JP2016175043A - Catalyst for exhaust gas purification - Google Patents

Catalyst for exhaust gas purification Download PDF

Info

Publication number
JP2016175043A
JP2016175043A JP2015058468A JP2015058468A JP2016175043A JP 2016175043 A JP2016175043 A JP 2016175043A JP 2015058468 A JP2015058468 A JP 2015058468A JP 2015058468 A JP2015058468 A JP 2015058468A JP 2016175043 A JP2016175043 A JP 2016175043A
Authority
JP
Japan
Prior art keywords
catalyst
exhaust gas
concentration region
concentration
supported
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015058468A
Other languages
Japanese (ja)
Inventor
健 信川
Ken Nobukawa
健 信川
啓人 今井
Hiroto Imai
啓人 今井
恵次 洞口
Keiji Horaguch
恵次 洞口
康吉 佐々木
Kokichi Sasaki
康吉 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cataler Corp
Toyota Motor Corp
Original Assignee
Cataler Corp
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cataler Corp, Toyota Motor Corp filed Critical Cataler Corp
Priority to JP2015058468A priority Critical patent/JP2016175043A/en
Publication of JP2016175043A publication Critical patent/JP2016175043A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a catalyst for exhaust gas purification capable of suppressing deterioration of the catalyst during high load operation, maintaining a NOx purification rate of the catalyst during low-speed traveling, and improving the NOx purification rate of the catalyst during high-speed traveling.SOLUTION: A catalyst for exhaust gas purification includes a cylindrical substrate to be passed by exhaust gas, having a circular cross section which is vertical to a flow direction of exhaust gas, and a catalyst coat layer formed on the surface of the substrate. In the catalyst for exhaust gas, potassium in the catalyst coat has two different concentration regions.SELECTED DRAWING: Figure 1

Description

本発明は、排ガス浄化用触媒に関するものである。   The present invention relates to an exhaust gas purifying catalyst.

自動車等の内燃機関から排出される排ガスには、一酸化炭素(CO)、炭化水素(HC)、窒素酸化物(NOx)等の有害成分が含まれており、これらの有害成分は排ガス浄化用触媒によって浄化されてから大気中に放出されている。その中でも特に、酸素過剰雰囲気下で排出されるNOxは、酸化触媒やガソリン自動車で実用化されている三元触媒での浄化が難しく、NOxを浄化することができる有望な触媒として選択還元型NOx触媒(以下、SCR触媒という)やNOx吸蔵還元型触媒(以下、NSR触媒という)の開発が行われている。   Exhaust gas discharged from internal combustion engines such as automobiles contains harmful components such as carbon monoxide (CO), hydrocarbons (HC), and nitrogen oxides (NOx). These harmful components are used for exhaust gas purification. After being purified by the catalyst, it is released into the atmosphere. In particular, NOx discharged under an oxygen-excess atmosphere is difficult to purify with an oxidation catalyst or a three-way catalyst put to practical use in gasoline automobiles, and selective reduction type NOx as a promising catalyst capable of purifying NOx. Catalysts (hereinafter referred to as SCR catalysts) and NOx occlusion reduction type catalysts (hereinafter referred to as NSR catalysts) are being developed.

特許文献1では、排ガス浄化用触媒中のPtとRhの機能を最大に発現させ、NOx浄化性能をさらに向上させることを課題とし、担体基材と、担体基材の表面に形成され酸化物担体にアルカリ金属、アルカリ土類金属及び希土類元素から選ばれる少なくとも1種のNOx吸蔵材とPt及びPdの少なくとも一方とRhとを担持してなる触媒コート層と、からなり、排ガス雰囲気が酸素過剰のリーン雰囲気でNOx吸蔵材にNOxを吸蔵し、排ガス雰囲気をストイキ〜還元成分過剰のリッチ雰囲気に変化させてNOx吸蔵材に吸蔵されたNOxを放出させて還元するNOx吸蔵還元型の排ガス浄化用触媒であって、触媒コート層は、担体基材の表面に形成された下層と、下層の表面に形成された上層と、の二層構造をなし、Pt及びPdの少なくとも一方は少なくとも上層に担持され、Rhは触媒コート層におけるRhの全担持量に対して40質量%以下の量が上層に担持され60質量%以上の量が下層に担持されていることを特徴とする排ガス浄化用触媒によって、その課題を解決する。   In Patent Document 1, it is an object to maximize the functions of Pt and Rh in the exhaust gas purification catalyst and further improve the NOx purification performance. And at least one NOx occlusion material selected from alkali metals, alkaline earth metals and rare earth elements, and a catalyst coating layer carrying at least one of Pt and Pd and Rh, and the exhaust gas atmosphere has an excess of oxygen. NOx occlusion reduction type exhaust gas purifying catalyst that stores NOx in NOx occlusion material in lean atmosphere, changes exhaust gas atmosphere to stoichiometric to rich atmosphere with excess reducing components, and releases NOx occluded in NOx occlusion material for reduction The catalyst coat layer has a two-layer structure of a lower layer formed on the surface of the support substrate and an upper layer formed on the surface of the lower layer, and has a small amount of Pt and Pd. At least one is supported on at least the upper layer, and Rh is supported on the upper layer in an amount of 40% by mass or less relative to the total supported amount of Rh in the catalyst coat layer, and is supported on the lower layer in an amount of 60% by mass or more. The problem is solved by the exhaust gas purifying catalyst.

特許文献2では、パラジウムの担持比率が白金より多くなる触媒組成に比べ、よりNOx浄化性能に優れたNOx吸蔵還元型の排ガス浄化触媒を提供することを課題とし、支持基材の上に、ロジウムが担持された第1の触媒層と、白金及びパラジウムが担持され、前記白金の担持量(x)に対する前記パラジウムの担持量(y)の比率(y/x;モル比)が0<y/x≦1.0を満たす第2の触媒層とを前記支持基材側から順に有するNOx吸蔵還元型の排ガス浄化触媒によって、その課題を解決する。   In Patent Document 2, it is an object to provide an NOx occlusion reduction type exhaust gas purification catalyst that is more excellent in NOx purification performance than a catalyst composition in which the supported ratio of palladium is larger than that of platinum. And a ratio of the supported amount of palladium (y) to the supported amount of platinum (x) (y / x; molar ratio) is 0 <y / The problem is solved by a NOx occlusion reduction type exhaust gas purification catalyst having a second catalyst layer satisfying x ≦ 1.0 in order from the support base material side.

特許文献3では、高温で強アルカリを使用したNOx触媒においてNOxの脱離、浄化を行わせること及びS被毒を抑制し、容易にS被毒解除を行えつつ、更にNOx浄化機能を低下しないようにすることを課題とし、多孔質担体上に、セリウム化合物及びセシウム化合物を含む触媒成分部を被覆して成り、上記セリウム化合物は該触媒成分部の上面側により多く含まれ、上記セシウム化合物は該触媒成分部の下面側により多く含まれることを特徴とする排ガス浄化触媒によって、その課題を解決する。   In Patent Document 3, NOx desorption and purification are suppressed in a NOx catalyst using strong alkali at high temperature and S poisoning is suppressed, and S poisoning can be easily released, and the NOx purification function is not further deteriorated. The catalyst component part containing a cerium compound and a cesium compound is coated on a porous carrier, and the cerium compound is contained more in the upper surface side of the catalyst component part. The problem is solved by an exhaust gas purification catalyst characterized in that it is contained in a larger amount on the lower surface side of the catalyst component part.

特許文献4では、使用中のNOx吸蔵還元型触媒において、硫黄被毒を解消するための再生処理時におけるNOx吸蔵材の劣化を抑制するとともに、担持されているNOx吸蔵材の大部分を確実に再生できるようにすることを課題とし、排ガス通路をもつ基材と、該排ガス通路の表面に形成された担体層と、該担体層に担持された貴金属と、該担体層に担持された硫黄脱離温度が高い第1NOx吸蔵材と、該担体層に担持された硫黄脱離温度が低い第2NOx吸蔵材とを含んでなる排ガス浄化用触媒であって、排ガスは流速分布をもち、大きな流速の排ガスが流れる該排ガス通路の該担体層には、該第1NOx吸蔵材が該第2NOx吸蔵材より多く担持されていることを特徴とする排ガス浄化用触媒によって、その課題を解決する。   In Patent Document 4, in the NOx occlusion reduction type catalyst in use, deterioration of the NOx occlusion material during regeneration processing for eliminating sulfur poisoning is suppressed, and most of the NOx occlusion material carried is reliably An object of the present invention is to make it possible to regenerate, a base material having an exhaust gas passage, a support layer formed on the surface of the exhaust gas passage, a noble metal supported on the support layer, and a sulfur desorption supported on the support layer. An exhaust gas purifying catalyst comprising a first NOx occlusion material having a high separation temperature and a second NOx occlusion material having a low sulfur desorption temperature carried on the carrier layer, wherein the exhaust gas has a flow velocity distribution and has a large flow velocity. The problem is solved by an exhaust gas purifying catalyst characterized in that a larger amount of the first NOx occlusion material is supported on the carrier layer in the exhaust gas passage through which the exhaust gas flows than the second NOx occlusion material.

