JP2016175213A - Composition liquid for three-dimensional molding and three-dimensional molding material set, and method and apparatus for manufacturing three-dimensional molding - Google Patents

Composition liquid for three-dimensional molding and three-dimensional molding material set, and method and apparatus for manufacturing three-dimensional molding Download PDF

Info

Publication number
JP2016175213A
JP2016175213A JP2015055639A JP2015055639A JP2016175213A JP 2016175213 A JP2016175213 A JP 2016175213A JP 2015055639 A JP2015055639 A JP 2015055639A JP 2015055639 A JP2015055639 A JP 2015055639A JP 2016175213 A JP2016175213 A JP 2016175213A
Authority
JP
Japan
Prior art keywords
dimensional
dimensional modeling
composition liquid
powder material
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015055639A
Other languages
Japanese (ja)
Other versions
JP6536108B2 (en
Inventor
景子 尾阪
Keiko Osaka
景子 尾阪
山口 剛男
Takeo Yamaguchi
剛男 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2015055639A priority Critical patent/JP6536108B2/en
Priority to US15/041,761 priority patent/US10767071B2/en
Priority to EP16159025.2A priority patent/EP3070136B1/en
Publication of JP2016175213A publication Critical patent/JP2016175213A/en
Application granted granted Critical
Publication of JP6536108B2 publication Critical patent/JP6536108B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J139/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen; Adhesives based on derivatives of such polymers
    • C09J139/04Homopolymers or copolymers of monomers containing heterocyclic rings having nitrogen as ring member
    • C09J139/06Homopolymers or copolymers of N-vinyl-pyrrolidones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/102Metallic powder coated with organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/10Formation of a green body
    • B22F10/14Formation of a green body by jetting of binder onto a bed of metal powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/003Apparatus, e.g. furnaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/165Processes of additive manufacturing using a combination of solid and fluid materials, e.g. a powder selectively bound by a liquid binder, catalyst, inhibitor or energy absorber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • B33Y70/10Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/05Alcohols; Metal alcoholates
    • C08K5/053Polyhydroxylic alcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L29/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
    • C08L29/02Homopolymers or copolymers of unsaturated alcohols
    • C08L29/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L39/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen; Compositions of derivatives of such polymers
    • C08L39/04Homopolymers or copolymers of monomers containing heterocyclic rings having nitrogen as ring member
    • C08L39/06Homopolymers or copolymers of N-vinyl-pyrrolidones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/02Polyalkylene oxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D129/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Coating compositions based on hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Coating compositions based on derivatives of such polymers
    • C09D129/02Homopolymers or copolymers of unsaturated alcohols
    • C09D129/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D139/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen; Coating compositions based on derivatives of such polymers
    • C09D139/04Homopolymers or copolymers of monomers containing heterocyclic rings having nitrogen as ring member
    • C09D139/06Homopolymers or copolymers of N-vinyl-pyrrolidones
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D171/00Coating compositions based on polyethers obtained by reactions forming an ether link in the main chain; Coating compositions based on derivatives of such polymers
    • C09D171/02Polyalkylene oxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J171/00Adhesives based on polyethers obtained by reactions forming an ether link in the main chain; Adhesives based on derivatives of such polymers
    • C09J171/02Polyalkylene oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • C08K5/175Amines; Quaternary ammonium compounds containing COOH-groups; Esters or salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/53Phosphorus bound to oxygen bound to oxygen and to carbon only
    • C08K5/5317Phosphonic compounds, e.g. R—P(:O)(OR')2
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2312/00Crosslinking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Abstract

PROBLEM TO BE SOLVED: To provide a composition liquid for three-dimensional molding which is excellent in storage stability, and can manufacture a three-dimensional molding having a complicated shape with high dimensional accuracy and such a strength as to prevent the three-dimensional molding from losing forms before sintering and the like.SOLUTION: A composition liquid for three-dimensional molding which is used for forming a three-dimensional molding that is formed of a powder material for three-dimensional molding containing an organic material and a base material contains a crosslinking agent crosslinked with the organic material, and a water-soluble resin having a weight average molecular weight of 50,000 or more.SELECTED DRAWING: Figure 1

Description

本発明は、立体造形用組成液及び立体造形材料セット、並びに立体造形物の製造方法及び製造装置に関する。   The present invention relates to a three-dimensional modeling composition liquid, a three-dimensional modeling material set, and a three-dimensional model manufacturing method and manufacturing apparatus.

近時、複雑で微細な立体造形物の低ロット生産のニーズが高まってきている。このニーズに対応するための技術として、粉体接着法などが提案されてきている。
この粉体接着法としては、例えば、粉体薄層に対してインクジェット法を用いて接着材料を供給する方法や、粉末粒子と接着剤粒子を混合した粉末材料を積層し結合剤を付与して接着材料粒子を溶解し、固化させることで、三次元造形物を製造する方法(特許文献1参照)、ガラスやセラミック等の基材に疎水性樹脂を被覆した粉末材料を、リモネン、トルエン等の溶剤で被覆樹脂を溶解することで固化させて三次元造形物を製造する方法(特許文献2参照)などが提案されている。
Recently, there is an increasing need for low-lot production of complex and fine three-dimensional objects. As a technique for meeting this need, a powder bonding method has been proposed.
As this powder bonding method, for example, a method of supplying an adhesive material to a thin powder layer using an inkjet method, or a method of laminating a powder material in which powder particles and adhesive particles are mixed and applying a binder is provided. A method of producing a three-dimensional structure by dissolving and solidifying adhesive material particles (see Patent Document 1), a powder material obtained by coating a base material such as glass or ceramic with a hydrophobic resin, such as limonene or toluene A method for producing a three-dimensional structure by dissolving a coating resin with a solvent to produce a three-dimensional structure (see Patent Document 2) has been proposed.

しかしながら、前記特許文献1に記載の技術は、結着材料を付与し接着粒子を溶解させても溶解した接着液は粉末粒子同士の間に均一に広がりにくいため、三次元造形物に充分な強度と精度を付与することは困難である。また、前記接着材料をインクジェット法により供給する場合には、用いるノズルヘッドに目詰りが生じたり、用いることができる接着材料の選択に制約が生じたり、コストが掛かり効率的でないという問題がある。   However, the technique described in Patent Document 1 has sufficient strength for a three-dimensional structure because the dissolved adhesive liquid does not spread evenly between the powder particles even when the binder material is applied and the adhesive particles are dissolved. It is difficult to give accuracy. In addition, when the adhesive material is supplied by an ink jet method, there is a problem that the nozzle head to be used is clogged, the selection of the adhesive material that can be used is restricted, the cost is high, and it is not efficient.

また、前記特許文献2に記載の技術では、リモネンは揮発性が低く三次元造形物に残留しやすく強度の低下を引き起こすおそれがある。更に、トルエン等の低揮発性溶剤は安全性上問題がある。   Further, in the technique described in Patent Document 2, limonene is low in volatility and tends to remain on a three-dimensional structure and may cause a decrease in strength. Furthermore, a low-volatile solvent such as toluene has a safety problem.

そこで、本発明は、保存安定性に優れ、かつ複雑な形状の立体造形物を寸法精度良く、焼結等の前に型崩れが生じない充分な強度で製造し得る立体造形用組成液を提供することを目的とする。   Therefore, the present invention provides a composition solution for three-dimensional modeling that can produce a three-dimensional structure having excellent storage stability and a complicated shape with sufficient dimensional accuracy and sufficient strength that does not cause deformation before sintering. The purpose is to do.

前記課題を解決するための手段としての本発明の立体造形用組成液は、有機材料及び基材を含む立体造形用粉末材料からなる立体造形物を形成するために用いる立体造形用組成液であって、前記有機材料と架橋する架橋剤と、重量平均分子量が50,000以上の水溶性樹脂と、を含む。   The three-dimensional modeling composition liquid of the present invention as a means for solving the above problems is a three-dimensional modeling composition liquid used for forming a three-dimensional modeling object composed of a three-dimensional modeling powder material including an organic material and a base material. And a water-soluble resin having a weight average molecular weight of 50,000 or more.

本発明によると、保存安定性に優れ、かつ複雑な形状の立体造形物を寸法精度良く、焼結等の前に型崩れが生じない充分な強度で製造し得る立体造形用組成液を提供することができる。   According to the present invention, there is provided a three-dimensional composition liquid that is excellent in storage stability and capable of producing a three-dimensional structure having a complicated shape with sufficient dimensional accuracy and sufficient strength that does not cause deformation before sintering or the like. be able to.

図1は、本発明の粉末積層造形装置の一例を示す概略図である。FIG. 1 is a schematic view showing an example of a powder additive manufacturing apparatus of the present invention. 図2は、本発明の粉末積層造形装置の他の一例を示す概略図である。FIG. 2 is a schematic view showing another example of the powder additive manufacturing apparatus of the present invention.

(立体造形用組成液)
本発明の立体造形用組成液は、有機材料及び基材を含む立体造形用粉末材料からなる立体造形物を形成するために用いるものであり、前記有機材料と架橋する架橋剤と、重量平均分子量が50,000以上の水溶性樹脂とを含み、安定化剤及び溶媒を含有することが好ましく、更に必要に応じてその他の成分を含有してなる。
(3D modeling liquid)
The composition solution for three-dimensional modeling of the present invention is used for forming a three-dimensional modeled object composed of a powder material for three-dimensional modeling including an organic material and a base material, a crosslinking agent that crosslinks with the organic material, and a weight average molecular weight. And 50,000 or more of a water-soluble resin, and preferably contains a stabilizer and a solvent, and further contains other components as necessary.

前記立体造形用組成液は、立体造形用粉末材料を硬化させるために用いる。なお、前記「硬化」とは、基材同士が有機材料を介して固着乃至凝集した状態を意味し、前記硬化により立体造形用粉末材料が一定の立体形状を保つことが可能となる。   The three-dimensional modeling composition liquid is used to cure the three-dimensional modeling powder material. The “curing” means a state in which the base materials are fixed or agglomerated with each other through an organic material, and the three-dimensional modeling powder material can maintain a certain three-dimensional shape by the curing.

前記立体造形用粉末材料に含まれる有機材料に前記立体造形用組成液が付与されると、前記有機材料は前記立体造形用組成液に含まれる前記溶媒により溶解すると共に、前記立体造形用組成液に含まれる前記架橋剤の作用により架橋する。   When the three-dimensional modeling composition liquid is applied to the organic material included in the three-dimensional modeling powder material, the organic material is dissolved by the solvent contained in the three-dimensional modeling composition liquid, and the three-dimensional modeling composition liquid is used. Are cross-linked by the action of the cross-linking agent contained in.

−水溶性樹脂−
前記水溶性樹脂としては、重量平均分子量が50,000以上であれば特に制限はなく、目的に応じて適宜選択することができるが、ポリビニルピロリドン(PVP)、ポリエチレングリコールなどが好ましく、ポリビニルピロリドンが特に好ましい。
-Water-soluble resin-
The water-soluble resin is not particularly limited as long as the weight average molecular weight is 50,000 or more, and can be appropriately selected according to the purpose. Polyvinyl pyrrolidone (PVP), polyethylene glycol and the like are preferable, and polyvinyl pyrrolidone is preferable. Particularly preferred.

前記ポリビニルピロリドンは、水溶性ポリマーであり、従来の顔料を着色剤として含む記録用水性インクでは、顔料を分散させるための分散剤として用いた例がある。
本発明の立体造形用組成液では、顔料分散の必要はなく、前記ポリビニルピロリドンの金属やセラミックス等の基材に対する優れた接着力、及び立体造形用組成液の保存安定性を付与することを目的として含有する。特に、金属のような比重の重い基材を用いて立体造形物を製造する場合、立体造形物の形状維持にはポリビニルピロリドンの接着力の強さが大いに効果を発揮する。
The polyvinyl pyrrolidone is a water-soluble polymer, and there is an example in which the conventional water-based recording ink containing a pigment as a colorant is used as a dispersant for dispersing the pigment.
In the composition liquid for three-dimensional modeling of the present invention, there is no need for pigment dispersion, and the purpose is to provide excellent adhesion to the polyvinyl pyrrolidone base material such as metal or ceramic, and storage stability of the three-dimensional modeling composition liquid. Contained as. In particular, when a three-dimensional model is manufactured using a base material having a high specific gravity such as metal, the strength of the adhesion of polyvinylpyrrolidone is very effective in maintaining the shape of the three-dimensional model.

前記水溶性樹脂の重量平均分子量は、50,000以上であり、700,000以上が好ましい。前記重量平均分子量が50,000以上の水溶性樹脂を用いると、有機材料に立体造形用組成液が付与されて溶解したときに、立体造形用組成液を付与されて溶解した有機材料と立体造形用組成液中の水溶性樹脂との混合体の固化後の強度が、立体造形物の形状を維持するのに充分なものとなる。更に、前記重量平均分子量が700,000以上の水溶性樹脂を用いると、前記重量平均分子量が700,000未満の水溶性樹脂を用いた場合に比べて、添加量を減らしても前記立体造形物の形状を維持するのに充分なものとなる。
前記水溶性樹脂の重量平均分子量は、例えば、ゲルパーミエーションクロマトグラフィー(GPC)法によって、単離した水溶性樹脂の分子量分布を求めて、これを基に重量平均分子量を算出することができる。
The water-soluble resin has a weight average molecular weight of 50,000 or more, preferably 700,000 or more. When a water-soluble resin having a weight average molecular weight of 50,000 or more is used, and the three-dimensional modeling composition liquid is applied and dissolved in the organic material, the three-dimensional modeling composition liquid is applied and dissolved in the three-dimensional modeling. The strength after solidification of the mixture with the water-soluble resin in the composition liquid for use is sufficient to maintain the shape of the three-dimensional structure. Furthermore, when the water-soluble resin having a weight average molecular weight of 700,000 or more is used, the three-dimensional object can be formed even if the addition amount is reduced as compared with the case where the water-soluble resin having a weight average molecular weight of less than 700,000 is used. It will be sufficient to maintain the shape.
The weight average molecular weight of the water-soluble resin can be calculated based on, for example, a molecular weight distribution of the isolated water-soluble resin obtained by gel permeation chromatography (GPC).

前記水溶性樹脂の含有量は、特に制限はなく、目的に応じて適宜選択することができるが、前記立体造形用組成液の全量に対して、0.1質量%以上5質量%以下が好ましい。前記含有量の好ましい数値範囲において、金属等の基材に対する接着力が向上し、立体造形用組成液の保存安定性が良好となる。   The content of the water-soluble resin is not particularly limited and may be appropriately selected depending on the purpose. It is preferably 0.1% by mass to 5% by mass with respect to the total amount of the three-dimensional modeling composition liquid. . In the preferable numerical range of the content, the adhesion to a base material such as metal is improved, and the storage stability of the three-dimensional modeling composition liquid is improved.

−溶媒−
前記溶媒としては、前記立体造形用粉末材料に含まれる有機材料を溶解可能なものであれば特に制限はなく、目的に応じて適宜選択することができ、例えば、水、有機溶媒などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
-Solvent-
The solvent is not particularly limited as long as it can dissolve the organic material contained in the three-dimensional modeling powder material, and can be appropriately selected according to the purpose. Examples thereof include water and organic solvents. . These may be used individually by 1 type and may use 2 or more types together.

前記水としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、イオン交換水、限外濾過水、逆浸透水、蒸留水等の純水、又は超純水などが挙げられる。
前記水の前記立体造形用組成液における含有量は、40質量%以上95質量%以下が好ましく、50質量%以上85質量%以下がより好ましい。前記水の含有量が40質量%以上であると、立体造形用粉末材料の有機材料として水溶性ポリマーを用いた場合、前記水溶性ポリマーを十分に溶解することができ、硬化物の強度が向上する。また、前記水の含有量が95質量%以下であると、待機時にインクジェットノズルの乾燥が防止でき、ノズル抜けが発生することがない。
There is no restriction | limiting in particular as said water, According to the objective, it can select suitably, For example, pure water, such as ion-exchange water, ultrafiltration water, reverse osmosis water, distilled water, or ultrapure water etc. are mentioned. It is done.
The content of the water in the three-dimensional modeling composition liquid is preferably 40% by mass or more and 95% by mass or less, and more preferably 50% by mass or more and 85% by mass or less. When the water content is 40% by mass or more, when a water-soluble polymer is used as the organic material of the three-dimensional modeling powder material, the water-soluble polymer can be sufficiently dissolved, and the strength of the cured product is improved. To do. Further, when the water content is 95% by mass or less, drying of the ink jet nozzle can be prevented during standby, and nozzle missing does not occur.

前記有機溶媒としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、エタノール、1,2,6−ヘキサントリオール、1,2−ブタンジオール、1,2−ヘキサンジオール、1,2−ペンタンジオール、1,3−ジメチル−2−イミダゾリジノン、1,3−ブタンジオール、1,3−プロパンジオール、1,4−ブタンジオール、1,5−ペンタンジオール、1,6−ヘキサンジオール、2,2−ジメチル−1,3−プロパンジオール、2,3−ブタンジオール、2,4−ペンタンジオール、2,5−ヘキサンジオール、2−エチル−1,3−ヘキサンジオール、2−ピロリドン、2−メチル−1,3−プロパンジオール、2−メチル−2,4−ペンタンジオール、3−メチル−1,3−ブタンジオール、3−メチル−1,3−ヘキサンジオール、N−メチル−2−ピロリドン、N−メチルピロリジノン、β−ブトキシ−N,N−ジメチルプロピオンアミド、β−メトキシ−N,N−ジメチルプロピオンアミド、γ−ブチロラクトン、ε−カプロラクタム、エチレングリコール、エチレングリコール−n−ブチルエーテル、エチレングリコール−n−プロピルエーテル、エチレングリコールフェニルエーテル、エチレングリコールモノ−2−エチルヘキシルエーテル、エチレングリコールモノエチルエーテル、グリセリン、ジエチレングリコール、ジエチレングリコール−n−ヘキシルエーテル、ジエチレングリコールメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールモノメチルエーテル、ジグリセリン、ジプロピレングリコール、ジプロピレングリコールn−プロピルエーテル、ジプロピレングリコールモノメチルエーテル、ジメチルスルホキシド、スルホラン、チオジグリコール、テトラエチレングリコール、トリエチレングリコール、トリエチレングリコールエチルエーテル、トリエチレングリコールジメチルエーテル、トリエチレングリコールモノブチルエーテル、トリエチレングリコールメチルエーテル、トリプロピレングリコール、トリプロピレングリコール−n−プロピルエーテル、トリプロピレングリコールメチルエーテル、トリメチロールエタン、トリメチロールプロパン、プロピルプロピレンジグリコール、プロピレングリコール、プロピレングリコール−n−ブチルエーテル、プロピレングリコール−t−ブチルエーテル、プロピレングリコールフェニルエーテル、プロピレングリコールモノエチルエーテル、ヘキシレングリコール、ポリエチレングリコール、ポリプロピレングリコール、脂肪族炭化水素、メチルエチルケトン等のケトン系溶剤、酢酸エチル等のエステル系溶剤、グリコールエーテル等のエーテル系溶剤などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
これらの中でも、環境負荷や立体造形用組成液をインクジェット方式で付与する際の吐出安定性(経時での粘度変化が少ない)の点から、エタノール等のアルコール、エーテル系溶剤、ケトン系溶剤などの水性溶媒が好ましい。
また、立体造形後の乾燥性が良好であり、立体造形物(硬化物)の強度が向上する点から、100℃における蒸気圧が10mmHg以上の有機溶媒を用いることが好ましい。前記100℃における蒸気圧が10mmHg以上の有機溶媒としては、例えば、3−メチル−1,3−ブタンジオール、プロピレングリコール、2,3−ブタンジオール、1,2−ブタンジオール、1,3−ブタンジオールなどが挙げられる。
The organic solvent is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include ethanol, 1,2,6-hexanetriol, 1,2-butanediol, 1,2-hexanediol, 1 , 2-pentanediol, 1,3-dimethyl-2-imidazolidinone, 1,3-butanediol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6- Hexanediol, 2,2-dimethyl-1,3-propanediol, 2,3-butanediol, 2,4-pentanediol, 2,5-hexanediol, 2-ethyl-1,3-hexanediol, 2- Pyrrolidone, 2-methyl-1,3-propanediol, 2-methyl-2,4-pentanediol, 3-methyl-1,3-butanediol, 3-methyl- , 3-hexanediol, N-methyl-2-pyrrolidone, N-methylpyrrolidinone, β-butoxy-N, N-dimethylpropionamide, β-methoxy-N, N-dimethylpropionamide, γ-butyrolactone, ε-caprolactam , Ethylene glycol, ethylene glycol-n-butyl ether, ethylene glycol-n-propyl ether, ethylene glycol phenyl ether, ethylene glycol mono-2-ethylhexyl ether, ethylene glycol monoethyl ether, glycerin, diethylene glycol, diethylene glycol-n-hexyl ether, Diethylene glycol methyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, diethylene glycol monomethyl ether Ter, diglycerin, dipropylene glycol, dipropylene glycol n-propyl ether, dipropylene glycol monomethyl ether, dimethyl sulfoxide, sulfolane, thiodiglycol, tetraethylene glycol, triethylene glycol, triethylene glycol ethyl ether, triethylene glycol dimethyl ether , Triethylene glycol monobutyl ether, triethylene glycol methyl ether, tripropylene glycol, tripropylene glycol-n-propyl ether, tripropylene glycol methyl ether, trimethylol ethane, trimethylol propane, propyl propylene diglycol, propylene glycol, propylene glycol -N-butyl ether, propylene glycol t-butyl ether, propylene glycol phenyl ether, propylene glycol monoethyl ether, hexylene glycol, polyethylene glycol, polypropylene glycol, aliphatic solvents, ketone solvents such as methyl ethyl ketone, ester solvents such as ethyl acetate, ethers such as glycol ether System solvents and the like. These may be used individually by 1 type and may use 2 or more types together.
Among these, alcohol such as ethanol, ether solvents, ketone solvents, etc. from the viewpoint of discharge stability (less change in viscosity over time) when applying the environmental load and the composition liquid for three-dimensional modeling by the ink jet method Aqueous solvents are preferred.
Moreover, it is preferable to use the organic solvent whose vapor pressure in 100 degreeC is 10 mmHg or more from the point which the drying property after three-dimensional modeling is favorable and the intensity | strength of a three-dimensional molded item (hardened | cured material) improves. Examples of the organic solvent having a vapor pressure of 10 mmHg or higher at 100 ° C. include 3-methyl-1,3-butanediol, propylene glycol, 2,3-butanediol, 1,2-butanediol, and 1,3-butane. Examples include diols.

