JP2016175864A - Phosphazene compound having perfluoroalkyl group - Google Patents

Phosphazene compound having perfluoroalkyl group Download PDF

Info

Publication number
JP2016175864A
JP2016175864A JP2015057351A JP2015057351A JP2016175864A JP 2016175864 A JP2016175864 A JP 2016175864A JP 2015057351 A JP2015057351 A JP 2015057351A JP 2015057351 A JP2015057351 A JP 2015057351A JP 2016175864 A JP2016175864 A JP 2016175864A
Authority
JP
Japan
Prior art keywords
formula
compound
solvent
gel
mmol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015057351A
Other languages
Japanese (ja)
Other versions
JP6399601B2 (en
Inventor
岡本 浩明
Hiroaki Okamoto
浩明 岡本
由紀 森田
Yuki Morita
由紀 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaguchi University NUC
Original Assignee
Yamaguchi University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaguchi University NUC filed Critical Yamaguchi University NUC
Priority to JP2015057351A priority Critical patent/JP6399601B2/en
Publication of JP2016175864A publication Critical patent/JP2016175864A/en
Application granted granted Critical
Publication of JP6399601B2 publication Critical patent/JP6399601B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Liquid Crystal Substances (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a compound which can gelate even a small amount of fluorine-based solvent.SOLUTION: The present invention provides a compound represented by formula (1) [Ar is FC-(CF)-(CH)-S-Ph- (l is an integer of 1-10; m is an integer of 0-5; n is an integer of 1-5)].SELECTED DRAWING: None

Description

本発明は、新規なホスファゼン化合物に関し、さらに詳しくは、液晶性を有し、且つ、フッ素系溶媒をゲル化に使用できる化合物に関する。また、該化合物を含有するゲル化剤に関する。   The present invention relates to a novel phosphazene compound, and more particularly to a compound having liquid crystallinity and capable of using a fluorinated solvent for gelation. The present invention also relates to a gelling agent containing the compound.

ゲル及びゲル化剤は、化粧品、医薬医療、食品、塗料、接着剤、汚泥処理等の各種産業分野で多く用いられており、水及び有機溶媒をゲル化できる低分子ゲル化剤が必要とされている。低分子ゲル化剤は、少量の添加でゲル化する特徴がある。したがって、低分子ゲル化剤を用いることによって、ゲル中の溶媒成分の割合を高めることができる。   Gels and gelling agents are widely used in various industrial fields such as cosmetics, pharmaceuticals, foods, paints, adhesives, sludge treatment, etc., and low molecular gelling agents capable of gelling water and organic solvents are required. ing. The low molecular weight gelling agent is characterized by gelation with a small amount of addition. Therefore, the ratio of the solvent component in the gel can be increased by using the low molecular gelling agent.

低分子ゲル化剤としては、室温のイオン性液体をゲル状の固体を形成する低分子ゲル化剤(非特許文献1)や、水素結合によってイオン性液体をゲル化するシクロ(L−β−3,7−ジメチルオクチルアスパラギニル−L−フェニルアラニル)及びシクロ(L−β−2−エチルヘキシルアスパラギニル−L−フェニルアラニル)(非特許文献2)が知られている。低分子ゲル化剤で有機溶媒をゲル化するものの多くが、該低分子ゲル化剤の化合物に含まれるアミド基、イミド基等と溶媒分子との間の水素結合を利用したものであり、ゲル化できる有機溶媒が限られている。したがって、ゲル化できる有機溶媒の種類を広げるためにも、非水素結合型の低分子ゲル化剤が求められている。   Examples of the low molecular gelling agent include a low molecular gelling agent that forms a gel-like solid from an ionic liquid at room temperature (Non-Patent Document 1), and cyclo (L-β-) that gels an ionic liquid by hydrogen bonding. 3,7-dimethyloctyl asparaginyl-L-phenylalanyl) and cyclo (L-β-2-ethylhexyl asparaginyl-L-phenylalanyl) (Non-patent Document 2) are known. Many of the low molecular gelling agents that gel organic solvents use hydrogen bonds between amide groups, imide groups, etc. contained in the low molecular gelling agent compound and solvent molecules. The organic solvent that can be converted is limited. Therefore, in order to expand the types of organic solvents that can be gelled, non-hydrogen bonding type low molecular gelling agents are required.

フッ素系溶媒は、例えば電池の電解液に使用されているが、それをゲル化することによって電池の液漏れ防止等が試みられており、フッ素系溶媒のゲル化は課題となっている。しかし、フッ素系溶媒をゲル化するゲル化剤の例は少なく、これまで知られているフッ素系溶媒の高分子ゲル化剤は、フッ素系有機溶媒の量に対する該ゲル化剤の量が29質量%と、ゲル中に含まれるゲル化剤の量が多い(特許文献1)。したがって、ゲル作製のコストを減らし、ゲル中の溶媒成分の比率を高めるためにも、ゲル化剤の量を減らすことが必要とされている。   Fluorine-based solvents are used in, for example, battery electrolytes, and it has been attempted to prevent battery leakage by gelling them, and gelation of fluorine-based solvents has become a problem. However, there are few examples of gelling agents that gel fluorinated solvents, and polymer gelling agents of fluorinated solvents known so far have an amount of the gelling agent of 29 mass relative to the amount of fluorinated organic solvent. % And the amount of the gelling agent contained in the gel is large (Patent Document 1). Therefore, it is necessary to reduce the amount of gelling agent in order to reduce the cost of gel preparation and increase the ratio of solvent components in the gel.

本発明者らは、有機溶媒を固化させるための低分子ゲル化剤を報告しているが、該有機溶媒はイオン性液体、エステル系溶媒、アルコール系溶媒等であり、フッ素系溶媒をゲル化できるものではなかった(特許文献2)。   The present inventors have reported a low-molecular gelling agent for solidifying an organic solvent. The organic solvent is an ionic liquid, an ester solvent, an alcohol solvent, or the like, and the fluorine solvent is gelled. It was not possible (Patent Document 2).

特開2011−140536号公報JP 2011-140536 A 特開2010−280799号公報JP 2010-280799 A

Chemistry of Materials 2009, 21, 3027Chemistry of Materials 2009, 21, 3027 Langmuir 2005, 21, 10383Langmuir 2005, 21, 10383

フッ素系有機溶媒をゲル化できる化合物、さらに詳細には、少量であってもフッ素系溶媒をゲル化できる化合物であって、該化合物を含むゲル化剤やフッ素系溶媒のゲル組成物を提供することを課題とする。   A compound capable of gelling a fluorinated organic solvent, more specifically, a compound capable of gelling a fluorinated solvent even in a small amount, and a gelling agent containing the compound and a gel composition of the fluorinated solvent are provided. This is the issue.

前記課題解決のために鋭意研究の結果、分子末端位に結晶化を妨げる分子ユニットである液晶核を導入したホスファゼン化合物が、少量であってもフッ素系有機溶媒をゲル化できることを見いだし、本発明を完成するに至った。   As a result of diligent research to solve the above problems, it was found that a phosphazene compound having a liquid crystal nucleus that is a molecular unit that prevents crystallization at the molecular terminal position can gel a fluorinated organic solvent even in a small amount. It came to complete.

すなわち、本発明は以下に関する。
(1)式(1)で表される化合物。
[式中Arは、
(lは1〜10から選択されるいずれかの整数であり、mは0〜5から選択されるいずれかの整数であり、nは1〜5から選択されるいずれかの整数であり、波線は隣接する酸素原子への結合部位であることを表す。)である。]
(2)mが2であることを特徴とする上記(1)に記載の化合物。
(3)nが1又は2であることを特徴とする上記(1)又は(2)に記載の化合物。
(4)上記(1)〜(3)のいずれかに記載の化合物から選択される1又は2以上を含有することを特徴とするゲル化剤。
(5)フッ素系溶媒をゲル化するための上記(4)に記載のゲル化剤。
(6)上記(4)又は(5)に記載のゲル化剤及び有機溶媒を含むことを特徴とするゲル組成物。
(7)上記(1)〜(3)のいずれかに記載の化合物から選択される1又は2以上を含有することを特徴とする液晶組成物。
That is, the present invention relates to the following.
(1) A compound represented by the formula (1).
[Wherein Ar is
(L is any integer selected from 1 to 10, m is any integer selected from 0 to 5, n is any integer selected from 1 to 5, wavy line Represents a binding site to an adjacent oxygen atom. ]
(2) The compound as described in (1) above, wherein m is 2.
(3) The compound as described in (1) or (2) above, wherein n is 1 or 2.
(4) A gelling agent comprising 1 or 2 or more selected from the compounds according to any one of (1) to (3) above.
(5) The gelling agent according to the above (4) for gelling a fluorinated solvent.
(6) A gel composition comprising the gelling agent according to (4) or (5) and an organic solvent.
(7) A liquid crystal composition comprising 1 or 2 or more selected from the compounds according to any one of (1) to (3) above.

