃料噴射ノズル3から、任意の噴射時期及び噴射量で各気筒の燃焼室4内に燃料を噴射可能な構成となっている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic configuration diagram of an intake / exhaust system of a diesel engine (hereinafter referred to as an engine 2) according to a first embodiment to which an exhaust emission control device 1 of the present invention is applied.
The engine 2 is mounted on a vehicle as a travel drive source, and is a multi-cylinder direct injection type engine. In FIG. 1, only one cylinder is illustrated in a simplified manner. The engine 2 is configured to be able to inject fuel into the combustion chamber 4 of each cylinder at an arbitrary injection timing and injection amount from a fuel injection nozzle 3 provided in each cylinder.

エンジン2の吸気通路5には、新気の流量を調整するための電子制御スロットルバルブ6が設けられている。
エンジン2の排気通路10には、エンジン2から下流に向かって順番に、NOx吸蔵触媒11(窒素酸化物吸蔵還元触媒)、ディーゼルパティキュレートフィルタ(以下、フィルタ)12、選択還元触媒13(窒素酸化物浄化触媒)が設けられている。
An electronic control throttle valve 6 for adjusting the flow rate of fresh air is provided in the intake passage 5 of the engine 2.
In the exhaust passage 10 of the engine 2, a NOx storage catalyst 11 (nitrogen oxide storage reduction catalyst), a diesel particulate filter (hereinafter referred to as filter) 12, and a selective reduction catalyst 13 (nitrogen oxidation) are sequentially arranged downstream from the engine 2. Material purification catalyst).

フィルタ12と選択還元触媒13との間の排気通路10には、尿素水(尿素水溶液)を噴射供給する尿素水インジェクタ14(尿素水溶液供給部)が設けられている。尿素水インジェクタ14には、車両に搭載した図示しない尿素水タンクから尿素水が供給される。
尿素水インジェクタ14から排気通路10内に噴射された尿素水が排気の熱によって加水分解されてアンモニアを発生し選択還元触媒13に到達するように、尿素水インジェクタ14の噴射位置が設定されている。
The exhaust passage 10 between the filter 12 and the selective reduction catalyst 13 is provided with a urea water injector 14 (urea aqueous solution supply unit) for injecting and supplying urea water (urea aqueous solution). Urea water is supplied to the urea water injector 14 from a urea water tank (not shown) mounted on the vehicle.
The injection position of the urea water injector 14 is set so that the urea water injected from the urea water injector 14 into the exhaust passage 10 is hydrolyzed by the heat of the exhaust to generate ammonia and reach the selective reduction catalyst 13. .

NOx吸蔵触媒11は、排気中の窒素酸化物(以下、NOx)を吸蔵し、高温リッチ雰囲気下でNOxを還元除去する。
フィルタ12は、排気中の黒鉛を主成分とする微粒子状物資を捕集する。
選択還元触媒13は、尿素水から生成したアンモニアを還元剤として用いて排気中のNOxを還元浄化する。
The NOx occlusion catalyst 11 occludes nitrogen oxide (hereinafter referred to as NOx) in the exhaust gas, and reduces and removes NOx in a high temperature rich atmosphere.
The filter 12 collects particulate matter whose main component is graphite in the exhaust gas.
The selective reduction catalyst 13 reduces and purifies NOx in the exhaust gas using ammonia generated from urea water as a reducing agent.