前記有機溶媒の含有量は、特に制限はなく、架橋剤等の配合成分、立体造形用組成液の付与性や取り扱い性、立体造形物の生産性などを考慮して適宜選定することができるが、前記立体造形用組成液の全量に対して、1質量%以上50質量%以下が好ましく、10質量%以上40質量%以下がより好ましい。前記含有量が、1質量%以上であると、立体造形用組成液の水分保持力が適正であり、待機時のインクジェットノズルの乾燥を防止でき、ノズル抜けが発生することがない。また、前記含有量が、50質量%以下であると、立体造形用組成液の粘度が適正となり、吐出安定性が良好であり、また、立体造形後乾燥し易く、立体造形物(硬化物)の強度が向上する。   The content of the organic solvent is not particularly limited and can be appropriately selected in consideration of blending components such as a cross-linking agent, applicability and handleability of a three-dimensional modeling composition liquid, and productivity of a three-dimensional model. 1 mass% or more and 50 mass% or less are preferable with respect to the whole quantity of the said composition liquid for three-dimensional modeling, and 10 mass% or more and 40 mass% or less are more preferable. When the content is 1% by mass or more, the moisture retention of the three-dimensional modeling composition liquid is appropriate, drying of the inkjet nozzle during standby can be prevented, and nozzle missing does not occur. Further, when the content is 50% by mass or less, the viscosity of the composition liquid for three-dimensional modeling becomes appropriate, the discharge stability is good, and it is easy to dry after three-dimensional modeling, and the three-dimensional modeled product (cured product). The strength of is improved.

−架橋剤−
前記架橋剤としては、前記立体造形用粉末材料に含まれる有機材料を架橋可能な性質を有するものであれば特に制限はなく、目的に応じて適宜選択することができ、例えば、金属塩、金属錯体、有機ジルコニウム化合物、有機チタン化合物、キレート剤などが挙げられる。
前記有機ジルコニウム化合物としては、例えば、酸塩化ジルコニウム、炭酸ジルコニウムアンモニウム、乳酸ジルコニウムアンモニウムなどが挙げられる。
前記有機チタン化合物としては、例えば、チタンアシレート、チタンアルコキシドなどが挙げられる。
これらは、1種単独で使用してもよいし、2種以上を併用してもよい。これらの中でも、金属塩がより好適である。
-Crosslinking agent-
The cross-linking agent is not particularly limited as long as it has a property capable of cross-linking the organic material contained in the three-dimensional modeling powder material, and can be appropriately selected according to the purpose. For example, metal salt, metal A complex, an organic zirconium compound, an organic titanium compound, a chelating agent, and the like can be given.
Examples of the organic zirconium compound include zirconium oxychloride, ammonium zirconium carbonate, zirconium ammonium lactate and the like.
Examples of the organic titanium compound include titanium acylate and titanium alkoxide.
These may be used individually by 1 type and may use 2 or more types together. Among these, metal salts are more preferable.

前記金属塩としては、例えば、2価以上の陽イオン金属を水中で電離するものなどが好適に挙げられる。前記金属塩の具体例としては、オキシ塩化ジルコニウム八水和物(4価)、水酸化アルミニウム(3価)、水酸化マグネシウム(2価)、チタンラクテートアンモニウム塩(4価)、塩基性酢酸アルミニウム(3価)、炭酸ジルコニウムアンモニウム塩(4価)、チタントリエタノールアミネート(4価)、グリオキシル酸塩、ジルコニウムラクテートアンモニウム塩などが好適に挙げられる。これらの中でも、得られる立体造形物の強度が優れる点から、ジルコニウム化合物が好ましく、炭酸ジルコニウムアンモニウムが特に好ましい。
また、これらは市販品を使用することができ、該市販品としては、例えば、オキシ塩化ジルコニウム八水和物(第一稀元素化学工業株式会社製、酸塩化ジルコニウム)、水酸化アルミニウム(和光純薬工業株式会社製)、水酸化マグネシウム(和光純薬工業株式会社製)、チタンラクテートアンモニウム塩(マツモトファインケミカル株式会社製、オルガチックスTC−300)、ジルコニウムラクテートアンモニウム塩(マツモトファインケミカル株式会社製、オルガチックスZC−300)、塩基性酢酸アルミニウム(和光純薬工業株式会社製)、ビスビニルスルホン化合物(富士ファインケミカル株式会社製、VS−B(K−FJC))、炭酸ジルコニウムアンモニウム塩(第一稀元素化学工業株式会社製、ジルコゾールAC−20)、チタントリエタノールアミネート(マツモトファインケミカル株式会社製、オルガチックスTC−400)、グリオキシル酸塩(Safelink SPM−01、日本合成化学工業株式会社製)、アジピン酸ジヒドラジド(大塚化学株式会社製)などが挙げられる。
Suitable examples of the metal salt include those that ionize a divalent or higher valent metal in water. Specific examples of the metal salt include zirconium oxychloride octahydrate (tetravalent), aluminum hydroxide (trivalent), magnesium hydroxide (divalent), titanium lactate ammonium salt (tetravalent), basic aluminum acetate (Trivalent), zirconium carbonate ammonium salt (tetravalent), titanium triethanolamate (tetravalent), glyoxylate, zirconium lactate ammonium salt and the like are preferable. Among these, a zirconium compound is preferable, and ammonium zirconium carbonate is particularly preferable because the strength of the three-dimensional structure to be obtained is excellent.
Moreover, these can use a commercial item, As this commercial item, for example, a zirconium oxychloride octahydrate (Daiichi Rare Element Chemical Co., Ltd. product, zirconium oxychloride), aluminum hydroxide (Wako Pure) Yaku Kogyo Co., Ltd.), Magnesium Hydroxide (Wako Pure Chemical Industries, Ltd.), Titanium Lactate Ammonium Salt (Matsumoto Fine Chemical Co., Ltd., Orugatix TC-300), Zirconium Lactate Ammonium Salt (Matsumoto Fine Chemical Co., Ltd., Olga) Chicks ZC-300), basic aluminum acetate (manufactured by Wako Pure Chemical Industries, Ltd.), bisvinylsulfone compound (manufactured by Fuji Fine Chemical Co., Ltd., VS-B (K-FJC)), zirconium carbonate ammonium salt (first rare element) Chemical Industry Co., Ltd., Zircosol AC-20) Titanium triethanolaminate (manufactured by Matsumoto Fine Chemical Co., Ltd., ORGATICS TC-400), glyoxylate (Safelink SPM-01, manufactured by Nippon Synthetic Chemical Industry Co., Ltd.), adipic acid dihydrazide (manufactured by Otsuka Chemical Co., Ltd.), etc. It is done.

なお、本発明における前記「架橋剤」とは、架橋対象(ポリマー等の有機材料)の官能基と架橋反応可能な部位を有する化合物であり、架橋反応することで、自ら架橋対象間の架橋結合の結合部位の構成要素となるものである。したがって、例えば、パーオキサイド(有機過酸化物)や還元性物質のように、熱や光によって自らが分解することでフリーラジカルを発生し、不飽和単量体に付加し、二重結合を開くと同時に、新たなラジカル反応を発生しその工程を繰り返すことで高分子化を促進させたり、飽和化合物の炭素に結合している水素を引き抜いて、新たなラジカルを生成し生成したラジカル同士が再結合することで、この飽和化合物間の橋かけが形成されるといった、自らは架橋結合部位の構成要素にはならない、ラジカル反応を開始乃至促進させるための、所謂「開始剤」とは異なる概念であり、本発明における「架橋剤」とは明確に区別される。   The “crosslinking agent” in the present invention is a compound having a site capable of undergoing a crosslinking reaction with a functional group of an object to be crosslinked (organic material such as a polymer). It becomes a component of the binding site. Therefore, for example, like radicals (organic peroxides) and reducing substances, they generate free radicals when they themselves decompose by heat and light, add them to unsaturated monomers, and open double bonds. At the same time, a new radical reaction is generated and the process is repeated to accelerate the polymerization, or the hydrogen bonded to the carbon of the saturated compound is extracted to generate a new radical and the generated radicals are regenerated. It is a concept different from what is called an “initiator” for initiating or accelerating a radical reaction, which is not a constituent element of a cross-linking site, such as forming a bridge between saturated compounds by bonding. There is a clear distinction from the “crosslinking agent” in the present invention.

−安定化剤−
前記立体造形用組成液は、前記溶媒や前記架橋剤の種類や組合せ、また保存条件によって著しい粘度変化が生じることがあり、夏季の使用や保管を考慮した保存安定性が求められる。
特に、立体造形物の強度に優れる架橋剤である炭酸ジルコニウムアンモニウム塩を用いた立体造形用組成液は、保存中に粘度が変化しやすい傾向があり、前記立体造形物の強度と前記立体造形用組成液の保存安定性とを両立させるため、安定化剤は重要な添加剤となる。
-Stabilizer-
The three-dimensional modeling composition liquid may cause a significant change in viscosity depending on the type and combination of the solvent and the cross-linking agent and storage conditions, and storage stability in consideration of summer use and storage is required.
In particular, the composition liquid for three-dimensional modeling using a zirconium carbonate ammonium salt, which is a cross-linking agent excellent in the strength of a three-dimensional model, tends to change in viscosity during storage, and the strength of the three-dimensional model and the three-dimensional model The stabilizer is an important additive in order to achieve both the storage stability of the composition liquid.

前記安定化剤としては、立体造形用組成液の粘度変化を抑制して保存安定性を保つ性質を有するものであれば特に制限はなく、目的に応じて適宜選択することができるが、例えば、アミノ基含有化合物、ホスホノ基含有化合物、並びにグルコン酸及びその塩から選択される少なくとも1種の化合物が好ましい。   The stabilizer is not particularly limited as long as it has the property of suppressing the viscosity change of the three-dimensional composition liquid and maintaining the storage stability, and can be appropriately selected according to the purpose. Preference is given to at least one compound selected from amino group-containing compounds, phosphono group-containing compounds, and gluconic acid and its salts.

前記アミノ基含有化合物としては、アミノ基含有多価アルコール、水酸基含有アミン化合物、及びアミノ基含有キレート剤のいずれかが好ましい。
前記アミノ基含有多価アルコールは、二価アルコール又は三価アルコールが好ましく、例えば、2−アミノ−2−メチル−1,3−プロパンジオール(AMPD)、2−アミノ−2−エチル−1,3−プロパンジオール(AEPD)、2−ジメチルアミノ−2−ヒドロキシメチル−1,3−プロパンジオール、2−アミノ−2−ヒドロキシメチル−1,3−プロパンジオール(AHMPD)などが挙げられる。
前記水酸基含有アミン化合物としては、例えば、トリエタノールアミンなどが挙げられる。
前記アミノ基含有キレート剤としては、例えば、ジヒドロキシエチルグリシン(DHEG)又はその塩などが挙げられる。
前記ホスホノ基含有キレート剤としては、例えば、アミノトリメチレンホスホン酸(NTMP)又はその塩、ホスホノブタントリカルボン酸(PBTC)又はその塩、ヒドロキシエタンジスホン酸(HEPD)、又はその塩などが挙げられる。
前記グルコン酸又はその塩としては、例えば、グルコン酸、グルコン酸ナトリウムなどが挙げられる。
前記安定化剤の中でも、立体造形物の強度、及び立体造形用組成液の保存安定性の点から、グルコン酸ナトリウム、2−アミノ−2−エチル−1,3−プロパンジオール(AEPD)、ジヒドロキシエチルグリシン塩、トリエタノールアミンが好ましく、2−アミノ−2−エチル−1,3−プロパンジオール(AEPD)がより好ましい。
As the amino group-containing compound, any of an amino group-containing polyhydric alcohol, a hydroxyl group-containing amine compound, and an amino group-containing chelating agent is preferable.
The amino group-containing polyhydric alcohol is preferably a dihydric alcohol or a trihydric alcohol. For example, 2-amino-2-methyl-1,3-propanediol (AMPD), 2-amino-2-ethyl-1,3 -Propanediol (AEPD), 2-dimethylamino-2-hydroxymethyl-1,3-propanediol, 2-amino-2-hydroxymethyl-1,3-propanediol (AHMPD) and the like.
Examples of the hydroxyl group-containing amine compound include triethanolamine.
Examples of the amino group-containing chelating agent include dihydroxyethylglycine (DHEG) or a salt thereof.
Examples of the phosphono group-containing chelating agent include amino trimethylene phosphonic acid (NTMP) or a salt thereof, phosphonobutanetricarboxylic acid (PBTC) or a salt thereof, hydroxyethane disulfonic acid (HEPD), or a salt thereof. It is done.
Examples of the gluconic acid or a salt thereof include gluconic acid and sodium gluconate.
Among the stabilizers, sodium gluconate, 2-amino-2-ethyl-1,3-propanediol (AEPD), dihydroxy from the viewpoint of the strength of the three-dimensional structure and the storage stability of the three-dimensional composition liquid. Ethylglycine salt and triethanolamine are preferable, and 2-amino-2-ethyl-1,3-propanediol (AEPD) is more preferable.

前記安定化剤の含有量は、特に制限はなく、前記立体造形用組成液に含まれる架橋剤の種類、含有量、その他の成分などに応じて適宜選定することができるが、前記立体造形用組成液の全量に対して、0.1質量%以上5質量%以下が好ましい。
前記含有量の好ましい数値範囲であると、立体造形用組成液の粘度変化を抑制して保存安定性を保つことができる。
The content of the stabilizer is not particularly limited and can be appropriately selected according to the type, content, and other components of the crosslinking agent contained in the three-dimensional modeling composition liquid. 0.1 mass% or more and 5 mass% or less are preferable with respect to the whole quantity of a composition liquid.
When the content is within the preferable numerical range, the viscosity change of the three-dimensional modeling composition liquid can be suppressed and the storage stability can be maintained.

<その他の成分>
前記その他の成分としては、更に必要に応じて、界面活性剤、消泡剤、pH調整剤、防腐防黴剤、キレート剤、防錆剤等の添加剤を添加することができる。
<Other ingredients>
As said other component, additives, such as surfactant, an antifoamer, a pH adjuster, antiseptic / antifungal agent, a chelating agent, a rust preventive agent, can be further added as needed.

−粘度変化率−
前記立体造形用組成液は、50℃で30日間放置した前後の粘度変化率が20%未満であることが好ましく、10%未満がより好ましく、5%未満が更に好ましい。
前記粘度変化率が、20%未満であると、前記立体造形用組成液の保存安定性が適正であり、例えば、前記立体造形用組成液の付与をインクジェット法により行った際に吐出安定性が良好となり、複雑な形状の立体造形物を寸法精度良く、充分な強度で製造することができる。
-Viscosity change rate-
The three-dimensional modeling composition liquid preferably has a viscosity change rate of less than 20% before and after being left at 50 ° C. for 30 days, more preferably less than 10%, and even more preferably less than 5%.
When the viscosity change rate is less than 20%, the storage stability of the three-dimensional modeling composition liquid is appropriate. For example, when the three-dimensional modeling composition liquid is applied by an inkjet method, the ejection stability is high. As a result, a three-dimensional object having a complicated shape can be manufactured with sufficient dimensional accuracy and sufficient strength.

前記50℃で30日間放置した前後の粘度変化率は、以下のようにして測定することができる。
前記立体造形用組成液をポリプロピレン製広口瓶(50mL)に入れて、50℃の恒温槽中に30日間放置した後、恒温槽から取り出して室温(25℃)になるまで放置して、粘度測定を行う。恒温槽に入れる前の立体造形用組成液の粘度を保存前粘度、恒温槽から取り出した後の立体造形用組成液の粘度を保存後粘度とし、下記式により粘度変化率を算出する。なお、前記保存前粘度及び前記保存後粘度は、R型粘度計(東機産業株式会社製)を用いて、25℃で測定することができる。
粘度変化率(%)=[(保存後粘度)−(保存前粘度)]/(保存前粘度)×100
The rate of change in viscosity before and after being allowed to stand at 50 ° C. for 30 days can be measured as follows.
Viscosity measurement after putting the composition liquid for three-dimensional modeling into a polypropylene wide-mouth bottle (50 mL), leaving it in a thermostatic bath at 50 ° C. for 30 days, taking it out of the thermostatic bath and leaving it to room temperature (25 ° C.) I do. The viscosity of the three-dimensional modeling composition liquid before being put into the thermostat is set as the viscosity before storage, and the viscosity of the three-dimensional modeling composition liquid after being taken out of the thermostat is set as the viscosity after storage, and the viscosity change rate is calculated by the following formula. The pre-storage viscosity and the post-storage viscosity can be measured at 25 ° C. using an R-type viscometer (manufactured by Toki Sangyo Co., Ltd.).
Viscosity change rate (%) = [(viscosity after storage) − (viscosity before storage)] / (viscosity before storage) × 100

前記立体造形用組成液の保存前粘度は、25℃で、25mPa・s以下が好ましく、3mPa・s以上20mPa・s以下がより好ましく、3mPa・s以上10mPa・s以下が更に好ましい。前記粘度が、25mPa・s以下であると、インクジェットノズルからの吐出が安定化し、前記立体造形用粉末材料層に前記立体造形用組成液を付与して形成した硬化物の強度が充分に得られ、寸法精度が良好である。
前記立体造形用組成液の保存後粘度は、25℃で、3mPa・s以上10mPa・s以下が好ましい。
The viscosity before storage of the three-dimensional modeling composition liquid is 25 ° C., preferably 25 mPa · s or less, more preferably 3 mPa · s or more and 20 mPa · s or less, and further preferably 3 mPa · s or more and 10 mPa · s or less. When the viscosity is 25 mPa · s or less, ejection from an inkjet nozzle is stabilized, and the strength of a cured product formed by applying the three-dimensional modeling composition liquid to the three-dimensional modeling powder material layer is sufficiently obtained. The dimensional accuracy is good.
The viscosity of the composition for three-dimensional modeling after storage is preferably 3 mPa · s or more and 10 mPa · s or less at 25 ° C.

−表面張力−
前記立体造形用組成液の表面張力は、25℃で、40N/m以下が好ましく、10N/m以上30N/m以下がより好ましい。前記表面張力が、40N/m以下であると、インクジェットノズルからの吐出が安定化し、前記立体造形用粉末材料層に前記立体造形用組成液を付与して形成した硬化物の強度が充分に得られ、寸法精度が良好である。
前記表面張力は、例えば、協和界面科学株式会社製DY−300により測定することができる。
-Surface tension-
The surface tension of the composition liquid for three-dimensional modeling is 25 ° C., preferably 40 N / m or less, and more preferably 10 N / m or more and 30 N / m or less. When the surface tension is 40 N / m or less, ejection from an inkjet nozzle is stabilized, and the strength of a cured product formed by applying the three-dimensional modeling composition liquid to the three-dimensional modeling powder material layer is sufficiently obtained. And dimensional accuracy is good.
The surface tension can be measured by, for example, DY-300 manufactured by Kyowa Interface Science Co., Ltd.

前記立体造形用組成液は、アルカリ性であることが好ましく、pHは8〜10がより好ましい。
前記pHは、例えば、pHメーター(HM30R、東亜DKK株式会社製)を用いて測定することができる。
The three-dimensional modeling composition liquid is preferably alkaline, and the pH is more preferably 8-10.
The pH can be measured using, for example, a pH meter (HM30R, manufactured by Toa DKK Corporation).

本発明の立体造形用組成液は、保存安定性に優れ、各種の立体造形物の簡便かつ効率的な製造に好適に用いることができ、後述する本発明の立体造形材料セット、本発明の立体造形物の製造方法及び立体造形物の製造装置に特に好適に用いることができる。   The composition solution for three-dimensional modeling of the present invention is excellent in storage stability and can be suitably used for simple and efficient production of various three-dimensional models, and the three-dimensional modeling material set of the present invention described later and the three-dimensional model of the present invention. It can use especially suitably for the manufacturing method of a modeling thing, and the manufacturing apparatus of a three-dimensional modeling thing.

(立体造形材料セット)
本発明の立体造形材料セットは、立体造形用粉末材料と、本発明の前記立体造形用組成液とを有し、更に必要に応じてその他の成分等を有してなる。
(3D modeling material set)
The three-dimensional modeling material set of the present invention includes the three-dimensional modeling powder material and the three-dimensional modeling composition liquid of the present invention, and further includes other components as necessary.

本発明の前記立体造形用組成液は、上述したとおり、前記架橋剤と、前記水溶性樹脂とを含み、前記安定化剤及び前記溶媒を含むことが好ましく、更に必要に応じてその他の成分を含有してなる。
本発明の立体造形材料セットにおいては、前記架橋剤は、前記溶媒中ではなく固体の形態で含まれていてもよく、使用時に溶媒と混合して液体に調製するセットであっても構わない。
As described above, the composition solution for three-dimensional modeling of the present invention contains the crosslinking agent and the water-soluble resin, preferably contains the stabilizer and the solvent, and further contains other components as necessary. It contains.
In the three-dimensional modeling material set of the present invention, the crosslinking agent may be included in a solid form instead of the solvent, or may be a set prepared by mixing with a solvent at the time of use.

<立体造形用粉末材料>
前記立体造形用粉末材料は、基材及び有機材料を含み、有機材料で被覆された基材を含むものが好ましく、更に必要に応じてその他の成分等を有してなる。
<Powder material for three-dimensional modeling>
The three-dimensional modeling powder material includes a base material and an organic material, and preferably includes a base material coated with an organic material, and further includes other components as necessary.

−基材−
前記基材としては、粉末乃至粒子の形態を有する限り特に制限はなく、目的に応じて適宜選択することができ、その材質としては、例えば、金属、セラミックス、カーボン、ポリマー、木材、生体親和材料、砂などが挙げられる。これらの中でも、高強度な立体造形物を得る観点から、最終的に焼結処理が可能な金属、セラミックスが好ましい。
前記基材は、前記立体造形用組成液と反応しないものが好ましい。ここで、前記反応とは、架橋反応、共有結合、イオン結合等の各種化学反応を意味する。
前記金属としては、例えば、ステンレス(SUS)鋼、鉄、銅、チタン、銀などが好適に挙げられ、該ステンレス(SUS)鋼としては、例えば、SUS316Lなどが挙げられる。
前記セラミックスとしては、例えば、金属酸化物などが挙げられ、具体的には、シリカ(SiO)、アルミナ(Al)、ジルコニア(ZrO)、チタニア(TiO)などが挙げられる。
前記カーボンとしては、例えば、グラファイト、グラフェン、カーボンナノチューブ、カーボンナノホーン、フラーレンなどが挙げられる。
前記ポリマーとしては、例えば、水に不溶な公知の樹脂などが挙げられる。
前記木材としては、例えば、ウッドチップ、セルロースなどが挙げられる。
前記生体親和材料としては、例えば、ポリ乳酸、リン酸カルシウムなどが挙げられる。
これらの材料は、1種単独で使用してもよいし、2種以上を併用してもよい。
-Base material-
The substrate is not particularly limited as long as it has a powder or particle form, and can be appropriately selected according to the purpose. Examples of the material include metals, ceramics, carbon, polymers, wood, and biocompatible materials. , Sand and the like. Among these, metals and ceramics that can be finally sintered are preferable from the viewpoint of obtaining a high-strength three-dimensional model.
The base material preferably does not react with the three-dimensional modeling composition liquid. Here, the reaction means various chemical reactions such as a crosslinking reaction, a covalent bond, and an ionic bond.
As said metal, stainless steel (SUS) steel, iron, copper, titanium, silver etc. are mentioned suitably, for example, As this stainless steel (SUS) steel, SUS316L etc. are mentioned, for example.
Examples of the ceramics include metal oxides, and specific examples include silica (SiO 2 ), alumina (Al 2 O 3 ), zirconia (ZrO 2 ), titania (TiO 2 ), and the like.
Examples of the carbon include graphite, graphene, carbon nanotube, carbon nanohorn, and fullerene.
Examples of the polymer include known resins that are insoluble in water.
Examples of the wood include wood chips and cellulose.
Examples of the biocompatible material include polylactic acid and calcium phosphate.
These materials may be used alone or in combination of two or more.