本発明の化合物はフッ素系溶媒をゲル化することができ、化粧品、医薬医療、食品、塗料、接着剤、汚泥処理、建築、土木等の各種産業分野で使用するための、耐熱性や耐薬品性等の機能性を備えたゲル材料を製造することができる。また、本発明の化合物は、フッ素系溶媒のゲル化能に加えて、液晶性も有しているため、液晶材料として使用することができる。   The compound of the present invention can gel a fluorinated solvent, and is heat-resistant and chemical-resistant for use in various industrial fields such as cosmetics, pharmaceuticals, foods, paints, adhesives, sludge treatment, construction, civil engineering, etc. A gel material having functionality such as property can be produced. Moreover, since the compound of this invention has liquid crystallinity in addition to the gelatinization ability of a fluorine-type solvent, it can be used as a liquid-crystal material.

ゲル中に含まれる式(1−2)の化合物の濃度に対するゲル−ゾル転移温度の変化を示す図である。It is a figure which shows the change of the gel-sol transition temperature with respect to the density | concentration of the compound of Formula (1-2) contained in a gel. PFTBAのゲル(ゲル化剤:式(1−2)の化合物,0.5%)の写真、及び、ゲルの微細構造を示す走査型電子顕微鏡(SEM)の画像を示す図である。It is a figure which shows the photograph of the gel of PFTBA (gelling agent: the compound of Formula (1-2), 0.5%), and the image of the scanning electron microscope (SEM) which shows the fine structure of a gel. 式(1−2)の化合物の85℃でのスメクチックA(SmA)相に特有のファン組織及び35℃での結晶状態の偏光顕微鏡画像を示す図である。It is a figure which shows the polarization | polarized-light microscope image of the fan structure peculiar to the smectic A (SmA) phase in 85 degreeC of the compound of Formula (1-2), and the crystal state in 35 degreeC. 式(1−3)の化合物の180℃でのスメクチックA(SmA)相に特有のファン組織及び120℃でのスメクチックC(SmC)相に特有のファン組織の偏光顕微鏡画像を示す図である。It is a figure which shows the polarization microscope image of the fan structure peculiar to the smectic A (SmA) phase at 180 degreeC of the compound of Formula (1-3), and the fan structure peculiar to the smectic C (SmC) phase at 120 degreeC.

(化合物)
本発明の化合物は、式(1)で表される化合物である。
(Compound)
The compound of this invention is a compound represented by Formula (1).

式中Arは、
(lは1〜10から選択されるいずれかの整数であり、mは0〜5から選択されるいずれかの整数であり、nは1〜5から選択されるいずれかの整数であり、波線は隣接する酸素原子への結合部位であることを表す。)である。
Where Ar is
(L is any integer selected from 1 to 10, m is any integer selected from 0 to 5, n is any integer selected from 1 to 5, wavy line Represents a binding site to an adjacent oxygen atom.

式中、mは2であることが好ましい。   In the formula, m is preferably 2.

式中、nは1又は2であることが好ましい。   In the formula, n is preferably 1 or 2.

式(1)で表される化合物は、具体的には、以下の表に示す化合物を例示することができる。   Specifically, the compound represented by Formula (1) can illustrate the compound shown in the following table | surfaces.



(化合物の合成)
本発明の式(1)で表される化合物は、特に制限されるものではないが、例えば、以下に示すように、ヘキサクロロシクロトリホスファゼンと式(2)で表される化合物とを塩基の存在下反応させることによって合成することができる(合成ルート1)。
(Synthesis of compounds)
The compound represented by the formula (1) of the present invention is not particularly limited. For example, as shown below, hexachlorocyclotriphosphazene and the compound represented by the formula (2) are present in the presence of a base. It can synthesize | combine by making it react (synthetic route 1).

(式中、l、m、n及びArは、前記式(1)におけるl、m、n及びArと同じ定義である。) (In the formula, l, m, n and Ar have the same definitions as l, m, n and Ar in the formula (1).)

上記合成ルート1で使用される塩基としては、ヘキサクロロシクロトリホスファゼンと式(2)で表される化合物との反応が進行するものであれば特に制限は無いが、例えば、トリエチルアミン、ピリジン、1,8−ジアザビシクロ[5.4.0]ウンデカ−7−エン(DBU)、1,5−ジアザビシクロ[4.3.0]ノナ−5−エン(DBN)等の3級アミン、水素化ナトリウム、水素化カリウム等のアルカリ金属水素化物、水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物、炭酸ナトリウム、炭酸カリウム、炭酸セシウム等の炭酸のアルカリ金属塩、ナトリウムメトキシド、カリウムメトキシド、ナトリウムエトキシド、カリウムエトキシド、リチウムtert−ブトキシド、ナトリウムtert−ブトキシド、カリウムtert−ブトキシド等のアルカリ金属アルコキシド、n−ブチルリチウム、sec−ブチルリチウム、tert−ブチルリチウム、n−ヘキシルリチウム等のアルキルリチウム、リチウムジイソプロピルアミド(LDA)、リチウムヘキサメチルジシラザン(LHMDS)、ナトリウムヘキサメチルジシラザン(NaHMDS)、カリウムヘキサメチルジシラザン(KHMDS)等の金属アミド等が挙げられ、好ましくはアルカリ金属水素化物であり、さらに好ましくは水素化ナトリウムである。   The base used in the synthetic route 1 is not particularly limited as long as the reaction between hexachlorocyclotriphosphazene and the compound represented by the formula (2) proceeds. For example, triethylamine, pyridine, 1, Tertiary amines such as 8-diazabicyclo [5.4.0] undec-7-ene (DBU) and 1,5-diazabicyclo [4.3.0] non-5-ene (DBN), sodium hydride, hydrogen Alkali metal hydrides such as potassium hydroxide, alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, alkali metal salts of carbonic acid such as sodium carbonate, potassium carbonate and cesium carbonate, sodium methoxide, potassium methoxide and sodium ethoxy Potassium ethoxide, lithium tert-butoxide, sodium tert-butoxide, potassium Alkali metal alkoxides such as ert-butoxide, alkyllithiums such as n-butyllithium, sec-butyllithium, tert-butyllithium, n-hexyllithium, lithium diisopropylamide (LDA), lithium hexamethyldisilazane (LHMDS), sodium Examples thereof include metal amides such as hexamethyldisilazane (NaHMDS) and potassium hexamethyldisilazane (KHMDS), preferably an alkali metal hydride, and more preferably sodium hydride.

上記合成ルート1で使用される式(2)で表される化合物は、特開2010−280799公報等を参考に有機合成手法により合成することができる(合成ルート2)。具体的には、式(3)で表される化合物と式(4)で表されるハロゲン化物とを、炭酸カリウム等の塩基の存在下又は非存在下、S2反応によって式(2)で表される化合物を合成することができる。 The compound represented by the formula (2) used in the synthesis route 1 can be synthesized by an organic synthesis method with reference to JP 2010-280799 A (synthesis route 2). Specifically, the compound represented by the formula (3) and the halide represented by the formula (4) are converted into the formula (2) by an S N 2 reaction in the presence or absence of a base such as potassium carbonate. Can be synthesized.

(式中、l、m及びnは、前記式(1)におけるl、m及びnと同じ定義である。Xは、塩素、臭素及びヨウ素から選択されるいずれかのハロゲン原子を表す。) (In the formula, l, m and n have the same definitions as l, m and n in the formula (1). X represents any halogen atom selected from chlorine, bromine and iodine.)

式(3)で表される化合物は、市販品である4−ヒドロキシチオフェノールを用いることができる。また、式(3)で表される化合物は、公知の合成方法によって合成することもできる。例えば、式(5)で表されるハロゲン化物をn−ブチルリチウム等のハロゲン化アルキルでリチオ化した後、硫黄分子と反応させることによって合成できる(合成ルート3)。なお、式(5)で表されるハロゲン化物は、4−ブロモ−4’−ヒドロキシビフェニル、4’−クロロビフェニル−4−オール等の市販品を用いることができる。また、公知の合成方法によって合成することもできる。   Commercially available 4-hydroxythiophenol can be used as the compound represented by the formula (3). Moreover, the compound represented by Formula (3) can also be synthesize | combined by a well-known synthesis method. For example, the halide represented by the formula (5) can be synthesized by lithiation with an alkyl halide such as n-butyllithium and then reacting with a sulfur molecule (synthesis route 3). As the halide represented by the formula (5), commercially available products such as 4-bromo-4'-hydroxybiphenyl, 4'-chlorobiphenyl-4-ol can be used. It can also be synthesized by a known synthesis method.

(式中、nは、前記式(1)におけるnと同じ定義である。Xは、塩素、臭素及びヨウ素から選択されるいずれかのハロゲン原子を表す。) (In the formula, n is the same definition as n in the formula (1). X represents any halogen atom selected from chlorine, bromine and iodine.)