また、エンジン2には、排気還流装置15が備えられている。排気還流装置15は、吸気通路5と排気通路10とを連通する排気還流通路16と、排気還流通路16を開閉する排気還流バルブ17とにより構成されている。
更に、エンジン2には、エンジン2の回転速度を検出する回転速度センサ20が設けられている。エンジン2の吸気通路5には、吸気流量を検出するエアフローセンサ21が設けられている。選択還元触媒13には、選択還元触媒13の温度を検出する選択還元触媒温度センサ22が設けられている。NOx吸蔵触媒11には、NOx吸蔵触媒11の温度を検出するNOx吸蔵触媒温度センサ23が設けられている。
Further, the engine 2 is provided with an exhaust gas recirculation device 15. The exhaust gas recirculation device 15 includes an exhaust gas recirculation passage 16 that connects the intake passage 5 and the exhaust passage 10, and an exhaust gas recirculation valve 17 that opens and closes the exhaust gas recirculation passage 16.
Further, the engine 2 is provided with a rotation speed sensor 20 that detects the rotation speed of the engine 2. An air flow sensor 21 that detects an intake air flow rate is provided in the intake passage 5 of the engine 2. The selective reduction catalyst 13 is provided with a selective reduction catalyst temperature sensor 22 that detects the temperature of the selective reduction catalyst 13. The NOx storage catalyst 11 is provided with a NOx storage catalyst temperature sensor 23 that detects the temperature of the NOx storage catalyst 11.

エンジンコントロールユニット30(窒素酸化物吸蔵量推定部、パージ制御部、昇温制御部)は、入出力装置、記憶装置(ROM、RAM、不揮発性RAM等)、タイマ及び中央演算処理装置(CPU)等を含んで構成され、回転速度センサ20、エアフローセンサ21、選択還元触媒温度センサ22、NOx吸蔵触媒温度センサ23等の各種センサの検出情報と、車両のアクセル操作量等の情報を入力し、当該各種情報に基づいて、燃料噴射ノズル3からの燃料噴射量、燃料噴射時期、電子制御スロットルバルブ6の開度、尿素水インジェクタ14からの尿素水噴射量、尿素水噴射時期、排気還流バルブ17の開度を演算して、上記各種機器の作動制御を行うことで、エンジン2の運転制御を行う。   The engine control unit 30 (nitrogen oxide storage amount estimation unit, purge control unit, temperature rise control unit) includes an input / output device, a storage device (ROM, RAM, nonvolatile RAM, etc.), a timer, and a central processing unit (CPU). The detection information of various sensors such as the rotational speed sensor 20, the air flow sensor 21, the selective reduction catalyst temperature sensor 22, the NOx occlusion catalyst temperature sensor 23, and information such as the accelerator operation amount of the vehicle are input. Based on the various information, the fuel injection amount from the fuel injection nozzle 3, the fuel injection timing, the opening degree of the electronic control throttle valve 6, the urea water injection amount from the urea water injector 14, the urea water injection timing, the exhaust gas recirculation valve 17 The operation of the engine 2 is controlled by controlling the operation of the various devices.

また、エンジンコントロールユニット30は、ポスト噴射等により、空燃比を14.7以下のストイキまたはリッチとするとともに選択還元触媒13を所定温度以上に昇温させることで、NOx吸蔵触媒11に吸蔵したNOxを還元除去するNOxパージを実行するパージ制御機能を有している(パージ制御部)。
次に、図2を用いて、NOx吸蔵触媒11に吸蔵されたNOxを還元除去するNOxパージについて説明する。
Further, the engine control unit 30 makes the air-fuel ratio stoichiometric or rich at 14.7 or less by post injection or the like and raises the selective reduction catalyst 13 to a predetermined temperature or higher so that the NOx stored in the NOx storage catalyst 11 is stored. Has a purge control function for performing NOx purge for reducing and removing (purge control unit).
Next, NOx purge for reducing and removing NOx stored in the NOx storage catalyst 11 will be described with reference to FIG.