なお、本発明においては、前記基材として、これらの材料で形成された市販品の粒子乃至粉末を使用することができる。
前記市販品としては、例えば、SUS316L(山陽特殊製鋼株式会社製、PSS316L)、SiO(株式会社トクヤマ製、エクセリカSE−15)、Al(大明化学工業株式会社製、タイミクロンTM−5D)、ZrO(東ソー株式会社製、TZ−B53)などが挙げられる。
なお、前記基材としては、前記有機材料との親和性を高める目的等で、公知の表面(改質)処理がされていてもよい。
In the present invention, commercially available particles or powders formed of these materials can be used as the substrate.
Examples of the commercial products include SUS316L (manufactured by Sanyo Special Steel Co., Ltd., PSS316L), SiO 2 (manufactured by Tokuyama Co., Ltd., Excelica SE-15), Al 2 O 3 (manufactured by Daimei Chemical Co., Ltd., Tymicron TM-). 5D), ZrO 2 (manufactured by Tosoh Corporation, TZ-B53) and the like.
The base material may be subjected to a known surface (modification) treatment for the purpose of increasing the affinity with the organic material.

前記基材の体積平均粒子径としては、特に制限はなく目的に応じて適宜選択することができるが、例えば、0.1μm以上500μm以下が好ましく、5μm以上300μm以下がより好ましく、15μm以上250μm以下が更に好ましい。
前記体積平均粒子径が、0.1μm以上500μm以下であると、立体造形物の製造効率に優れ、取扱性やハンドリング性が良好である。前記平均粒子径が、500μm以下であると、該立体造形用粉末材料を用いて薄層を形成した際に、該薄層における該立体造形用粉末材料の充填率が向上し、得られる立体造形物に空隙等が生じ難い。
前記基材の体積平均粒子径は、公知の粒径測定装置、例えば、マイクロトラックHRA(日機装株式会社製)などを用いて、公知の方法に従って測定することができる。
前記基材の粒度分布としては、特に制限はなく目的に応じて適宜選択することができる。
The volume average particle size of the substrate is not particularly limited and may be appropriately selected depending on the intended purpose. For example, it is preferably 0.1 μm or more and 500 μm or less, more preferably 5 μm or more and 300 μm or less, and 15 μm or more and 250 μm or less. Is more preferable.
When the volume average particle size is 0.1 μm or more and 500 μm or less, the manufacturing efficiency of the three-dimensional structure is excellent, and the handleability and handling properties are good. When the average particle size is 500 μm or less, when a thin layer is formed using the three-dimensional modeling powder material, the filling rate of the three-dimensional modeling powder material in the thin layer is improved, and the three-dimensional modeling obtained It is difficult for voids to occur in objects.
The volume average particle size of the substrate can be measured according to a known method using a known particle size measuring device such as Microtrac HRA (manufactured by Nikkiso Co., Ltd.).
There is no restriction | limiting in particular as particle size distribution of the said base material, According to the objective, it can select suitably.

前記基材の外形、表面積、円形度、流動性、濡れ性等については、目的に応じて適宜選択することができる。   About the external shape, surface area, circularity, fluidity | liquidity, wettability, etc. of the said base material, it can select suitably according to the objective.

−有機材料−
前記有機材料としては、前記立体造形用組成液に溶解し、前記組成液に含まれる架橋剤の作用により架橋可能な性質を有するものであればよい。
本発明において、前記有機材料の溶解性は、例えば、30℃の立体造形用組成液を構成する溶媒100gに前記有機材料を1g混合して撹拌したとき、その90質量%以上が溶解するものを意味する。
前記有機材料としては、その4質量%(w/w%)溶液の20℃における粘度が、40mPa・s以下が好ましく、1mPa・s以上35mPa・s以下がより好ましく、5mPa・s以上30mPa・s以下が特に好ましい。
前記粘度が、40mPa・s以下であると、前記立体造形用粉末材料に前記組成液を付与して形成した立体造形物用粉末材料(層)による硬化物(立体造形物)の強度が向上し、その後の焼結等の処理乃至取扱い時に型崩れ等の問題が生じ難くなる。また、前記立体造形用粉末材料に前記組成液を付与して形成した立体造形物用粉末材料(層)による立体造形物の寸法精度が向上する傾向にある。
前記粘度は、例えば、JIS K7117に準拠して測定することができる。
-Organic materials-
The organic material is not particularly limited as long as it dissolves in the three-dimensional modeling composition liquid and has a property capable of being crosslinked by the action of a crosslinking agent contained in the composition liquid.
In the present invention, the solubility of the organic material is such that, for example, when 1 g of the organic material is mixed and stirred in 100 g of the solvent constituting the three-dimensional composition liquid at 30 ° C., 90% by mass or more thereof dissolves. means.
As the organic material, the viscosity at 20 ° C. of a 4 mass% (w / w%) solution thereof is preferably 40 mPa · s or less, more preferably 1 mPa · s to 35 mPa · s, and more preferably 5 mPa · s to 30 mPa · s. The following are particularly preferred:
When the viscosity is 40 mPa · s or less, the strength of the cured product (three-dimensional modeled object) by the three-dimensional modeled powder material (layer) formed by applying the composition liquid to the three-dimensional model powder material is improved. Further, problems such as loss of shape are less likely to occur during subsequent processing or handling such as sintering. Moreover, it exists in the tendency which the dimensional accuracy of the three-dimensional molded item by the three-dimensional molded item powder material (layer) formed by giving the said composition liquid to the said three-dimensional molded powder material improves.
The viscosity can be measured according to, for example, JIS K7117.

前記有機材料としては、特に制限はなく、目的に応じて適宜選択することができるが、取扱い性や環境負荷等観点で、水溶性であることが好ましく、例えば、水溶性樹脂、水溶性プレポリマー、などが挙げられる。このような水溶性有機材料を採用した立体造形用粉末材料に対しては、立体造形用組成液の溶媒として水、有機溶媒を用いることができ、また、前記粉末材料を廃棄、リサイクルする際には、水処理により有機材料と基材を分離することも容易である。
前記水溶性樹脂としては、例えば、ポリビニルアルコール樹脂、ポリアクリル酸樹脂、セルロース樹脂、デンプン、ゼラチン、ビニル樹脂、アミド樹脂、イミド樹脂、アクリル樹脂、ポリエチレングリコール、などが挙げられる。
これらは、前記水溶性を示す限りにおいて、ホモポリマー(単独重合体)であってもよいし、ヘテロポリマー(共重合体)であってもよく、また、変性されていてもよいし、公知の官能基が導入されていてもよく、また塩の形態であってもよい。
よって、例えば、前記ポリビニルアルコール樹脂であれば、ポリビニルアルコールであってもよいし、アセトアセチル基、アセチル基、シリコーン等による変性ポリビニルアルコール(アセトアセチル基変性ポリビニルアルコール、アセチル基変性ポリビニルアルコール、シリコーン変性ポリビニルアルコールなど)であってもよく、また、ブタンジオールビニルアルコール共重合体等であってもよい。また、前記ポリアクリル酸樹脂であれば、ポリアクリル酸であってもよいし、ポリアクリル酸ナトリウム等の塩であってもよい。前記セルロース樹脂であれば、例えば、セルロースであってもよいし、カルボキシメチルセルロース(CMC)等であってもよい。また、前記アクリル樹脂であれば、例えば、ポリアクリル酸、アクリル酸・無水マレイン酸共重合体などであってもよい。
前記水溶性プレポリマーとしては、例えば、止水剤等に含まれる接着性の水溶性イソシアネートプレポリマー、などが挙げられる。
The organic material is not particularly limited and may be appropriately selected depending on the intended purpose. However, it is preferably water-soluble from the viewpoints of handleability and environmental load, and examples thereof include water-soluble resins and water-soluble prepolymers. , Etc. For a three-dimensional modeling powder material employing such a water-soluble organic material, water or an organic solvent can be used as a solvent for the three-dimensional modeling composition liquid, and when the powder material is discarded and recycled. It is also easy to separate the organic material and the substrate by water treatment.
Examples of the water-soluble resin include polyvinyl alcohol resin, polyacrylic acid resin, cellulose resin, starch, gelatin, vinyl resin, amide resin, imide resin, acrylic resin, and polyethylene glycol.
These may be homopolymers (homopolymers) or heteropolymers (copolymers) as long as they exhibit the above-mentioned water solubility, may be modified, are publicly known A functional group may be introduced or may be in the form of a salt.
Therefore, for example, the polyvinyl alcohol resin may be polyvinyl alcohol, or modified polyvinyl alcohol (acetoacetyl group-modified polyvinyl alcohol, acetyl group-modified polyvinyl alcohol, silicone-modified with acetoacetyl group, acetyl group, silicone, etc.) Polyvinyl alcohol, etc.), butanediol vinyl alcohol copolymer, and the like. Moreover, if it is the said polyacrylic acid resin, polyacrylic acid may be sufficient and salts, such as sodium polyacrylate, may be sufficient. If it is the said cellulose resin, a cellulose, carboxymethylcellulose (CMC), etc. may be sufficient, for example. Moreover, if it is the said acrylic resin, polyacrylic acid, an acrylic acid / maleic anhydride copolymer, etc. may be sufficient, for example.
Examples of the water-soluble prepolymer include an adhesive water-soluble isocyanate prepolymer contained in a water-stopping agent and the like.

水溶性以外の有機材料、樹脂としては、例えば、アクリル、マレイン酸、シリコーン、ブチラール、ポリエステル、ポリ酢酸ビニル、塩化ビニル/酢酸ビニル共重合体、ポリエチレン、ポリプロピレン、ポリアセタール、エチレン/酢酸ビニル共重合体、エチレン/(メタ)アクリル酸共重合体、α−オレフィン/無水マレイン酸系共重合体、α−オレフィン/無水マレイン酸系共重合体のエステル化物、ポリスチレン、ポリ(メタ)アクリル酸エステル、α−オレフィン/無水マレイン酸/ビニル基含有モノマー共重合体、スチレン/無水マレイン酸共重合体、スチレン/(メタ)アクリル酸エステル共重合体、ポリアミド、エポキシ樹脂、キシレン樹脂、ケトン樹脂、石油樹脂、ロジン又はその誘導体、クマロンインデン樹脂、テルペン樹脂、ポリウレタン樹脂、スチレン/ブタジエンゴム、ポリビニルブチラール、ニトリルゴム、アクリルゴム、エチレン/プロピレンゴム等の合成ゴム、ニトロセルロースなどが挙げられる。   Examples of organic materials and resins other than water-soluble materials include acrylic, maleic acid, silicone, butyral, polyester, polyvinyl acetate, vinyl chloride / vinyl acetate copolymer, polyethylene, polypropylene, polyacetal, and ethylene / vinyl acetate copolymer. , Ethylene / (meth) acrylic acid copolymer, α-olefin / maleic anhydride copolymer, esterified product of α-olefin / maleic anhydride copolymer, polystyrene, poly (meth) acrylic acid ester, α -Olefin / maleic anhydride / vinyl group-containing monomer copolymer, styrene / maleic anhydride copolymer, styrene / (meth) acrylic ester copolymer, polyamide, epoxy resin, xylene resin, ketone resin, petroleum resin, Rosin or its derivatives, coumarone indene resin, terpene tree , Polyurethane resin, styrene / butadiene rubber, polyvinyl butyral, nitrile rubber, acrylic rubber, synthetic rubbers such as ethylene / propylene rubber, nitrocellulose, and the like.

本発明においては、前記有機材料の中でも、架橋性官能基を有するものが好ましい。前記架橋性官能基としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、水酸基、カルボキシル基、アミド基、リン酸基、チオール基、アセトアセチル基、エーテル結合、などが挙げられる。
前記有機材料が前記架橋性官能基を有すると、前記有機材料が容易に架橋し硬化物(立体造形物)を形成し得る点で好ましい。更に言えば、上記したように架橋性の官能基を分子内に導入した変性ポリビニルアルコールが好ましい。特に、アセトアセチル基変性のポリビニルアルコールが好ましく、例えば、前記ポリビニルアルコールが前記アセトアセチル基を有する場合、前記組成液に含まれる架橋剤中の金属の作用により、該アセトアセチル基が該金属を介して複雑な3次元ネットワーク構造(架橋構造)を容易に形成し得る(架橋反応性に優れる)、強度が非常に優れる。
前記アセトアセチル基変性ポリビニルアルコールとしては、粘度、けん化度等の特性が異なるものを1種単独で使用してもよいし、2種以上を併用してもよい。平均重合度が400以上1,100以下のアセトアセチル基変性ポリビニルアルコール樹脂を用いることがより好ましい。
In the present invention, among the organic materials, those having a crosslinkable functional group are preferable. The crosslinkable functional group is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include a hydroxyl group, a carboxyl group, an amide group, a phosphate group, a thiol group, an acetoacetyl group, and an ether bond. Can be mentioned.
It is preferable that the organic material has the crosslinkable functional group in that the organic material can be easily crosslinked to form a cured product (three-dimensional modeled product). Furthermore, as described above, modified polyvinyl alcohol in which a crosslinkable functional group is introduced into the molecule is preferable. In particular, acetoacetyl group-modified polyvinyl alcohol is preferred. For example, when the polyvinyl alcohol has the acetoacetyl group, the acetoacetyl group is mediated by the metal in the crosslinking agent contained in the composition liquid. In addition, a complicated three-dimensional network structure (crosslinked structure) can be easily formed (excellent in crosslinking reactivity), and the strength is extremely excellent.
As said acetoacetyl group modified polyvinyl alcohol, what differs in characteristics, such as a viscosity and a saponification degree, may be used individually by 1 type, and may use 2 or more types together. It is more preferable to use an acetoacetyl group-modified polyvinyl alcohol resin having an average degree of polymerization of 400 to 1,100.

前記有機材料としては、1種単独で使用してもよいし、2種以上を併用してもよく、また、適宜合成したものであってもよいし、市販品であってもよい。
前記市販品としては、例えば、ポリビニルアルコール(株式会社クラレ製、PVA−205C、PVA−220C)、ポリアクリル酸(東亞合成株式会社製、ジュリマーAC−10)、ポリアクリル酸ナトリウム(東亞合成株式会社製、ジュリマーAC−103P)、アセトアセチル基変性ポリビニルアルコール(日本合成化学工業株式会社製、ゴーセネックスZ−300、ゴーセネックスZ−100、ゴーセネックスZ−200、ゴーセネックスZ−205、ゴーセネックスZ−210、ゴーセネックスZ−220)、カルボキシ基変性ポリビニルアルコール(日本合成化学工業株式会社製、ゴーセネックスT−330、ゴーセネックスT-350、ゴーセネックスT-330T)、ブタンジオールビニルアルコール共重合体(日本合成化学工業株式会社製、ニチゴーG−ポリマーOKS−8041)、カルボキシメチルセルロース(第一工業株式会社製、セロゲン5A)、デンプン(三和澱粉工業株式会社製、ハイスタードPSS−5)、ゼラチン(新田ゼラチン株式会社製、ビーマトリックスゼラチン)などが挙げられる。
As said organic material, 1 type may be used individually, 2 or more types may be used together, and what was synthesize | combined suitably may be sufficient and a commercial item may be sufficient.
Examples of the commercially available products include polyvinyl alcohol (manufactured by Kuraray Co., Ltd., PVA-205C, PVA-220C), polyacrylic acid (manufactured by Toagosei Co., Ltd., Jurimer AC-10), and sodium polyacrylate (Toagosei Co., Ltd.). Manufactured by Jurimer AC-103P), acetoacetyl group-modified polyvinyl alcohol (manufactured by Nippon Synthetic Chemical Industry Co., Ltd., Gohsenx Z-300, Gohsenx Z-100, Gohsenx Z-200, Gohsenx Z-205, Gohsenx Z-210, Gohsenx Z) -220), carboxy group-modified polyvinyl alcohol (manufactured by Nippon Synthetic Chemical Industry Co., Ltd., Gosennex T-330, Gosennex T-350, Gosennex T-330T), butanediol vinyl alcohol copolymer (Nippon Synthetic Chemical) Nichigo G-Polymer OKS-8041), Carboxymethylcellulose (Daiichi Kogyo Co., Ltd., Serogen 5A), Starch (Sanwa Starch Co., Ltd., Hystad PSS-5), Gelatin (Nitta Gelatin Co., Ltd.) Company-made, B-matrix gelatin).

前記有機材料による前記基材の被覆厚みとしては、平均厚みで、5nm以上1,000nm以下が好ましく、5nm以上500nm以下がより好ましく、50nm以上300nm以下が更に好ましく、100nm以上200nm以下が特に好ましい。
本発明では、架橋剤による硬化作用を利用するために、従来のものより被覆厚みを小さくすることが可能であり、薄膜でも強度と精度の両立が可能である。
前記被覆厚みとしての平均厚みが、5nm以上であると、前記立体造形用粉末材料に前記組成液を付与して形成した立体造形物用粉末材料(層)による硬化物(立体造形物)の強度が向上し、その後の焼結等の処理乃至取扱い時に型崩れ等の問題が生ずることがない、1,000nm以下であると、前記立体造形用粉末材料に前記組成液を付与して形成した立体造形物用粉末材料(層)による硬化物(立体造形物)の寸法精度が向上する。
前記平均厚みは、例えば、前記立体造形用粉末材料をアクリル樹脂等に包埋した後、エッチング等を行って前記基材の表面を露出させた後、走査型トンネル顕微鏡STM、原子間力顕微鏡AFM、走査型電子顕微鏡SEMなどを用いることにより、測定することができる。
The coating thickness of the substrate with the organic material is preferably 5 nm or more and 1,000 nm or less, more preferably 5 nm or more and 500 nm or less, still more preferably 50 nm or more and 300 nm or less, and particularly preferably 100 nm or more and 200 nm or less.
In the present invention, since the curing action by the crosslinking agent is utilized, the coating thickness can be made smaller than that of the conventional one, and both strength and accuracy can be achieved even with a thin film.
When the average thickness as the coating thickness is 5 nm or more, the strength of the cured product (three-dimensional model) by the three-dimensional model powder material (layer) formed by applying the composition liquid to the three-dimensional model powder material 3D formed by applying the composition liquid to the three-dimensional modeling powder material so that there is no problem such as loss of shape during subsequent processing such as sintering or handling. The dimensional accuracy of the cured product (three-dimensional modeled product) by the powder material (layer) for modeled product is improved.
The average thickness may be determined by, for example, embedding the three-dimensional modeling powder material in an acrylic resin or the like and then performing etching or the like to expose the surface of the base material, followed by a scanning tunneling microscope STM, an atomic force microscope AFM. By using a scanning electron microscope SEM or the like, it can be measured.

前記有機材料による前記基材の表面の被覆率(面積率)としては、特に制限はなく、目的に応じて適宜選択することができるが、15%以上が好ましく、50%以上がより好ましく、80%以上が特に好ましい。
前記被覆率が、15%以上であると、前記立体造形用粉末材料に前記組成液を付与して形成した立体造形物用粉末材料(層)による硬化物(立体造形物)の強度が充分に得られ、その後の焼結等の処理乃至取扱い時に型崩れ等の問題が生ずることがなく、また、前記立体造形用粉末材料に前記組成液を付与して形成した立体造形物用粉末材料(層)による硬化物(立体造形物)の寸法精度が向上する。
前記被覆率は、例えば、前記立体造形用粉末材料の写真を観察し、2次元の写真に写る該立体造形用粉末材料につき、前記粒子の表面の全面積に対する、前記有機材料で被覆された部分の面積の割合(%)の平均値を算出してこれを該被覆率としてもよいし、また、前記有機材料で被覆された部分をSEM−EDS等のエネルギー分散型X線分光法による元素マッピングを行うことにより、測定することができる。
There is no restriction | limiting in particular as the coverage (area ratio) of the surface of the said base material by the said organic material, Although it can select suitably according to the objective, 15% or more is preferable, 50% or more is more preferable, 80 % Or more is particularly preferable.
When the coverage is 15% or more, the strength of the cured product (three-dimensional model) by the three-dimensional model powder material (layer) formed by applying the composition liquid to the three-dimensional model powder material is sufficient. The obtained three-dimensional object powder material (layer) is formed without problems such as loss of shape during subsequent processing such as sintering or handling, and by applying the composition liquid to the three-dimensional object powder material. ) Improves the dimensional accuracy of the cured product (three-dimensional model).
The coverage is, for example, a portion of the three-dimensional modeling powder material observed in a three-dimensional modeling powder material and coated with the organic material with respect to the entire surface area of the particle in the two-dimensional modeling powder material. An average value of the area ratio (%) may be calculated, and this may be used as the coverage, or the portion covered with the organic material may be elementally mapped by energy dispersive X-ray spectroscopy such as SEM-EDS Can be measured.

−その他の成分−
前記その他の成分としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、流動化剤、フィラー、レベリング剤、焼結助剤、などが挙げられる。前記立体造形用粉末材料が、前記流動化剤を含むと前記立体造形用粉末材料による層等を容易にかつ効率よく形成し得る点で好ましく、前記フィラーを含むと得られる硬化物(立体造形物)に空隙等が生じ難くなる点で好ましく、前記レベリング剤を含むと該立体造形用粉末材料の濡れ性が向上し、ハンドリング等が容易になる点で好ましく、前記焼結助剤を含むと、得られた硬化物(立体造形物)につき焼結処理を行う場合において、より低温での焼結が可能となる点で好ましい。
-Other ingredients-
There is no restriction | limiting in particular as said other component, Although it can select suitably according to the objective, For example, a fluidizing agent, a filler, a leveling agent, a sintering aid, etc. are mentioned. When the powder material for three-dimensional modeling contains the fluidizing agent, it is preferable in that a layer of the powder material for three-dimensional modeling can be easily and efficiently formed, and a cured product (three-dimensional modeled product) obtained when the filler is included. ) Is preferable in that voids or the like are less likely to be generated, and when the leveling agent is included, the wettability of the three-dimensional modeling powder material is improved and handling is facilitated, and when the sintering aid is included, When the obtained cured product (three-dimensional modeled product) is subjected to a sintering treatment, it is preferable in that sintering at a lower temperature is possible.

−立体造形用粉末材料の製造−
前記立体造形用粉末材料の製造方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、前記有機材料を前記基材上に公知の被覆方法に従って被覆する方法などが好適に挙げられる。
前記有機材料の前記基材の表面への前記被覆方法としては、特に制限はなく、公知の被覆方法の中から適宜採用することができ、かかる被覆方法としては、例えば、転動流動コーティング法、スプレードライ法、撹拌混合添加法、ディッピング法、ニーダーコート法、などが好適に挙げられる。また、これらの被覆方法は、公知の市販の各種コーティング装置、造粒装置などを用いて実施することができる。
-Manufacture of powder material for 3D modeling-
There is no restriction | limiting in particular as a manufacturing method of the said powder material for three-dimensional model | molding, According to the objective, it can select suitably, For example, the method etc. which coat | cover the said organic material on the said base material according to the well-known coating method etc. are suitable. It is mentioned in.
The method for coating the surface of the base material with the organic material is not particularly limited and can be appropriately selected from known coating methods. Examples of the coating method include rolling fluid coating method, Suitable examples include spray drying, stirring and mixing, dipping, and kneader coating. Moreover, these coating methods can be implemented using various well-known commercially available coating apparatuses, granulating apparatuses, and the like.