式(4)で表されるハロゲン化物は、市販品である、2−(パーフルオロブチル)エチルヨージド、2−(パーフルオロヘキシル)エチルヨージド、1H,1H,2H,2H−ヘプタデカフルオロデシルヨージド、2,2,2−トリフルオロエチルヨージド等を用いることができる。また、式(4)で表されるハロゲン化物は、公知の合成方法によって合成することもできる。例えば、式(7)で表されるアルコールのヒドロキシ基をシリル基等の公知の保護基(PG)で保護したのち、Grignard試薬(9)を調製し、式(10)のハロゲン化物とのS2反応によって化合物(11)を得る。その後、保護基を脱離させる反応と、ヒドロキシ基をアッペル反応等によってハロゲン化し、式(4)で表される化合物を得ることができる(合成ルート4)。 Halides represented by formula (4) are commercially available products such as 2- (perfluorobutyl) ethyl iodide, 2- (perfluorohexyl) ethyl iodide, 1H, 1H, 2H, 2H-heptadecafluorodecyl iodide, 2,2,2-trifluoroethyl iodide or the like can be used. The halide represented by the formula (4) can also be synthesized by a known synthesis method. For example, after protecting the hydroxy group of the alcohol represented by the formula (7) with a known protecting group (PG 1 ) such as a silyl group, Grignard reagent (9) is prepared, and the halide of the formula (10) Compound (11) is obtained by S N 2 reaction. Thereafter, the compound represented by the formula (4) can be obtained by halogenating the hydroxy group by a reaction for removing the protecting group and the Appel reaction (synthesis route 4).

(式中、l及びmは、前記式(1)におけるl及びmと同じ定義である。Xは、塩素、臭素及びヨウ素から選択されるいずれかのハロゲン原子を表す。) (In the formula, l and m have the same definitions as l and m in the formula (1). X represents any halogen atom selected from chlorine, bromine and iodine.)

式(7)で表されるアルコールは、市販品である、2−ブロモエタノール、3−ブロモ−1−プロパノール、4−ブロモ−1−ブタノール等を用いることができる。   As the alcohol represented by the formula (7), commercially available products such as 2-bromoethanol, 3-bromo-1-propanol, 4-bromo-1-butanol and the like can be used.

式(10)のハロゲン化物は、市販品である、パーフルオロ−n−ヘプチルブロミド、パーフルオロ−n−ヘプチルヨージド、パーフルオロ−n−ヘキシルヨージド、パーフルオロ−n−ヘキシルブロミド、パーフルオロ−n−デシルヨージド、パーフルオロ−n−オクチルブロミド、パーフルオロ−n−ノニルブロミド、パーフルオロ−n−オクチルヨージド等を用いることができる。   Halides of formula (10) are commercially available products such as perfluoro-n-heptyl bromide, perfluoro-n-heptyl iodide, perfluoro-n-hexyl iodide, perfluoro-n-hexyl bromide, perfluoro. -N-decyl iodide, perfluoro-n-octyl bromide, perfluoro-n-nonyl bromide, perfluoro-n-octyl iodide and the like can be used.

また、式(2)におけるnが2のとき(式(2−5)の化合物とも称す)、以下に示す合成ルート5によっても合成できる。具体的には、市販の4−ブロモベンゼンチオールと式(4)で表されるハロゲン化物とを炭酸カリウム等の塩基の存在下又は非存在下、S2反応によって式(12)の化合物を得る。次に、上記式(12)の化合物と、市販の4−メトキシフェニルボロン酸等の式(13)で表されるホウ素化合物とパラジウム触媒及び塩基の存在下反応させる、鈴木−宮浦カップリング反応によってカップリング体(14)へと誘導する。さらに、水酸基の保護基(PG)を公知の方法によって脱離させ目的の式(2−5)の化合物を合成できる。 Further, when n in the formula (2) is 2 (also referred to as a compound of the formula (2-5)), it can also be synthesized by the synthesis route 5 shown below. Specifically, a commercially available 4-bromobenzenethiol and a halide represented by formula (4) are converted to a compound of formula (12) by S N 2 reaction in the presence or absence of a base such as potassium carbonate. obtain. Next, by a Suzuki-Miyaura coupling reaction in which the compound of the above formula (12) is reacted with a boron compound represented by the formula (13) such as commercially available 4-methoxyphenylboronic acid in the presence of a palladium catalyst and a base. It leads to a coupling body (14). Furthermore, the hydroxyl-protecting group (PG 2 ) can be removed by a known method to synthesize the desired compound of formula (2-5).

(式中、l及びmは、前記式(1)におけるl及びmと同じ定義である。Xは、塩素、臭素及びヨウ素から選択されるいずれかのハロゲン原子を表す。PGは、アルキル基、シリル基、アシル基等のヒドロキシ基の保護基を表す。) (In the formula, l and m have the same definitions as l and m in the formula (1). X represents any halogen atom selected from chlorine, bromine and iodine. PG 2 represents an alkyl group. , Represents a protecting group for a hydroxy group such as a silyl group or an acyl group.)

前記パラジウム触媒は、鈴木−宮浦カップリング反応に用いられるパラジウム触媒であれば特に限定されず、例えば酢酸パラジウム(II)、ジクロロビス(トリフェニルホスフィン)パラジウム(II)、テトラキス(トリフェニルホスフィン)パラジウム(0)またはトリス(ジベンジリデンアセトン)ジパラジウム(0)、ビス(ベンゾニトリル)パラジウム(II)ジクロリド、1,1′−ビス(ジフェニルホスフィノ)フェロセン−パラジウム(II)ジクロリド−ジクロロメタン錯体、トリス(ジベンジリデンアセトン)ジパラジウム(0)等の公知のパラジウム錯体が挙げられ、好ましくは、ビス(ベンゾニトリル)パラジウム(II)ジクロリドである。効率よく反応が進行するために、例えばトリフェニルホスフィン、トリ−o−トリルホスフィン、1,3−ビス(ジフェニルホスフィノ)プロパン、トリ−tert−ブチルホスフィン、トリス(o−メトキフェニル)ホスフィン、ジブチルブチルホスホネート等リン配位子、トリフェニルヒ素等のヒ素配位子等を適宜添加してもよい。   The palladium catalyst is not particularly limited as long as it is a palladium catalyst used in the Suzuki-Miyaura coupling reaction. For example, palladium (II) acetate, dichlorobis (triphenylphosphine) palladium (II), tetrakis (triphenylphosphine) palladium ( 0) or tris (dibenzylideneacetone) dipalladium (0), bis (benzonitrile) palladium (II) dichloride, 1,1'-bis (diphenylphosphino) ferrocene-palladium (II) dichloride-dichloromethane complex, tris ( Known palladium complexes such as dibenzylideneacetone) dipalladium (0) can be mentioned, and bis (benzonitrile) palladium (II) dichloride is preferred. In order to proceed efficiently, for example, triphenylphosphine, tri-o-tolylphosphine, 1,3-bis (diphenylphosphino) propane, tri-tert-butylphosphine, tris (o-methoxyphenyl) phosphine, dibutyl A phosphorus ligand such as butylphosphonate and an arsenic ligand such as triphenylarsenic may be added as appropriate.

前記塩基は、鈴木−宮浦カップリング反応に用いられる塩基であれば特に限定されず、トリメチルアミン、トリエチルアミン、ジイソプロピルエチルアミン、ジシクロヘキシルアミン、エタノールアミン、ジエタノールアミン、トリエタノールアミン、エチレンジアミン、ピリジン等のアミン類;炭酸ナトリウム、炭酸カリウム、炭酸セシウム、水酸化ナトリウム、水酸化カリウム、水酸化セシウム等の無機塩基類が挙げられる。   The base is not particularly limited as long as it is a base used in the Suzuki-Miyaura coupling reaction, and amines such as trimethylamine, triethylamine, diisopropylethylamine, dicyclohexylamine, ethanolamine, diethanolamine, triethanolamine, ethylenediamine, pyridine; Examples include inorganic bases such as sodium, potassium carbonate, cesium carbonate, sodium hydroxide, potassium hydroxide, cesium hydroxide.

合成ルート1、2、3、4、5の反応は、それぞれ溶媒中で行うことができるが、溶媒は反応温度や反応物等によって適宜選択される。また、合成ルート1、2、3、4、5の反応の反応温度は、用いる溶媒の沸点等の条件によって適宜選択される。合成ルート1、2、3、4、5の反応で溶媒を用いる場合、得られた反応溶液を必要に応じて濃縮した後、残渣をそのまま次の反応に使用してもよく、適宜な後処理を行った後に用いてもよい。後処理の具体的な方法としては、抽出処理及び/又は晶出、再結晶、クロマトグラフィー等の公知の精製が挙げられる。   The reactions of synthesis routes 1, 2, 3, 4, and 5 can be performed in a solvent, respectively, and the solvent is appropriately selected depending on the reaction temperature, reactants, and the like. The reaction temperature of the synthesis routes 1, 2, 3, 4, and 5 is appropriately selected depending on conditions such as the boiling point of the solvent used. When using a solvent in the reactions of synthesis routes 1, 2, 3, 4, and 5, after concentrating the obtained reaction solution as necessary, the residue may be used as it is in the next reaction, and an appropriate post-treatment. It may be used after performing. Specific methods of post-treatment include known purification such as extraction treatment and / or crystallization, recrystallization, chromatography and the like.