また、このような触媒を使用するシステムとして、例えば特許文献5には、選択接触還元(SCR)触媒と組み合わせたNOx吸蔵還元(NSR)又は希薄NOxトラップ(LNT)触媒等のアンモニア生成触媒を含む排出処理システムが記載されている。   As a system using such a catalyst, for example, Patent Document 5 includes an ammonia generation catalyst such as a NOx occlusion reduction (NSR) or lean NOx trap (LNT) catalyst combined with a selective catalytic reduction (SCR) catalyst. An emission treatment system is described.

特開2009−285604号公報JP 2009-285604 A 特開2010−201284号公報JP 2010-201284 A 特開2003−326164号公報JP 2003-326164 A 特開2004−114016号公報JP 2004-1114016 A 特表2012−522636号公報Special table 2012-522636 gazette

内燃機関は、燃費向上の観点から考えると、高速走行時(触媒床温度:約450℃)までリーンバーン運転されるようなリーンバーンシステムであることが望ましい。   From the viewpoint of improving fuel efficiency, it is desirable that the internal combustion engine be a lean burn system in which the lean burn operation is performed up to high speed running (catalyst bed temperature: about 450 ° C.).

しかしながら、リーンバーンシステムは酸素過多であるリーン状態で運転されるため、発生したNOxを効率よく浄化する触媒を必要とする。さらに、リーンバーンシステムは、坂道等の高負荷運転時、必要な出力を確保するためストイキで運転する必要がある。この際の排ガス温度は、図13に示すように、触媒の中心において約760℃となる。   However, since the lean burn system is operated in a lean state where oxygen is excessive, a catalyst for efficiently purifying generated NOx is required. Furthermore, the lean burn system needs to be operated with stoichiometry in order to ensure a necessary output during high load operation on a slope or the like. The exhaust gas temperature at this time is about 760 ° C. at the center of the catalyst as shown in FIG.

{図13の評価:
貴金属としてPt、Pd及びRhを有し、NOx吸蔵材としてカリウム0.15mol/L、バリウム0.2mol/L及びリチウム0.1mol/Lを有する2層構造の触媒コート層を備えた触媒(1L×2)を排気量3.5LのV型6気筒希薄燃焼エンジンの下流側に設置して実施}
{Evaluation of FIG. 13:
A catalyst (1 L) having a two-layer catalyst coating layer having Pt, Pd and Rh as noble metals and 0.15 mol / L potassium, 0.2 mol / L barium and 0.1 mol / L lithium as NOx storage material × 2) is installed downstream of a 3.5-liter V-6 lean combustion engine}

これより、リーンバーンシステムには、NOxを効率よく浄化し、耐熱性を有する触媒が必要とされる。   Thus, a lean burn system requires a catalyst that efficiently purifies NOx and has heat resistance.

一方で、NOx浄化触媒であるNSR触媒において、NOxを効率よく浄化する温度領域は、使用するNOx吸蔵材の種類により異なる。リーンバーンシステムで必要とされる高速走行時において十分なNOx吸蔵能を得るためには、NSR触媒はカリウム等の強塩基性のアルカリ金属をNOx吸蔵材として使用する必要がある。   On the other hand, in an NSR catalyst that is a NOx purification catalyst, the temperature range for efficiently purifying NOx differs depending on the type of NOx storage material used. In order to obtain a sufficient NOx occlusion capacity at the time of high-speed running required by the lean burn system, the NSR catalyst needs to use a strongly basic alkali metal such as potassium as the NOx occlusion material.

しかしながら、NSR触媒の吸蔵材であるカリウムはリーンバーンシステムにおいて高負荷運転を繰り返すと、図14及び15に示すように、触媒の下流部や、コージェライト基材へと移動する。   However, when the high load operation is repeated in the lean burn system, potassium as the storage material for the NSR catalyst moves to the downstream portion of the catalyst or the cordierite base material as shown in FIGS.

{図14の評価方法:
貴金属としてPt、Pd及びRhを有し、NOx吸蔵材としてカリウム0.15mol/L、バリウム0.2mol/L及びリチウム0.1mol/Lを有する2層構造の触媒コート層を備えた触媒(1.3L)を、大気中、各温度で5時間焼成。焼成後の触媒のコート層中のカリウムをICPにより分析}
{Evaluation method of FIG. 14:
A catalyst having a two-layered catalyst coat layer having Pt, Pd and Rh as noble metals and 0.15 mol / L potassium, 0.2 mol / L barium and 0.1 mol / L lithium as NOx storage material (1 .3L) at room temperature for 5 hours. Analysis of potassium in the catalyst coating layer after calcination by ICP}

このNSR触媒中のカリウム量の減少は、NSR触媒のNOx吸蔵量を低下させ、これに伴いNOx浄化率を低下させる。   This decrease in the amount of potassium in the NSR catalyst reduces the NOx storage amount of the NSR catalyst, and accordingly, reduces the NOx purification rate.

また、触媒中のカリウムを多くしすぎると、カリウムが貴金属の触媒活性、特に低速走行時(触媒床温度:約300℃)における貴金属の触媒活性を低下させる問題が出てくる。   Further, when the amount of potassium in the catalyst is excessively increased, there arises a problem that potassium decreases the catalytic activity of the noble metal, particularly the noble metal catalytic activity during low speed running (catalyst bed temperature: about 300 ° C.).

これより、リーンバーンシステムには、高負荷運転を経た後でも、NOx吸蔵材としてのカリウムを低速走行時における貴金属の触媒活性を低下させない程度含有し、高速運転時において高いNOx浄化性能を示す排ガス浄化用触媒が必要とされる。   As a result, the lean burn system contains potassium as a NOx occlusion material to the extent that it does not reduce the catalytic activity of the noble metal during low-speed driving, and exhibits high NOx purification performance during high-speed driving. A purification catalyst is required.

このような問題に対し、例えば特許文献3に記載の方法では、基材中央部の吸蔵材の量が減少することによって高速運転時のNOx性能が低下する。特許文献4では、排ガスと接触頻度が大きい中央部の吸蔵材は高速運転時でのNOx吸着能が低いため、高速運転時におけるリーンNOx浄化性能が低い。よって、従来の触媒では、満足するNOx浄化性能を得ることができなかった。   In order to solve such a problem, for example, in the method described in Patent Document 3, the NOx performance during high-speed operation decreases due to a decrease in the amount of the occlusion material at the center of the base material. In Patent Document 4, the central storage material having a high contact frequency with the exhaust gas has a low NOx adsorption capability at high speed operation, and therefore has a low lean NOx purification performance at high speed operation. Therefore, with conventional catalysts, satisfactory NOx purification performance could not be obtained.

したがって、本発明は、触媒床温度約760℃での高負荷運転を経た後でも、触媒床温度約300℃での低速走行時における触媒のNOx浄化性能を維持し、触媒床温度約450℃での高速走行時における触媒のNOx浄化性能が向上された排ガス浄化用触媒を提供することを目的とする。   Therefore, the present invention maintains the NOx purification performance of the catalyst during low-speed running at a catalyst bed temperature of about 300 ° C. even after a high load operation at a catalyst bed temperature of about 760 ° C. An object of the present invention is to provide an exhaust gas purifying catalyst in which the NOx purification performance of the catalyst during high-speed traveling is improved.