図2は、エンジンコントロールユニット30におけるNOxパージ制御手順を示すフローチャートである。
図2に示す本実施形態の排気浄化装置1の制御は、エンジン運転時にエンジンコントロールユニット30において所定期間毎に繰り返し実行される。
始めに、ステップS10では、NOx吸蔵触媒11に吸蔵されているNOx吸蔵量Qa(窒素酸化物吸蔵量)が所定値A(第1の吸蔵量)より大きいか否かを判別する。NOx吸蔵量Qaは、例えば前回のNOxパージ終了からそれまでのエンジン2の運転時間とその運転状態に基づいて推定すればよい(窒素酸化物吸蔵量推定部)。所定値Aは、NOxパージを実行するか否かを判別する閾値であり、NOx吸蔵触媒11におけるNOx吸蔵量Qaの最大許容量より少ない値に設定すればよい。NOx吸蔵量Qaが所定値Aより大きい場合には、ステップS20に進む。NOx吸蔵量Qaが所定値A以下である場合には、本ルーチンを終了する。
FIG. 2 is a flowchart showing a NOx purge control procedure in the engine control unit 30.
The control of the exhaust purification device 1 of the present embodiment shown in FIG. 2 is repeatedly executed at predetermined intervals in the engine control unit 30 during engine operation.
First, in step S10, it is determined whether or not the NOx storage amount Qa (nitrogen oxide storage amount) stored in the NOx storage catalyst 11 is greater than a predetermined value A (first storage amount). The NOx occlusion amount Qa may be estimated based on, for example, the operation time of the engine 2 from the end of the previous NOx purge and the operation state thereof (nitrogen oxide occlusion amount estimation unit). The predetermined value A is a threshold value for determining whether or not to perform NOx purge, and may be set to a value smaller than the maximum allowable amount of the NOx storage amount Qa in the NOx storage catalyst 11. When the NOx occlusion amount Qa is larger than the predetermined value A, the process proceeds to step S20. When the NOx occlusion amount Qa is equal to or less than the predetermined value A, this routine ends.

ここで、ステップS10からステップS20へ進む間は、パージ制御を実施しないパージ制御待機状態を維持する。
ステップS20では、NOx吸蔵量Qaが所定値C(第2の吸蔵量)より大きいか否かを判別する。所定値Cは、所定値Aより大きい値であり、NOxパージを行った際にNOxが還元除去しきれずに流出してしまう所謂スリップ判定値B(スリップ値)よりも小さい値に設定すればよい。NOx吸蔵量Qaが所定値Cより大きい場合には、ステップS30に進む。NOx吸蔵量Qaが所定値C以下である場合には、ステップS40に進む。
Here, while proceeding from step S10 to step S20, a purge control standby state in which purge control is not performed is maintained.
In step S20, it is determined whether or not the NOx storage amount Qa is larger than a predetermined value C (second storage amount). The predetermined value C is larger than the predetermined value A, and may be set to a value smaller than a so-called slip determination value B (slip value) that causes NOx to flow out without being reduced and removed when NOx purge is performed. . When the NOx occlusion amount Qa is larger than the predetermined value C, the process proceeds to step S30. When the NOx occlusion amount Qa is equal to or less than the predetermined value C, the process proceeds to step S40.

ステップS30では、選択還元触媒温度センサ22から選択還元触媒温度Tbを入力し、選択還元触媒温度Tbが所定値T1より高いか否かを判別する。所定値T1は、選択還元触媒13においてNOxを十分に還元除去可能となる活性温度に設定すればよい。選択還元触媒温度Tbが所定値T1より高い場合には、ステップS40に進む。選択還元触媒温度Tbが所定値T1以下である場合には、ステップS60に進む。   In step S30, the selective reduction catalyst temperature Tb is input from the selective reduction catalyst temperature sensor 22, and it is determined whether or not the selective reduction catalyst temperature Tb is higher than a predetermined value T1. The predetermined value T1 may be set to an activation temperature at which NOx can be sufficiently reduced and removed in the selective reduction catalyst 13. When the selective reduction catalyst temperature Tb is higher than the predetermined value T1, the process proceeds to step S40. When the selective reduction catalyst temperature Tb is equal to or lower than the predetermined value T1, the process proceeds to step S60.

ステップS40では、NOxパージ条件が成立しているか否かを判別する。NOxパージ条件は、例えばNOx吸蔵触媒11の温度がNOxパージ可能な温度以上であることを検出したり、NOxパージ可能な排気温度になる高負荷運転であることを判定したりすればよい。NOxパージ条件が成立している場合には、ステップS50に進む。NOxパージ条件が成立していない場合には、本ルーチンを終了する。   In step S40, it is determined whether or not a NOx purge condition is satisfied. The NOx purge condition may be determined, for example, by detecting that the temperature of the NOx occlusion catalyst 11 is equal to or higher than the temperature at which NOx purging is possible, or by determining that the operation is a high load operation at which the exhaust temperature becomes NOx purging. If the NOx purge condition is satisfied, the process proceeds to step S50. If the NOx purge condition is not satisfied, this routine is terminated.