−立体造形用粉末材料の物性等−
前記立体造形用粉末材料の平均粒子径としては、特に制限はなく、目的に応じて適宜選択することができるが、3μm以上250μm以下が好ましく、3μm以上200μm以下がより好ましく、5μm以上150μm以下が更に好ましく、10μm以上85μm以下が特に好ましい。
前記平均粒子径が3μm以上であると、粉末材料の流動性が向上し、粉末材料層が形成しやすく積層層表面の平滑性が向上するため、造形物の製造効率の向上、取り扱いやハンドリング性が向上すると共に寸法精度が向上する傾向にある。また、前記平均粒子径が250μm以下であると、粉末材料粒子同士の空間の大きさが小さくなるため、造形物の空隙率が小さくなり、強度の向上に寄与する。従って、平均粒子径3μm以上250μm以下が、寸法精度と強度を両立させるのに好ましい範囲となる。
前記立体造形用粉末材料の粒度分布としては、特に制限はなく、目的に応じて適宜選択することができる。
-Physical properties of powder materials for solid modeling-
There is no restriction | limiting in particular as an average particle diameter of the said powder material for three-dimensional modeling, Although it can select suitably according to the objective, 3 micrometers or more and 250 micrometers or less are preferable, 3 micrometers or more and 200 micrometers or less are more preferable, and 5 micrometers or more and 150 micrometers or less are preferable. More preferably, it is 10 μm or more and 85 μm or less.
When the average particle size is 3 μm or more, the fluidity of the powder material is improved, the powder material layer is easy to form, and the smoothness of the surface of the laminated layer is improved. However, the dimensional accuracy tends to improve. Further, when the average particle diameter is 250 μm or less, the size of the space between the powder material particles becomes small, so that the void ratio of the shaped article becomes small, which contributes to improvement in strength. Therefore, an average particle diameter of 3 μm or more and 250 μm or less is a preferable range for achieving both dimensional accuracy and strength.
There is no restriction | limiting in particular as a particle size distribution of the said powder material for three-dimensional model | molding, According to the objective, it can select suitably.

前記立体造形用粉末材料の特性としては、その安息角を測定した場合において、60度以下が好ましく、50度以下がより好ましく、40度以下が更に好ましい。
前記安息角が、60度以下であると、前記立体造形用粉末材料を支持体上の所望の場所に効率よく安定に配置させることができる。
なお、前記安息角は、例えば、粉体特性測定装置(パウダテスタPT−N型、ホソカワミクロン株式会社製)などを用いて測定することができる。
When the angle of repose is measured, the characteristic of the powder material for three-dimensional modeling is preferably 60 degrees or less, more preferably 50 degrees or less, and still more preferably 40 degrees or less.
When the angle of repose is 60 degrees or less, the powder material for three-dimensional modeling can be efficiently and stably disposed at a desired place on the support.
The angle of repose can be measured using, for example, a powder property measuring device (powder tester PT-N type, manufactured by Hosokawa Micron Corporation).

前記立体造形用粉末材料は、各種の造形物の簡便かつ効率的な製造に好適に用いることができ、後述する本発明の立体造形物の製造方法、及び本発明の立体造形物の製造装置に特に好適に用いることができる。   The three-dimensional modeling powder material can be suitably used for simple and efficient manufacturing of various types of modeling objects. It can be particularly preferably used.

本発明の立体造形用粉末材料に本発明の前記立体造形用組成液を付与するだけで、複雑な立体形状を有する構造物を簡便かつ効率よくしかも寸法精度良く製造することができる。こうして得られた構造物は、充分な硬度を有する硬化物(立体造形物)であり、手で持ったり、型に出し入れしたり、エアーブロー処理を行って余分な前記立体造形用粉末材料を除去したりしても、型崩れを生じることがなく、取扱性、及びハンドリング性に優れる。前記硬化物は、そのまま使用してもよいし、焼結用硬化物として更に焼結処理を施して立体造形物の焼結体としてもよい。そして、前記焼結処理を施した場合において、焼結後の焼結体において不要な空隙等が生じることがなく、美麗な外観の焼結体が容易に得られる。   A structure having a complicated three-dimensional shape can be easily and efficiently manufactured with high dimensional accuracy by simply applying the three-dimensional modeling composition liquid of the present invention to the three-dimensional modeling powder material of the present invention. The structure thus obtained is a cured product (three-dimensional model) having sufficient hardness, and can be held by hand, put in and out of the mold, or air blow processed to remove excess three-dimensional model powder material. Even if it does, shape loss does not occur, and it is excellent in handling property and handling property. The cured product may be used as it is, or may be further subjected to a sintering treatment as a cured product for sintering to form a sintered body of a three-dimensional model. In the case where the sintering treatment is performed, an unnecessary void or the like is not generated in the sintered body after sintering, and a sintered body having a beautiful appearance can be easily obtained.

<立体造形物>
前記立体造形用粉末材料に本発明の前記立体造形用組成液を作用させ、必要に応じて乾燥するだけで、複雑かつ高強度な立体形状を有する構造物を簡便かつ効率良くしかも寸法精度良く製造することができる。こうして得られた構造物は、充分な硬度を有する硬化物(立体造形物)であり、手で持ったり、型に出し入れしたり、エアーブロー処理を行って余分な前記立体造形用粉末材料を除去したりしても、型崩れを生じることがなく、取扱性、ハンドリング性に優れる。前記硬化物は、そのまま使用してもよいし、焼結用硬化物として更に焼結処理を施して立体造形物の焼結体としてもよい。そして、前記焼結処理を施した場合において、焼結処理後の焼結体において空隙が少なく緻密であり、美麗な外観の焼結体が容易に得られる。
<3D objects>
A structure having a complicated and high-strength three-dimensional shape can be easily and efficiently manufactured with high dimensional accuracy by allowing the three-dimensional modeling composition of the present invention to act on the three-dimensional modeling powder material and drying it as necessary. can do. The structure thus obtained is a cured product (three-dimensional model) having sufficient hardness, and can be held by hand, put in and out of the mold, or air blow processed to remove excess three-dimensional model powder material. Even if it is done, it does not lose its shape and is excellent in handling and handling. The cured product may be used as it is, or may be further subjected to a sintering treatment as a cured product for sintering to form a sintered body of a three-dimensional model. When the sintering process is performed, the sintered body after the sintering process is dense with few voids and a beautiful appearance can be easily obtained.

前記立体造形物の強度としては、例えば、表面を擦っても型崩れ等が生ずることがない程度であり、ノズル口径2mm、エアー圧力0.3MPaのエアーガンを用いて、距離5cmよりエアーブロー処理をしても割れ等が生ずることがない程度である。   The strength of the three-dimensional model is, for example, such that the shape is not lost even if the surface is rubbed, and an air blow process is performed from a distance of 5 cm using an air gun having a nozzle diameter of 2 mm and an air pressure of 0.3 MPa. Even so, cracks and the like do not occur.

(立体造形物の製造方法及び製造装置)
本発明の立体造形物の製造方法は、粉末材料供給工程と、粉末材料硬化工程とを含み、更に必要に応じて焼結工程等のその他の工程を含む。
前記粉末材料供給工程と、前記粉末材料硬化工程とを繰り返すことで立体造形物を製造することを特徴とする。
本発明の立体造形物の製造装置は、粉末材料供給手段と、粉末材料硬化手段と、粉末材料が収容された粉末材料収容部と、立体造形用組成液が収容された組成液収容部とを有し、更に必要に応じて組成液供給手段や焼結手段等のその他の手段を有してなる。
(Method and apparatus for manufacturing a three-dimensional model)
The manufacturing method of the three-dimensional molded item of this invention contains a powder material supply process and a powder material hardening process, and also includes other processes, such as a sintering process, as needed.
A three-dimensional structure is manufactured by repeating the powder material supply step and the powder material curing step.
The three-dimensional model manufacturing apparatus of the present invention includes a powder material supply unit, a powder material curing unit, a powder material storage unit in which a powder material is stored, and a composition liquid storage unit in which a three-dimensional modeling composition liquid is stored. And, if necessary, other means such as a composition liquid supplying means and a sintering means.

−粉末材料供給工程及び粉末材料供給手段−
前記粉末材料供給工程は、有機材料及び基材を含む立体造形用粉末材料を供給する工程である。
前記粉末材料供給手段は、有機材料及び基材を含む立体造形用粉末材料を供給する手段である。
前記立体造形用粉末材料は支持体上に供給されることが好ましい。
-Powder material supply process and powder material supply means-
The said powder material supply process is a process of supplying the powder material for three-dimensional modeling containing an organic material and a base material.
The said powder material supply means is a means to supply the powder material for three-dimensional modeling containing an organic material and a base material.
The three-dimensional modeling powder material is preferably supplied onto a support.

−−支持体−−
前記支持体としては、前記立体造形用粉末材料を載置することができれば特に制限はなく、目的に応じて適宜選択することができ、前記立体造形用粉末材料の載置面を有する台、特開2000−328106号公報の図1に記載の装置におけるベースプレート、などが挙げられる。
前記支持体の表面、即ち、前記立体造形用粉末を載置する載置面としては、例えば、平滑面であってもよいし、粗面であってもよく、また、平面であってもよいし、曲面であってもよいが、前記立体造形用粉末材料における前記有機材料が溶解し、前記架橋剤の作用によって架橋した際に、前記有機材料との親和性が低いことが好ましい。
前記載置面と、溶解し架橋した前記有機材料との親和性が、前記基材と、溶解し架橋した前記有機材料との親和性よりも低いと、得られた立体造形物を該載置面から取り外すことが容易である点で好ましい。
--- Support--
The support is not particularly limited as long as the three-dimensional modeling powder material can be placed thereon, can be appropriately selected according to the purpose, and has a table having a mounting surface for the three-dimensional modeling powder material. Examples thereof include a base plate in the apparatus shown in FIG. 1 of Japanese Utility Model Publication No. 2000-328106.
The surface of the support, that is, the mounting surface on which the three-dimensional modeling powder is mounted may be, for example, a smooth surface, a rough surface, or a flat surface. Although it may be a curved surface, it is preferable that the affinity with the organic material is low when the organic material in the powder material for three-dimensional modeling is dissolved and crosslinked by the action of the crosslinking agent.
When the affinity between the placement surface and the dissolved and crosslinked organic material is lower than the affinity between the base material and the dissolved and crosslinked organic material, the obtained three-dimensional structure is placed. It is preferable in that it can be easily removed from the surface.

−−粉末材料層の形成−−
前記立体造形用粉末材料を前記支持体上に配置させる方法としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、薄層に配置させる方法としては、特許第3607300号公報に記載の選択的レーザー焼結方法に用いられる、公知のカウンター回転機構(カウンターローラー)などを用いる方法、前記立体造形用粉末材料をブラシ、ローラー、ブレード等の部材を用いて薄層に拡げる方法、前記立体造形用粉末の表面を押圧部材を用いて押圧して薄層に拡げる方法、公知の粉末積層装置を用いる方法、などが好適に挙げられる。
--Formation of powder material layer--
There is no restriction | limiting in particular as a method of arrange | positioning the said powder material for three-dimensional model | molding on the said support body, Although it can select suitably according to the objective, For example, as a method of arrange | positioning in a thin layer, patent 3607300 A method using a known counter rotation mechanism (counter roller) used in the selective laser sintering method described in the publication, and the three-dimensional modeling powder material is spread into a thin layer using a member such as a brush, a roller, or a blade. Preferred examples include a method, a method of pressing the surface of the three-dimensional modeling powder using a pressing member to expand the powder into a thin layer, a method using a known powder laminating apparatus, and the like.

前記カウンター回転機構(カウンターローラー)、前記ブラシ乃至ブレード、前記押圧部材などを用いて、前記支持体上に前記立体造形用粉末材料を薄層に載置させるには、例えば、以下のようにして行うことができる。
即ち、外枠(「型」、「中空シリンダー」、「筒状構造体」などと称されることもある)内に、前記外枠の内壁に摺動しながら昇降可能に配置された前記支持体上に前記立体造形用粉末材料を、前記カウンター回転機構(カウンターローラー)、前記ブラシ、ローラー又はブレード、前記押圧部材などを用いて載置させる。このとき、前記支持体として、前記外枠内を昇降可能なものを用いる場合には、前記支持体を前記外枠の上端開口部よりも少しだけ下方の位置に配し、即ち、前記立体造形用粉末材料層の厚み分だけ下方に位置させておき、前記支持体上に前記立体造形用粉末材料を載置させる。以上により、前記立体造形用粉末材料を前記支持体上に薄層に載置させることができる。
In order to place the powder material for three-dimensional modeling in a thin layer on the support using the counter rotating mechanism (counter roller), the brush or blade, the pressing member, etc., for example, as follows: It can be carried out.
That is, the support disposed in the outer frame (sometimes referred to as “mold”, “hollow cylinder”, “tubular structure”, etc.) so as to be movable up and down while sliding on the inner wall of the outer frame. The three-dimensional modeling powder material is placed on the body using the counter rotation mechanism (counter roller), the brush, a roller or a blade, the pressing member, and the like. At this time, when using the support that can move up and down in the outer frame, the support is arranged at a position slightly lower than the upper end opening of the outer frame, that is, the three-dimensional modeling The three-dimensional modeling powder material is placed on the support by being positioned below the thickness of the powder material layer for use. By the above, the said three-dimensional modeling powder material can be mounted in a thin layer on the said support body.

なお、このようにして薄層に載置させた前記立体造形用粉末材料に対し、前記立体造形用組成液を作用させると、当該層が硬化する。
ここで得られた薄層の硬化物上に、上記と同様にして、前記立体造形用粉末材料を薄層に載置させ、前記薄層に載置された前記立体造形用粉末材料(層)に対し、前記組成液を作用させると、硬化が生ずる。このときの硬化は、該薄層に載置された前記立体造形用粉末材料(層)においてのみならず、その下に存在する、先に硬化して得られた前記薄層の硬化物との間でも生ずる。その結果、前記薄層に載置された前記立体造形用粉末材料(層)の約2層分の厚みを有する硬化物(立体造形物)が得られる。
In addition, when the said composition liquid for three-dimensional modeling is made to act on the said powder material for three-dimensional modeling placed in the thin layer in this way, the said layer will harden | cure.
The three-dimensional modeling powder material (layer) placed on the thin layer is placed on the thin layer of the cured product obtained in the same manner as described above. On the other hand, when the said composition liquid is made to act, hardening will arise. The hardening at this time is not only in the powder material (layer) for three-dimensional modeling placed on the thin layer, but also with the hardened product of the thin layer obtained by hardening first, which exists under the material. It also occurs between. As a result, a cured product (three-dimensional model) having a thickness of about two layers of the three-dimensional model powder material (layer) placed on the thin layer is obtained.

また、前記立体造形用粉末材料を前記支持体上に薄層に載置させるには、前記公知の粉末積層装置を用いて自動的にかつ簡便に行うこともできる。前記粉末積層装置は、一般に、前記立体造形用粉末材料を積層するためのリコーターと、前記立体造形用粉末材料を前記支持体上に供給するための可動式供給槽と、前記立体造形用粉末材料を薄層に載置し、積層するための可動式成形槽とを備える。前記粉末積層装置においては、前記供給槽を上昇させるか、前記成形槽を下降させるか、又はその両方によって、常に前記供給槽の表面は前記成形槽の表面よりもわずかに上昇させることができ、前記供給槽側から前記リコーターを用いて前記立体造形用粉末材料を薄層に配置させることができ、前記リコーターを繰り返し移動させることにより、薄層の前記立体造形用粉末材料を積層させることができる。   Moreover, in order to mount the said powder material for three-dimensional modeling in a thin layer on the said support body, it can also carry out automatically and simply using the said well-known powder lamination apparatus. The powder laminating apparatus generally includes a recoater for laminating the three-dimensional modeling powder material, a movable supply tank for supplying the three-dimensional modeling powder material onto the support, and the three-dimensional modeling powder material. Is mounted on a thin layer and includes a movable molding tank for stacking. In the powder laminating apparatus, the surface of the supply tank can always be slightly raised from the surface of the molding tank by raising the supply tank, lowering the molding tank, or both. The powder material for three-dimensional modeling can be arranged in a thin layer using the recoater from the supply tank side, and the powder material for three-dimensional modeling can be laminated by repeatedly moving the recoater. .

前記立体造形用粉末材料層の厚みとしては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、一層当たりの平均厚みで、30μm以上500μm以下が好ましく、60μm以上300μm以下がより好ましい。
前記厚みが、30μm以上であると、前記立体造形用粉末材料に前記組成液を付与して形成した立体造形物用粉末材料(層)による硬化物(立体造形物)の強度が充分であり、その後の焼結等の処理乃至取扱い時に型崩れ等の問題が生ずることがない、500μm以下であると、前記立体造形用粉末材料に前記組成液を付与して形成した立体造形物用粉末材料(層)による硬化物(立体造形物)の寸法精度が向上する。
なお、前記平均厚みは、特に制限はなく、公知の方法に従って測定することができる。
The thickness of the powder material layer for three-dimensional modeling is not particularly limited and may be appropriately selected depending on the intended purpose. For example, the average thickness per layer is preferably 30 μm or more and 500 μm or less, and 60 μm or more and 300 μm or less. More preferred.
When the thickness is 30 μm or more, the strength of the cured product (three-dimensional model) by the three-dimensional model powder material (layer) formed by applying the composition liquid to the three-dimensional model powder material is sufficient, A powder material for a three-dimensional structure formed by applying the composition liquid to the powder material for three-dimensional structure (500 μm or less) such that a problem such as loss of shape does not occur during subsequent processing such as sintering or handling. The dimensional accuracy of the cured product (three-dimensional model) by the layer is improved.
The average thickness is not particularly limited and can be measured according to a known method.

−粉末材料硬化工程及び粉末材料硬化手段−
前記粉末材料硬化工程は、前記粉末材料供給工程で供給された立体造形用粉末材料に、前記立体造形用組成液を付与して、該粉末材料の所定領域を硬化させる工程である。
前記粉末材料硬化手段は、前記粉末材料供給手段により供給された立体造形用粉末材料に、前記立体造形用組成液を付与して、該粉末材料の所定領域を硬化させる手段である。
-Powder material curing process and powder material curing means-
The powder material curing step is a step in which the three-dimensional modeling composition liquid is applied to the three-dimensional modeling powder material supplied in the powder material supplying step to cure a predetermined region of the powder material.
The powder material curing unit is a unit that applies the three-dimensional modeling composition liquid to the three-dimensional modeling powder material supplied by the powder material supply unit and cures a predetermined region of the powder material.

前記立体造形用組成液の前記粉末材料への付与の方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ディスペンサ方式、スプレー方式、インクジェット方式などが挙げられる。なお、これらの方式を実施するには公知の装置を前記組成液付与手段として好適に使用することができる。
これらの中でも、前記ディスペンサ方式は、液滴の定量性に優れるが、塗布面積が狭くなり、前記スプレー方式は、簡便に微細な吐出物を形成でき、塗布面積が広く、塗布性に優れるが、液滴の定量性が悪く、スプレー流による粉末の飛散が発生する。このため、本発明においては、前記インクジェット方式が特に好ましい。前記インクジェット方式は、前記スプレー方式に比べて、液滴の定量性が良く、前記ディスペンサ方式に比べ、塗布面積が広くできる利点があり、複雑な立体形状を精度良くかつ効率よく形成し得る点で好ましい。
The method for applying the three-dimensional modeling composition liquid to the powder material is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include a dispenser method, a spray method, and an ink jet method. In order to carry out these methods, a known apparatus can be suitably used as the composition liquid applying means.
Among these, the dispenser method is excellent in droplet quantification, but the application area is narrow, and the spray method can easily form a fine discharge, the application area is wide, and the application property is excellent. The quantitative property of the droplets is poor, and powder scattering occurs due to the spray flow. For this reason, in the present invention, the ink jet method is particularly preferable. Compared to the spray method, the ink jet method has an advantage that the quantitative property of the droplet is better, and compared with the dispenser method, there is an advantage that the application area can be widened, and a complicated three-dimensional shape can be formed accurately and efficiently. preferable.

前記インクジェット法による場合、前記粉末材料硬化手段は、前記インクジェット法により前記立体造形用組成液を前記粉末材料に付与可能なノズルを有する。なお、前記ノズルとしては、公知のインクジェットプリンターにおけるノズル(吐出ヘッド)を好適に使用することができ、また、前記インクジェットプリンターを前記粉末材料硬化手段として好適に使用することができる。なお、前記インクジェットプリンターとしては、例えば、株式会社リコー製のSG7100、などが好適に挙げられる。前記インクジェットプリンターは、ヘッド部から一度に滴下できる組成液量が多く、塗布面積が広いため、塗布の高速化を図ることができる点で好ましい。   When the ink jet method is used, the powder material curing means has a nozzle capable of applying the three-dimensional modeling composition liquid to the powder material by the ink jet method. In addition, as the nozzle, a nozzle (discharge head) in a known ink jet printer can be suitably used, and the ink jet printer can be suitably used as the powder material curing means. In addition, as said inkjet printer, SG7100 by Ricoh Co., Ltd. etc. are mentioned suitably, for example. The ink jet printer is preferable in that the amount of the composition liquid that can be dropped from the head portion at a time is large and the application area is large, so that the application speed can be increased.

本発明においては、本発明の前記立体造形用組成液を精度良くしかも高効率に付与可能な前記インクジェットプリンターを用いた場合においても、前記組成液が、粒子等の固形物や、樹脂等の高分子の高粘度材料を含有しないため、前記ノズル乃至そのヘッドにおいて目詰り等が発生せず、腐食等を生じさせることもなく、また、前記立体造形用粉末材料層に付与(吐出)された際、該立体造形用粉末材料における前記有機材料に効率良く浸透可能であるため、立体造形物の製造効率に優れ、しかも樹脂等の高分子成分が付与されることがないため、予定外の体積増加等を生ずることがなく、寸法精度の良い架橋物が容易にかつ短時間で効率よく得られる点で有利である。   In the present invention, even when the inkjet printer capable of applying the three-dimensional modeling composition liquid of the present invention with high accuracy and high efficiency is used, the composition liquid is a solid material such as particles or a resin or the like. Since no high-viscosity molecular material is contained, clogging or the like does not occur in the nozzle or its head, corrosion does not occur, and when applied (discharged) to the three-dimensional modeling powder material layer , Because it is possible to efficiently penetrate into the organic material in the powder material for three-dimensional modeling, it is excellent in manufacturing efficiency of a three-dimensional modeled object, and a polymer component such as a resin is not added, so an unexpected increase in volume This is advantageous in that a cross-linked product with good dimensional accuracy can be obtained easily and efficiently in a short time.