本発明者らは、前記目的を解決するための手段を種々検討した結果、排ガスの流れ方向に対して垂直な断面が円である前記排ガスが通過する円柱型の基材と、前記基材の表面に形成される触媒コート層とを備えた排ガス浄化用触媒において、前記触媒コート層を、前記基材の表面上に形成される下層と前記下層の上面に形成される上層とを有する2層構造とし、前記下層に、ロジウム(Rh)、白金(Pt)及びパラジウム(Pd)を含む触媒金属と、カリウム(K)、バリウム(Ba)及びリチウム(Li)を含むNOx吸蔵材と、前記触媒金属及びNOx吸蔵材を担持するアルミナ(Al)、チタニア(TiO)、ジルコニア(ZrO)及びセリア(CeO)から選ばれる少なくとも1種を含む複合酸化物及び/又は酸化物とを含有させ、前記上層に、Pt及びPdを含む触媒金属と、K、Ba及びLiを含むNOx吸蔵材と、前記触媒金属及びNOx吸蔵材を担持するAl、TiO、ZrO及びCeOから選ばれる少なくとも1種を含む複合酸化物及び/又は酸化物とを含有させ、さらに、前記Kを担持した領域において、Kが前記円柱型の基材の中心軸と同じ中心軸を有する円柱型の第1担持濃度である領域(第1担持濃度領域)と、Kが前記第1担持濃度領域の外周に存在する円環柱型の第2担持濃度である領域(第2担持濃度領域)とを有するように調整し、前記第1担持濃度領域を0.11〜0.15mol/Lの担持濃度とし、かつ、前記第2担持濃度領域を0.04〜0.13mol/Lの担持濃度とし、かつ、前記第1担持濃度領域の担持濃度の前記第2担持濃度領域の担持濃度に対する比(第1担持濃度領域の担持濃度/第2担持濃度領域の担持濃度)が1.1〜3.3の範囲にあり、さらに前記円柱型の第1担持濃度領域の円の直径の前記円環柱型の第2担持濃度領域の最外円の直径に対する比(第1担持濃度領域の円の直径/第2担持濃度領域の最外円の直径)を0.20〜0.90とすることによって、触媒床温度約760℃での高負荷運転を経た後でも、触媒床温度約300℃での低速走行時において触媒のNOx浄化性能が維持され、触媒床温度約450℃での高速走行時において触媒のNOx浄化性能が向上されることを見出し、本発明を完成した。 As a result of examining various means for solving the above-mentioned object, the present inventors have found that a cylindrical base material through which the exhaust gas having a circular cross section perpendicular to the flow direction of the exhaust gas passes, An exhaust gas purifying catalyst having a catalyst coat layer formed on a surface thereof, wherein the catalyst coat layer includes two layers having a lower layer formed on the surface of the substrate and an upper layer formed on the upper surface of the lower layer A catalyst metal containing rhodium (Rh), platinum (Pt) and palladium (Pd), a NOx occlusion material containing potassium (K), barium (Ba) and lithium (Li) in the lower layer; A composite oxide containing at least one selected from alumina (Al 2 O 3 ), titania (TiO 2 ), zirconia (ZrO 2 ) and ceria (CeO 2 ) supporting a metal and NOx storage material and / or Containing an oxide, and in the upper layer, a catalyst metal containing Pt and Pd, a NOx occlusion material containing K, Ba and Li, and Al 2 O 3 , TiO 2 supporting the catalyst metal and the NOx occlusion material, A composite oxide and / or oxide containing at least one selected from ZrO 2 and CeO 2 is contained, and in the region supporting K, K is the same center as the central axis of the cylindrical substrate A column-shaped first support concentration region (first support concentration region) having an axis and a region (second support concentration K) that is a circular columnar second support concentration existing on the outer periphery of the first support concentration region. The first support concentration region is adjusted to a support concentration of 0.11 to 0.15 mol / L, and the second support concentration region is set to 0.04 to 0.13 mol / L. L carrying concentration, and the first The ratio of the support concentration of the support concentration region to the support concentration of the second support concentration region (the support concentration of the first support concentration region / the support concentration of the second support concentration region) is in the range of 1.1 to 3.3; Further, the ratio of the diameter of the circle of the first support concentration region of the cylindrical type to the diameter of the outermost circle of the second support concentration region of the annular column type (the diameter of the circle of the first support concentration region / the second support concentration region) The diameter of the outermost circle of the catalyst is 0.20 to 0.90, so that even after a high load operation at a catalyst bed temperature of about 760 ° C., the catalyst is not The present inventors have found that the NOx purification performance is maintained and that the NOx purification performance of the catalyst is improved during high-speed running at a catalyst bed temperature of about 450 ° C., and the present invention has been completed.

すなわち、本発明の要旨は以下の通りである。
(1)排ガスの流れ方向に対して垂直な断面が円である前記排ガスが通過する円柱型の基材と、
前記基材の表面に形成される触媒コート層とを備え、
前記触媒コート層が、前記基材の表面上に形成される下層と前記下層の上面に形成される上層とを有する2層構造であり、
前記下層が、ロジウム(Rh)、白金(Pt)及びパラジウム(Pd)を含む触媒金属と、カリウム(K)、バリウム(Ba)及びリチウム(Li)を含むNOx吸蔵材と、前記触媒金属及びNOx吸蔵材を担持するアルミナ(Al)、チタニア(TiO)、ジルコニア(ZrO)及びセリア(CeO)から選ばれる少なくとも1種を含む複合酸化物及び/又は酸化物とを含有し、
前記上層が、Pt及びPdを含む触媒金属と、K、Ba及びLiを含むNOx吸蔵材と、前記触媒金属及びNOx吸蔵材を担持するAl、TiO、ZrO及びCeOから選ばれる少なくとも1種を含む複合酸化物及び/又は酸化物とを含有する、
排ガス浄化用触媒であって、
前記Kを担持した領域には、Kが前記円柱型の基材の中心軸と同じ中心軸を有する円柱型の第1担持濃度である領域(第1担持濃度領域)と、Kが前記第1担持濃度領域の外周に存在する円環柱型の第2担持濃度である領域(第2担持濃度領域)とが存在し、
前記第1担持濃度領域が、0.11〜0.15mol/Lの担持濃度であり、かつ、
前記第2担持濃度領域が、0.04〜0.13mol/Lの担持濃度であり、かつ、
前記第1担持濃度領域の担持濃度の前記第2担持濃度領域の担持濃度に対する比(第1担持濃度領域の担持濃度/第2担持濃度領域の担持濃度)が、1.1〜3.3であり、かつ、
前記円柱型の第1担持濃度領域の円の直径の前記円環柱型の第2担持濃度領域の最外円の直径に対する比(第1担持濃度領域の円の直径/第2担持濃度領域の最外円の直径)が、0.20〜0.90である
ことを特徴とする、排ガス浄化用触媒。
That is, the gist of the present invention is as follows.
(1) a cylindrical base material through which the exhaust gas, whose cross section perpendicular to the flow direction of the exhaust gas is a circle,
A catalyst coat layer formed on the surface of the substrate;
The catalyst coat layer has a two-layer structure having a lower layer formed on the surface of the substrate and an upper layer formed on the upper surface of the lower layer,
The lower layer comprises a catalyst metal containing rhodium (Rh), platinum (Pt) and palladium (Pd), a NOx storage material containing potassium (K), barium (Ba) and lithium (Li), the catalyst metal and NOx. Containing a composite oxide and / or oxide containing at least one selected from alumina (Al 2 O 3 ), titania (TiO 2 ), zirconia (ZrO 2 ) and ceria (CeO 2 ) supporting the storage material. ,
The upper layer is selected from a catalyst metal containing Pt and Pd, a NOx storage material containing K, Ba and Li, and Al 2 O 3 , TiO 2 , ZrO 2 and CeO 2 supporting the catalyst metal and the NOx storage material. A composite oxide and / or an oxide containing at least one selected from
A catalyst for exhaust gas purification,
The K-supported region includes a column type first support concentration (first support concentration region) in which K has the same central axis as the center axis of the cylindrical base material, and K is the first support concentration region. There is a region (second supported concentration region) that is an annular column type second supported concentration that exists on the outer periphery of the supported concentration region,
The first supported concentration region is a supported concentration of 0.11 to 0.15 mol / L, and
The second supported concentration region is a supported concentration of 0.04 to 0.13 mol / L, and
The ratio of the carrier concentration in the first carrier concentration region to the carrier concentration in the second carrier concentration region (the carrier concentration in the first carrier concentration region / the carrier concentration in the second carrier concentration region) is 1.1 to 3.3. Yes, and
The ratio of the diameter of the circle of the first support concentration region of the cylindrical type to the diameter of the outermost circle of the second support concentration region of the annular column type (the diameter of the circle of the first support concentration region / the second support concentration region) A catalyst for exhaust gas purification, wherein the diameter of the outermost circle is 0.20 to 0.90.

本発明により、触媒床温度約760℃での高負荷運転を経た後でも、触媒床温度約300℃での低速走行時における触媒のNOx浄化率が維持され、触媒床温度約450℃での高速走行時における触媒のNOx浄化率が向上された排ガス浄化用触媒を提供することが可能となる。   According to the present invention, the NOx purification rate of the catalyst during low-speed running at a catalyst bed temperature of about 300 ° C. is maintained even after a high load operation at a catalyst bed temperature of about 760 ° C., and a high speed at a catalyst bed temperature of about 450 ° C. is maintained. It is possible to provide an exhaust gas purification catalyst with an improved NOx purification rate of the catalyst during traveling.