ステップS50では、NOxパージ(パージ制御)を実行する。NOxパージは、上記のように、ポスト噴射等により、NOx吸蔵触媒11をパージ可能な温度以上に維持しつつ空燃比を14.7以下のストイキまたはリッチとすることで行われる。そして、本ルーチンを終了する。
ステップS60では、NOx吸蔵触媒温度センサ23からNOx吸蔵触媒温度Taを入力し、NOx吸蔵触媒温度Taが所定値T2より低いか否かを判別する。所定値T2は、ポスト噴射を行ってNOx吸蔵触媒11が昇温可能となる温度に設定すればよい。NOx吸蔵触媒温度Taが所定値T2より低い場合には、ステップS70に進む。NOx吸蔵触媒温度Taが所定値T2以上である場合には、ステップS80に進む。
In step S50, NOx purge (purge control) is executed. As described above, the NOx purge is performed by making the air-fuel ratio stoichiometric or rich below 14.7 while maintaining the NOx storage catalyst 11 at a temperature that can be purged or higher by post injection or the like. Then, this routine ends.
In step S60, the NOx storage catalyst temperature Ta is input from the NOx storage catalyst temperature sensor 23, and it is determined whether or not the NOx storage catalyst temperature Ta is lower than a predetermined value T2. The predetermined value T2 may be set to a temperature at which the NOx storage catalyst 11 can be heated by post injection. If the NOx storage catalyst temperature Ta is lower than the predetermined value T2, the process proceeds to step S70. If the NOx storage catalyst temperature Ta is equal to or higher than the predetermined value T2, the process proceeds to step S80.

ステップS70では、エンジンの1の吸気量を減少させる吸気絞りを実行する。詳しくは、電子制御スロットルバルブ6の開度を減少させて空燃比を低下させ、NOx吸蔵触媒温度Taを上昇させる。そして、ステップS60に戻る。
ステップS80では、ポスト噴射を実行する。そして、ステップS30に戻る。
以上のように、本実施形態では、排気通路10に低温領域で浄化性能の優れたNOx吸蔵触媒11と高温領域で浄化性能の優れた選択還元触媒13を備えているので、広範囲の排気温度でNOxの浄化性能を向上させることができる。上流側のNOx吸蔵触媒11にNOxが所定値Aよりも多く吸蔵された場合には、NOxパージが要求されるが、例えばアイドリング運転のような低負荷運転が継続されてNOx吸蔵触媒11の温度が低下していてNOxパージが不能である場合には、NOx吸蔵触媒11におけるNOx吸蔵量Qaが更に増加する。そして、NOx吸蔵量がスリップ判定値Bよりも大きくなってしまうと、NOx吸蔵触媒11からNOxが流出する可能性がある。本実施形態では、NOxの発生を抑える装置として排気還流装置15を備えているが、アイドリング運転のような運転状況では燃焼安定性を確保するため、排気の還流量が抑えられ、NOxの発生を十分に抑制することが困難である。
In step S70, an intake throttle that reduces the intake amount of the engine 1 is executed. More specifically, the opening degree of the electronic control throttle valve 6 is decreased to lower the air-fuel ratio, and the NOx storage catalyst temperature Ta is increased. Then, the process returns to step S60.
In step S80, post injection is executed. Then, the process returns to step S30.
As described above, in the present embodiment, the exhaust passage 10 includes the NOx storage catalyst 11 having excellent purification performance in the low temperature region and the selective reduction catalyst 13 having excellent purification performance in the high temperature region. The NOx purification performance can be improved. When NOx is stored in the upstream NOx storage catalyst 11 more than the predetermined value A, NOx purge is required, but for example, low load operation such as idling operation is continued and the temperature of the NOx storage catalyst 11 is increased. When the NOx purge is impossible, the NOx occlusion amount Qa in the NOx occlusion catalyst 11 further increases. If the NOx occlusion amount becomes larger than the slip determination value B, NOx may flow out from the NOx occlusion catalyst 11. In the present embodiment, the exhaust gas recirculation device 15 is provided as a device that suppresses the generation of NOx. However, in order to ensure combustion stability in an operating condition such as an idling operation, the recirculation amount of the exhaust gas is suppressed and the generation of NOx is suppressed. It is difficult to suppress sufficiently.