−粉末材料収容部−
前記粉末材料収容部は、前記立体造形用粉末材料が収容された部材であり、その大きさ、形状、材質などについては特に制限はなく、目的に応じて適宜選択することができ、例えば、貯留槽、袋、カートリッジ、タンクなどが挙げられる。
-Powder material container-
The powder material container is a member in which the three-dimensional modeling powder material is stored, and the size, shape, material, and the like thereof are not particularly limited and can be appropriately selected according to the purpose. A tank, a bag, a cartridge, a tank, etc. are mentioned.

−組成液収容部−
前記組成液収容部は、前記立体造形用組成液が収容された部材であり、その大きさ、形状、材質などについては特に制限はなく、目的に応じて適宜選択することができ、例えば、貯留槽、袋、カートリッジ、タンクなどが挙げられる。
-Composition liquid container-
The composition liquid storage unit is a member in which the three-dimensional modeling composition liquid is stored, and the size, shape, material, and the like thereof are not particularly limited and can be appropriately selected according to the purpose. A tank, a bag, a cartridge, a tank, etc. are mentioned.

−その他の工程及びその他の手段−
前記その他の工程としては、例えば、乾燥工程、焼結工程、表面保護処理工程、塗装工程、などが挙げられる。
前記その他の手段としては、例えば、乾燥手段、焼結手段、表面保護処理手段、塗装手段、などが挙げられる。
-Other processes and other means-
Examples of the other steps include a drying step, a sintering step, a surface protection treatment step, and a painting step.
Examples of the other means include drying means, sintering means, surface protection treatment means, and painting means.

前記乾燥工程は、前記粉末材料硬化工程において得られた硬化物(立体造形物)を乾燥させる工程である。前記乾燥工程において、前記硬化物中に含まれる水分のみならず、有機物を除去(脱脂)してもよい。前記乾燥手段としては、例えば、公知の乾燥機などが挙げられる。   The said drying process is a process of drying the hardened | cured material (three-dimensional molded item) obtained in the said powder material hardening process. In the drying step, not only moisture contained in the cured product but also organic matter may be removed (degreasing). Examples of the drying means include known dryers.

前記焼結工程は、前記粉末材料硬化工程において形成した硬化物(立体造形物)を焼結する工程である。前記焼結工程を行うことにより、前記硬化物を一体化された金属乃至セラミックスの立体造形物の焼結体とすることができる。前記焼結手段としては、例えば、公知の焼結炉などが挙げられる。   The said sintering process is a process of sintering the hardened | cured material (three-dimensional molded item) formed in the said powder material hardening process. By performing the sintering step, the cured product can be made into a sintered body of an integrated metal or ceramic three-dimensional structure. Examples of the sintering means include a known sintering furnace.

前記表面保護処理工程は、前記粉末材料硬化工程において形成した硬化物(立体造形物)に保護層を形成等する工程である。この表面保護処理工程を行うことにより、前記硬化物(立体造形物)を例えばそのまま使用等することができる耐久性等を該硬化物(立体造形物)の表面に与えることができる。前記保護層の具体例としては、耐水性層、耐候性層、耐光性層、断熱性層、光沢層、などが挙げられる。前記表面保護処理手段としては、公知の表面保護処理装置、例えば、スプレー装置、コーティング装置などが挙げられる。
前記塗装工程は、前記粉末材料層硬化工程において形成した硬化物(立体造形物)に塗装を行う工程である。前記塗装工程を行うことにより、前記硬化物(立体造形物)を所望の色に着色させることができる。前記塗装手段としては、公知の塗装装置、例えば、スプレー、ローラ、刷毛等による塗装装置などが挙げられる。
The said surface protection treatment process is a process of forming a protective layer etc. on the hardened | cured material (three-dimensional molded item) formed in the said powder material hardening process. By performing this surface protection treatment step, it is possible to provide the surface of the cured product (three-dimensional model) with durability that allows the cured product (three-dimensional model) to be used as it is, for example. Specific examples of the protective layer include a water resistant layer, a weather resistant layer, a light resistant layer, a heat insulating layer, and a glossy layer. Examples of the surface protection treatment means include known surface protection treatment devices such as a spray device and a coating device.
The coating process is a process of coating the cured product (three-dimensional model) formed in the powder material layer curing process. By performing the coating step, the cured product (three-dimensional model) can be colored in a desired color. Examples of the coating means include known coating apparatuses, such as a coating apparatus using a spray, a roller, a brush, and the like.

ここで、図1に本発明の粉末積層造形装置の一例を示す。この図1の粉末積層造形装置は、造形側粉末貯留槽1と供給側粉末貯留槽2とを有し、これらの粉末貯留槽は、それぞれ上下に移動可能なステージ3を有し、該ステージ上に立体造形物用粉末材料を貯留する。
造形側粉末貯留槽1の上には、該粉末貯留槽内の造形物用粉末材料に向けて立体造形用組成液4を吐出するインクジェットヘッド5を有し、更に、供給側粉末貯留槽2から造形側粉末貯留槽1に立体造形物用粉末材料を供給すると共に、造形側粉末貯留槽1の立体造形物用粉末材料表面を均す、均し機構6(以下、リコーターということがある)を有する。
Here, FIG. 1 shows an example of the powder additive manufacturing apparatus of the present invention. 1 has a modeling-side powder storage tank 1 and a supply-side powder storage tank 2, and each of these powder storage tanks has a stage 3 that can move up and down. A powder material for a three-dimensional structure is stored in
On the modeling side powder storage tank 1, it has the inkjet head 5 which discharges the three-dimensional modeling composition liquid 4 toward the powder material for modeling objects in this powder storage tank, and also from the supply side powder storage tank 2 A leveling mechanism 6 (hereinafter sometimes referred to as a recoater) that supplies powder material for a three-dimensional structure to the modeling-side powder storage tank 1 and also smoothes the surface of the powder material for a three-dimensional structure in the modeling-side powder storage tank 1. Have.

造形側粉末貯留槽1の立体造形物用粉末材料上にインクジェットヘッド5から立体造形用組成液を滴下する。このとき、立体造形用組成液を滴下する位置は、最終的に造形したい立体形状を複数の平面層にスライスした二次元画像データ(スライスデータ)により決定される。
一層分の描画が終了した後、供給側粉末貯留槽2のステージ3を上げ、造形側粉末貯留槽1のステージ3を下げる。その差分の立体造形物用粉末材料を、前記均し機構6によって、造形側粉末貯留槽1へと移動させる。
A three-dimensional composition liquid is dropped from the inkjet head 5 onto the three-dimensionally shaped powder material in the modeling-side powder storage tank 1. At this time, the position where the three-dimensional modeling composition liquid is dropped is determined by two-dimensional image data (slice data) obtained by slicing a three-dimensional shape to be finally modeled into a plurality of plane layers.
After the drawing for one layer is completed, the stage 3 of the supply-side powder storage tank 2 is raised, and the stage 3 of the modeling-side powder storage tank 1 is lowered. The powder material for the three-dimensional modeled object of the difference is moved to the modeling side powder storage tank 1 by the leveling mechanism 6.

このようにして、先に描画した立体造形物用粉末面上に、新たな造形物用粉末層が一層形成される。このときの造形物用粉末層一層の厚みは、数十μm以上100μm以下程度である。
前記新たに形成された立体造形物用粉末層上に、更に二層目のスライスデータに基づく描画を行い、この一連のプロセスを繰り返して造形物を得、図示しない加熱手段で加熱乾燥させることで造形物が得られる。
In this way, a new powder layer for a three-dimensional object is formed on the previously drawn powder surface for a three-dimensional object. At this time, the thickness of one layer of the molded article powder layer is about several tens of μm to 100 μm.
By performing drawing based on the slice data of the second layer on the newly formed powder layer for a three-dimensional structure, repeating this series of processes to obtain a structure, and heating and drying with a heating means (not shown) A model is obtained.

図2に、本発明の粉末積層造形装置の他の一例を示す。図2の粉末積層造形装置は、原理的には図1と同じものであるが、立体造形物用粉末材料の供給機構が異なる。即ち、供給側粉末貯留槽2は、造形側粉末貯留槽1の上方に配されている。一層目の描画が終了すると、造形側粉末貯留槽1のステージ3が所定量降下し、供給側粉末貯留槽2が移動しながら、所定量の造形物用粉末材料を造形側粉末貯留槽1に落下させ、新たな造形物用粉末材料層を形成する。その後、均し機構6で、造形物用粉末材料を圧縮し、かさ密度を上げると共に、造形物用粉末材料の高さを均一に均す。
図2に示す構成の粉末積層造形装置によれば、2つの粉末貯留槽を平面的に並べる図1の構成に比べて、装置をコンパクトにできる。
FIG. 2 shows another example of the powder additive manufacturing apparatus of the present invention. The powder additive manufacturing apparatus in FIG. 2 is the same as that in FIG. 1 in principle, but the supply mechanism of the powder material for a three-dimensional object is different. That is, the supply side powder storage tank 2 is arranged above the modeling side powder storage tank 1. When the drawing of the first layer is completed, the stage 3 of the modeling-side powder storage tank 1 is lowered by a predetermined amount, and the supply-side powder storage tank 2 is moved while a predetermined amount of the powder material for modeling objects is transferred to the modeling-side powder storage tank 1. It is dropped and a new powder material layer for a model is formed. After that, the leveling mechanism 6 compresses the molded material powder material to increase the bulk density and uniformly level the height of the molded material powder material.
According to the powder additive manufacturing apparatus having the configuration shown in FIG. 2, the apparatus can be made compact compared to the configuration of FIG. 1 in which two powder storage tanks are arranged in a plane.

以上の本発明の立体造形物の製造方法及び製造装置により、複雑な立体(三次元(3D))形状の立体造形物を、本発明の前記立体造形用組成液又は前記立体造形材料セットを用いて簡便かつ効率良く、焼結等の前に型崩れが生ずることなく、寸法精度良く製造することができる。
こうして得られた立体造形物は、充分な強度を有し、寸法精度に優れ、空隙が少なく緻密な焼結体が得られ、微細な凹凸、曲面なども再現できるので、美的外観にも優れ、高品質であり、各種用途に好適に使用することができる。
By using the manufacturing method and manufacturing apparatus for a three-dimensional object according to the present invention described above, a three-dimensional object having a complicated three-dimensional shape (three-dimensional (3D)) is used for the three-dimensional object composition according to the present invention or the three-dimensional object material set. And can be manufactured with good dimensional accuracy without causing deformation before sintering or the like.
The three-dimensional model obtained in this way has sufficient strength, excellent dimensional accuracy, a dense sintered body with few voids, and can reproduce fine irregularities, curved surfaces, etc., so it has excellent aesthetic appearance, It is of high quality and can be suitably used for various applications.

以下、本発明の実施例について説明するが、本発明はこれらの実施例に何ら限定されるものではない。   Examples of the present invention will be described below, but the present invention is not limited to these examples.

(立体造形用粉末材料の製造例1)
−コート液1の調製−
水溶性樹脂であるアセトアセチル基変性ポリビニルアルコール(日本合成化学株式会社製、ゴーセネックスZ−100、平均重合度:500、けん化度98.5mol%)6質量部に、水114質量部を混合した。次いで、ウォーターバス中で90℃に加熱しながら、スリーワンモーター(新東科学株式会社製、BL600)を用いて1時間攪拌し、前記アセトアセチル基変性ポリビニルアルコールを前記水に溶解させた。こうして、5質量%のアセトアセチル基変性ポリビニルアルコール水溶液120質量部を調製した。得られた調製液をコート液1とした。
なお、前記アセトアセチル基変性ポリビニルアルコールの4質量%(w/w%)水溶液の20℃における粘度を粘度計(ブルックフィールド社製回転粘度計、DV−E VISCOMETER HADVE115型)を用いて測定したところ、5.0mPa・s〜6.0mPa・sであった。
(Production example 1 of powder material for three-dimensional modeling)
-Preparation of coating solution 1-
114 parts by mass of water was mixed with 6 parts by mass of acetoacetyl group-modified polyvinyl alcohol (manufactured by Nippon Synthetic Chemical Co., Ltd., Gohsenx Z-100, average polymerization degree: 500, saponification degree 98.5 mol%) which is a water-soluble resin. Next, while heating at 90 ° C. in a water bath, the mixture was stirred for 1 hour using a three-one motor (manufactured by Shinto Kagaku Co., Ltd., BL600) to dissolve the acetoacetyl group-modified polyvinyl alcohol in the water. In this way, 120 mass parts of 5 mass% acetoacetyl group modified polyvinyl alcohol aqueous solution was prepared. The obtained preparation liquid was designated as coating liquid 1.
The viscosity at 20 ° C. of a 4% by mass (w / w%) aqueous solution of the acetoacetyl group-modified polyvinyl alcohol was measured with a viscometer (Brookfield Rotational Viscometer, DV-E VISCOMETER HADVE115 type). 5.0 mPa · s to 6.0 mPa · s.

−コート液1の基材表面へのコーティング−
次に、市販のコーティング装置(パウレック社製、MP−01)を用いて、前記基材としてステンレス鋼(SUS316L)粉(山陽特殊製鋼株式会社製、PSS316L、体積平均粒径41μm)100質量部に対し、被覆厚み(平均厚み)が100nmになるように、前記コート液1をコーティングした。このコーティングにおいては、途中で随時サンプリングを行い、前記コート液1の被覆厚み(平均厚み)が100nm、被覆率(%)が100%となるように、コーティング時間及び間隔を適宜調節した。以上により、立体造形用粉末材料1を得た。なお、以下に、被覆厚み及び表面被覆率の測定方法、前記コーティングの条件を示した。
-Coating of the coating liquid 1 on the substrate surface-
Next, using a commercially available coating device (MP-01, manufactured by Paulec), 100 parts by mass of stainless steel (SUS316L) powder (manufactured by Sanyo Special Steel Co., Ltd., PSS316L, volume average particle size 41 μm) as the base material. On the other hand, the coating solution 1 was coated so that the coating thickness (average thickness) was 100 nm. In this coating, sampling was performed as needed, and the coating time and interval were appropriately adjusted so that the coating thickness (average thickness) of the coating liquid 1 was 100 nm and the coverage (%) was 100%. Thus, the powder material 1 for three-dimensional modeling was obtained. In addition, the measuring method of coating thickness and surface coverage, and the conditions of the said coating were shown below.

<被覆厚み(平均厚み>
被覆厚み(平均厚み)は、前記立体造形用粉末材料1の表面をエメリー紙で研磨を行った後、水を含ませた布で表面を軽く磨き樹脂部位を溶解し、観察用サンプルを作製した。次に、電界放出形走査電子顕微鏡(FE−SEM)にて表面に露出した、基材部と樹脂部の境界部を観察し、前記樹脂部表面と前記境界部との長さを被覆厚みとして測定した。測定箇所10箇所の平均値を求め、これを被覆厚み(平均厚み)とした。
<Coating thickness (average thickness)
The coating thickness (average thickness) was obtained by polishing the surface of the three-dimensional modeling powder material 1 with emery paper, and then lightly polishing the surface with a cloth soaked in water to dissolve the resin site, thereby preparing an observation sample. . Next, the boundary portion between the base material portion and the resin portion exposed on the surface is observed with a field emission scanning electron microscope (FE-SEM), and the length between the resin portion surface and the boundary portion is defined as the coating thickness. It was measured. The average value of 10 measurement locations was determined and this was taken as the coating thickness (average thickness).

<表面被覆率>
電界放出形走査電子顕微鏡(FE−SEM)を用い、前記立体造形用粉末材料1が10個程度画面内に収まる視野設定にて、下記条件で反射電子像(ESB)を撮影し、ImageJソフトにより画像処理にて2値化を実施した。黒色部が被覆部、白色部が基材部とし、1粒子中の黒色部面積/(黒色部面積+白色部面積)×100で比率を求めた。10粒子の測定を行い、その平均値を表面被覆率(%)とした。
−SEM観察条件−
・Signal:ESB(反射電子像)
・EHT:0.80kV
・ESB Grid:700V
・WD:3.0mm
・Aperture Size:30.00μm
・コントラスト:80%
・倍率:画面横方向に10個程度収まるようにサンプル毎に設定
<Surface coverage>
Using a field emission scanning electron microscope (FE-SEM), a backscattered electron image (ESB) was photographed under the following conditions with a field setting in which about 10 of the three-dimensional modeling powder material 1 was within the screen, and ImageJ software was used. Binarization was performed by image processing. The black part was the covering part and the white part was the base part, and the ratio was determined by the black part area in one particle / (black part area + white part area) × 100. Ten particles were measured, and the average value was defined as the surface coverage (%).
-SEM observation conditions-
Signal: ESB (reflection electron image)
・ EHT: 0.80kV
・ ESB Grid: 700V
・ WD: 3.0mm
・ Aperture Size: 30.00μm
・ Contrast: 80%
-Magnification: Set for each sample to fit about 10 in the horizontal direction of the screen

<コーティング条件>
・スプレー設定
ノズル型式 970
ノズル口径 1.2mm
コート液吐出圧力 4.7Pa・s
コート液吐出速度 3g/min
アトマイズ空気量 50NL/min
・ローター設定
ローター型式 M−1
回転速度 60rpm
回転数 400%
・気流設定
給気温度 80℃
給気風量 0.8m/min
バグフィルター払落し圧 0.2MPa
バグフィルター払落し時間 0.3秒間
バグフィルターインターバル 5秒間
・コーティング時間 40分間
<Coating conditions>
・ Spray setting Nozzle type 970
Nozzle diameter 1.2mm
Coating liquid discharge pressure 4.7 Pa · s
Coating liquid discharge speed 3g / min
Atomized air volume 50 NL / min
・ Rotor setting Rotor model M-1
Rotation speed 60rpm
Rotation speed 400%
・ Airflow setting Supply air temperature 80 ℃
Supply air volume 0.8m 3 / min
Bag filter discharge pressure 0.2 MPa
Bag filter dropout time 0.3 seconds Bug filter interval 5 seconds ・ Coating time 40 minutes

得られた立体造形用粉末材料1につき、市販の粒径測定装置(日機装株式会社製、マイクロトラックHRA)を用いて平均粒子径を測定したところ、43μmであった。また、その流動性として安息角を市販の安息角測定装置(ホソカワミクロン株式会社製、パウダテスタPT−N型)を用いて測定したところ、35度であった。なお、この安息角の測定値が大きい程、流動性が悪くなる傾向にある。   It was 43 micrometers when the average particle diameter was measured about the obtained powder material 1 for three-dimensional modeling using the commercially available particle size measuring apparatus (The Nikkiso Co., Ltd. make, Microtrac HRA). Further, the repose angle as a fluidity was measured using a commercially available repose angle measuring device (Phospo Tester PT-N type, manufactured by Hosokawa Micron Corporation), and found to be 35 degrees. In addition, it exists in the tendency for fluidity | liquidity to become worse, so that the measured value of this angle of repose is large.

−立体造形用組成液1の調製−
溶媒としての水70質量部と、水溶性有機溶剤としてのプロピレングリコール(東京化成工業株式会社製、100℃における蒸気圧が20.19mmHg)30質量部と、架橋剤としての炭酸ジルコニウムアンモニウム塩(第一稀元素化学工業株式会社製、ジルコゾール AC−20)3質量部と、安定化剤としての2−アミノ−2−エチル−1,3−プロパンジオール(AEPD、東京化成工業株式会社製)0.3質量部と、水溶性樹脂としてのポリビニルピロリドンK−90(BASF社製、重量平均分子量1,400,000)0.1質量部とを、ホモミキサーを用いて30分間分散させて、立体造形用組成液1を調製した。
-Preparation of composition liquid 1 for three-dimensional modeling-
70 parts by weight of water as a solvent, 30 parts by weight of propylene glycol (manufactured by Tokyo Chemical Industry Co., Ltd., vapor pressure at 100 ° C. of 20.19 mmHg) as a water-soluble organic solvent, and zirconium carbonate ammonium salt (No. 1) 1 Rare Element Chemical Industries, Ltd., Zircosol AC-20) 3 parts by mass and 2-amino-2-ethyl-1,3-propanediol (AEPD, Tokyo Chemical Industry Co., Ltd.) as a stabilizer 0. 3 parts by mass and 0.1 part by mass of polyvinylpyrrolidone K-90 (BASF Corporation, weight average molecular weight 1,400,000) as a water-soluble resin are dispersed for 30 minutes using a homomixer, A composition liquid 1 was prepared.

得られた立体造形用組成液1について、以下のようにして、保存安定性を評価した。結果を表1に示した。   About the obtained composition liquid 1 for three-dimensional modeling, storage stability was evaluated as follows. The results are shown in Table 1.

<保存安定性>
前記立体造形用組成液1をポリプロピレン製広口瓶(容量:50mL)に入れて、50℃の恒温槽中に30日間放置した後、恒温槽から取り出した。恒温槽から取り出した立体造形用組成液1は、室温(25℃)になるまで放置した後、粘度測定を行った。恒温槽に入れる前の立体造形用組成液1の粘度を保存前粘度、恒温槽から取り出した後の立体造形用組成液の粘度を保存後粘度とし、下記式により粘度変化率を算出した。なお、前記保存前粘度及び前記保存後粘度は、R型粘度計(東機産業株式会社製)を用いて、25℃で測定した。
粘度変化率(%)=[(保存後粘度)−(保存前粘度)]/(保存前粘度)×100
[評価基準]
×・・・粘度変化率が20%以上
△・・・粘度変化率が10%以上20%未満
○・・・粘度変化率が5%以上10%未満
◎・・・粘度変化率が5%未満
<Storage stability>
The three-dimensional modeling composition liquid 1 was put in a polypropylene wide-mouth bottle (capacity: 50 mL), left in a thermostatic bath at 50 ° C. for 30 days, and then taken out from the thermostatic bath. The composition solution 1 for three-dimensional modeling taken out from the thermostat was allowed to stand until it reached room temperature (25 ° C.), and then the viscosity was measured. The viscosity of the three-dimensional modeling composition liquid 1 before being put into the thermostat was set as the viscosity before storage, and the viscosity of the three-dimensional modeling composition liquid after being taken out from the thermostat was set as the viscosity after storage, and the viscosity change rate was calculated by the following formula. The viscosity before storage and the viscosity after storage were measured at 25 ° C. using an R-type viscometer (manufactured by Toki Sangyo Co., Ltd.).
Viscosity change rate (%) = [(viscosity after storage) − (viscosity before storage)] / (viscosity before storage) × 100
[Evaluation criteria]
× ・ ・ ・ Viscosity change rate is 20% or more △ ・ ・ ・ Viscosity change rate is 10% or more and less than 20% ○ ・ ・ ・ Viscosity change rate is 5% or more and less than 10% ◎ ・ ・ ・ Viscosity change rate is less than 5%

(実施例1)
得られた前記立体造形用粉末材料1と、前記立体造形用組成液1とを、サイズ(長さ70mm×巾12mm)の形状印刷パターンを用いて、立体造形物1を以下のようにして製造した。なお、前記立体造形用組成液1は、50℃の恒温槽中に30日間放置した後、室温になるまで放置したものを使用した。
(1)まず、図1に示したような立体造形物の製造装置を用いて、供給側粉末貯留槽から供給側粉末貯留槽に前記立体造形用粉末材料1を移送させ、前記支持体上に該立体造形用粉末材料1を、その平均厚みが100μmとなるように供給した。
(2)次に、供給された前記立体造形用粉末材料1の表面に、前記立体造形用組成液1を、公知のインクジェット吐出ヘッドのノズルから付与(吐出)した。前記ポリビニルアルコールを該硬化液1に含まれる水に溶かし、前記立体造形用組成液1に含まれる架橋剤(炭酸ジルコニウムアンモニウム塩)の作用により、前記アセトアセチル基変性ポリビニルアルコールを架橋させた。
Example 1
The obtained three-dimensional modeling powder material 1 and the three-dimensional modeling composition liquid 1 are manufactured as follows using a shape printing pattern of size (length 70 mm × width 12 mm). did. In addition, the said composition liquid 1 for three-dimensional model | molding used what was left to stand until it became room temperature, after leaving to stand in a 50 degreeC thermostat for 30 days.
(1) First, using the manufacturing apparatus for a three-dimensional structure as shown in FIG. 1, the three-dimensional structure powder material 1 is transferred from the supply-side powder storage tank to the supply-side powder storage tank, and then on the support. The powder material 1 for three-dimensional modeling was supplied so that the average thickness was 100 μm.
(2) Next, the three-dimensional modeling composition liquid 1 was applied (discharged) to the surface of the supplied three-dimensional modeling powder material 1 from a nozzle of a known inkjet discharge head. The polyvinyl alcohol was dissolved in water contained in the curing liquid 1, and the acetoacetyl group-modified polyvinyl alcohol was crosslinked by the action of a crosslinking agent (zirconium carbonate ammonium salt) contained in the three-dimensional modeling composition liquid 1.