本発明の排ガス浄化用触媒の構成を示す模式図である。It is a schematic diagram which shows the structure of the exhaust gas purification catalyst of this invention. 本発明の排ガス浄化用触媒の第1担持濃度領域と排気管との相対的な大きさの関係を示す模式図である。It is a schematic diagram which shows the relationship of the relative magnitude | size of the 1st carrying | support density | concentration area | region of an exhaust gas purification catalyst of this invention, and an exhaust pipe. 比較例1〜11及び実施例1〜6の排ガス浄化用触媒を示す模式図である。It is a schematic diagram which shows the catalyst for exhaust gas purification of Comparative Examples 1-11 and Examples 1-6. NOx浄化率の測定における、排気量3.5Lのエンジンと排ガス浄化用触媒との相対的な位置関係を示す模式図である。It is a schematic diagram which shows the relative positional relationship of the engine of the displacement of 3.5L and the exhaust gas purification catalyst in the measurement of the NOx purification rate. 比較例1〜7の排ガス浄化用触媒における、触媒床温度の違いによるカリウム担持濃度とNOx浄化率の関係を示す図である。It is a figure which shows the relationship between the potassium carrying | concentration density | concentration by the difference in catalyst bed temperature, and a NOx purification rate in the exhaust gas purification catalyst of Comparative Examples 1-7. 比較例12及び実施例7〜9の排ガス浄化用触媒を示す模式図である。It is a schematic diagram which shows the catalyst for exhaust gas purification of the comparative example 12 and Examples 7-9. NOx浄化率の測定における、排気量2.0Lのエンジンと排ガス浄化用触媒との相対的な位置関係を示す模式図である。FIG. 3 is a schematic diagram showing a relative positional relationship between an engine with a displacement of 2.0 L and an exhaust gas purification catalyst in measurement of a NOx purification rate. 排ガス浄化用触媒における円柱型の第1担持濃度領域の円の直径の円環柱型の第2担持濃度領域の最外円の直径に対する比(第1担持濃度領域の円の直径/第2担持濃度領域の最外円の直径)と排気量3.5LのエンジンでのNOx浄化率の関係を示す図である。Ratio of the diameter of the circle in the first support concentration region of the column type to the diameter of the outermost circle of the second support concentration region of the annular column in the exhaust gas purification catalyst (the diameter of the circle in the first support concentration region / the second support) It is a figure which shows the relationship between the NOx purification rate in the engine of displacement 3.5L and the diameter of the outermost circle of a density | concentration area | region. 排ガス浄化用触媒における(第1担持濃度領域の円の直径/第2担持濃度領域の最外円の直径)と排気量2.0LのエンジンでのNOx浄化率の関係を示す図である。It is a figure which shows the relationship of the NOx purification rate in the engine of 2.0L of exhaust gas (diameter of the 1st carrying | concentration density | concentration area | region / diameter of the outermost circle of a 2nd carrying | support density | concentration area | region) in the exhaust gas purification catalyst. 比較例1並びに実施例2、7及び8に用いた円柱型コージェライト製ハニカム基材と比較例13及び実施例10〜12に用いた円柱型コージェライト製ハニカム基材との相対的な大きさの関係を示す模式図である。Relative sizes of the cylindrical cordierite honeycomb substrate used in Comparative Example 1 and Examples 2, 7 and 8 and the cylindrical cordierite honeycomb substrate used in Comparative Example 13 and Examples 10-12 It is a schematic diagram which shows the relationship. 比較例1のNOx浄化率を1とした場合における実施例2、7又は8の排ガス浄化用触媒のそれぞれのNOx浄化性能を示す図である。It is a figure which shows each NOx purification performance of the exhaust gas purification catalyst of Example 2, 7 or 8 when the NOx purification rate of Comparative Example 1 is 1. 比較例13のNOx浄化率を1とした場合における実施例10、11又は12の排ガス浄化用触媒のそれぞれのNOx浄化性能を示す図である。It is a figure which shows each NOx purification performance of the exhaust gas purification catalyst of Example 10, 11 or 12 when the NOx purification rate of the comparative example 13 is set to 1. 高負荷走行時の排ガス浄化用触媒における触媒の基材半径と触媒温度の関係を示す図である。It is a figure which shows the relationship between the base-material radius of a catalyst and catalyst temperature in the exhaust gas purification catalyst at the time of high load driving | running | working. 焼成温度と排ガス浄化用触媒の触媒コート層中のカリウムの減少量の関係を示す図である。It is a figure which shows the relationship between a calcination temperature and the reduction | decrease amount of potassium in the catalyst coat layer of the exhaust gas purification catalyst. 焼成温度と排ガス浄化用触媒における基材中、触媒コート層中又は触媒全体中のカリウム量の関係を示す図である。It is a figure which shows the relationship between a calcination temperature and the potassium amount in the base material in a catalyst for exhaust gas purification, a catalyst coat layer, or the whole catalyst.

以下、本発明の好ましい実施形態について詳細に説明する。
本明細書では、適宜図面を参照して本発明の特徴を説明する。図面では、明確化のために各部の寸法及び形状を誇張しており、実際の寸法及び形状を正確に描写してはいない。それ故、本発明の技術的範囲は、これら図面に表された各部の寸法及び形状に限定されるものではない。なお、本発明の排ガス浄化用触媒は、下記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において、当業者が行い得る変更、改良等を施した種々の形態にて実施することができる。
Hereinafter, preferred embodiments of the present invention will be described in detail.
In the present specification, features of the present invention will be described with reference to the drawings as appropriate. In the drawings, the size and shape of each part are exaggerated for clarity, and the actual size and shape are not accurately depicted. Therefore, the technical scope of the present invention is not limited to the size and shape of each part shown in these drawings. The exhaust gas purifying catalyst of the present invention is not limited to the following embodiments, and can be implemented in various forms that have been modified or improved by those skilled in the art without departing from the scope of the present invention. can do.

本発明は、図1に示すように、排ガスの流れ方向に対して垂直な断面が円である前記排ガスが通過する円柱型の基材と、前記基材の表面に形成される触媒コート層とを備え、前記触媒コート層が、触媒金属と、カリウム(K)を含むNOx吸蔵材と、前記触媒金属及びNOx吸蔵材を担持する複合酸化物及び/又は酸化物とを含有する排ガス浄化用触媒であって、前記カリウムを担持した領域には、カリウムが前記円柱型の基材の中心軸と同じ中心軸を有する円柱型の第1担持濃度である領域(第1担持濃度領域)と、カリウムが前記第1担持濃度領域の外周に存在する円環柱型の第2担持濃度である領域(第2担持濃度領域)とが存在し、前記第1担持濃度領域のカリウム担持濃度と前記第2担持濃度領域のカリウム担持濃度が特定の値を有し、さらに前記第1担持濃度領域の大きさと前記第2担持濃度領域の大きさが特定の関係を有することを特徴とする排ガス浄化用触媒に関する。   As shown in FIG. 1, the present invention includes a cylindrical base material through which the exhaust gas having a circular cross section perpendicular to the flow direction of the exhaust gas passes, and a catalyst coating layer formed on the surface of the base material. And the catalyst coat layer contains a catalyst metal, a NOx occlusion material containing potassium (K), and a composite oxide and / or an oxide carrying the catalyst metal and the NOx occlusion material. In the region supporting potassium, a region where the potassium has a first supporting concentration of a cylindrical type having the same central axis as the central axis of the cylindrical substrate (first supporting concentration region), potassium Is an annular column-shaped second support concentration region (second support concentration region) existing on the outer periphery of the first support concentration region, and the potassium support concentration in the first support concentration region and the second support concentration region The potassium loading concentration in the loading concentration range has a specific value. And relates to a catalyst for exhaust gas purification, characterized in that has a particular relationship further the size of the size and the second support concentration region of said first carrier concentration region.

本発明において、排ガスとは、エンジンの排気系から外部に排出されるガスを示す。排ガスは、例えば、自動車等の内燃機関から排出される排ガスであり、主に、一酸化炭素(CO)、炭化水素(HC)、窒素酸化物(NOx)等の有害成分を含む。   In the present invention, exhaust gas refers to gas discharged from the engine exhaust system to the outside. The exhaust gas is, for example, exhaust gas discharged from an internal combustion engine such as an automobile, and mainly includes harmful components such as carbon monoxide (CO), hydrocarbon (HC), and nitrogen oxide (NOx).

本発明の排ガス浄化用触媒が用いられるエンジンは特に制限されないが、排気量は1L〜5Lが好ましく、1.5L〜3.5Lがより好ましく、2.0L〜3.5Lが特に好ましい。また、エンジンには直列4気筒、V型6気筒等様々な形式のものを用いることができる。   The engine in which the exhaust gas purifying catalyst of the present invention is used is not particularly limited, but the displacement is preferably 1 L to 5 L, more preferably 1.5 L to 3.5 L, and particularly preferably 2.0 L to 3.5 L. Various types of engines such as an in-line 4-cylinder and a V-type 6-cylinder can be used.

本発明において、排ガスが通過する円柱型の基材としては、ハニカム形状等、従来のこの種の用途に用いられる種々の形状である円柱型の基材を用いることができる。また、他の好ましい例として、コージェライトフィルタ等、排ガス浄化フィルタを用いることもできる。基材の材質としては、コージェライト、炭化ケイ素(SiC)等の耐熱性セラミックス、ステンレス等の合金又は金属等、従来のこの種の用途に用いられる種々の素材から選択できる。本発明において、排ガスが通過する円柱型の基材としては、ハニカム形状のコージェライト製の円柱型の基材を用いることが好ましい。   In the present invention, as the cylindrical base material through which the exhaust gas passes, cylindrical base materials having various shapes used for this kind of conventional applications such as a honeycomb shape can be used. As another preferred example, an exhaust gas purification filter such as a cordierite filter can also be used. The material of the substrate can be selected from various materials used for this type of conventional application, such as cordierite, heat-resistant ceramics such as silicon carbide (SiC), alloys such as stainless steel, or metals. In the present invention, as the columnar substrate through which the exhaust gas passes, it is preferable to use a honeycomb-shaped columnar substrate made of cordierite.

ハニカム形状のコージェライト製の円柱型の基材を用いることにより、耐振動性、耐熱性等の、特に自動車用の排ガス浄化用触媒として用いるために好適な物理特性を確保することができる。   By using a honeycomb-shaped cordierite columnar base material, it is possible to ensure physical characteristics suitable for use as an exhaust gas purification catalyst for automobiles, such as vibration resistance and heat resistance.

本発明において、排ガスが通過する円柱型の基材の大きさ及び容量は特に制限されないが、大きさについては、従来のこの種の用途に用いられる、円の直径129mm×円柱の長さ100mm、円の直径103mm×円柱の長さ155mm、他にも、円の直径129mm×円柱の長さ150mm、円の直径117mm×円柱の長さ122mm、円の直径103mm×円柱の長さ130mm、円の直径93mm×円柱の長さ155mm、円の直径103mm×円柱の長さ105mm等、様々な大きさを使用することができ、容量については、例えば、1Lや1.3L、他にも、2.0L、0.9L等、様々な容量を使用することができる。   In the present invention, the size and capacity of the cylindrical substrate through which the exhaust gas passes are not particularly limited, but the size is 129 mm in diameter and 100 mm in length of the cylinder used in this type of conventional application. The diameter of the circle 103 mm × the length of the cylinder 155 mm, the diameter of the circle 129 mm × the length of the cylinder 150 mm, the diameter of the circle 117 mm × the length of the cylinder 122 mm, the diameter of the circle 103 mm × the length of the cylinder 130 mm, Various sizes such as diameter 93 mm × cylinder length 155 mm, circle diameter 103 mm × cylinder length 105 mm, and the like can be used, for example, 1L or 1.3L. Various capacities such as 0L, 0.9L, etc. can be used.