(ゲル化剤)
式(1)で表される化合物は、有機溶媒をゲル化することができる。式(1)で表される化合物は、ゲル化剤としてそのまま用いてもよいが、必要に応じて、試薬の調製に通常用いられる添加剤を配合してゲル化剤として用いてもよい。例えば、添加剤として、溶解補助剤、pH調節剤、緩衝剤、等張化剤等の添加剤を用いることができ、これらの配合量は当業者に適宜選択可能である。上記有機溶媒の中でも、好ましくはフッ素系溶媒である。
(Gelling agent)
The compound represented by the formula (1) can gel an organic solvent. The compound represented by the formula (1) may be used as it is as a gelling agent, but it may be used as a gelling agent by blending additives usually used for the preparation of reagents as required. For example, additives such as solubilizers, pH adjusters, buffers, isotonic agents, and the like can be used as additives, and the amount of these additives can be appropriately selected by those skilled in the art. Among the organic solvents, a fluorinated solvent is preferable.

フッ素系溶媒は、溶媒分子中にフッ素原子を含むものであって、式(1)で表される化合物がゲル化できるフッ素系溶媒であれば特に制限は無いが、例えば、パーフルオロヘキサン、パーフルオロヘプタン等のパーフルオロアルカン類又はパーフルオロシクロアルカン類;パーフルオロアルカン及びパーフルオロシクロアルカンの一部に二重結合を有するパーフルオロアルケン類;パーフルオロテトラヒドロフラン、パーフルオロ−2−ブチルテトラヒドロフラン等のパーフルオロ環状エーテル類;パーフルオロトリブチルアミン(PFTBA)、パーフルオロトリペンチルアミン、パーフルオロトリヘキシルアミン等のパーフルオロトリアルキルアミン類が挙げられる。上記フッ素系溶媒の中でも好ましくはパーフルオロトリアルキルアミン類であり、さらに好ましくはパーフルオロトリブチルアミン(PFTBA)である。これらは1種又は2種以上を混合したものであってもよい。   The fluorinated solvent contains a fluorine atom in the solvent molecule and is not particularly limited as long as it is a fluorinated solvent capable of gelling the compound represented by the formula (1). Perfluoroalkanes such as fluoroheptane or perfluorocycloalkanes; perfluoroalkanes and perfluoroalkenes having a double bond in a part of perfluorocycloalkane; perfluorotetrahydrofuran, perfluoro-2-butyltetrahydrofuran, etc. Perfluoro cyclic ethers; and perfluorotrialkylamines such as perfluorotributylamine (PFTBA), perfluorotripentylamine, and perfluorotrihexylamine. Among the fluorinated solvents, perfluorotrialkylamines are preferable, and perfluorotributylamine (PFTBA) is more preferable. These may be one kind or a mixture of two or more kinds.

(ゲル組成物)
本発明におけるゲル組成物は、式(1)で表される化合物が含まれるゲル化剤と有機溶媒を含むものであれば特に制限は無い。また、本発明のゲル組成物には、ゲル化剤を含む溶媒が流動性を失って固体状(ゲルとも称す)になったものや、ゲル化剤を含む溶媒が粘性をもつ状態になったものや、ネットワークを形成して固体状になる前のゾルの状態のものも含まれる。
(Gel composition)
If the gel composition in this invention contains the gelatinizer and organic solvent in which the compound represented by Formula (1) is contained, there will be no restriction | limiting in particular. In the gel composition of the present invention, the solvent containing the gelling agent lost its fluidity and became solid (also referred to as gel), or the solvent containing the gelling agent became viscous. And those in a sol state before forming a network and becoming a solid.

本発明のゲル組成物は、有機溶媒に式(1)で表される化合物を混合して製造される。また、ゲル組成物を固体状にする場合、有機溶媒に式(1)で表される化合物を混合した後、適宜加熱して上記化合物を溶解させてもよく、加熱した場合は放冷や冷却をすることによってゲルにすることができる。有機溶媒に対する式(1)で表される化合物の配合量は、0.1〜15質量%が好ましく、0.5〜10質量%がより好ましく、1〜5質量%がさらに好ましい。   The gel composition of the present invention is produced by mixing an organic solvent with a compound represented by the formula (1). Moreover, when making a gel composition into a solid state, after mixing the compound represented by Formula (1) with an organic solvent, it may be appropriately heated to dissolve the above compound. To make a gel. 0.1-15 mass% is preferable, as for the compounding quantity of the compound represented by Formula (1) with respect to an organic solvent, 0.5-10 mass% is more preferable, and 1-5 mass% is further more preferable.

(液晶組成物)
式(1)で表される化合物は、有機溶媒をゲル化することができるが、液晶性も示す。
本発明における液晶組成物は、式(1)で表される化合物の1種又は2種以上を含むものであれば特に制限は無い。また、その他の公知の液晶材料と組み合わせて使用することもできる。式(1)で表される化合物を、液晶組成物の0.1〜99.9質量%、好ましくは1〜99質量%となる割合で使用する。
(Liquid crystal composition)
The compound represented by the formula (1) can gel an organic solvent, but also exhibits liquid crystallinity.
The liquid crystal composition in the present invention is not particularly limited as long as it contains one or more compounds represented by the formula (1). It can also be used in combination with other known liquid crystal materials. The compound represented by the formula (1) is used at a ratio of 0.1 to 99.9% by mass, preferably 1 to 99% by mass of the liquid crystal composition.

以下に、実施例において本発明をより詳細に説明するが、本発明の技術範囲は、これらに限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to Examples, but the technical scope of the present invention is not limited thereto.

実施例1.式(1−1)の化合物の合成 Example 1. Synthesis of compound of formula (1-1)

式(2−1)のアルコールの合成は、特開2010−280799号公報を参考に行った。具体的には、2−(パーフルオロブチル)エチルヨージド(ダイキン工業社製,13.0g,34.7mmol)、4−ヒドロキシチオフェノール(三協化成社製,4.0g,31.5mmol)、炭酸カリウム(5.8g,41.7mmol)をアセトン(50mL)に溶解し、24時間、加熱還流した。反応混合物をろ過後、エバポレータで溶媒を減圧留去した。残渣にエタノールを加え加熱して溶解し、水を加えて氷水で冷やして結晶を析出させた。析出した結晶を吸引ろ過し、式(2−1)のアルコール(8.2g,70%)を得た。
次に、上記式(2−1)のアルコール(5.5g,14.8mmol)とヘキサクロロシクロトリホスファゼン(東京化成社製,0.87g,2.5mmol)をテトラヒドロフラン(THF,20mL)に溶解し、60%水素化ナトリウム(0.92g,23mmol)を添加し、2時間、50℃で撹拌した。反応終了後、水を少しずつ加えてまだ残っている水素化ナトリウムをなくした後、ジエチルエーテルで抽出し、水で洗浄した。得られた有機層を硫酸マグネシウムで乾燥し、溶媒を減圧留去した。残渣を酢酸エチル−メタノール混合溶媒で再結晶しろ過、乾燥させ、式(1−1)の化合物(4.1g,71%)を得た。式(1−1)の化合物の融点、HNMR、IR、TOF−MSを以下に示す。
Synthesis of the alcohol of the formula (2-1) was performed with reference to JP 2010-280799 A. Specifically, 2- (perfluorobutyl) ethyl iodide (manufactured by Daikin Industries, 13.0 g, 34.7 mmol), 4-hydroxythiophenol (manufactured by Sankyo Kasei Co., Ltd., 4.0 g, 31.5 mmol), carbonic acid Potassium (5.8 g, 41.7 mmol) was dissolved in acetone (50 mL) and heated to reflux for 24 hours. After filtering the reaction mixture, the solvent was distilled off under reduced pressure with an evaporator. Ethanol was added to the residue and dissolved by heating, water was added and the mixture was cooled with ice water to precipitate crystals. The precipitated crystals were subjected to suction filtration to obtain an alcohol of formula (2-1) (8.2 g, 70%).
Next, the alcohol of formula (2-1) (5.5 g, 14.8 mmol) and hexachlorocyclotriphosphazene (manufactured by Tokyo Chemical Industry Co., Ltd., 0.87 g, 2.5 mmol) are dissolved in tetrahydrofuran (THF, 20 mL). , 60% sodium hydride (0.92 g, 23 mmol) was added and stirred at 50 ° C. for 2 hours. After completion of the reaction, water was added little by little to remove the remaining sodium hydride, followed by extraction with diethyl ether and washing with water. The obtained organic layer was dried over magnesium sulfate, and the solvent was distilled off under reduced pressure. The residue was recrystallized with an ethyl acetate-methanol mixed solvent, filtered and dried to obtain the compound of formula (1-1) (4.1 g, 71%). The melting point, 1 HNMR, IR, and TOF-MS of the compound of formula (1-1) are shown below.