(3)次に、前記(1)及び前記(2)の操作を所定の3mmの総平均厚みになるまで繰返し、硬化した前記立体造形用粉末材料1による薄層を順次積層していき、乾燥機を用いて、65℃で4時間、次いで140℃にて10時間維持し、乾燥工程を行い、立体造形物1を得た。 (3) Next, the operations of (1) and (2) are repeated until a total average thickness of 3 mm is reached, and a thin layer of the solid three-dimensional modeling powder material 1 is sequentially laminated and dried. Using a machine, it was maintained at 65 ° C. for 4 hours and then at 140 ° C. for 10 hours, and a drying process was performed to obtain a three-dimensional structure 1.

乾燥後の立体造形物1に対し、エアーブローにより余分な該立体造形用粉末材料1を除去したところ、型崩れを生ずることはなく、強度、及び寸法精度にも優れていた。
なお、強度(硬度)、及び寸法精度を以下の基準にて評価した。結果を表1に示した。
When the three-dimensional structure 1 after drying, the excess powder material 1 for three-dimensional structure was removed by air blowing, the shape was not lost, and the strength and dimensional accuracy were excellent.
The strength (hardness) and dimensional accuracy were evaluated according to the following criteria. The results are shown in Table 1.

<強度(硬度)>
×・・・立体造形用粉末材料が充分に硬化しておらず、積層した立体造形用粉末材料内から立体造形物を取り出すことができず、取り出すと所定の形状を維持することができない状態
△・・・積層した立体造形用粉末材料内から立体造形物を取り出すことが可能であり、エアーブロー圧の調整又は、刷毛を使用することで、不要な立体造形用粉末材料を取り出すことが可能であり、該立体造形物は形状を維持可能な状態
○・・・立体造形物につき強いエアーブローを行っても、不要な立体造形用粉末材料のみが除去され、該立体造形物自体はその形状を維持している状態
◎・・・立体造形物が充分に硬化しており、容易には壊れない状態
<Strength (hardness)>
X: The three-dimensional modeling powder material is not sufficiently cured, and the three-dimensional modeling material cannot be taken out from the laminated three-dimensional modeling powder material, and when it is taken out, the predetermined shape cannot be maintained. ... It is possible to take out a three-dimensional object from the laminated three-dimensional powder material, and it is possible to take out unnecessary three-dimensional powder material by adjusting the air blow pressure or using a brush. There is a state in which the three-dimensional model can maintain its shape. Even if a strong air blow is performed on the three-dimensional model, only the unnecessary three-dimensional model powder material is removed, and the three-dimensional model itself has its shape. Maintained state ◎ ・ ・ ・ Three-dimensional model is fully cured and not easily broken

<寸法精度>
×・・・立体造形物の表面に歪みが生じており、表面を観察すると、前記基材と前記有機材料との偏在が認められる状態
△・・・立体造形物の表面に若干の歪みと凹凸が生じている状態
○・・・立体造形物の表面状態は良好であるが、僅かに反りが生じている状態
◎・・・立体造形物の表面が滑らかで美麗であり、反りも生じていない状態
<Dimensional accuracy>
X: Distortion has occurred on the surface of the three-dimensional structure, and when the surface is observed, uneven distribution of the base material and the organic material is observed. Δ: Some distortion and unevenness on the surface of the three-dimensional structure. The surface state of the three-dimensional structure is good, but the surface is slightly warped. The surface of the three-dimensional structure is smooth and beautiful, and there is no warping. State

(4)前記(3)で得られた立体造形物1につき、乾燥機を用いて、窒素雰囲気下、400℃まで昇温させて脱脂工程を行い、更に、焼結炉内で真空条件下、1,300℃で焼結処理を行った。その結果、表面が美麗な立体造形物1(焼結体)が得られた。
この立体造形物1は完全に一体化されたステンレス構造体(金属塊)であり、硬質の床に叩きつけても全く破損等が生じなかった。
(4) For the three-dimensional structure 1 obtained in (3) above, using a dryer, the temperature is increased to 400 ° C. in a nitrogen atmosphere to perform a degreasing step, and further, in a sintering furnace under vacuum conditions, Sintering was performed at 1,300 ° C. As a result, a three-dimensional structure 1 (sintered body) having a beautiful surface was obtained.
This three-dimensional structure 1 is a completely integrated stainless steel structure (metal lump), and no damage or the like occurred even when it was hit against a hard floor.

(実施例2)
実施例1において、前記立体造形用組成液1を、下記のようにして調製した立体造形用組成液2に代えた以外は、実施例1と同様にして、立体造形物2を製造し、実施例1と同様の評価を行った。結果を表1に示した。
(Example 2)
In Example 1, the three-dimensional structure 2 was manufactured in the same manner as in Example 1 except that the three-dimensional composition liquid 1 was replaced with the three-dimensional composition liquid 2 prepared as follows. Evaluation similar to Example 1 was performed. The results are shown in Table 1.

−立体造形用組成液2の調製−
溶媒としての水70質量部と、水溶性有機溶剤としてのプロピレングリコール(東京化成工業株式会社製、100℃における蒸気圧が20.19mmHg)30質量部と、架橋剤としての炭酸ジルコニウムアンモニウム塩(第一稀元素化学工業株式会社製、ジルコゾール AC−20)3質量部と、安定化剤としてのジヒドロキシエチルグリシン塩(キレスト株式会社製、キレストG−50)0.3質量部と、水溶性樹脂としてのポリビニルピロリドンK−90(BASF社製、重量平均分子量1,400,000)0.5質量部とを、ホモミキサーを用いて30分間分散させて、立体造形用組成液2を調製した。得られた立体造形用組成液2について、実施例1と同様にして、保存安定性を評価した。結果を表1に示した。
-Preparation of composition liquid 2 for three-dimensional modeling-
70 parts by weight of water as a solvent, 30 parts by weight of propylene glycol (manufactured by Tokyo Chemical Industry Co., Ltd., vapor pressure at 100 ° C. of 20.19 mmHg) as a water-soluble organic solvent, and zirconium carbonate ammonium salt (No. 1) 3 parts by mass of Zircosol AC-20) manufactured by One Rare Element Chemical Co., Ltd., 0.3 parts by mass of dihydroxyethylglycine salt (Cyrest G-50, manufactured by Crest Co., Ltd.) as a stabilizer, and water-soluble resin 3 parts of polyvinylpyrrolidone K-90 (manufactured by BASF, weight average molecular weight 1,400,000) was dispersed for 30 minutes using a homomixer to prepare a three-dimensional composition solution 2. About the obtained composition liquid 2 for three-dimensional modeling, it carried out similarly to Example 1, and evaluated storage stability. The results are shown in Table 1.

(実施例3)
実施例1において、前記立体造形用組成液1を、下記のようにして調製した立体造形用組成液3に代えた以外は、実施例1と同様にして、立体造形物3を製造し、実施例1と同様の評価を行った。結果を表1に示した。
(Example 3)
In Example 1, the three-dimensional structure 3 was manufactured in the same manner as in Example 1 except that the three-dimensional composition liquid 1 was replaced with the three-dimensional composition liquid 3 prepared as follows. Evaluation similar to Example 1 was performed. The results are shown in Table 1.

−立体造形用組成液3の調製−
溶媒としての水70質量部と、水溶性有機溶剤としてのプロピレングリコール(東京化成工業株式会社製、100℃における蒸気圧が20.19mmHg)30質量部と、架橋剤としての炭酸ジルコニウムアンモニウム塩(第一稀元素化学工業株式会社製、ジルコゾール AC−20)3質量部と、安定化剤としてのジヒドロキシエチルグリシン塩(キレスト株式会社製、キレストG−50)0.3質量部と、水溶性樹脂としてのポリビニルピロリドンK−90(BASF社製、重量平均分子量1,400,000)1質量部とを、ホモミキサーを用いて30分間分散させて、立体造形用組成液3を調製した。得られた立体造形用組成液3について、実施例1と同様にして、保存安定性を評価した。結果を表1に示した。
-Preparation of three-dimensional modeling composition 3-
70 parts by weight of water as a solvent, 30 parts by weight of propylene glycol (manufactured by Tokyo Chemical Industry Co., Ltd., vapor pressure at 100 ° C. of 20.19 mmHg) as a water-soluble organic solvent, and zirconium carbonate ammonium salt (No. 1) 3 parts by mass of Zircosol AC-20) manufactured by One Rare Element Chemical Co., Ltd., 0.3 parts by mass of dihydroxyethylglycine salt (Cyrest G-50, manufactured by Crest Co., Ltd.) as a stabilizer, and water-soluble resin 1 part by weight of polyvinylpyrrolidone K-90 (manufactured by BASF, weight average molecular weight 1,400,000) was dispersed for 30 minutes using a homomixer to prepare a composition solution 3 for three-dimensional modeling. About the obtained composition liquid 3 for three-dimensional modeling, it carried out similarly to Example 1, and evaluated storage stability. The results are shown in Table 1.

(実施例4)
実施例1において、前記立体造形用組成液1を、下記のようにして調製した立体造形用組成液4に代えた以外は、実施例1と同様にして、立体造形物4を製造し、実施例1と同様の評価を行った。結果を表2に示した。
Example 4
In Example 1, the three-dimensional structure 4 was manufactured in the same manner as in Example 1 except that the three-dimensional composition liquid 1 was replaced with the three-dimensional composition liquid 4 prepared as follows. Evaluation similar to Example 1 was performed. The results are shown in Table 2.

−立体造形用組成液4の調製−
溶媒としての水70質量部と、水溶性有機溶剤としてのプロピレングリコール(東京化成工業株式会社製、100℃における蒸気圧が20.19mmHg)30質量部と、架橋剤としての炭酸ジルコニウムアンモニウム塩(第一稀元素化学工業株式会社製、ジルコゾール AC−20)3質量部と、安定化剤としての2−アミノ−2−エチル−1,3−プロパンジオール(AEPD、東京化成工業株式会社製)0.3質量部と、水溶性樹脂としてのポリビニルピロリドンK−85(株式会社日本触媒製、重量平均分子量1,000,000)0.5質量部とを、ホモミキサーを用いて30分間分散させて、立体造形用組成液4を調製した。得られた立体造形用組成液4について、実施例1と同様にして、保存安定性を評価した。結果を表2に示した。
-Preparation of composition liquid 4 for three-dimensional modeling-
70 parts by weight of water as a solvent, 30 parts by weight of propylene glycol (manufactured by Tokyo Chemical Industry Co., Ltd., vapor pressure at 100 ° C. of 20.19 mmHg) as a water-soluble organic solvent, and zirconium carbonate ammonium salt (No. 1) 1 Rare Element Chemical Industries, Ltd., Zircosol AC-20) 3 parts by mass and 2-amino-2-ethyl-1,3-propanediol (AEPD, Tokyo Chemical Industry Co., Ltd.) as a stabilizer 0. 3 parts by mass and 0.5 part by mass of polyvinylpyrrolidone K-85 (manufactured by Nippon Shokubai Co., Ltd., weight average molecular weight 1,000,000) as a water-soluble resin were dispersed using a homomixer for 30 minutes, A three-dimensional modeling composition liquid 4 was prepared. About the obtained composition liquid 4 for three-dimensional modeling, it carried out similarly to Example 1, and evaluated storage stability. The results are shown in Table 2.

(実施例5)
実施例1において、前記立体造形用組成液1を、下記のようにして調製した立体造形用組成液5に代えた以外は、実施例1と同様にして、立体造形物5を製造し、実施例1と同様の評価を行った。結果を表2に示した。
(Example 5)
In Example 1, the three-dimensional model 5 was manufactured in the same manner as in Example 1 except that the three-dimensional model composition liquid 1 was replaced with the three-dimensional model composition liquid 5 prepared as follows. Evaluation similar to Example 1 was performed. The results are shown in Table 2.

−立体造形用組成液5の調製−
溶媒としての水70質量部と、水溶性有機溶剤としてのプロピレングリコール(東京化成工業株式会社製、100℃における蒸気圧が20.19mmHg)30質量部と、架橋剤としての炭酸ジルコニウムアンモニウム塩(第一稀元素化学工業株式会社製、ジルコゾール AC−20)3質量部と、安定化剤としてのホスホノブタントリカルボン酸塩(キレスト株式会社製、キレストPH−435)0.3質量部と、水溶性樹脂としてのポリビニルピロリドンK−60の35質量%水溶液(東京化成工業株式会社製、重量平均分子量450,000)3質量部とを、ホモミキサーを用いて30分間分散させて、立体造形用組成液5を調製した。得られた立体造形用組成液5について、実施例1と同様にして、保存安定性を評価した。結果を表2に示した。
-Preparation of composition liquid 5 for three-dimensional modeling-
70 parts by weight of water as a solvent, 30 parts by weight of propylene glycol (manufactured by Tokyo Chemical Industry Co., Ltd., vapor pressure at 100 ° C. of 20.19 mmHg) as a water-soluble organic solvent, and zirconium carbonate ammonium salt (No. 1) 3 parts by mass of Zircozol AC-20), manufactured by One Rare Element Chemical Co., Ltd., 0.3 parts by mass of phosphonobutanetricarboxylate (Cyrest PH-435, manufactured by Crest Co., Ltd.) as a stabilizer, and water-soluble 3 parts by mass of a 35 mass% aqueous solution of polyvinyl pyrrolidone K-60 as a resin (manufactured by Tokyo Chemical Industry Co., Ltd., weight average molecular weight 450,000) is dispersed for 30 minutes using a homomixer, and the composition liquid for three-dimensional modeling 5 was prepared. About the obtained composition liquid 5 for three-dimensional modeling, it carried out similarly to Example 1, and evaluated storage stability. The results are shown in Table 2.

(実施例6)
実施例1において、前記立体造形用組成液1を、下記のようにして調製した立体造形用組成液6に代えた以外は、実施例1と同様にして、立体造形物6を製造し、実施例1と同様の評価を行った。結果を表2に示した。
(Example 6)
In Example 1, the three-dimensional structure 6 was manufactured in the same manner as in Example 1 except that the three-dimensional composition liquid 1 was replaced with the three-dimensional composition liquid 6 prepared as follows. Evaluation similar to Example 1 was performed. The results are shown in Table 2.

−立体造形用組成液6の調製−
溶媒としての水70質量部と、水溶性有機溶剤としてのプロピレングリコール(東京化成工業株式会社製、100℃における蒸気圧が20.19mmHg)30質量部と、架橋剤としての炭酸ジルコニウムアンモニウム塩(第一稀元素化学工業株式会社製、ジルコゾール AC−20)3質量部と、安定化剤としての2−アミノ−2−エチル−1,3−プロパンジオール(AEPD、東京化成工業株式会社製)0.3質量部と、水溶性樹脂としてのポリビニルピロリドンK−30(第一工業製薬株式会社製、重量平均分子量50,000)0.1質量部とを、ホモミキサーを用いて30分間分散させて、立体造形用組成液6を調製した。得られた立体造形用組成液6について、実施例1と同様にして、保存安定性を評価した。結果を表2に示した。
-Preparation of composition liquid 6 for three-dimensional modeling-
70 parts by weight of water as a solvent, 30 parts by weight of propylene glycol (manufactured by Tokyo Chemical Industry Co., Ltd., vapor pressure at 100 ° C. of 20.19 mmHg) as a water-soluble organic solvent, and zirconium carbonate ammonium salt (No. 1) 1 Rare Element Chemical Industries, Ltd., Zircosol AC-20) 3 parts by mass and 2-amino-2-ethyl-1,3-propanediol (AEPD, Tokyo Chemical Industry Co., Ltd.) as a stabilizer 0. 3 parts by mass and 0.1 part by mass of polyvinylpyrrolidone K-30 (Daiichi Kogyo Seiyaku Co., Ltd., weight average molecular weight 50,000) as a water-soluble resin were dispersed for 30 minutes using a homomixer, A three-dimensional modeling composition 6 was prepared. About the obtained composition liquid 6 for three-dimensional modeling, it carried out similarly to Example 1, and evaluated storage stability. The results are shown in Table 2.

(実施例7)
実施例1において、前記立体造形用組成液1を、下記のようにして調製した立体造形用組成液7に代えた以外は、実施例1と同様にして、立体造形物7を製造し、実施例1と同様の評価を行った。結果を表3に示した。
(Example 7)
In Example 1, the three-dimensional structure 7 was manufactured in the same manner as in Example 1 except that the three-dimensional composition liquid 1 was replaced with the three-dimensional composition liquid 7 prepared as follows. Evaluation similar to Example 1 was performed. The results are shown in Table 3.

−立体造形用組成液7の調製−
溶媒としての水70質量部と、水溶性有機溶剤としてのプロピレングリコール(東京化成工業株式会社製、100℃における蒸気圧が20.19mmHg)30質量部と、架橋剤としての炭酸ジルコニウムアンモニウム塩(第一稀元素化学工業株式会社製、ジルコゾール AC−20)3質量部と、安定化剤としてのジヒドロキシエチルグリシン塩(キレスト株式会社製、キレストG−50)0.3質量部と、水溶性樹脂としてのポリビニルピロリドンK−30(第一工業製薬株式会社製、重量平均分子量50,000)0.5質量部とを、ホモミキサーを用いて30分間分散させて、立体造形用組成液7を調製した。得られた立体造形用組成液7について、実施例1と同様にして、保存安定性を評価した。結果を表3に示した。
-Preparation of composition liquid 7 for three-dimensional modeling-
70 parts by weight of water as a solvent, 30 parts by weight of propylene glycol (manufactured by Tokyo Chemical Industry Co., Ltd., vapor pressure at 100 ° C. of 20.19 mmHg) as a water-soluble organic solvent, and zirconium carbonate ammonium salt (No. 1) 3 parts by mass of Zircosol AC-20) manufactured by One Rare Element Chemical Co., Ltd., 0.3 parts by mass of dihydroxyethylglycine salt (Cyrest G-50, manufactured by Crest Co., Ltd.) as a stabilizer, and water-soluble resin Of polyvinyl pyrrolidone K-30 (Daiichi Kogyo Seiyaku Co., Ltd., weight average molecular weight 50,000) was dispersed for 30 minutes using a homomixer to prepare a three-dimensional modeling composition liquid 7. . About the obtained three-dimensional modeling composition liquid 7, it carried out similarly to Example 1, and evaluated storage stability. The results are shown in Table 3.

(実施例8)
実施例1において、前記立体造形用組成液1を、下記のようにして調製した立体造形用組成液8に代えた以外は、実施例1と同様にして、立体造形物8を製造し、実施例1と同様の評価を行った。結果を表3に示した。
(Example 8)
In Example 1, the three-dimensional structure 8 was manufactured in the same manner as in Example 1 except that the three-dimensional composition liquid 1 was replaced with the three-dimensional composition liquid 8 prepared as follows. Evaluation similar to Example 1 was performed. The results are shown in Table 3.

−立体造形用組成液8の調製−
溶媒としての水70質量部と、水溶性有機溶剤としてのプロピレングリコール(東京化成工業株式会社製、100℃における蒸気圧が20.19mmHg)30質量部と、架橋剤としての炭酸ジルコニウムアンモニウム塩(第一稀元素化学工業株式会社製、ジルコゾール AC−20)3質量部と、安定化剤としてのホスホノブタントリカルボン酸塩(キレスト株式会社製、キレストPH−435)0.3質量部と、水溶性樹脂としてのポリビニルピロリドンK−30(第一工業製薬株式会社製、重量平均分子量50,000)1質量部とを、ホモミキサーを用いて30分間分散させて、立体造形用組成液8を調製した。得られた立体造形用組成液8について、実施例1と同様にして、保存安定性を評価した。結果を表3に示した。
-Preparation of composition liquid 8 for three-dimensional modeling-
70 parts by weight of water as a solvent, 30 parts by weight of propylene glycol (manufactured by Tokyo Chemical Industry Co., Ltd., vapor pressure at 100 ° C. of 20.19 mmHg) as a water-soluble organic solvent, and zirconium carbonate ammonium salt (No. 1) 3 parts by mass of Zircozol AC-20), manufactured by One Rare Element Chemical Co., Ltd., 0.3 parts by mass of phosphonobutanetricarboxylate (Cyrest PH-435, manufactured by Crest Co., Ltd.) as a stabilizer, and water-soluble One part by weight of polyvinyl pyrrolidone K-30 (made by Daiichi Kogyo Seiyaku Co., Ltd., weight average molecular weight 50,000) as a resin was dispersed for 30 minutes using a homomixer to prepare a composition solution 8 for three-dimensional modeling. . About the obtained composition liquid 8 for three-dimensional modeling, it carried out similarly to Example 1, and evaluated storage stability. The results are shown in Table 3.

(実施例9)
実施例1において、前記立体造形用組成液1を、下記のようにして調製した立体造形用組成液9に代えた以外は、実施例1と同様にして、立体造形物9を製造し、実施例1と同様の評価を行った。結果を表3に示した。
Example 9
In Example 1, the three-dimensional model 9 was manufactured and carried out in the same manner as in Example 1 except that the three-dimensional model composition liquid 1 was replaced with the three-dimensional model composition liquid 9 prepared as follows. Evaluation similar to Example 1 was performed. The results are shown in Table 3.