排ガスが通過する円柱型の基材の大きさ及び容量を上記のものとすることにより、排ガスを効率よく処理することができる。   By setting the size and capacity of the cylindrical base material through which the exhaust gas passes, the exhaust gas can be treated efficiently.

本発明において、基材の表面に形成される触媒コート層は、基材の表面上に形成される下層と前記下層の上面に形成される上層とを有する2層構造であることが好ましい。なお、本発明の触媒コート層は、2層構造でなくとも、1層構造、2層より多くの層を有する構造を採ることもできる。   In the present invention, the catalyst coat layer formed on the surface of the substrate preferably has a two-layer structure having a lower layer formed on the surface of the substrate and an upper layer formed on the upper surface of the lower layer. The catalyst coat layer of the present invention may have a single-layer structure or a structure having more than two layers, instead of a two-layer structure.

触媒コート層が2層構造を採ることによって、例えば、触媒金属同士の合金化による触媒活性の低下を抑制することができる。   When the catalyst coat layer has a two-layer structure, for example, a decrease in catalyst activity due to alloying of catalyst metals can be suppressed.

本発明において、触媒コート層は、触媒金属、NOx吸蔵材、前記触媒金属及びNOx吸蔵材を担持する複合酸化物及び/又は酸化物を含むことが好ましいが、さらにその他従来のこの種の用途に用いられる種々の他の添加物、例えば、アルミナゾル、シリカゾル等のバインダー等を含むことができる。   In the present invention, the catalyst coat layer preferably contains a catalyst metal, a NOx occlusion material, a composite oxide and / or an oxide that supports the catalyst metal and the NOx occlusion material. Various other additives used, for example, binders such as alumina sol and silica sol can be included.

本発明において、添加物の添加量は特に制限されないが、基材1リットルあたりそれぞれ20g以下が好ましく、10g以下がより好ましい。   In the present invention, the addition amount of the additive is not particularly limited, but is preferably 20 g or less, and more preferably 10 g or less, per liter of the base material.

本発明において、触媒金属としては、白金(Pt)、ロジウム(Rh)及びパラジウム(Pd)を含むことが好ましく、2層構造の触媒コート層においては、基材の表面上に形成される下層にPt、Rh及びPdを含み、前記下層の上面に形成される上層にPt及びPdを含むことが好ましい。本発明において、触媒金属としては、Pt、Rh及びPdでなくとも、HC及びCOを酸化する触媒並びにNOxを還元することができる触媒であればよく、Pt、Rh、Pd、イリジウム(Ir)、ルテニウム(Ru)等の貴金属、鉄(Fe)、コバルト(Co)等の遷移金属、その他従来のこの種の用途に用いられる触媒金属から選ばれる少なくとも1種を含むことができる。特に、Ptは、NOx吸蔵速度を高める作用を有する。   In the present invention, the catalyst metal preferably contains platinum (Pt), rhodium (Rh) and palladium (Pd). In the two-layer catalyst coat layer, the lower layer formed on the surface of the substrate is used. It is preferable that Pt, Rh and Pd are included, and that the upper layer formed on the upper surface of the lower layer includes Pt and Pd. In the present invention, the catalyst metal is not limited to Pt, Rh, and Pd, but may be any catalyst that oxidizes HC and CO and a catalyst that can reduce NOx. Pt, Rh, Pd, iridium (Ir), It may contain at least one selected from noble metals such as ruthenium (Ru), transition metals such as iron (Fe) and cobalt (Co), and other conventional catalytic metals used for this type of application. In particular, Pt has an effect of increasing the NOx occlusion speed.

本発明において、触媒金属の担持量は特に制限されないが、Rhは基材1リットルあたり0.01g〜5.0gが好ましく、0.05g〜2.5gがより好ましく、さらに0.1g〜1.0gがより好ましい。また、Ptは基材1リットルあたり0.05g〜10.0gが好ましく、0.1g〜5.0gがより好ましく、さらに0.5g〜3.0gがより好ましい。また、Pdは基材1リットルあたり0.05g〜10.0gが好ましく、0.1g〜5.0gがより好ましく、さらに0.2g〜3.0gがより好ましい。これより少ないと十分な触媒活性が得られず、これより多く担持させても効果が飽和するとともにコスト面で不利である。   In the present invention, the amount of the catalyst metal supported is not particularly limited, but Rh is preferably 0.01 g to 5.0 g, more preferably 0.05 g to 2.5 g, and further preferably 0.1 g to 1.g. 0 g is more preferable. Further, Pt is preferably 0.05 g to 10.0 g, more preferably 0.1 g to 5.0 g, and further preferably 0.5 g to 3.0 g per liter of the base material. Further, Pd is preferably 0.05 g to 10.0 g, more preferably 0.1 g to 5.0 g, and further preferably 0.2 g to 3.0 g per liter of the base material. If it is less than this, sufficient catalytic activity cannot be obtained, and even if it is supported more than this, the effect is saturated and the cost is disadvantageous.

本発明において、NOx吸蔵材はカリウム(K)を含む。本発明において、NOx吸蔵材は、さらにリチウム(Li)及び/又はバリウム(Ba)を含むことが好ましい。本発明において、NOx吸蔵材は、Li及び/又はBaに代えて、又は、Li及び/又はBaに加えて他にもナトリウム(Na)、セシウム(Cs)、ルビジウム(Rb)等のアルカリ金属、カルシウム(Ca)、マグネシウム(Mg)、ストロンチウム(Sr)等のアルカリ土類金属、ランタン(La)、イットリウム(Y)、ネオジム(Nd)、プラセオジム(Pr)等の希土類元素等、従来のこの種の用途に用いられる種々の元素を含むことができる。   In the present invention, the NOx storage material contains potassium (K). In the present invention, the NOx storage material preferably further contains lithium (Li) and / or barium (Ba). In the present invention, the NOx occlusion material is replaced with Li and / or Ba, or in addition to Li and / or Ba, an alkali metal such as sodium (Na), cesium (Cs), rubidium (Rb), This kind of conventional, such as alkaline earth metals such as calcium (Ca), magnesium (Mg), strontium (Sr), rare earth elements such as lanthanum (La), yttrium (Y), neodymium (Nd), praseodymium (Pr) It can contain various elements used in the above applications.

本発明において、Kを除くNOx吸蔵材の担持量は特に制限されないが、NOx吸蔵材は、Baは基材1リットルあたり0.01モル〜2.0モルが好ましく、0.05モル〜0.3モルがより好ましい。また、Liは基材1リットルあたり0〜0.5モルが好ましく、0.05モル〜0.2モルがより好ましい。   In the present invention, the amount of the NOx occlusion material supported excluding K is not particularly limited, but in the NOx occlusion material, Ba is preferably 0.01 mol to 2.0 mol, and 0.05 mol to 0.00 mol per liter of the base material. 3 moles is more preferred. Further, Li is preferably 0 to 0.5 mol, more preferably 0.05 mol to 0.2 mol, per liter of the base material.

本発明において、触媒金属及びNOx吸蔵材を担持する複合酸化物及び/又は酸化物としては、アルミナ(Al)、チタニア(TiO)、ジルコニア(ZrO)及びセリア(CeO)から選ばれる少なくとも1種を含む複合酸化物及び/又は酸化物であることが好ましい。本発明において、触媒金属を担持する複合酸化物及び/又は酸化物としては、従来のこの種の用途に用いられる種々の複合酸化物及び/又は酸化物が使用可能である。 In the present invention, the composite oxide and / or oxide supporting the catalyst metal and the NOx storage material may be alumina (Al 2 O 3 ), titania (TiO 2 ), zirconia (ZrO 2 ) and ceria (CeO 2 ). A composite oxide and / or oxide containing at least one selected from the above is preferable. In the present invention, various composite oxides and / or oxides used for this kind of conventional applications can be used as the composite oxide and / or oxide supporting the catalyst metal.

本発明において、複合酸化物及び/又は酸化物の添加量は特に制限されないが、添加量が多すぎると、触媒コート層が厚くなり、通気抵抗が大きくなって燃費が悪化し、量が少なすぎると、触媒コート層が薄くなり、貴金属の担持密度が高くなり過ぎて粒成長による活性低下が生じたり、耐熱性が得られなかったりする。本発明において、複合酸化物及び/又は酸化物の量は、一般には基材1リットルあたり全体で100〜500g程度が好ましく、150〜350gがより好ましい。   In the present invention, the addition amount of the composite oxide and / or oxide is not particularly limited. However, if the addition amount is too large, the catalyst coat layer becomes thick, the airflow resistance increases, the fuel consumption deteriorates, and the amount is too small. Then, the catalyst coat layer becomes thin, the supporting density of the noble metal becomes too high, the activity decreases due to grain growth, and the heat resistance cannot be obtained. In the present invention, the amount of the composite oxide and / or oxide is generally preferably about 100 to 500 g, more preferably 150 to 350 g as a whole per liter of the base material.