融点:66−67℃
HNMR(500MHz,CDCl):δ=7.19(12H,d,J=8.5Hz),6.86(12H,d,J=8.5Hz),3.09(12H,m),2.31−2.42(12H,m)ppm
IR(KBr):1491,1143−1236,957cm-
TOF−MS:
[M+H] 実測値:2362.1411,計算値:2362.0296
[M+HCOO] 実測値:2406.0493,計算値:2406.0195
Melting point: 66-67 ° C
1 HNMR (500 MHz, CDCl 3 ): δ = 7.19 (12H, d, J = 8.5 Hz), 6.86 (12H, d, J = 8.5 Hz), 3.09 (12H, m), 2.31-2.42 (12H, m) ppm
IR (KBr): 1491, 1143-1236, 957 cm- 1
TOF-MS:
[M + H] + actual measurement value: 2362.1411, calculated value: 23622.0296
[M + HCOO] - Found: 2406.0493, Calcd: 2406.0195

実施例2.式(1−2)の化合物の合成 Example 2 Synthesis of compound of formula (1-2)

式(2−2)のアルコールの合成は、特開2010−280799号公報を参考に行った。具体的には、2−(パーフルオロヘキシル)エチルヨージド(ダイキン工業社製,5.4g,11.4mmol)、4−ヒドロキシチオフェノール(1.3g,10.3mmol)、炭酸カリウム(1.7g,12.0mmol)をアセトン(50mL)に溶解し、24時間、加熱還流した。反応混合物をろ過後、エバポレータで溶媒を減圧留去した。残渣にエタノールを加え加熱して溶解し、水を加えて氷水で冷やして結晶を析出させた。析出した結晶を吸引ろ過し、式(2−2)のアルコール(4.2g,86%)を得た。
次に、上記式(2−2)のアルコール(4.2g,8.9mmol)とヘキサクロロシクロトリホスファゼン(0.52g,1.5mmol)をテトラヒドロフラン(THF,20mL)に溶解し、60%水素化ナトリウム(0.53g,13.3mmol)を添加し、50時間、67℃で撹拌した。反応終了後、水を少しずつ加えてまだ残っている水素化ナトリウムをなくした後、ジエチルエーテルで抽出し、水で洗浄した。得られた有機層を硫酸マグネシウムで乾燥し、溶媒を減圧留去した。残渣をメタノールで再結晶しろ過、乾燥させ、式(1−2)の化合物(3.2g,73%)を得た。式(1−2)の化合物の融点、HNMR、IRを以下に示す。
Synthesis of the alcohol of the formula (2-2) was performed with reference to JP 2010-280799 A. Specifically, 2- (perfluorohexyl) ethyl iodide (made by Daikin Industries, 5.4 g, 11.4 mmol), 4-hydroxythiophenol (1.3 g, 10.3 mmol), potassium carbonate (1.7 g, 12.0 mmol) was dissolved in acetone (50 mL) and heated to reflux for 24 hours. After filtering the reaction mixture, the solvent was distilled off under reduced pressure with an evaporator. Ethanol was added to the residue and dissolved by heating, water was added and the mixture was cooled with ice water to precipitate crystals. The precipitated crystals were subjected to suction filtration to obtain an alcohol of the formula (2-2) (4.2 g, 86%).
Next, the alcohol (4.2 g, 8.9 mmol) of the above formula (2-2) and hexachlorocyclotriphosphazene (0.52 g, 1.5 mmol) are dissolved in tetrahydrofuran (THF, 20 mL) and hydrogenated at 60%. Sodium (0.53 g, 13.3 mmol) was added and stirred at 67 ° C. for 50 hours. After completion of the reaction, water was added little by little to remove the remaining sodium hydride, followed by extraction with diethyl ether and washing with water. The obtained organic layer was dried over magnesium sulfate, and the solvent was distilled off under reduced pressure. The residue was recrystallized with methanol, filtered and dried to obtain the compound of the formula (1-2) (3.2 g, 73%). The melting point, 1 HNMR and IR of the compound of formula (1-2) are shown below.

融点:92−93℃
HNMR(500MHz,CDCl):δ=7.19(12H,d,J=8.5Hz),6.86(12H,d,J=9.1Hz),3.09(12H,m),2.32−2.42(12H,m)ppm
IR(KBr):1492,1143−1236,970cm-
Melting point: 92-93 ° C
1 HNMR (500 MHz, CDCl 3 ): δ = 7.19 (12H, d, J = 8.5 Hz), 6.86 (12H, d, J = 9.1 Hz), 3.09 (12H, m), 2.32-2.42 (12H, m) ppm
IR (KBr): 1492, 1143-1236, 970 cm- 1

実施例3.式(1−3)の化合物の合成 Example 3 Synthesis of compound of formula (1-3)

2−(パーフルオロブチル)エチルヨージド(4.61g,12.3mmol)、4−ブロモベンゼンチオール(2.12g,11.2mmol)とアセトン(50mL)を250mLナスフラスコに入れてよく溶かした後、炭酸カリウム(2.32g,16.8mmol)を加えて、65℃で24時間還流した。還流後室温まで静置し、分液漏斗に移した。そこへ酢酸エチル、水を加え有機層を得た。有機層を1N希塩酸で洗浄した後、食塩水で洗浄した。得られた有機層を無水硫酸マグネシウムで乾燥し、ひだ折りろ過で硫酸マグネシウムを除いた。ろ液をエバポレータで濃縮し、黄褐色の液体である式(12−1)の化合物(4.63g、95%)を得た。
続いて、200mLナスフラスコに炭酸ナトリウム(4.24g,40.0mmol)を加え、20mLの水でよく溶かし、1,4−ジオキサンを80mL加えた。次に式(12−1)の化合物(7.63g,17.5mmol)、トリフェニルホスフィン(0.08g,0.31mmol)と4−メトキシフェニルボロン酸(3.20g,21.0mmol)を加え、最後にパラジウムアセテート(0.02g,0.09mmol)を加え、窒素雰囲気で100℃で50時間還流した。還流後室温まで静置し、分液漏斗に移した。そこへ酢酸エチルと水を加えて有機層を得たのち、食塩水で洗浄した。得られた有機層を無水硫酸マグネシウムで乾燥し、ひだ折りろ過で硫酸マグネシウムを除いた。ろ液をエバポレータで濃縮し、無色の固体を得た。得られた固体をカラムクロマトグラフィーにより精製した。充填剤としてシリカゲル、展開溶媒としてクロロホルムをそれぞれ使用した。結果、無色の粉末である、式(14−1)の化合物(6.82g,84%)を得た。
さらに、上記式(14−1)の化合物(6.80g,14.7mmol)を300mLナスフラスコに入れ、ジクロロメタン(100mL)に溶解させた。次に三臭化ホウ素(2.79mL,30.0mmol)を加えて、室温で24時間撹拌した。撹拌後フラスコを水で冷やしながら、水を少しずつ加えて未反応の三臭化ホウ素をなくし、分液漏斗に移した。そこへ酢酸エチルと水を加えて有機層を得たのち、食塩水で洗浄した。得られた有機層を無水硫酸マグネシウムで乾燥し、ひだ折りろ過で硫酸マグネシウムを除いた。ろ液をエバポレータで濃縮し、無色の粉末である式(2−3)の化合物(5.52g,84%)を得た。
上記式(2−3)の化合物(3.00g,6.69mmol)、60%水素化ナトリウム(0.39g,9.75mmol)、テトラヒドロフラン(50mL)を300mLナスフラスコに入れて、50℃で3時間還流した。還流後室温まで静置し、ヘキサクロロシクロトリホスファゼン(0.38g,1.09mmol)を加えて、67℃で50時間還流した。還流後室温まで静置し、水を少しずつ加えてまだ残っている水素化ナトリウムをなくした後、分液漏斗に移した。そこへ酢酸エチルと水を加えて有機層を得た。得られた有機層を水で洗浄した後、食塩水で洗浄した。得られた有機層を無水硫酸マグネシウムで乾燥し、ひだ折りろ過で硫酸マグネシウムを除いた。ろ液をエバポレータで濃縮し、得られた黄褐色の固体を酢酸エチルで加熱して溶かした後、メタノールを加えて冷却し再結晶した。得られた固体をカラムクロマトグラフィーにより精製した。充填剤としてシリカゲル、展開溶媒としてクロロホルムをそれぞれ使用した。その後固体を酢酸エチルで加熱して溶かした後、メタノールを加えて冷却し再結晶した。結果、無色の粉末である、式(1−3)の化合物(2.24g,73%)を得た。式(1−3)の化合物のHNMR、IRを以下に示す。
2- (Perfluorobutyl) ethyl iodide (4.61 g, 12.3 mmol), 4-bromobenzenethiol (2.12 g, 11.2 mmol) and acetone (50 mL) were placed in a 250 mL eggplant flask and dissolved well. Potassium (2.32 g, 16.8 mmol) was added, and the mixture was refluxed at 65 ° C. for 24 hours. After refluxing, the mixture was allowed to stand to room temperature and transferred to a separatory funnel. Ethyl acetate and water were added thereto to obtain an organic layer. The organic layer was washed with 1N dilute hydrochloric acid and then with brine. The obtained organic layer was dried over anhydrous magnesium sulfate, and magnesium sulfate was removed by fold filtration. The filtrate was concentrated with an evaporator to obtain a compound of the formula (12-1) (4.63 g, 95%) as a tan liquid.
Subsequently, sodium carbonate (4.24 g, 40.0 mmol) was added to a 200 mL eggplant flask, dissolved well with 20 mL of water, and 80 mL of 1,4-dioxane was added. Next, the compound of formula (12-1) (7.63 g, 17.5 mmol), triphenylphosphine (0.08 g, 0.31 mmol) and 4-methoxyphenylboronic acid (3.20 g, 21.0 mmol) were added. Finally, palladium acetate (0.02 g, 0.09 mmol) was added, and the mixture was refluxed at 100 ° C. for 50 hours in a nitrogen atmosphere. After refluxing, the mixture was allowed to stand to room temperature and transferred to a separatory funnel. Ethyl acetate and water were added thereto to obtain an organic layer, which was then washed with brine. The obtained organic layer was dried over anhydrous magnesium sulfate, and magnesium sulfate was removed by fold filtration. The filtrate was concentrated with an evaporator to obtain a colorless solid. The obtained solid was purified by column chromatography. Silica gel was used as a filler and chloroform was used as a developing solvent. As a result, a compound of the formula (14-1) (6.82 g, 84%) was obtained as a colorless powder.
Furthermore, the compound of formula (14-1) (6.80 g, 14.7 mmol) was put into a 300 mL eggplant flask and dissolved in dichloromethane (100 mL). Next, boron tribromide (2.79 mL, 30.0 mmol) was added, and the mixture was stirred at room temperature for 24 hours. After stirring, while cooling the flask with water, water was added little by little to eliminate unreacted boron tribromide and transferred to a separatory funnel. Ethyl acetate and water were added thereto to obtain an organic layer, which was then washed with brine. The obtained organic layer was dried over anhydrous magnesium sulfate, and magnesium sulfate was removed by fold filtration. The filtrate was concentrated with an evaporator to obtain a compound of formula (2-3) (5.52 g, 84%) as a colorless powder.
A compound of the above formula (2-3) (3.00 g, 6.69 mmol), 60% sodium hydride (0.39 g, 9.75 mmol), and tetrahydrofuran (50 mL) were placed in a 300 mL eggplant flask, and 3% at 50 ° C. Reflux for hours. After refluxing, the mixture was allowed to stand to room temperature, hexachlorocyclotriphosphazene (0.38 g, 1.09 mmol) was added, and the mixture was refluxed at 67 ° C. for 50 hours. After refluxing, the mixture was allowed to stand to room temperature, water was added little by little to remove the remaining sodium hydride, and then transferred to a separatory funnel. Ethyl acetate and water were added thereto to obtain an organic layer. The obtained organic layer was washed with water and then with brine. The obtained organic layer was dried over anhydrous magnesium sulfate, and magnesium sulfate was removed by fold filtration. The filtrate was concentrated with an evaporator, and the resulting tan solid was dissolved by heating with ethyl acetate, and then cooled with methanol and recrystallized. The obtained solid was purified by column chromatography. Silica gel was used as a filler and chloroform was used as a developing solvent. Thereafter, the solid was dissolved by heating with ethyl acetate, methanol was added, and the mixture was cooled and recrystallized. As a result, a colorless powdery compound of formula (1-3) (2.24 g, 73%) was obtained. 1 HNMR and IR of the compound of the formula (1-3) are shown below.