そこで、本実施形態では、NOx吸蔵量Qaが所定値Aより大きく設定された所定値Cを超えると、吸気絞りまたはポスト噴射による昇温制御が行い、選択還元触媒13の温度を活性温度以上にする。これにより、例えNOx吸蔵触媒11からNOxが流出しても下流側の選択還元触媒13において除去することが可能となる。また、所定値Cは、スリップ判定値Bよりも低く設定されているので、NOx吸蔵量Qaがスリップ判定値Bに到達する前に、選択還元触媒13の温度を上昇させることができる。   Therefore, in the present embodiment, when the NOx occlusion amount Qa exceeds the predetermined value C set larger than the predetermined value A, the temperature rise control is performed by intake throttling or post injection, and the temperature of the selective reduction catalyst 13 is set to the activation temperature or higher. To do. Thus, even if NOx flows out from the NOx storage catalyst 11, it can be removed by the selective reduction catalyst 13 on the downstream side. Further, since the predetermined value C is set lower than the slip determination value B, the temperature of the selective reduction catalyst 13 can be raised before the NOx occlusion amount Qa reaches the slip determination value B.

昇温制御をする際には、NOx吸蔵触媒温度Taが所定値T2より低い場合には、ポスト噴射をしても燃料が燃焼せずに昇温しないので、吸気絞りを行うことで排気温度を上昇させる。NOx吸蔵触媒温度Taが所定値T2以上となれば、ポスト噴射を行って燃料噴射量を増量させ効率的に昇温させることができる。
また、この昇温制御では空燃比をリーンに留めておくことで、NOx吸蔵触媒11からのNOxの流出を抑えるとともに、燃料消費を抑えることができる。
When performing temperature increase control, if the NOx occlusion catalyst temperature Ta is lower than the predetermined value T2, the fuel does not burn even after post injection and the temperature does not increase. Raise. If the NOx occlusion catalyst temperature Ta is equal to or higher than the predetermined value T2, post injection can be performed to increase the fuel injection amount and efficiently raise the temperature.
Further, in this temperature increase control, by keeping the air-fuel ratio lean, it is possible to suppress the outflow of NOx from the NOx storage catalyst 11 and to suppress fuel consumption.

このように、本実施形態では、NOx吸蔵量Qaが所定値Aを超えてNOxパージが要求されている状態において、NOx吸蔵触媒11におけるNOx吸蔵量Qaがスリップ判定値Bよりも小さい所定値Cより大きくなった場合には、NOxパージから昇温制御に切換えて行うことで、NOxパージがスリップ判定値Bに到達する前に選択還元触媒13の温度を上昇させておくことができる。したがって、例えば高負荷運転が行なわれてNOxパージが可能となったときにNOx吸蔵量Qaがスリップ判定値Bを超えていて、NOxパージの開始時においてNOx吸蔵触媒11からNOxが流出したとしても選択還元触媒13によってすぐにかつ十分に浄化することができ、大気中へのNOxの排出を減少させ、排気浄化性能を向上させることができる。また、この昇温制御によりNOx吸蔵触媒11も昇温するので、NOxパージの開始を早めることができる。   Thus, in the present embodiment, the NOx occlusion amount Qa in the NOx occlusion catalyst 11 is smaller than the slip determination value B when the NOx occlusion amount Qa exceeds the predetermined value A and the NOx purge is requested. When it becomes larger, the temperature of the selective reduction catalyst 13 can be raised before the NOx purge reaches the slip determination value B by switching from the NOx purge to the temperature raising control. Therefore, for example, even when NOx purge is possible when high load operation is performed and the NOx occlusion amount Qa exceeds the slip determination value B, NOx flows out of the NOx occlusion catalyst 11 at the start of NOx purge. The selective reduction catalyst 13 can immediately and sufficiently purify, reduce NOx emission into the atmosphere, and improve the exhaust purification performance. Moreover, since the NOx storage catalyst 11 is also heated by this temperature increase control, the start of the NOx purge can be accelerated.