本発明において、NOx吸蔵材として含まれるカリウムを担持した基材中の領域には、カリウムが円柱型の基材の中心軸と同じ中心軸を有する円柱型の第1担持濃度である領域(第1担持濃度領域)と、カリウムが前記第1担持濃度とは異なり前記第1担持濃度領域の外周に存在する円環柱型の第2担持濃度である領域(第2担持濃度領域)とが存在する。   In the present invention, the region in the substrate supporting potassium contained as the NOx storage material is a region in which potassium is the first supporting concentration of the cylindrical type having the same central axis as the central axis of the cylindrical substrate (first 1 support concentration region) and a region (second support concentration region) that is a second support concentration of an annular column type that exists in the outer periphery of the first support concentration region unlike potassium support concentration. To do.

本発明において、第1担持濃度領域は、0.11〜0.15mol/Lの担持濃度が好ましく、0.12〜0.14mol/Lの担持濃度がより好ましい。   In the present invention, the first support concentration region preferably has a support concentration of 0.11 to 0.15 mol / L, and more preferably a support concentration of 0.12 to 0.14 mol / L.

本発明において、第2担持濃度領域は、0.04〜0.13mol/Lの担持濃度が好ましく、0.04〜0.12mol/Lの担持濃度がより好ましく、0.06〜0.10mol/Lの担持密度が特に好ましい。   In the present invention, the second loading concentration region preferably has a loading concentration of 0.04 to 0.13 mol / L, more preferably 0.04 to 0.12 mol / L, and 0.06 to 0.10 mol / L. L loading density is particularly preferred.

本発明において、第1担持濃度領域の担持濃度は第2担持濃度領域の担持濃度よりも大きく、第1担持濃度領域の担持濃度の前記第2担持濃度領域の担持濃度に対する比(第1担持濃度領域の担持濃度/第2担持濃度領域の担持濃度)は、1.1〜3.3が好ましく、1.2〜3.3がより好ましく、1.3〜2.0が特に好ましい。   In the present invention, the carrier concentration in the first carrier concentration region is greater than the carrier concentration in the second carrier concentration region, and the ratio of the carrier concentration in the first carrier concentration region to the carrier concentration in the second carrier concentration region (the first carrier concentration). The carrier concentration in the region / the carrier concentration in the second carrier concentration region) is preferably 1.1 to 3.3, more preferably 1.2 to 3.3, and particularly preferably 1.3 to 2.0.

本発明において、円柱型の第1担持濃度領域の円の直径の円環柱型の第2担持濃度領域の最外円の直径に対する比(第1担持濃度領域の円の直径/第2担持濃度領域の最外円の直径)は、0.20〜0.90が好ましく、0.20〜0.80がより好ましく、0.25〜0.70が特に好ましい。   In the present invention, the ratio of the diameter of the circle of the first support concentration region of the cylindrical type to the diameter of the outermost circle of the second support concentration region of the annular column type (the diameter of the circle of the first support concentration region / the second support concentration) The diameter of the outermost circle in the region is preferably 0.20 to 0.90, more preferably 0.20 to 0.80, and particularly preferably 0.25 to 0.70.

第1担持濃度領域(すなわち、排ガス浄化用触媒中央部)のカリウム量を増やし、第2担持濃度領域(すなわち、排ガス浄化用触媒外周部)のカリウム量を減らすことによって、排ガスのガス流速が大きい高速走行時(触媒床温度:約450℃)には、排ガスとカリウム担持濃度の大きい中央部との接触頻度を高めることができる一方で、排ガスのガス流速が小さい(緩慢な)低速走行時(触媒床温度:約300℃)には、排出ガスを排ガス浄化用触媒全体と接触することができる。言い換えると、触媒床温度の高い高速走行時には主に排ガス浄化用触媒中央部の活性点を活用してNOxを効率よく浄化することができる一方で、触媒床温度の低い低速走行時には排ガス浄化用触媒全体のカリウム量を調整(カリウム量を増加しすぎない)したことによって排ガス浄化用触媒外周部を含めた触媒全体を活用し貴金属触媒の活性低下(特に、PtのNOからNOへの酸化活性)を抑制することができる。 Increasing the amount of potassium in the first supported concentration region (that is, the central portion of the exhaust gas purifying catalyst) and decreasing the amount of potassium in the second supported concentration region (that is, the outer peripheral portion of the exhaust gas purifying catalyst) increases the gas flow rate of the exhaust gas. When traveling at high speed (catalyst bed temperature: about 450 ° C), the frequency of contact between the exhaust gas and the central portion where the potassium loading concentration is high can be increased, while the gas flow rate of exhaust gas is small (slow) at low speed traveling ( At the catalyst bed temperature: about 300 ° C., the exhaust gas can be brought into contact with the entire exhaust gas purifying catalyst. In other words, NOx can be efficiently purified mainly using the active point of the exhaust gas purifying catalyst center during high speed running with a high catalyst bed temperature, while exhaust gas purifying catalyst during low speed running with a low catalyst bed temperature. Decreasing the activity of noble metal catalyst by adjusting the total amount of potassium (does not increase the amount of potassium too much) and using the entire catalyst including the outer periphery of the exhaust gas purifying catalyst (especially oxidation activity of Pt from NO to NO 2) ) Can be suppressed.

本発明において、円柱型の第1担持濃度領域の円の直径は、例えば、排ガス浄化用触媒に流れ込む排ガスを運ぶ排気管の内径の0.5〜1.5倍、好適には0.9〜1.1倍とすることができる。本発明において、円柱型の第1担持濃度領域の円の直径は、図2に示すように排気管の内径よりも大きいことが好ましい。円柱型の第1担持濃度領域の円の直径を排気管の内径より大きくすることにより、排ガスのガス流速が大きい高速走行時に、排ガスとカリウム担持濃度の大きい中央部との接触頻度をより高めることができる。   In the present invention, the diameter of the circular columnar first support concentration region is, for example, 0.5 to 1.5 times the inner diameter of the exhaust pipe carrying the exhaust gas flowing into the exhaust gas purification catalyst, preferably 0.9 to It can be 1.1 times. In the present invention, it is preferable that the diameter of the circle of the cylindrical first support concentration region is larger than the inner diameter of the exhaust pipe as shown in FIG. Increasing the contact frequency between the exhaust gas and the central portion where the potassium concentration is high at high speed when the gas flow rate of the exhaust gas is high by making the diameter of the circle of the first support concentration region of the cylindrical type larger than the inside diameter of the exhaust pipe Can do.

本発明において、触媒コート層は従来のコーティング技術により基材表面に形成することができる。本発明において、触媒コート層は、例えば、水等の溶媒と、上記で説明した触媒金属、NOx吸蔵材、前記触媒金属及びNOx吸蔵材を担持する複合酸化物及び/又は酸化物とを混合して調製したスラリーを基材表面にウォッシュコートし、余分なスラリーを吹き払った後、乾燥、焼成することにより形成することができる。触媒コート層を2層構造にするときは、上記方法により基材表面に下層を形成後、さらに前記下層の上面に上記方法により上層を形成することによって形成することができる。本発明において、第1担持濃度領域と第2担持濃度領域においてカリウム濃度を変更する場合には、例えば、まず、第1担持濃度領域の触媒コート層を形成する部分以外をマスキングして、マスキングされていない第1担持濃度領域に触媒コート層をウォッシュコートにより形成し、その後、第1担持濃度の触媒コート層が形成された部分をマスキングして、第2担持濃度領域に触媒コート層をウォッシュコートにより形成することにより調製することができる。   In the present invention, the catalyst coat layer can be formed on the substrate surface by a conventional coating technique. In the present invention, for example, the catalyst coat layer is a mixture of a solvent such as water and the above-described catalyst metal, NOx occlusion material, composite oxide and / or oxide supporting the catalyst metal and NOx occlusion material. The slurry prepared in this manner is wash-coated on the surface of the substrate, and the excess slurry is blown off, followed by drying and firing. When the catalyst coat layer has a two-layer structure, it can be formed by forming a lower layer on the substrate surface by the above method and then forming an upper layer on the upper surface of the lower layer by the above method. In the present invention, when the potassium concentration is changed in the first supported concentration region and the second supported concentration region, for example, masking is first performed by masking portions other than the portion where the catalyst coat layer of the first supported concentration region is formed. A catalyst coat layer is formed by wash coating in the first supported concentration region, and then the portion where the first supported concentration catalyst coat layer is formed is masked, and the catalyst coat layer is washed by coating in the second supported concentration region. It can be prepared by forming.

以下、本発明に関するいくつかの実施例につき説明するが、本発明をかかる実施例に示すものに限定することを意図したものではない。   Several examples relating to the present invention will be described below, but the present invention is not intended to be limited to those shown in the examples.