融点:92−93℃
HNMR(500MHz,CDCl):δ=7.19(12H,d,J=8.5Hz),6.86(12H,d,J=9.1Hz),3.09(12H,t,J=7.9Hz),2.32−2.42(12H,m)ppm
IR(KBr):1492,1236−1143,970cm-
Melting point: 92-93 ° C
1 HNMR (500 MHz, CDCl 3 ): δ = 7.19 (12H, d, J = 8.5 Hz), 6.86 (12H, d, J = 9.1 Hz), 3.09 (12H, t, J = 7.9 Hz), 2.32-2.42 (12 H, m) ppm
IR (KBr): 1492, 1236-1143, 970 cm- 1

実施例4.式(1−4)の化合物の合成 Example 4 Synthesis of compound of formula (1-4)

式(2−4)のアルコールの合成は、2−(パーフルオロヘキシル)エチルヨージドを用いる以外は、実施例3と同様の方法によって行った。
上記式(2−4)のアルコール(2.41g,4.39mmol)、60%水素化ナトリウム(0.26g,6.50mmol)、テトラヒドロフラン(100mL)を300mLナスフラスコに入れて、50°Cで3時間撹拌した。撹拌後室温まで静置し、ヘキサクロロシクロトリホスファゼン(0.25g,0.72mmol)を加えて、67℃で50時間還流した。還流後室温まで静置し、水を少しずつ加えてまだ残っている水素化ナトリウムをなくした後、分液漏斗に移した。そこへ酢酸エチルと水を加えて有機層を得た。得られた有機層を水で洗浄した後、食塩水で洗浄した。得られた有機層を無水硫酸マグネシウムで乾燥し、ひだ折りろ過で硫酸マグネシウムを除いた。ろ液をエバポレータで濃縮し、黄褐色の固体である式(1−4)の化合物(1.56g、64%)を得た。式(1−4)の化合物の融点を以下に示す。
The synthesis of the alcohol of formula (2-4) was carried out in the same manner as in Example 3, except that 2- (perfluorohexyl) ethyl iodide was used.
The alcohol of the above formula (2-4) (2.41 g, 4.39 mmol), 60% sodium hydride (0.26 g, 6.50 mmol), and tetrahydrofuran (100 mL) were placed in a 300 mL eggplant flask and heated at 50 ° C. Stir for 3 hours. After stirring, the mixture was allowed to stand to room temperature, hexachlorocyclotriphosphazene (0.25 g, 0.72 mmol) was added, and the mixture was refluxed at 67 ° C. for 50 hours. After refluxing, the mixture was allowed to stand to room temperature, water was added little by little to remove the remaining sodium hydride, and then transferred to a separatory funnel. Ethyl acetate and water were added thereto to obtain an organic layer. The obtained organic layer was washed with water and then with brine. The obtained organic layer was dried over anhydrous magnesium sulfate, and magnesium sulfate was removed by fold filtration. The filtrate was concentrated with an evaporator to obtain a compound of the formula (1-4) (1.56 g, 64%) as a tan solid. The melting point of the compound of formula (1-4) is shown below.

融点:>250℃ Melting point:> 250 ° C

参考例1.比較例1の化合物の合成 Reference Example 1 Synthesis of the compound of Comparative Example 1

1−ヨードオクタン(3.66g,15.3mmol)、4−ヒドロキシチオフェノール(1.75g,13.9mmol)とアセトン(50mL)を250mLナスフラスコに入れてよく溶かした後、炭酸カリウム(2.88g,20.8mmol)を加えて、65℃で30時間還流した。還流後室温まで静置し、分液漏斗に移した。そこへシクロペンチルメチルエーテル、水を加えて有機層を得た。有機層を1N希塩酸で洗浄した後、食塩水で洗浄した。得られた有機層を無水硫酸マグネシウムで乾燥し、ひだ折りろ過で硫酸マグネシウムを除いた。ろ液をエバポレータで濃縮し、無色の固体を得た。得られた固体をカラムクロマトグラフィーにより精製した。充填剤としてシリカゲル、展開溶媒としてクロロホルムをそれぞれ使用した。結果、無色の粉末である、式(15)の化合物(2.74g,83%)を得た。
上記式(15)の化合物(1.94g,8.14mmol)、水素化ナトリウム(0.39g,9.77mmol)、テトラヒドロフラン(80mL)を300mLナスフラスコに入れて、50℃で3時間還流した。還流後室温まで静置し、ヘキサクロロシクロトリホスファゼン(0.46g,1.33mmol)を加えて、67℃で60時間還流した。還流後室温まで静置し、水を少しずつ加えてまだ残っている水素化ナトリウムをなくした後、分液漏斗に移した。そこへシクロペンチルメチルエーテルと1N希塩酸を加えて有機層を得た。得られた有機層を水で洗浄した後、食塩水で洗浄した。得られた有機層を無水硫酸マグネシウムで乾燥し、ひだ折りろ過で硫酸マグネシウムを除いた。ろ液をエバポレータで濃縮し、得られた黄褐色の固体を石油エーテルで加熱して溶かした後、冷却し再結晶した。結果、無色の粉末である、比較例1の化合物(1.17g,57%)を得た。比較例1の化合物の融点、HNMR、IRを以下に示す。
1-Iodooctane (3.66 g, 15.3 mmol), 4-hydroxythiophenol (1.75 g, 13.9 mmol) and acetone (50 mL) were placed in a 250 mL eggplant flask and dissolved well, and then potassium carbonate (2. 88 g, 20.8 mmol) was added, and the mixture was refluxed at 65 ° C. for 30 hours. After refluxing, the mixture was allowed to stand to room temperature and transferred to a separatory funnel. Cyclopentyl methyl ether and water were added thereto to obtain an organic layer. The organic layer was washed with 1N dilute hydrochloric acid and then with brine. The obtained organic layer was dried over anhydrous magnesium sulfate, and magnesium sulfate was removed by fold filtration. The filtrate was concentrated with an evaporator to obtain a colorless solid. The obtained solid was purified by column chromatography. Silica gel was used as a filler and chloroform was used as a developing solvent. As a result, a colorless powdery compound of the formula (15) (2.74 g, 83%) was obtained.
The compound of the above formula (15) (1.94 g, 8.14 mmol), sodium hydride (0.39 g, 9.77 mmol) and tetrahydrofuran (80 mL) were placed in a 300 mL eggplant flask and refluxed at 50 ° C. for 3 hours. After refluxing, the mixture was allowed to stand to room temperature, hexachlorocyclotriphosphazene (0.46 g, 1.33 mmol) was added, and the mixture was refluxed at 67 ° C. for 60 hours. After refluxing, the mixture was allowed to stand to room temperature, water was added little by little to remove the remaining sodium hydride, and then transferred to a separatory funnel. Cyclopentyl methyl ether and 1N dilute hydrochloric acid were added thereto to obtain an organic layer. The obtained organic layer was washed with water and then with brine. The obtained organic layer was dried over anhydrous magnesium sulfate, and magnesium sulfate was removed by fold filtration. The filtrate was concentrated with an evaporator, and the resulting tan solid was dissolved by heating with petroleum ether, and then cooled and recrystallized. As a result, the compound of Comparative Example 1 (1.17 g, 57%) was obtained as a colorless powder. The melting point, 1 HNMR and IR of the compound of Comparative Example 1 are shown below.