本実施形態のように、NOx吸蔵触媒11の下流の触媒を選択還元触媒13にしている場合には、昇温制御を行うことで、排気温度を上昇させ、尿素水を噴射した際にすぐにアンモニアを生成し、選択還元触媒13にアンモニアを確保しておくことができる。これにより、NOx吸蔵触媒11から流出したNOxを選択還元触媒13において迅速に浄化させることができる。   When the catalyst downstream of the NOx storage catalyst 11 is the selective reduction catalyst 13 as in this embodiment, the temperature rise control is performed to increase the exhaust temperature and immediately after the urea water is injected. Ammonia can be generated, and ammonia can be secured in the selective reduction catalyst 13. Thereby, the NOx flowing out from the NOx storage catalyst 11 can be quickly purified in the selective reduction catalyst 13.

また、本願発明は、上記実施形態に限定するものではない。本実施形態ではNOx吸蔵触媒11の下流に選択還元触媒13を設けているが、NOxを浄化する触媒であれば他のものでもよい。例えば、選択還元触媒13の代わりに上流側のNOx吸蔵触媒11と同様のNOx吸蔵触媒を設けてもよい。このように同じ種類の触媒を2つ設けても、特にその間にフィルタ12が設けられていることから2つの触媒温度が異なるので、上流側の触媒と下流側の触媒とで広範囲の排気温度で浄化効率を上昇させることができ、本実施形態と同様に下流側の触媒を昇温させて上流側からNOxが流出した際に下流側の触媒ですぐに浄化可能にすることができる。   The present invention is not limited to the above embodiment. In this embodiment, the selective reduction catalyst 13 is provided downstream of the NOx storage catalyst 11, but other catalysts may be used as long as they are catalysts for purifying NOx. For example, instead of the selective reduction catalyst 13, an NOx storage catalyst similar to the upstream NOx storage catalyst 11 may be provided. Even if two catalysts of the same type are provided in this way, the temperature of the two catalysts is different because the filter 12 is provided between them, so the upstream catalyst and the downstream catalyst have a wide range of exhaust temperatures. As in the present embodiment, the purification efficiency can be increased, and when the downstream catalyst is heated up and NOx flows out from the upstream side, the downstream catalyst can be immediately purified.

本願発明は、排気浄化装置として排気通路にNOx吸蔵触媒とNOx排気浄化触媒を備えたエンジンに広く適用することができる。   The present invention can be widely applied to an engine having an NOx storage catalyst and a NOx exhaust purification catalyst in an exhaust passage as an exhaust purification device.

2 エンジン
10 排気通路
11 NOx吸蔵触媒(窒素酸化物吸蔵還元触媒)
13 選択還元触媒(窒素酸化物浄化触媒)
30 エンジンコントロールユニット(窒素酸化物吸蔵量推定部、パージ制御部、昇温制御部)
2 Engine 10 Exhaust passage 11 NOx storage catalyst (nitrogen oxide storage reduction catalyst)
13 Selective reduction catalyst (nitrogen oxide purification catalyst)
30 Engine control unit (nitrogen oxide storage amount estimation unit, purge control unit, temperature rise control unit)

Claims (5)