<第1担持濃度領域と第2担持濃度領域のカリウム担持濃度の好適範囲>
1.第1担持濃度領域と第2担持濃度領域において同じカリウム担持濃度を有する排ガス浄化用触媒の調製
<Preferable range of potassium loading concentration in the first loading concentration region and the second loading concentration region>
1. Preparation of exhaust gas purifying catalyst having the same potassium loading concentration in the first loading concentration region and the second loading concentration region

比較例1.カリウム担持濃度0.13mol/Lの排ガス浄化用触媒の調製
1−1.下層用スラリーの調製
(1)アルミナ(Al)とチタニア(TiO)とジルコニア(ZrO)とからなる複合酸化物(アルミナ:50質量%、チタニア:15質量%、ジルコニア:35質量%)に対し、硝酸ロジウム水溶液を用いてロジウム(Rh)を担持し、大気中500℃で2時間焼成し、ロジウム担持複合酸化物粉末を得た。得られたロジウム担持複合酸化物粉末を100質量%としたとき、担持したロジウムは、1質量%であった。
(2)アルミナとチタニアとジルコニアとからなる複合酸化物(アルミナ:50質量%、チタニア:15質量%、ジルコニア:35質量%)に対し、硝酸白金水溶液と硝酸パラジウム水溶液を用いて白金(Pt)とパラジウム(Pd)を担持し、大気中500℃で2時間焼成し、白金とパラジウムを担持した複合酸化物粉末を得た。得られた白金とパラジウムを担持した複合酸化物粉末を100質量%としたとき、担持した白金とパラジウムは、白金が0.25質量%、パラジウムが0.05質量%であった。
(3)アルミナ粉末(6g)に対し、硝酸パラジウム水溶液を用いてパラジウムを担持し、大気中500℃で2時間焼成し、パラジウム担持複合酸化物粉末を得た。得られたパラジウム担持複合酸化物粉末を100質量%としたとき、担持したパラジウムは、4質量%であった。
(4)(1)〜(3)で得られた貴金属担持粉末((1)25g、(2)100g、(3)5g)と、セリア(CeO)とジルコニアとからなる複合酸化物(セリア:80質量%、ジルコニア:20質量%、15g)と、バリウムとして(19.5g)と、リチウムとして(0.5g)と、カリウムとして(3.6g)と、アルミナバインダー(8g)と、純水(340g)とを混合して、下層用スラリーを調製した。
1−2.上層用スラリーの調製
(1)アルミナとチタニアとジルコニアとからなる複合酸化物(アルミナ:50質量%、チタニア:15質量%、ジルコニア:35質量%)に対し、硝酸白金水溶液と硝酸パラジウム水溶液を用いて白金とパラジウムを担持し、大気中500℃で2時間焼成し、白金とパラジウムを担持した複合酸化物粉末を得た。得られた白金とパラジウムを担持した複合酸化物粉末を100質量%としたとき、担持した白金とパラジウムは、白金が1.8質量%、パラジウムが0.4質量%であった。
(2)(1)で得られた貴金属担持複合酸化物粉末(50g)と、セリアとジルコニアとからなる複合酸化物(セリア:80質量%、ジルコニア:20質量%、5g)と、バリウムとして(8.1g)と、リチウムとして(0.2g)と、カリウムとして(1.5g)と、アルミナバインダー(3g)と、純水(140g)とを混合して、上層用スラリーを調製した。
1−3.コート層の形成
(1)円柱型コージェライト製ハニカム基材(デンソー製、直径129mm×基材長100mm、1.3L)の表面に下層用スラリーをウォッシュコートして下層コート層を形成した。下層コート層はハニカム基材1Lに対し150g形成させた。
(2)(1)で得られた下層コート層が形成されたハニカム基材に、上層用スラリーをウォッシュコートして上層コート層を形成した。上層コート層はハニカム基材1Lに対し70g形成させた。
排ガス浄化用触媒中の各成分の濃度は、白金:1.3g/L、パラジウム:0.5g/L、ロジウム:0.3g/L、バリウム:0.2mol/L、リチウム:0.1mol/L、カリウム:0.13mol/Lであった。
Comparative Example 1 1. Preparation of exhaust gas purifying catalyst having a potassium loading concentration of 0.13 mol / L 1-1. Preparation of lower layer slurry (1) Composite oxide composed of alumina (Al 2 O 3 ), titania (TiO 2 ) and zirconia (ZrO 2 ) (alumina: 50 mass%, titania: 15 mass%, zirconia: 35 mass) %) Was supported on rhodium (Rh) using an aqueous rhodium nitrate solution and calcined in the atmosphere at 500 ° C. for 2 hours to obtain a rhodium-supported composite oxide powder. When the obtained rhodium-supported composite oxide powder was 100% by mass, the supported rhodium was 1% by mass.
(2) Platinum (Pt) using a platinum nitrate aqueous solution and a palladium nitrate aqueous solution with respect to a composite oxide composed of alumina, titania and zirconia (alumina: 50% by mass, titania: 15% by mass, zirconia: 35% by mass). And palladium (Pd) were supported and fired at 500 ° C. for 2 hours in the atmosphere to obtain a composite oxide powder supporting platinum and palladium. When the obtained composite oxide powder carrying platinum and palladium was 100% by mass, the platinum and palladium carried were 0.25% by mass of platinum and 0.05% by mass of palladium.
(3) Alumina powder (6 g) was supported with palladium using an aqueous palladium nitrate solution and calcined at 500 ° C. for 2 hours in the atmosphere to obtain a palladium-supported composite oxide powder. When the obtained palladium-supported composite oxide powder was 100% by mass, the supported palladium was 4% by mass.
(4) Noble metal-supported powder obtained in (1) to (3) ((1) 25 g, (2) 100 g, (3) 5 g), complex oxide (ceria) composed of ceria (CeO 2 ) and zirconia : 80% by mass, zirconia: 20% by mass, 15g), (19.5g) as barium, (0.5g) as lithium, (3.6g) as potassium, alumina binder (8g), pure Water (340 g) was mixed to prepare a lower layer slurry.
1-2. Preparation of slurry for upper layer (1) A platinum nitrate aqueous solution and a palladium nitrate aqueous solution were used for a composite oxide composed of alumina, titania and zirconia (alumina: 50 mass%, titania: 15 mass%, zirconia: 35 mass%). Then, platinum and palladium were supported and calcined at 500 ° C. for 2 hours in the atmosphere to obtain a composite oxide powder supporting platinum and palladium. When the obtained composite oxide powder carrying platinum and palladium was 100% by mass, the platinum and palladium carried were 1.8% by mass of platinum and 0.4% by mass of palladium.
(2) The noble metal-supported composite oxide powder (50 g) obtained in (1), a composite oxide composed of ceria and zirconia (ceria: 80 mass%, zirconia: 20 mass%, 5 g), and barium ( 8.1 g), lithium (0.2 g), potassium (1.5 g), alumina binder (3 g), and pure water (140 g) were mixed to prepare an upper layer slurry.
1-3. Formation of Coat Layer (1) The lower layer slurry was washed on the surface of a cylindrical cordierite honeycomb substrate (Denso, diameter 129 mm × base length 100 mm, 1.3 L) to form a lower layer coat layer. 150 g of the lower coat layer was formed on 1 L of the honeycomb substrate.
(2) The upper layer slurry was wash-coated on the honeycomb base material on which the lower layer coat layer obtained in (1) was formed to form an upper layer coat layer. 70 g of the upper coat layer was formed on 1 L of the honeycomb substrate.
The concentration of each component in the exhaust gas purification catalyst is as follows: platinum: 1.3 g / L, palladium: 0.5 g / L, rhodium: 0.3 g / L, barium: 0.2 mol / L, lithium: 0.1 mol / L L, potassium: 0.13 mol / L.

比較例2.カリウム担持濃度0.00mol/Lの排ガス浄化用触媒の調製
比較例1の排ガス浄化用触媒の調製において、カリウムを添加しないこと以外については、比較例1と同様にして排ガス浄化用触媒を調製した。
Comparative Example 2 Preparation of exhaust gas purifying catalyst with potassium loading concentration of 0.00 mol / L In the preparation of exhaust gas purifying catalyst of Comparative Example 1, an exhaust gas purifying catalyst was prepared in the same manner as Comparative Example 1 except that potassium was not added. .

比較例3.カリウム担持濃度0.04mol/Lの排ガス浄化用触媒の調製
比較例1の排ガス浄化用触媒の調製において、1−1.(4)の工程のカリウムとしての量を3.6gから1.1g、1−2.(2)の工程のカリウムとしての量を1.5gから0.4gに変更したこと以外については、比較例1と同様にして排ガス浄化用触媒を調製した。
Comparative Example 3 Preparation of exhaust gas purifying catalyst having a potassium loading concentration of 0.04 mol / L In the preparation of exhaust gas purifying catalyst of Comparative Example 1, 1-1. The amount of potassium in step (4) is 3.6 g to 1.1 g, 1-2. Exhaust gas purification catalyst was prepared in the same manner as Comparative Example 1 except that the amount of potassium in the step (2) was changed from 1.5 g to 0.4 g.

比較例4.カリウム担持濃度0.08mol/Lの排ガス浄化用触媒の調製
比較例1の排ガス浄化用触媒の調製において、1−1.(4)の工程のカリウムとしての量を3.6gから2.2g、1−2.(2)の工程のカリウムとしての量を1.5gから0.9gに変更したこと以外については、比較例1と同様にして排ガス浄化用触媒を調製した。
Comparative Example 4 Preparation of exhaust gas purifying catalyst having a potassium loading concentration of 0.08 mol / L In the preparation of exhaust gas purifying catalyst of Comparative Example 1, 1-1. The amount of potassium in step (4) is 3.6 g to 2.2 g, 1-2. Exhaust gas purifying catalyst was prepared in the same manner as Comparative Example 1 except that the amount of potassium in the step (2) was changed from 1.5 g to 0.9 g.