融点:54−55℃
HNMR(500MHz,CDCl):δ=7.12(12H,d,J=8.5Hz),6.76(12H,d,J=8.5Hz),2.88(12H,t,J=7.6Hz),1.66−1.6(12H,m),1.43−1.26(72H,m),0.89−0.86(18H,t,J=6.7Hz)ppm
IR(KBr):1589,1496,1242−1130,970cm-
Melting point: 54-55 ° C
1 HNMR (500 MHz, CDCl 3 ): δ = 7.12 (12H, d, J = 8.5 Hz), 6.76 (12H, d, J = 8.5 Hz), 2.88 (12H, t, J = 7.6 Hz), 1.66-1.6 (12 H, m), 1.43-1.26 (72 H, m), 0.89-0.86 (18 H, t, J = 6.7 Hz) ppm
IR (KBr): 1589, 1496, 1242-1130, 970 cm- 1

実施例5.ゲル化能の測定
有機溶媒がゲル化するために必要とされる、有機溶媒に対する最小の式(1)の化合物の濃度(最低ゲル化濃度とも称す)を測定した。最低ゲル化濃度の測定は、以下の手順で行った。
1.式(1)の化合物をミクロチューブに量りとった。
2.有機溶媒であるパーフルオロトリブチルアミン(PFTBA)をサンプル管に加えた。
3.加熱し式(1)の化合物を溶解させた後、放冷した。
4.ゲルの有無を確認した。
5.加熱しゾルになる温度を確認した。
6.さらに有機溶媒を添加し、ゲル化しなくなるまで2〜5の操作を繰り返した。
Example 5 FIG. Measurement of gelation ability The minimum concentration of the compound of the formula (1) with respect to the organic solvent (also referred to as the minimum gelation concentration) required for the organic solvent to gel was measured. The minimum gelation concentration was measured by the following procedure.
1. The compound of formula (1) was weighed into a microtube.
2. An organic solvent, perfluorotributylamine (PFTBA), was added to the sample tube.
3. After heating to dissolve the compound of formula (1), the mixture was allowed to cool.
4). The presence or absence of gel was confirmed.
5. The temperature at which the sol was heated was confirmed.
6). Further, an organic solvent was added, and operations 2 to 5 were repeated until no gelation occurred.

式(1)の化合物として、上記実施例2で合成した式(1−2)で表される化合物を使用し、最低ゲル化濃度の測定を行った。なお、比較として、比較例1の化合物を使用して同様に最低ゲル化濃度の測定を行った。   As the compound of the formula (1), the compound represented by the formula (1-2) synthesized in Example 2 was used, and the minimum gelation concentration was measured. For comparison, the minimum gelation concentration was similarly measured using the compound of Comparative Example 1.

式(1−2)の化合物を使用して最低ゲル化濃度の測定を行ったときの手順は、具体的には、以下の通りである。
まず、式(1−2)の化合物13.6mgを量り、PFTBA260.8mgを使用した。式(1−2)の化合物を溶解させて、放冷したところ、ゲルの形成が確認された(ゲル化濃度5.0%)。また、ゲルを加熱したところ、50℃でゾルになることが確認された。さらに、PFTBAを添加し、上記の操作を繰り返したところ、最低ゲル化濃度は2.5%であった。
ゲル中に含まれる式(1−2)の化合物の濃度に対するゲル−ゾル転移温度の変化を図1に示した。
The procedure when the minimum gelation concentration is measured using the compound of formula (1-2) is specifically as follows.
First, 13.6 mg of the compound of formula (1-2) was weighed and 260.8 mg of PFTBA was used. When the compound of formula (1-2) was dissolved and allowed to cool, gel formation was confirmed (gelation concentration: 5.0%). Moreover, when the gel was heated, it was confirmed that it became a sol at 50 ° C. Further, when PFTBA was added and the above operation was repeated, the minimum gelation concentration was 2.5%.
The change of the gel-sol transition temperature with respect to the concentration of the compound of formula (1-2) contained in the gel is shown in FIG.

比較例1の化合物を使用して最低ゲル化濃度の測定を行ったときの手順は、具体的には、以下の通りである。
まず、比較例1の化合物8.9mgを量り、PFTBA173.2mgを使用した。比較例1の化合物を溶解させて、放冷したところ、ゲルは形成されず、比較例1の化合物が再結晶して沈殿していることが確認された。
The procedure for measuring the minimum gelation concentration using the compound of Comparative Example 1 is specifically as follows.
First, 8.9 mg of the compound of Comparative Example 1 was weighed and 173.2 mg of PFTBA was used. When the compound of Comparative Example 1 was dissolved and allowed to cool, no gel was formed, and it was confirmed that the compound of Comparative Example 1 was recrystallized and precipitated.

上述のように、式(1−2)の化合物の最低ゲル化濃度は2.5%であった。PFTBAのゲルの写真、及び、ゲルの微細構造を示す走査型電子顕微鏡(SEM)の画像を図2に示す。図2に示すように、式(1−2)の化合物は繊維状に凝集し、PFTBAを取り込み、ゲルを形成していることがわかった。   As described above, the minimum gelation concentration of the compound of formula (1-2) was 2.5%. A photograph of a PFTBA gel and a scanning electron microscope (SEM) image showing the microstructure of the gel are shown in FIG. As shown in FIG. 2, it was found that the compound of formula (1-2) aggregated in a fibrous form, took in PFTBA, and formed a gel.

なお、特開2010−280799公報に記載の以下の化合物でも最低ゲル化濃度の測定を行ったが、当該化合物はPFTBAをゲル化することができず、当該化合物は沈殿した。   In addition, although the minimum gelation density | concentration was measured also with the following compounds of Unexamined-Japanese-Patent No. 2010-280799, the said compound was not able to gelatinize PFTBA and the said compound precipitated.

実施例6.液晶性の観察
式(1−2)及び式(1−3)の化合物に関して、それぞれの液晶相を偏光顕微鏡で観察した。
式(1−2)の化合物は、85℃でスメクチックA(SmA)相に特有のファン組織が観察された。35℃では結晶状態であった。偏光顕微鏡画像を図3に示す。
式(1−3)の化合物は、180℃でスメクチックA(SmA)相に特有のファン組織が、120℃でスメクチックC(SmC)相に特有のファン組織が観察された。偏光顕微鏡画像を図4に示す。また、式(1−2)と式(1−3)の化合物の熱分析の結果を以下に示す。
Example 6 Observation of liquid crystal properties With respect to the compounds of formula (1-2) and formula (1-3), each liquid crystal phase was observed with a polarizing microscope.
In the compound of the formula (1-2), a fan structure peculiar to the smectic A (SmA) phase was observed at 85 ° C. It was in a crystalline state at 35 ° C. A polarization microscope image is shown in FIG.
In the compound of formula (1-3), a fan structure specific to the smectic A (SmA) phase was observed at 180 ° C., and a fan structure specific to the smectic C (SmC) phase was observed at 120 ° C. A polarization microscope image is shown in FIG. Moreover, the result of the thermal analysis of the compound of Formula (1-2) and Formula (1-3) is shown below.