エンジンの排気通路に設けられ、排気中の窒素酸化物を吸蔵する窒素酸化物吸蔵還元触媒と、
前記窒素酸化物吸蔵還元触媒の下流側の前記排気通路に設けられ、窒素酸化物を浄化する窒素酸化物浄化触媒と、
前記窒素酸化物吸蔵還元触媒の窒素酸化物吸蔵量を推定する窒素酸化物吸蔵量推定部と、
前記窒素酸化物吸蔵量が所定の第1の吸蔵量より大きくなった状態で、所定のパージ条件が成立した場合に、排気の空燃比をストイキまたはリッチにして、前記窒素酸化物吸蔵還元触媒に吸蔵した前記窒素酸化物を還元するパージ制御を実行するパージ制御部と、
前記パージ条件が成立しない場合には、前記窒素酸化物吸蔵量が前記所定の第1の吸蔵量より大きく設定された所定の第2の吸蔵量になるまで前記パージ制御を実施しないパージ制御待機状態を維持し、前記窒素酸化物吸蔵量が前記せずに前記窒素酸化物吸蔵量が前記第1の吸蔵量より大きく設定された所定の第2の吸蔵量より大きくなった際には、排気の空燃比をリーンにするとともに、前記エンジンの排気温度を活性温度以上に上昇させる昇温制御を実行する昇温制御部と、を備えることを特徴とするエンジンの排気浄化装置。
A nitrogen oxide storage reduction catalyst that is provided in the exhaust passage of the engine and stores the nitrogen oxide in the exhaust;
A nitrogen oxide purification catalyst that is provided in the exhaust passage downstream of the nitrogen oxide storage reduction catalyst and purifies nitrogen oxide;
A nitrogen oxide storage amount estimation unit for estimating the nitrogen oxide storage amount of the nitrogen oxide storage reduction catalyst;
When the predetermined purge condition is satisfied in a state where the nitrogen oxide storage amount is larger than the predetermined first storage amount, the air-fuel ratio of the exhaust is made stoichiometric or rich so that the nitrogen oxide storage reduction catalyst A purge control unit that performs purge control to reduce the stored nitrogen oxides;
When the purge condition is not satisfied, the purge control standby state in which the purge control is not performed until the nitrogen oxide storage amount reaches a predetermined second storage amount set larger than the predetermined first storage amount. When the nitrogen oxide storage amount becomes larger than the predetermined second storage amount set larger than the first storage amount without the nitrogen oxide storage amount, An engine exhaust gas purification apparatus comprising: a temperature increase control unit that executes a temperature increase control that makes the air-fuel ratio lean and raises the exhaust temperature of the engine to an activation temperature or higher.
前記所定の第2の吸蔵量は、前記パージ制御の実行の際に前記窒素酸化物吸蔵還元触媒で前記窒素酸化物が還元されずに放出が開始される前記窒素酸化物吸蔵還元触媒の吸蔵量より小さく設定されることを特徴とする請求項1に記載のエンジンの排気浄化装置。   The predetermined second occlusion amount is the occlusion amount of the nitrogen oxide storage reduction catalyst that starts to be released without reduction of the nitrogen oxide by the nitrogen oxide storage reduction catalyst when the purge control is executed. 2. The engine exhaust gas purification apparatus according to claim 1, wherein the engine exhaust gas purification apparatus is set smaller. 前記昇温制御は、前記エンジンの負荷が所定値より低い状態では、前記エンジンの吸気量を減少させて行うことを特徴とする請求項1又は2に記載のエンジンの排気浄化装置。   3. The engine exhaust purification system according to claim 1, wherein the temperature increase control is performed by reducing an intake amount of the engine when the load of the engine is lower than a predetermined value. 前記昇温制御は、前記エンジンの負荷が前記所定値以上の状態では、前記エンジンの燃料噴射量を増加させて行うことを特徴とする請求項3に記載のエンジンの排気浄化装置。   4. The engine exhaust gas purification apparatus according to claim 3, wherein the temperature increase control is performed by increasing a fuel injection amount of the engine when a load of the engine is equal to or greater than the predetermined value. 前記窒素酸化物浄化触媒は、アンモニアを用いて窒素酸化物を浄化する選択還元触媒であり、
前記窒素酸化物浄化触媒の上流側の前記排気通路に尿素水溶液を供給する尿素水溶液供給部を備え、
前記昇温制御は、前記尿素水溶液供給部により供給された尿素水溶液を加水分解してアンモニアが生成される温度に前記排気温度を上昇させることを特徴とする請求項1から4のいずれかに記載のエンジンの排気浄化装置。
The nitrogen oxide purification catalyst is a selective reduction catalyst that purifies nitrogen oxide using ammonia,
A urea aqueous solution supply unit for supplying urea aqueous solution to the exhaust passage upstream of the nitrogen oxide purification catalyst;
5. The temperature raising control increases the exhaust temperature to a temperature at which ammonia is generated by hydrolyzing the urea aqueous solution supplied by the urea aqueous solution supply unit. 6. Engine exhaust purification system.
JP2015058255A 2015-03-20 2015-03-20 Engine exhaust purification system Active JP6590140B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015058255A JP6590140B2 (en) 2015-03-20 2015-03-20 Engine exhaust purification system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015058255A JP6590140B2 (en) 2015-03-20 2015-03-20 Engine exhaust purification system