−立体造形用組成液9の調製−
溶媒としての水70質量部と、水溶性有機溶剤としてのプロピレングリコール(東京化成工業株式会社製、100℃における蒸気圧が20.19mmHg)30質量部と、架橋剤としての炭酸ジルコニウムアンモニウム塩(第一稀元素化学工業株式会社製、ジルコゾール AC−20)3質量部と、安定化剤としてのホスホノブタントリカルボン酸塩(キレスト株式会社製、キレストPH−435)0.3質量部と、水溶性樹脂としてのポリビニルピロリドンK−30(第一工業製薬株式会社製、重量平均分子量50,000)3質量部とを、ホモミキサーを用いて30分間分散させて、立体造形用組成液8を調製した。得られた立体造形用組成液8について、実施例1と同様にして、保存安定性を評価した。結果を表3に示した。
-Preparation of composition liquid 9 for three-dimensional modeling-
70 parts by weight of water as a solvent, 30 parts by weight of propylene glycol (manufactured by Tokyo Chemical Industry Co., Ltd., vapor pressure at 100 ° C. of 20.19 mmHg) as a water-soluble organic solvent, and zirconium carbonate ammonium salt (No. 1) 3 parts by mass of Zircozol AC-20), manufactured by One Rare Element Chemical Co., Ltd., 0.3 parts by mass of phosphonobutanetricarboxylate (Cyrest PH-435, manufactured by Crest Co., Ltd.) as a stabilizer, and water-soluble 3 parts by mass of polyvinyl pyrrolidone K-30 (made by Daiichi Kogyo Seiyaku Co., Ltd., weight average molecular weight 50,000) as a resin was dispersed for 30 minutes using a homomixer to prepare a composition solution 8 for three-dimensional modeling. . About the obtained composition liquid 8 for three-dimensional modeling, it carried out similarly to Example 1, and evaluated storage stability. The results are shown in Table 3.

(実施例10)
実施例1において、前記立体造形用組成液1を、下記のようにして調製した立体造形用組成液10に代えた以外は、実施例1と同様にして、立体造形物10を製造し、実施例1と同様の評価を行った。結果を表4に示した。
(Example 10)
In Example 1, the three-dimensional structure 10 was manufactured in the same manner as in Example 1 except that the three-dimensional composition liquid 1 was replaced with the three-dimensional composition liquid 10 prepared as follows. Evaluation similar to Example 1 was performed. The results are shown in Table 4.

−立体造形用組成液10の調製−
溶媒としての水70質量部と、水溶性有機溶剤としての3−メチル−1,3−ブタンジオール(東京化成工業株式会社製、100℃における蒸気圧は15.05mmHg)30質量部と、架橋剤としての炭酸ジルコニウムアンモニウム塩(第一稀元素化学工業株式会社製、ジルコゾール AC−20)3質量部と、安定化剤としての2−アミノ−2−エチル−1,3−プロパンジオール(AEPD、東京化成工業株式会社製)0.3質量部と、水溶性樹脂としてのポリビニルピロリドンK−90(BASF社製、重量平均分子量1,400,000)0.1質量部とを、ホモミキサーを用いて30分間分散させて、立体造形用組成液10を調製した。得られた立体造形用組成液10について、実施例1と同様にして、保存安定性を評価した。結果を表4に示した。
-Preparation of 3D modeling composition 10-
70 parts by mass of water as a solvent, 30 parts by mass of 3-methyl-1,3-butanediol (manufactured by Tokyo Chemical Industry Co., Ltd., vapor pressure at 100 ° C. is 15.05 mmHg) as a water-soluble organic solvent, and a crosslinking agent 3 parts by mass of zirconium ammonium carbonate (Zircozol AC-20, manufactured by Daiichi Rare Element Chemical Co., Ltd.) and 2-amino-2-ethyl-1,3-propanediol (AEPD, Tokyo) as a stabilizer 0.3 parts by mass (made by Kasei Kogyo Co., Ltd.) and 0.1 parts by mass of polyvinylpyrrolidone K-90 (BASF, weight average molecular weight 1,400,000) as a water-soluble resin, using a homomixer The composition liquid 10 for three-dimensional modeling was prepared by dispersing for 30 minutes. About the obtained composition liquid 10 for three-dimensional modeling, it carried out similarly to Example 1, and evaluated storage stability. The results are shown in Table 4.

(実施例11)
実施例1において、前記立体造形用組成液1を、下記のようにして調製した立体造形用組成液11に代えた以外は、実施例1と同様にして、立体造形物11を製造し、実施例1と同様の評価を行った。結果を表4に示した。
(Example 11)
In Example 1, the three-dimensional structure 11 was manufactured in the same manner as in Example 1 except that the three-dimensional composition liquid 1 was replaced with the three-dimensional composition liquid 11 prepared as follows. Evaluation similar to Example 1 was performed. The results are shown in Table 4.

−立体造形用組成液11の調製−
溶媒としての水70質量部と、水溶性有機溶剤としてのプロピレングリコール(東京化成工業株式会社製、100℃における蒸気圧が20.19mmHg)30質量部と、架橋剤としてのジルコニウムラクテートアンモニウム塩(オルガチックス ZC−300、マツモトファインケミカル株式会社製)3質量部と、安定化剤としての2−アミノ−2−エチル−1,3−プロパンジオール(AEPD、東京化成工業株式会社製)0.3質量部と、水溶性樹脂としてのポリビニルピロリドンK−90(BASF社製、重量平均分子量1,400,000)1質量部とを、ホモミキサーを用いて30分間分散させて、立体造形用組成液11を調製した。
得られた立体造形用組成液11について、実施例1と同様にして、保存安定性を評価した。結果を表4に示した。
-Preparation of composition liquid 11 for three-dimensional modeling-
70 parts by mass of water as a solvent, 30 parts by mass of propylene glycol (manufactured by Tokyo Chemical Industry Co., Ltd., vapor pressure at 100 ° C. of 20.19 mmHg) as a water-soluble organic solvent, and zirconium lactate ammonium salt (Orga as a crosslinking agent) Chicks ZC-300, manufactured by Matsumoto Fine Chemical Co., Ltd.) 3 parts by mass, and 2-amino-2-ethyl-1,3-propanediol (AEPD, manufactured by Tokyo Chemical Industry Co., Ltd.) as a stabilizer, 0.3 parts by mass And 1 part by mass of polyvinylpyrrolidone K-90 (BASF, weight average molecular weight 1,400,000) as a water-soluble resin are dispersed for 30 minutes using a homomixer, and the three-dimensional modeling composition liquid 11 is obtained. Prepared.
About the obtained composition liquid 11 for three-dimensional modeling, it carried out similarly to Example 1, and evaluated storage stability. The results are shown in Table 4.

(実施例12)
実施例1において、前記立体造形用組成液1を、下記のようにして調製した立体造形用組成液12に代えた以外は、実施例1と同様にして、立体造形物12を製造し、実施例1と同様の評価を行った。結果を表4に示した。
(Example 12)
In Example 1, the three-dimensional model 12 was manufactured and carried out in the same manner as in Example 1 except that the three-dimensional model composition liquid 1 was replaced with the three-dimensional model composition liquid 12 prepared as follows. Evaluation similar to Example 1 was performed. The results are shown in Table 4.

−立体造形用組成液12の調製−
溶媒としての水70質量部と、水溶性有機溶剤としてのプロピレングリコール(東京化成工業株式会社製、100℃における蒸気圧が20.19mmHg)30質量部と、架橋剤としてのジルコニウムラクテートアンモニウム塩(オルガチックス ZC−300、マツモトファインケミカル株式会社製)3質量部と、安定化剤としてのジヒドロキシエチルグリシン塩(キレスト株式会社製、キレストG−50)0.3質量部と、水溶性樹脂としてのポリビニルピロリドンK−85(株式会社日本触媒製、重量平均分子量1,000,000)1質量部とを、ホモミキサーを用いて30分間分散させて、立体造形用組成液12を調製した。
得られた立体造形用組成液12について、実施例1と同様にして、保存安定性を評価した。結果を表4に示した。
-Preparation of composition liquid 12 for three-dimensional modeling-
70 parts by mass of water as a solvent, 30 parts by mass of propylene glycol (manufactured by Tokyo Chemical Industry Co., Ltd., vapor pressure at 100 ° C. of 20.19 mmHg) as a water-soluble organic solvent, and zirconium lactate ammonium salt (Orga as a crosslinking agent) Chicks ZC-300 (manufactured by Matsumoto Fine Chemical Co., Ltd.) 3 parts by mass, dihydroxyethyl glycine salt as a stabilizer (Cyrest Co., Ltd., Kirest G-50) 0.3 part by mass, and polyvinylpyrrolidone as a water-soluble resin One-part K-85 (manufactured by Nippon Shokubai Co., Ltd., weight average molecular weight 1,000,000) was dispersed for 30 minutes using a homomixer to prepare a three-dimensional modeling composition liquid 12.
About the obtained composition liquid 12 for three-dimensional modeling, it carried out similarly to Example 1, and evaluated storage stability. The results are shown in Table 4.

(実施例13)
実施例1において、前記立体造形用組成液1を、下記のようにして調製した立体造形用組成液13に代えた以外は、実施例1と同様にして、立体造形物13を製造し、実施例1と同様の評価を行った。結果を表5に示した。
(Example 13)
In Example 1, the three-dimensional structure 13 was manufactured in the same manner as in Example 1 except that the three-dimensional composition liquid 1 was replaced with the three-dimensional composition liquid 13 prepared as follows. Evaluation similar to Example 1 was performed. The results are shown in Table 5.

−立体造形用組成液13の調製−
溶媒としての水70質量部と、水溶性有機溶剤としての3−メチル−1,3−ブタンジオール(東京化成工業株式会社製、100℃における蒸気圧は15.05mmHg)30質量部と、架橋剤としての炭酸ジルコニウムアンモニウム塩(第一稀元素化学工業株式会社製、ジルコゾール AC−20)3質量部と、安定化剤としてのジヒドロキシエチルグリシン塩(キレスト株式会社製、キレストG−50)0.3質量部と、水溶性樹脂としてのポリビニルピロリドンK−60の35質量%水溶液(東京化成工業株式会社製、重量平均分子量450,000)5質量部とを、ホモミキサーを用いて30分間分散させて、立体造形用組成液13を調製した。
得られた立体造形用組成液13について、実施例1と同様にして、保存安定性を評価した。結果を表5に示した。
-Preparation of composition liquid 13 for three-dimensional modeling-
70 parts by mass of water as a solvent, 30 parts by mass of 3-methyl-1,3-butanediol (manufactured by Tokyo Chemical Industry Co., Ltd., vapor pressure at 100 ° C. is 15.05 mmHg) as a water-soluble organic solvent, and a crosslinking agent 3 parts by mass of zirconium ammonium carbonate (Zircozol AC-20, manufactured by Daiichi Rare Element Chemical Co., Ltd.) and 0.3 mg of dihydroxyethylglycine salt (Cylest G-50, manufactured by Kirest Co., Ltd.) as a stabilizer Disperse 30 parts by weight using a homomixer with 5 parts by weight of a 35 part by weight aqueous solution of polyvinyl pyrrolidone K-60 (manufactured by Tokyo Chemical Industry Co., Ltd., weight average molecular weight 450,000) as a water-soluble resin. The composition liquid 13 for three-dimensional modeling was prepared.
About the obtained three-dimensional model | molding composition liquid 13, it carried out similarly to Example 1, and evaluated storage stability. The results are shown in Table 5.

(実施例14)
実施例1において、前記立体造形用組成液1を、下記のようにして調製した立体造形用組成液14に代えた以外は、実施例1と同様にして、立体造形物14を製造し、実施例1と同様の評価を行った。結果を表5に示した。
(Example 14)
In Example 1, the three-dimensional structure 14 was manufactured in the same manner as in Example 1, except that the three-dimensional composition liquid 1 was replaced with the three-dimensional composition liquid 14 prepared as follows. Evaluation similar to Example 1 was performed. The results are shown in Table 5.

−立体造形用組成液14の調製−
溶媒としての水70質量部と、水溶性有機溶剤としてのプロピレングリコール(東京化成工業株式会社製、100℃における蒸気圧が20.19mmHg)30質量部と、架橋剤としての炭酸ジルコニウムアンモニウム塩(第一稀元素化学工業株式会社製、ジルコゾール AC−20)3質量部と、安定化剤としての2−アミノ−2−エチル−1,3−プロパンジオール(AEPD、東京化成工業株式会社製)0.3質量部と、水溶性樹脂としてのポリエチレングリコール(「PEG 500,000」、和光純薬工業株式会社製、一級、重量平均分子量Mw=500,000)0.1質量部とを、ホモミキサーを用いて30分間分散させて、立体造形用組成液14を調製した。
得られた立体造形用組成液14について、実施例1と同様にして、保存安定性を評価した。結果を表5に示した。
-Preparation of composition liquid 14 for three-dimensional modeling-
70 parts by weight of water as a solvent, 30 parts by weight of propylene glycol (manufactured by Tokyo Chemical Industry Co., Ltd., vapor pressure at 100 ° C. of 20.19 mmHg) as a water-soluble organic solvent, and zirconium carbonate ammonium salt (No. 1) 1 Rare Element Chemical Industries, Ltd., Zircosol AC-20) 3 parts by mass and 2-amino-2-ethyl-1,3-propanediol (AEPD, Tokyo Chemical Industry Co., Ltd.) as a stabilizer 0. 3 parts by mass and 0.1 part by mass of polyethylene glycol (“PEG 500,000”, manufactured by Wako Pure Chemical Industries, Ltd., first grade, weight average molecular weight Mw = 500,000) as a water-soluble resin, The composition liquid 14 for three-dimensional modeling was prepared by dispersing for 30 minutes.
About the obtained three-dimensional modeling composition liquid 14, it carried out similarly to Example 1, and evaluated storage stability. The results are shown in Table 5.

(実施例15)
実施例1において、前記立体造形用組成液1を、下記のようにして調製した立体造形用組成液15に代えた以外は、実施例1と同様にして、立体造形物15を製造し、実施例1と同様の評価を行った。結果を表5に示した。
(Example 15)
In Example 1, the three-dimensional structure 15 was manufactured in the same manner as in Example 1 except that the three-dimensional composition liquid 1 was replaced with the three-dimensional composition liquid 15 prepared as follows. Evaluation similar to Example 1 was performed. The results are shown in Table 5.

−立体造形用組成液15の調製−
溶媒としての水70質量部と、水溶性有機溶剤としてのプロピレングリコール(東京化成工業株式会社製、100℃における蒸気圧が20.19mmHg)30質量部と、架橋剤としての炭酸ジルコニウムアンモニウム塩(第一稀元素化学工業株式会社製、ジルコゾール AC−20)3質量部と、安定化剤としての2−アミノ−2−エチル−1,3−プロパンジオール(AEPD、東京化成工業株式会社製)0.3質量部と、水溶性樹脂としてのポリエチレングリコール(「PEG 500,000」、和光純薬工業株式会社製、一級、重量平均分子量Mw=500,000)0.5質量部とを、ホモミキサーを用いて30分間分散させて、立体造形用組成液15を調製した。
得られた立体造形用組成液15について、実施例1と同様にして、保存安定性を評価した。結果を5に示した。
-Preparation of composition liquid 15 for three-dimensional modeling-
70 parts by weight of water as a solvent, 30 parts by weight of propylene glycol (manufactured by Tokyo Chemical Industry Co., Ltd., vapor pressure at 100 ° C. of 20.19 mmHg) as a water-soluble organic solvent, and zirconium carbonate ammonium salt (No. 1) 1 Rare Element Chemical Industries, Ltd., Zircosol AC-20) 3 parts by mass and 2-amino-2-ethyl-1,3-propanediol (AEPD, Tokyo Chemical Industry Co., Ltd.) as a stabilizer 0. 3 parts by mass and 0.5 part by mass of polyethylene glycol (“PEG 500,000”, manufactured by Wako Pure Chemical Industries, Ltd., first grade, weight average molecular weight Mw = 500,000) as a water-soluble resin, It was used and dispersed for 30 minutes to prepare a three-dimensional modeling composition liquid 15.
About the obtained three-dimensional modeling composition liquid 15, it carried out similarly to Example 1, and evaluated storage stability. The results are shown in 5.

(比較例1)
実施例1において、前記立体造形用組成液1を、下記のようにして調製した立体造形用組成液16に代えた以外は、実施例1と同様にして、立体造形物16を製造し、実施例1と同様の評価を行った。結果を表6に示した。
(Comparative Example 1)
In Example 1, the three-dimensional structure 16 was manufactured in the same manner as in Example 1 except that the three-dimensional composition liquid 1 was replaced with the three-dimensional composition liquid 16 prepared as follows. Evaluation similar to Example 1 was performed. The results are shown in Table 6.

−立体造形用組成液16の調製−
溶媒としての水70質量部と、水溶性有機溶剤としてのプロピレングリコール(東京化成工業株式会社製、100℃における蒸気圧が20.19mmHg)30質量部と、架橋剤としてのジルコニウムラクテートアンモニウム塩(オルガチックス ZC−300、マツモトファインケミカル株式会社製)3質量部と、安定化剤としての2−アミノ−2−エチル−1,3−プロパンジオール(AEPD、東京化成工業株式会社製)0.3質量部と、水溶性樹脂としてのポリビニルピロリドンK−15(東京化成工業株式会社製、重量平均分子量10,000)15質量部とを、ホモミキサーを用いて30分間分散させて、立体造形用組成液16を調製した。得られた立体造形用組成液16について、実施例1と同様にして、保存安定性を評価した。結果を表6に示した。
-Preparation of composition liquid 16 for three-dimensional modeling-
70 parts by mass of water as a solvent, 30 parts by mass of propylene glycol (manufactured by Tokyo Chemical Industry Co., Ltd., vapor pressure at 100 ° C. of 20.19 mmHg) as a water-soluble organic solvent, and zirconium lactate ammonium salt (Orga as a crosslinking agent) Chicks ZC-300, manufactured by Matsumoto Fine Chemical Co., Ltd.) 3 parts by mass, and 2-amino-2-ethyl-1,3-propanediol (AEPD, manufactured by Tokyo Chemical Industry Co., Ltd.) as a stabilizer, 0.3 parts by mass And 15 parts by mass of polyvinylpyrrolidone K-15 (manufactured by Tokyo Chemical Industry Co., Ltd., weight average molecular weight 10,000) as a water-soluble resin are dispersed for 30 minutes using a homomixer, and the three-dimensional modeling composition liquid 16 Was prepared. About the obtained composition liquid 16 for three-dimensional modeling, it carried out similarly to Example 1, and evaluated storage stability. The results are shown in Table 6.

(比較例2)
実施例1において、前記立体造形用組成液1を、下記のようにして調製した立体造形用組成液17に代えた以外は、実施例1と同様にして、立体造形物17を製造し、実施例1と同様の評価を行った。結果を表6に示した。
(Comparative Example 2)
In Example 1, the three-dimensional structure 17 was manufactured in the same manner as in Example 1 except that the three-dimensional composition liquid 1 was replaced with the three-dimensional composition liquid 17 prepared as follows. Evaluation similar to Example 1 was performed. The results are shown in Table 6.

−立体造形用組成液17の調製−
溶媒としての水70質量部と、水溶性有機溶剤としてのプロピレングリコール(東京化成工業株式会社製、100℃における蒸気圧が20.19mmHg)30質量部と、架橋剤としての炭酸ジルコニウムアンモニウム塩(第一稀元素化学工業株式会社製、ジルコゾール AC−20)3質量部と、安定化剤としてのジヒドロキシエチルグリシン塩(キレスト株式会社製、キレストG−50)0.3質量部と、水溶性樹脂としてのポリビニルピロリドンK−15(東京化成工業株式会社製、重量平均分子量10,000)15質量部とを、ホモミキサーを用いて30分間分散させて、立体造形用組成液17を調製した。得られた立体造形用組成液17について、実施例1と同様にして、保存安定性を評価した。結果を表6に示した。
-Preparation of composition liquid 17 for three-dimensional modeling-
70 parts by weight of water as a solvent, 30 parts by weight of propylene glycol (manufactured by Tokyo Chemical Industry Co., Ltd., vapor pressure at 100 ° C. of 20.19 mmHg) as a water-soluble organic solvent, and zirconium carbonate ammonium salt (No. 1) 3 parts by mass of Zircosol AC-20) manufactured by One Rare Element Chemical Co., Ltd., 0.3 parts by mass of dihydroxyethylglycine salt (Cyrest G-50, manufactured by Crest Co., Ltd.) as a stabilizer, and water-soluble resin 15 parts by mass of polyvinylpyrrolidone K-15 (manufactured by Tokyo Chemical Industry Co., Ltd., weight average molecular weight 10,000) was dispersed for 30 minutes using a homomixer to prepare a composition solution 17 for three-dimensional modeling. About the obtained three-dimensional model | molding composition liquid 17, it carried out similarly to Example 1, and evaluated storage stability. The results are shown in Table 6.

*表6中の「−」は測定不能であることを意味する。 * "-" In Table 6 means that measurement is impossible.