式(1−2)の化合物の相転移温度(℃)と転移潜熱(kJ mol−1、DSCにて測定)
昇温時:Crystal 77℃ SmA 91℃ Isotropic liquid(等方性液体)
転移潜熱:37.0kJ mol−1(C→SmA)、6.5kJ mol−1(SmA→Iso)
Phase transition temperature (° C.) and latent heat of transition (kJ mol −1 , measured by DSC) of the compound of formula (1-2)
Temperature rise: Crystal 77 ° C SmA 91 ° C Isotropic liquid
Transition latent heat: 37.0 kJ mol −1 (C → SmA), 6.5 kJ mol −1 (SmA → Iso)

式(1−3)の化合物の相転移温度(℃)と転移潜熱(kJ mol−1、DSCにて測定)
昇温時:Crystal 90℃ SmC 118℃ SmA 216℃ Isotropic liquid(等方性液体)
転移潜熱:16.8kJ mol−1(C→SmC)、2.6kJ mol−1(SmC→SmA)、8.7kJ mol−1(SmA→Iso)
Phase transition temperature (° C.) and latent heat of transition (kJ mol −1 , measured by DSC) of the compound of formula (1-3)
Temperature rise: Crystal 90 ° C SmC 118 ° C SmA 216 ° C Isotropic liquid
Transition latent heat: 16.8 kJ mol −1 (C → SmC), 2.6 kJ mol −1 (SmC → SmA), 8.7 kJ mol −1 (SmA → Iso)

本発明の化合物はフッ素系溶媒をゲル化することができ、化粧品、医薬医療、食品、塗料、接着剤、汚泥処理、建築、土木等の各種産業分野で使用するための、耐熱性や耐薬品性等の機能性を備えたゲル材料を製造することができる。また、本発明の化合物は、フッ素系溶媒のゲル化能に加えて、液晶性も有しているため、液晶材料として使用することができる。   The compound of the present invention can gel a fluorinated solvent, and is heat-resistant and chemical-resistant for use in various industrial fields such as cosmetics, pharmaceuticals, foods, paints, adhesives, sludge treatment, construction, civil engineering, etc. A gel material having functionality such as property can be produced. Moreover, since the compound of this invention has liquid crystallinity in addition to the gelatinization ability of a fluorine-type solvent, it can be used as a liquid-crystal material.

Claims (7)

式(1)で表される化合物。
[式中Arは、
(lは1〜10から選択されるいずれかの整数であり、mは0〜5から選択されるいずれかの整数であり、nは1〜5から選択されるいずれかの整数であり、波線は隣接する酸素原子への結合部位であることを表す。)である。]
The compound represented by Formula (1).
[Wherein Ar is
(L is any integer selected from 1 to 10, m is any integer selected from 0 to 5, n is any integer selected from 1 to 5, wavy line Represents a binding site to an adjacent oxygen atom. ]
mが2であることを特徴とする請求項1に記載の化合物。   2. The compound according to claim 1, wherein m is 2. nが1又は2であることを特徴とする請求項1又は2に記載の化合物。   n is 1 or 2, The compound of Claim 1 or 2 characterized by the above-mentioned. 請求項1〜3のいずれかに記載の化合物から選択される1又は2以上を含有することを特徴とするゲル化剤。   A gelling agent comprising 1 or 2 or more selected from the compound according to claim 1. フッ素系溶媒をゲル化するための請求項4に記載のゲル化剤。   The gelling agent according to claim 4 for gelling a fluorinated solvent. 請求項4又は5に記載のゲル化剤及び有機溶媒を含むことを特徴とするゲル組成物。   A gel composition comprising the gelling agent according to claim 4 or 5 and an organic solvent. 請求項1〜3のいずれかに記載の化合物から選択される1又は2以上を含有することを特徴とする液晶組成物。
A liquid crystal composition comprising one or more selected from the compound according to claim 1.
JP2015057351A 2015-03-20 2015-03-20 Phosphazene compounds having perfluoroalkyl groups Active JP6399601B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015057351A JP6399601B2 (en) 2015-03-20 2015-03-20 Phosphazene compounds having perfluoroalkyl groups

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015057351A JP6399601B2 (en) 2015-03-20 2015-03-20 Phosphazene compounds having perfluoroalkyl groups

Publications (2)

Publication Number Publication Date
JP2016175864A true JP2016175864A (en) 2016-10-06
JP6399601B2 JP6399601B2 (en) 2018-10-03

Family

ID=57070303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015057351A Active JP6399601B2 (en) 2015-03-20 2015-03-20 Phosphazene compounds having perfluoroalkyl groups

Country Status (1)

Country Link
JP (1) JP6399601B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112358507A (en) * 2020-10-16 2021-02-12 华南理工大学 Star-structure fluorine-containing phosphazene flow modifier and preparation method and application thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002322478A (en) * 2001-04-24 2002-11-08 Chemiprokasei Kaisha Ltd Flame retardant and flame-retardant resin composition and molding containing the same
WO2007083843A1 (en) * 2006-01-20 2007-07-26 National University Corporation Yamaguchi University Aromatic compound gelatinizing agent having perfluoroalkyl group
JP2010525122A (en) * 2007-04-24 2010-07-22 ビーエーエスエフ ソシエタス・ヨーロピア Fluorinated dyes and their use in electrophoretic display devices

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002322478A (en) * 2001-04-24 2002-11-08 Chemiprokasei Kaisha Ltd Flame retardant and flame-retardant resin composition and molding containing the same
WO2007083843A1 (en) * 2006-01-20 2007-07-26 National University Corporation Yamaguchi University Aromatic compound gelatinizing agent having perfluoroalkyl group
JP2010525122A (en) * 2007-04-24 2010-07-22 ビーエーエスエフ ソシエタス・ヨーロピア Fluorinated dyes and their use in electrophoretic display devices

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MORIYA ET AL.: "Mesomorphic phase transition in organophosphazenes", KOBUNSHI RONBUNSHU, vol. 56(6), JPN6018031603, 1999, pages 390 - 395 *
MORIYA ET AL.: "Phase transition in cyclic organophosphazenes: the effect of side chains on mesomorphism", MOLECULAR CRYSTALS AND LIQUID CRYSTALS SCIENCE AND TECHNOLOGY, SECTION A: MOLECULAR CRYSTALS AND LIQ, vol. 364, JPN6018031605, 2001, pages 787 - 794 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112358507A (en) * 2020-10-16 2021-02-12 华南理工大学 Star-structure fluorine-containing phosphazene flow modifier and preparation method and application thereof
CN112358507B (en) * 2020-10-16 2021-12-21 华南理工大学 Star-structure fluorine-containing phosphazene flow modifier and preparation method and application thereof

Also Published As

Publication number Publication date
JP6399601B2 (en) 2018-10-03

Similar Documents

Publication Publication Date Title
WO2008102661A1 (en) Method for producing trialkylsilylnitrile
JP7105692B2 (en) Polyorganofunctional group-modified silica, method for producing same, and use thereof
TW201634468A (en) Method for producing dialkylaminosilane
JP6988772B2 (en) Method for producing tetraalkenylsilane
JP5812222B2 (en) Method for producing biphenyl skeleton-containing epoxy resin
JP6399601B2 (en) Phosphazene compounds having perfluoroalkyl groups
JP2014525409A5 (en)
JP2018520134A5 (en)
JP2010120926A (en) Polycyclic pentafluorosulfanylbenzene compound and method for producing the same
JP2010235453A (en) Method for producing platinum complex
US7566806B2 (en) Alkylamino group-terminated fluoroether and process for producing the same
JP3569788B2 (en) Method for producing fluorinated quaternary ammonium salt
JP6487219B2 (en) Method for producing carboxylate
TW202104142A (en) Method for producing perfluoroalkyne compound
JPH0374395A (en) Production of organic phosphonium salt
CN116940545A (en) Method for producing fluorine-containing compound, and fluorine-containing compound
CN101875662B (en) Method for preparing pentamethyl disiloxane
Gupta et al. Perfluoro alkyl 1, 3-diketonates of cyclic and acyclic secondary amines
JP4423717B2 (en) Method for the synthesis of 3-substituted-3-halomethyloxetane compounds
JP2003055285A (en) 4-tert-BUTOXY-4'-HALOGENOBIPHENYL, METHOD FOR PRODUCING THE SAME AND METHOD FOR PRODUCING 4-HALOGENO-4'- HYDROXYBIPHENYL
CN108559526A (en) The preparation method of high-purity liquid crystal monomer containing double bond
CN104003838A (en) Synthetic method of adapalene
WO2021054414A1 (en) Method for producing fluorine-containing compounds
TW201906853A (en) Method for preparing bis(indenyl)phosphinic acid decyl ester
JP5258370B2 (en) Industrial production method of risedronic acid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180816

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180816

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180830

R150 Certificate of patent or registration of utility model

Ref document number: 6399601

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250