Publications (2)

Publication Number Publication Date
JP2016176430A true JP2016176430A (en) 2016-10-06
JP6590140B2 JP6590140B2 (en) 2019-10-16

Family

ID=57070942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015058255A Active JP6590140B2 (en) 2015-03-20 2015-03-20 Engine exhaust purification system

Country Status (1)

Country Link
JP (1) JP6590140B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022264565A1 (en) * 2021-06-14 2022-12-22 株式会社豊田自動織機 Control device for catalyst temperature raising system
DE102017222253B4 (en) 2017-03-28 2023-09-21 Ford Global Technologies, Llc Method for operating an exhaust aftertreatment device of a motor vehicle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017222253B4 (en) 2017-03-28 2023-09-21 Ford Global Technologies, Llc Method for operating an exhaust aftertreatment device of a motor vehicle
WO2022264565A1 (en) * 2021-06-14 2022-12-22 株式会社豊田自動織機 Control device for catalyst temperature raising system

Also Published As

Publication number Publication date
JP6590140B2 (en) 2019-10-16

Similar Documents

Publication Publication Date Title
US8413427B2 (en) Dosing control systems and methods
US8978367B2 (en) Exhaust gas purifying system of internal combustion engine
US9051859B2 (en) Exhaust gas purification device and control method for exhaust gas purification device
US8505277B2 (en) System and methods for controlling selective catalytic reduction systems
JP2010261423A (en) Exhaust emission control device of internal combustion engine
JP2006274856A (en) Exhaust emission control device for internal combustion engine
WO2015046508A1 (en) Exhaust gas purification system and exhaust gas purification method
EP3093461B1 (en) Exhaust purification apparatus for engine
JP6663126B2 (en) Engine exhaust purification device
JP2016079852A (en) Abnormality determination system of exhaust emission control device of internal combustion engine
JP6590140B2 (en) Engine exhaust purification system
JP5505076B2 (en) SCR system
JP2010019092A (en) Exhaust emission control device for internal combustion engine
US9416706B2 (en) Exhaust gas treatment system comprising a catalytic particulate filter, and corresponding method
US10392984B2 (en) NOx reduction control method for exhaust gas aftertreatment device
JP6617865B2 (en) Engine exhaust purification system
JP2006266221A (en) Rising temperature controller of aftertreatment device
JP2012002141A (en) Exhaust emission control device of internal combustion engine
JP2018087542A (en) Exhaust emission control device of internal combustion engine
JP6597683B2 (en) Control device for internal combustion engine
JP2008063968A (en) Exhaust emission control device for internal combustion engine
JP2015190395A (en) engine
JP4453664B2 (en) Exhaust gas purification system for internal combustion engine
JP2009019520A (en) Exhaust emission control device of internal combustion engine
CN109072796B (en) Exhaust gas purification system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190306

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190821

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190903

R151 Written notification of patent or utility model registration

Ref document number: 6590140

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151