表1〜表6中の略号の詳細は、以下のとおりである。
*「AEPD」:2−アミノ−2−エチル−1,3−プロパンジオール(東京化成工業株式会社製)
*「G−50」:ジヒドロキシエチルグリシン塩(キレスト株式会社製、キレストG−50)
*「PH−435」:ホスホノブタントリカルボン酸塩(キレスト株式会社製、キレストPH−435)
*「PEG 500,000」:ポリエチレングリコール(和光純薬工業株式会社製、一級、重量平均分子量Mw=500,000)
Details of the abbreviations in Tables 1 to 6 are as follows.
* “AEPD”: 2-amino-2-ethyl-1,3-propanediol (manufactured by Tokyo Chemical Industry Co., Ltd.)
* "G-50": dihydroxyethyl glycine salt (manufactured by Kirest Co., Ltd., Kirest G-50)
* “PH-435”: Phosphonobutane tricarboxylate (manufactured by Kyrest Co., Ltd., Kyrest PH-435)
* “PEG 500,000”: polyethylene glycol (manufactured by Wako Pure Chemical Industries, Ltd., first grade, weight average molecular weight Mw = 500,000)

本発明の態様は、例えば、以下のとおりである。
<1> 有機材料及び基材を含む立体造形用粉末材料からなる立体造形物を形成するために用いる立体造形用組成液であって、
前記有機材料と架橋する架橋剤と、重量平均分子量が50,000以上の水溶性樹脂と、を含むことを特徴とする立体造形用組成液である。
<2> 前記水溶性樹脂の重量平均分子量が、700,000以上である前記<1>に記載の立体造形用組成液である。
<3> 前記水溶性樹脂が、ポリビニルピロリドンである前記<1>から<2>のいずれかに記載の立体造形用組成液である。
<4> 前記架橋剤が、金属塩である前記<1>から<3>のいずれかに記載の立体造形用組成液である。
<5> 前記架橋剤が、ジルコニウム化合物である前記<1>から<4>のいずれかに記載の立体造形用組成液である。
<6> アミノ基含有化合物、ホスホノ基含有化合物、並びにグルコン酸及びその塩から選択される少なくとも1種を更に含有する前記<1>から<5>のいずれかに記載の立体造形用組成液である。
<7> 前記アミノ基含有化合物が、アミノ基含有多価アルコール、水酸基含有アミン化合物及びアミノ基含有キレート剤のいずれかである前記<6>に記載の立体造形用組成液である。
<8> 前記溶媒を含有し、該溶媒が100℃における蒸気圧が10mmHg以上である水溶性有機溶媒を含む前記<1>から<7>のいずれかに記載の立体造形用組成液である。
<9> 前記有機材料を溶解可能である前記<1>から<8>のいずれかに記載の立体造形用組成液である。
<10> 有機材料及び基材を含む立体造形用粉末材料と、前記<1>から<9>のいずれかに記載の立体造形用組成液と、を有することを特徴とする立体造形材料セットである。
<11> 前記基材が、前記有機材料で被覆されてなる前記<10>に記載の立体造形材料セットである。
<12> 前記基材が、前記立体造形用組成液と反応しない基材である前記<10>から<11>のいずれかに記載の立体造形材料セットである。
<13> 前記基材が、金属及びセラミックスの少なくともいずれかである前記<10>から<12>のいずれかに記載の立体造形材料セットである。
<14> 前記有機材料が、水溶性樹脂を含む前記<10>から<13>のいずれかに記載の立体造形材料セットである。
<15> 前記水溶性樹脂が、変性ポリビニルアルコール樹脂を含む前記<14>に記載の立体造形材料セットである。
<16> 有機材料及び基材を含む立体造形用粉末材料を供給する粉末材料供給工程と、
供給された該粉末材料に立体造形用組成液を付与して、該粉末材料の所定領域を硬化させる粉末材料硬化工程と、
を繰り返すことで立体造形物を製造する製造方法であって、
前記立体造形用組成液が前記<1>から<9>のいずれかに記載の立体造形用組成液であることを特徴とする立体造形物の製造方法である。
<17> 前記粉末材料供給工程と前記粉末材料硬化工程とを繰り返して作製した立体造形物を焼結する焼結工程を更に含む前記<16>に記載の立体造形物の製造方法である。
<18> 有機材料及び基材を含む立体造形用粉末材料を供給する粉末材料供給手段と、
供給された該粉末材料に前記<1>から<9>のいずれかに記載の立体造形用組成液を付与して、該粉末材料の所定領域を硬化させる粉末材料硬化手段と、
前記立体造形用粉末材料が収容される粉末材料収容部と、
前記立体造形用組成液が収容される硬化液収容部と、
を有することを特徴とする立体造形物の製造装置である。
Aspects of the present invention are as follows, for example.
<1> A composition liquid for three-dimensional modeling used to form a three-dimensional modeled object composed of a three-dimensional model powder material including an organic material and a base material,
It is a composition liquid for three-dimensional modeling characterized by including the crosslinking agent which bridge | crosslinks with the said organic material, and the water-soluble resin whose weight average molecular weight is 50,000 or more.
<2> The three-dimensional modeling composition liquid according to <1>, wherein the water-soluble resin has a weight average molecular weight of 700,000 or more.
<3> The three-dimensional modeling composition liquid according to any one of <1> to <2>, wherein the water-soluble resin is polyvinylpyrrolidone.
<4> The three-dimensional modeling composition liquid according to any one of <1> to <3>, wherein the crosslinking agent is a metal salt.
<5> The three-dimensional modeling composition liquid according to any one of <1> to <4>, wherein the crosslinking agent is a zirconium compound.
<6> The composition liquid for three-dimensional modeling according to any one of <1> to <5>, further including at least one selected from an amino group-containing compound, a phosphono group-containing compound, and gluconic acid and a salt thereof. is there.
<7> The three-dimensional modeling composition liquid according to <6>, wherein the amino group-containing compound is any one of an amino group-containing polyhydric alcohol, a hydroxyl group-containing amine compound, and an amino group-containing chelating agent.
<8> The composition solution for three-dimensional modeling according to any one of <1> to <7>, including the solvent, wherein the solvent contains a water-soluble organic solvent having a vapor pressure of 10 mmHg or higher at 100 ° C.
<9> The composition solution for three-dimensional modeling according to any one of <1> to <8>, wherein the organic material can be dissolved.
<10> A three-dimensional modeling material set comprising: a three-dimensional modeling powder material including an organic material and a base material; and the three-dimensional modeling composition liquid according to any one of <1> to <9>. is there.
<11> The three-dimensional modeling material set according to <10>, wherein the base material is coated with the organic material.
<12> The three-dimensional modeling material set according to any one of <10> to <11>, wherein the base material is a base material that does not react with the three-dimensional modeling composition liquid.
<13> The three-dimensional modeling material set according to any one of <10> to <12>, wherein the base material is at least one of a metal and a ceramic.
<14> The three-dimensional modeling material set according to any one of <10> to <13>, wherein the organic material includes a water-soluble resin.
<15> The three-dimensional modeling material set according to <14>, wherein the water-soluble resin includes a modified polyvinyl alcohol resin.
<16> a powder material supply step for supplying a powder material for three-dimensional modeling including an organic material and a base material;
A powder material curing step of applying a three-dimensional modeling composition liquid to the supplied powder material and curing a predetermined region of the powder material;
Is a manufacturing method for manufacturing a three-dimensional modeled object,
3. The method for producing a three-dimensional structure, wherein the three-dimensional structure forming liquid is the three-dimensional structure forming liquid according to any one of <1> to <9>.
<17> The method for producing a three-dimensional structure according to <16>, further including a sintering step of sintering a three-dimensional structure manufactured by repeating the powder material supply step and the powder material curing step.
<18> Powder material supply means for supplying a powder material for three-dimensional modeling including an organic material and a base material;
Powder material curing means for applying the three-dimensional modeling composition liquid according to any one of <1> to <9> to the supplied powder material and curing a predetermined region of the powder material;
A powder material container in which the powder material for three-dimensional modeling is stored;
A curable liquid storage part in which the three-dimensional modeling composition liquid is stored;
It is the manufacturing apparatus of the three-dimensional molded item characterized by having.

1 造形側粉末貯留槽
2 供給側粉末貯留槽
3 ステージ
4 立体造形用組成液
5 インクジェットヘッド
6 均し機構
DESCRIPTION OF SYMBOLS 1 Modeling side powder storage tank 2 Supply side powder storage tank 3 Stage 4 Composition liquid for three-dimensional modeling 5 Inkjet head 6 Leveling mechanism

特開2004−330743号公報JP 2004-330743 A 特開2005−297325号公報JP 2005-297325 A

Claims (18)

有機材料及び基材を含む立体造形用粉末材料からなる立体造形物を形成するために用いる立体造形用組成液であって、
前記有機材料と架橋する架橋剤と、重量平均分子量が50,000以上の水溶性樹脂と、を含むことを特徴とする立体造形用組成液。
It is a composition liquid for three-dimensional modeling used to form a three-dimensional model formed of a powder material for three-dimensional modeling including an organic material and a base material,
A composition solution for three-dimensional modeling, comprising: a crosslinking agent that crosslinks the organic material; and a water-soluble resin having a weight average molecular weight of 50,000 or more.
前記水溶性樹脂の重量平均分子量が、700,000以上である請求項1に記載の立体造形用組成液。   The composition liquid for three-dimensional modeling according to claim 1, wherein the water-soluble resin has a weight average molecular weight of 700,000 or more. 前記水溶性樹脂が、ポリビニルピロリドンである請求項1から2のいずれかに記載の立体造形用組成液。   The composition liquid for three-dimensional modeling according to claim 1, wherein the water-soluble resin is polyvinylpyrrolidone. 前記架橋剤が、金属塩である請求項1から3のいずれかに記載の立体造形用組成液。   The composition liquid for three-dimensional modeling according to any one of claims 1 to 3, wherein the crosslinking agent is a metal salt. 前記架橋剤が、ジルコニウム化合物である請求項1から4のいずれかに記載の立体造形用組成液。   The composition liquid for three-dimensional modeling according to any one of claims 1 to 4, wherein the crosslinking agent is a zirconium compound. アミノ基含有化合物、ホスホノ基含有化合物、並びにグルコン酸及びその塩から選択される少なくとも1種を更に含有する請求項1から5のいずれかに記載の立体造形用組成液。   The composition liquid for three-dimensional model | molding in any one of Claim 1 to 5 which further contains at least 1 sort (s) selected from an amino group containing compound, a phosphono group containing compound, and gluconic acid and its salt. 前記アミノ基含有化合物が、アミノ基含有多価アルコール、水酸基含有アミン化合物及びアミノ基含有キレート剤のいずれかである請求項6に記載の立体造形用組成液。   The composition liquid for three-dimensional modeling according to claim 6, wherein the amino group-containing compound is any one of an amino group-containing polyhydric alcohol, a hydroxyl group-containing amine compound, and an amino group-containing chelating agent. 前記溶媒を含有し、該溶媒が100℃における蒸気圧が10mmHg以上である水溶性有機溶媒を含む請求項1から7のいずれかに記載の立体造形用組成液。   The composition liquid for three-dimensional model | molding in any one of Claim 1 to 7 containing the said solvent and this solvent contains the water-soluble organic solvent whose vapor pressure in 100 degreeC is 10 mmHg or more. 前記有機材料を溶解可能である請求項1から8のいずれかに記載の立体造形用組成液。   The composition liquid for three-dimensional modeling according to any one of claims 1 to 8, wherein the organic material can be dissolved. 有機材料及び基材を含む立体造形用粉末材料と、請求項1から9のいずれかに記載の立体造形用組成液と、を有することを特徴とする立体造形材料セット。   A three-dimensional modeling material set comprising: a three-dimensional modeling powder material including an organic material and a base material; and the three-dimensional modeling composition liquid according to claim 1. 前記基材が、前記有機材料で被覆されてなる請求項10に記載の立体造形材料セット。   The three-dimensional modeling material set according to claim 10, wherein the base material is coated with the organic material. 前記基材が、前記立体造形用組成液と反応しない基材である請求項10から11のいずれかに記載の立体造形材料セット。   The three-dimensional modeling material set according to claim 10, wherein the base material is a base material that does not react with the three-dimensional modeling composition liquid. 前記基材が、金属及びセラミックスの少なくともいずれかである請求項10から12のいずれかに記載の立体造形材料セット。   The three-dimensional modeling material set according to any one of claims 10 to 12, wherein the base material is at least one of metal and ceramics. 前記有機材料が、水溶性樹脂を含む請求項10から13のいずれかに記載の立体造形材料セット。   The three-dimensional modeling material set according to any one of claims 10 to 13, wherein the organic material includes a water-soluble resin. 前記水溶性樹脂が、変性ポリビニルアルコール樹脂を含む請求項14に記載の立体造形材料セット。   The three-dimensional modeling material set according to claim 14, wherein the water-soluble resin contains a modified polyvinyl alcohol resin. 有機材料及び基材を含む立体造形用粉末材料を供給する粉末材料供給工程と、
供給された該粉末材料に立体造形用組成液を付与して、該粉末材料の所定領域を硬化させる粉末材料硬化工程と、
を繰り返すことで立体造形物を製造する製造方法であって、
前記立体造形用組成液が請求項1から9のいずれかに記載の立体造形用組成液であることを特徴とする立体造形物の製造方法。
A powder material supply step for supplying a powder material for three-dimensional modeling including an organic material and a substrate;
A powder material curing step of applying a three-dimensional modeling composition liquid to the supplied powder material and curing a predetermined region of the powder material;
Is a manufacturing method for manufacturing a three-dimensional modeled object,
The method for producing a three-dimensional object, wherein the three-dimensional object composition liquid is the three-dimensional object composition liquid according to any one of claims 1 to 9.
前記粉末材料供給工程と前記粉末材料硬化工程とを繰り返して作製した立体造形物を焼結する焼結工程を更に含む請求項16に記載の立体造形物の製造方法。   The manufacturing method of the three-dimensional molded item of Claim 16 which further includes the sintering process which sinters the three-dimensional molded item produced by repeating the said powder material supply process and the said powder material hardening process. 有機材料及び基材を含む立体造形用粉末材料を供給する粉末材料供給手段と、
供給された該粉末材料に請求項1から9のいずれかに記載の立体造形用組成液を付与して、該粉末材料の所定領域を硬化させる粉末材料硬化手段と、
前記立体造形用粉末材料が収容される粉末材料収容部と、
前記立体造形用組成液が収容される硬化液収容部と、
を有することを特徴とする立体造形物の製造装置。
A powder material supply means for supplying a powder material for three-dimensional modeling including an organic material and a substrate;
Powder material curing means for applying the three-dimensional modeling composition liquid according to any one of claims 1 to 9 to the supplied powder material and curing a predetermined region of the powder material;
A powder material container in which the powder material for three-dimensional modeling is stored;
A curable liquid storage part in which the three-dimensional modeling composition liquid is stored;
An apparatus for producing a three-dimensional structure, characterized by comprising:
JP2015055639A 2015-03-19 2015-03-19 Composition liquid for three-dimensional modeling and three-dimensional modeling material set, and method and apparatus for manufacturing three-dimensional article Active JP6536108B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015055639A JP6536108B2 (en) 2015-03-19 2015-03-19 Composition liquid for three-dimensional modeling and three-dimensional modeling material set, and method and apparatus for manufacturing three-dimensional article
US15/041,761 US10767071B2 (en) 2015-03-19 2016-02-11 Liquid material for forming three-dimensional object and material set for forming three-dimensional object, three-dimensional object producing method and three-dimensional object producing apparatus
EP16159025.2A EP3070136B1 (en) 2015-03-19 2016-03-07 Liquid material for forming three-dimensional object and material set for forming three-dimensional ojbect, three-dimensional object producing method and three-dimensional object producing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015055639A JP6536108B2 (en) 2015-03-19 2015-03-19 Composition liquid for three-dimensional modeling and three-dimensional modeling material set, and method and apparatus for manufacturing three-dimensional article

Publications (2)

Publication Number Publication Date
JP2016175213A true JP2016175213A (en) 2016-10-06
JP6536108B2 JP6536108B2 (en) 2019-07-03

Family

ID=55661124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015055639A Active JP6536108B2 (en) 2015-03-19 2015-03-19 Composition liquid for three-dimensional modeling and three-dimensional modeling material set, and method and apparatus for manufacturing three-dimensional article

Country Status (3)

Country Link
US (1) US10767071B2 (en)
EP (1) EP3070136B1 (en)
JP (1) JP6536108B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019052325A (en) * 2017-09-12 2019-04-04 セイコーエプソン株式会社 Method for manufacturing a three-dimensional molded object
JP2020012052A (en) * 2018-07-18 2020-01-23 Kjケミカルズ株式会社 Active energy ray-curable resin composition for three-dimensional molding support material
WO2020026709A1 (en) 2018-07-30 2020-02-06 コニカミノルタ株式会社 Three-dimensional modeling material, three-dimensional model production method using same, and three-dimensional model

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013138204A1 (en) 2012-03-13 2013-09-19 Mikulak James Materials for powder-based additive manufacturing processes
JP2016128547A (en) * 2015-01-09 2016-07-14 株式会社リコー Curing solution for three-dimensional molding, material set for three-dimensional molding and method and apparatus for manufacturing three-dimensional molded article
JP6468021B2 (en) * 2015-03-20 2019-02-13 株式会社リコー 3D modeling powder material, 3D modeling material set, 3D model, 3D model manufacturing method and manufacturing apparatus
US10233110B2 (en) * 2015-06-22 2019-03-19 Ricoh Company, Ltd. Material set for manufacturing glass object, liquid material for manufacturing glass object, method of manufacturing glass object, glass object, and device for manufacturing glass object
CN108699254B (en) 2015-12-22 2021-04-20 赢创运营有限公司 System and method for producing consumable powders
EP3375608B1 (en) 2017-03-17 2021-05-05 Ricoh Company, Ltd. Resin powder for solid freeform fabrication and device for solid freeform fabrication object
WO2018237336A1 (en) 2017-06-23 2018-12-27 Lawrence Livermore National Security, Llc Porous ceramic structure and sorbent solution for carbon dioxide capture
US11318532B2 (en) 2017-07-19 2022-05-03 Hewlett-Packard Development Company, L.P. Three-dimensional (3D) printing
WO2019027420A1 (en) 2017-07-31 2019-02-07 Hewlett-Packard Development Company, L.P. Green body including a metal nanoparticle binder
US11117318B2 (en) 2017-11-30 2021-09-14 Hewlett-Packard Development Company, L.P. Three-dimensional printing
EP3725496A4 (en) * 2017-12-13 2021-02-17 Konica Minolta, Inc. Method for producing three-dimensional molded object, and powder material used therein
JP7133641B2 (en) 2018-07-19 2022-09-08 ヒューレット-パッカード デベロップメント カンパニー エル.ピー. 3D printing
WO2020072075A1 (en) * 2018-10-05 2020-04-09 Hewlett-Packard Development Company, L.P. Three-dimensional printing
JP2020059227A (en) 2018-10-11 2020-04-16 株式会社リコー Manufacturing method and apparatus for three-dimensional modeling object
US11426929B2 (en) 2019-07-04 2022-08-30 Ricoh Company, Ltd. Powder material for producing three-dimensional object, kit for producing three-dimensional object, and three-dimensional object producing method and apparatus
US20220305557A1 (en) * 2021-03-22 2022-09-29 Ricoh Company, Ltd. Object producing method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005297325A (en) * 2004-04-09 2005-10-27 Sony Corp Three-dimensionally shaping method and three-dimensionally shaped article

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5902441A (en) 1996-09-04 1999-05-11 Z Corporation Method of three dimensional printing
JP3584782B2 (en) 1999-05-21 2004-11-04 松下電工株式会社 Three-dimensional model manufacturing method
DE10026955A1 (en) * 2000-05-30 2001-12-13 Daimler Chrysler Ag Material system for use in 3D printing
US20020156218A1 (en) * 2001-01-18 2002-10-24 Nippon Shokubai Co., Ltd. Curable resin composition and product treated by the same
JP2004330743A (en) 2003-05-12 2004-11-25 Fuji Photo Film Co Ltd Method for manufacturing three-dimensional shaped article
CA2526100A1 (en) * 2003-05-21 2004-12-29 Z Corporation Thermoplastic powder material system for appearance models from 3d printing systems
EP1516884B2 (en) * 2003-09-19 2023-02-22 Nippon Shokubai Co., Ltd. Water-absorbent resin having treated surface and process for producing the same
US7422713B2 (en) 2003-10-14 2008-09-09 Hewlett-Packard Development Company, L.P. Hybrid organic-inorganic composition for solid freeform fabrication
JP2005212358A (en) * 2004-01-30 2005-08-11 Fuji Photo Film Co Ltd Inkjet recording medium
JP2009275097A (en) 2008-05-14 2009-11-26 Fujifilm Corp Tridimensional shaping material and manufacturing method of tridimensional shaped article
JP5400042B2 (en) * 2008-05-26 2014-01-29 ソニー株式会社 Modeling equipment
JP4654457B2 (en) * 2009-02-26 2011-03-23 富田製薬株式会社 Powder for modeling and manufacturing method of model using the same
US8287121B2 (en) * 2009-09-10 2012-10-16 Fujifilm Corporation Inkjet recording medium and method of producing same
JP5862739B1 (en) 2013-09-30 2016-02-16 株式会社リコー Three-dimensional modeling powder material, curing liquid, three-dimensional modeling kit, and three-dimensional model manufacturing method and manufacturing apparatus
JP6241244B2 (en) * 2013-12-10 2017-12-06 セイコーエプソン株式会社 Three-dimensional structure manufacturing apparatus, three-dimensional structure manufacturing method, and three-dimensional structure
JP2015171782A (en) * 2014-03-12 2015-10-01 セイコーエプソン株式会社 Apparatus for manufacturing three-dimensional molded article and three-dimensional molded article

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005297325A (en) * 2004-04-09 2005-10-27 Sony Corp Three-dimensionally shaping method and three-dimensionally shaped article

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019052325A (en) * 2017-09-12 2019-04-04 セイコーエプソン株式会社 Method for manufacturing a three-dimensional molded object
JP2020012052A (en) * 2018-07-18 2020-01-23 Kjケミカルズ株式会社 Active energy ray-curable resin composition for three-dimensional molding support material
JP7223389B2 (en) 2018-07-18 2023-02-16 Kjケミカルズ株式会社 Active energy ray-curable resin composition for three-dimensional modeling support material
WO2020026709A1 (en) 2018-07-30 2020-02-06 コニカミノルタ株式会社 Three-dimensional modeling material, three-dimensional model production method using same, and three-dimensional model

Also Published As

Publication number Publication date
US10767071B2 (en) 2020-09-08
JP6536108B2 (en) 2019-07-03
EP3070136B1 (en) 2017-12-06
EP3070136A1 (en) 2016-09-21
US20160272844A1 (en) 2016-09-22

Similar Documents

Publication Publication Date Title
JP6536108B2 (en) Composition liquid for three-dimensional modeling and three-dimensional modeling material set, and method and apparatus for manufacturing three-dimensional article
JP6816789B2 (en) Powder material for three-dimensional modeling, curing liquid, kit for three-dimensional modeling, and manufacturing method and manufacturing equipment for three-dimensional modeling
JP6536107B2 (en) Composition liquid for three-dimensional modeling and three-dimensional modeling material set, and method and apparatus for manufacturing three-dimensional article
JP6428241B2 (en) Three-dimensional modeling powder material, three-dimensional modeling set, and three-dimensional model manufacturing method and manufacturing apparatus
JP6471482B2 (en) Three-dimensional modeling curable liquid, three-dimensional modeling material set, and manufacturing method of three-dimensional model
JP6516149B2 (en) Powder material for three-dimensional modeling, kit for three-dimensional modeling, and method for producing three-dimensional object
JP6468021B2 (en) 3D modeling powder material, 3D modeling material set, 3D model, 3D model manufacturing method and manufacturing apparatus
US9994702B2 (en) Liquid material for forming three-dimensional object and material set for forming three-dimensional object, and three-dimensional object producing method and three-dimensional object producing apparatus
US20160288206A1 (en) Powder material for three-dimensional modeling, material set for three-dimensional modeling, device of manufacturing three-dimensional object, method of manufacturing three-dimensional object, and three-dimensional object
JP6516201B2 (en) Powder material for three-dimensional modeling, kit for three-dimensional modeling, and method for producing three-dimensional object
EP3311984A1 (en) Powder material for solid freeform fabrication, material set of solid freeform fabrication, device for manufacturing solid freeform fabrication object, and method of manufacturing solid freeform fabrication object
JP2016179638A (en) Composition liquid for three-dimensional molding, three-dimensional molding set, apparatus for manufacturing three-dimensional molded object, and method for manufacturing three-dimensional molded object
JP6685503B2 (en) Three-dimensional modeling powder material, three-dimensional modeling kit, three-dimensional modeling green body, three-dimensional model and three-dimensional modeling green body manufacturing method, three-dimensional model and three-dimensional modeling green body manufacturing apparatus
JP6569269B2 (en) 3D modeling powder material, 3D modeling material set, 3D model manufacturing apparatus, and 3D model manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190520

R151 Written notification of patent or utility model registration

Ref document number: 6536108

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151