比較例5.カリウム担持濃度0.11mol/Lの排ガス浄化用触媒の調製
比較例1の排ガス浄化用触媒の調製において、1−1.(4)の工程のカリウムとしての量を3.6gから3.1g、1−2.(2)の工程のカリウムとしての量を1.5gから1.2gに変更したこと以外については、比較例1と同様にして排ガス浄化用触媒を調製した。
Comparative Example 5 Preparation of exhaust gas purifying catalyst having a potassium loading concentration of 0.11 mol / L In the preparation of exhaust gas purifying catalyst of Comparative Example 1, 1-1. The amount of potassium in the step (4) is 3.6 g to 3.1 g, 1-2. Exhaust gas purifying catalyst was prepared in the same manner as Comparative Example 1 except that the amount of potassium in the step (2) was changed from 1.5 g to 1.2 g.

比較例6.カリウム担持濃度0.15mol/Lの排ガス浄化用触媒の調製
比較例1の排ガス浄化用触媒の調製において、1−1.(4)の工程のカリウムとしての量を3.6gから4.1g、1−2.(2)の工程のカリウムとしての量を1.5gから1.7gに変更したこと以外については、比較例1と同様にして排ガス浄化用触媒を調製した。
Comparative Example 6 Preparation of exhaust gas purifying catalyst having a potassium loading concentration of 0.15 mol / L In the preparation of exhaust gas purifying catalyst of Comparative Example 1, 1-1. The amount of potassium in the step (4) is 3.6 g to 4.1 g, 1-2. Exhaust gas purifying catalyst was prepared in the same manner as Comparative Example 1 except that the amount of potassium in the step (2) was changed from 1.5 g to 1.7 g.

比較例7.カリウム担持濃度0.18mol/Lの排ガス浄化用触媒の調製
比較例1の排ガス浄化用触媒の調製において、1−1.(4)の工程のカリウムとしての量を3.6gから5.0g、1−2.(2)の工程のカリウムとしての量を1.5gから2.1gに変更したこと以外については、比較例1と同様にして排ガス浄化用触媒を調製した。
Comparative Example 7 Preparation of exhaust gas purifying catalyst having a potassium loading concentration of 0.18 mol / L In the preparation of exhaust gas purifying catalyst of Comparative Example 1, 1-1. The amount of potassium in the step (4) is 3.6 to 5.0 g, and 1-2. Exhaust gas purifying catalyst was prepared in the same manner as Comparative Example 1 except that the amount of potassium in the step (2) was changed from 1.5 g to 2.1 g.

比較例1〜7の排ガス浄化用触媒の模式図を図3(a)に示す。   A schematic diagram of the exhaust gas purifying catalysts of Comparative Examples 1 to 7 is shown in FIG.

2.第1担持濃度領域と第2担持濃度領域において異なるカリウム担持濃度を有する排ガス浄化用触媒の調製2. Preparation of exhaust gas purifying catalyst having different potassium loading concentration in the first loading concentration region and the second loading concentration region

比較例8.第1担持濃度領域のカリウム担持濃度0.13mol/L、第2担持濃度領域のカリウム担持濃度0.02mol/Lの排ガス浄化用触媒の調製
2−1.第1担持濃度領域用下層用スラリーの調製
比較例1の1−1.(4)の工程と同様にしてスラリーを調製し、そのスラリーを第1担持濃度領域用下層用スラリーとした。
2−2.第2担持濃度領域用下層用スラリーの調製
比較例1の1−1.(4)の工程のカリウムとしての量を3.6gから0.6gに変更したこと以外については、比較例1の1−1の工程と同様にしてスラリーを調製し、そのスラリーを第2担持濃度領域用下層用スラリーとした。
2−3.第1担持濃度領域用上層用スラリーの調製
比較例1の1−2.(2)の工程と同様にしてスラリーを調製し、そのスラリーを第1担持濃度領域用上層用スラリーとした。
2−4.第2担持濃度領域用上層用スラリーの調製
比較例1の1−2.(2)の工程のカリウムとしての量を1.5gから0.2gに変更したこと以外については、比較例1の1−2の工程と同様にしてスラリーを調製し、そのスラリーを第2担持濃度領域用上層用スラリーとした。
2−5.コート層の形成
(1)円柱型コージェライト製ハニカム基材(デンソー製、直径129mm×基材長100mm、1.3L)の端面において、第1担持濃度領域(中心をハニカム基材の中心と同じとした直径66mmの円形領域)の外周部分である第2担持濃度領域(中心をハニカム基材の中心と同じとして、内径66mmから外径129mmまでの第1担持濃度領域の外周の円環領域)をマスキングし、2−1で調製した第1担持濃度領域用下層用スラリーをウォッシュコートして第1担持濃度領域に下層コート層を形成した。第1担持濃度領域の下層コート層はハニカム基材1Lに対し150g形成させた。
(2)(1)で得られた第1担持濃度領域に下層コート層が形成されたハニカム基材に、2−3で調製した第1担持濃度領域用上層用スラリーをウォッシュコートして第1担持濃度領域に上層コート層を形成した。第1担持濃度領域の上層コート層はハニカム基材1Lに対し70g形成させた。
(3)(2)で得られた第1担持濃度領域にコート層が形成されたハニカム基材の端面において、コート層が形成された第1担持濃度領域をマスキングし、2−2で調製した第2担持濃度領域用下層用スラリーをウォッシュコートして第2担持濃度領域に下層コート層を形成した。第2担持濃度領域の下層コート層はハニカム基材1Lに対し150g形成させた。
(4)(3)で得られた第2担持濃度領域に下層コート層が形成されたハニカム基材に、2−4で調製した第2担持濃度領域用上層用スラリーをウォッシュコートして第2担持濃度領域に上層コート層を形成した。第2担持濃度領域の上層コート層はハニカム基材1Lに対し70g形成させた。
排ガス浄化用触媒中の各成分の濃度は、白金:1.3g/L、パラジウム:0.5g/L、ロジウム:0.3g/L、バリウム:0.2mol/L、リチウム:0.1mol/L、カリウム(第1担持濃度領域):0.13mol/L、カリウム(第2担持濃度領域):0.02mol/Lであった。
Comparative Example 8. 2. Preparation of exhaust gas purification catalyst having a potassium loading concentration of 0.13 mol / L in the first loading concentration region and a potassium loading concentration of 0.02 mol / L in the second loading concentration region 2-1. Preparation of lower layer slurry for first carrier concentration region 1-1 of Comparative Example 1-1. A slurry was prepared in the same manner as in the step (4), and the slurry was used as a lower slurry for a first supported concentration region.
2-2. Preparation of lower layer slurry for second supported concentration region 1-1 of Comparative Example 1-1. A slurry was prepared in the same manner as in the step 1-1 of Comparative Example 1 except that the amount of potassium in the step (4) was changed from 3.6 g to 0.6 g, and the slurry was second loaded. A lower layer slurry for the concentration region was obtained.
2-3. Preparation of slurry for upper layer for first carrying concentration region 1-2 of Comparative Example 1 A slurry was prepared in the same manner as in the step (2), and the slurry was used as an upper layer slurry for the first supported concentration region.
2-4. Preparation of upper layer slurry for second carrier concentration region 1-2 of Comparative Example 1-2. Except that the amount of potassium in the step (2) was changed from 1.5 g to 0.2 g, a slurry was prepared in the same manner as in the step 1-2 of Comparative Example 1, and the slurry was second supported. A slurry for the upper layer for the concentration region was obtained.
2-5. Formation of Coat Layer (1) On the end surface of a cylindrical cordierite honeycomb substrate (DENSO, diameter 129 mm × substrate length 100 mm, 1.3 L), the first supported concentration region (center is the same as the center of the honeycomb substrate) The second supported concentration region (circular region having a diameter of 66 mm) (annular region around the outer periphery of the first supported concentration region having an inner diameter of 66 mm to an outer diameter of 129 mm with the center being the same as the center of the honeycomb substrate) And the lower slurry for the first supported concentration region prepared in 2-1 was wash coated to form a lower coat layer in the first supported concentration region. 150 g of the lower coat layer in the first supported concentration region was formed on the honeycomb substrate 1L.
(2) The first support concentration region upper layer slurry prepared in 2-3 is wash-coated on the honeycomb base material in which the lower support layer is formed in the first support concentration region obtained in (1). An upper coat layer was formed in the supported concentration region. 70 g of the upper coat layer in the first supported concentration region was formed on 1 L of the honeycomb substrate.
(3) On the end face of the honeycomb substrate on which the coating layer was formed in the first supporting concentration region obtained in (2), the first supporting concentration region on which the coating layer was formed was masked and prepared in 2-2. The lower layer slurry for the second supported concentration region was washcoated to form a lower layer coat layer in the second supported concentration region. 150 g of the lower coat layer in the second supported concentration region was formed on the honeycomb substrate 1L.
(4) The second support concentration region upper layer slurry prepared in 2-4 is washed on the honeycomb substrate having the lower support concentration region formed in the second support concentration region obtained in (3) and second An upper coat layer was formed in the supported concentration region. 70 g of the upper coating layer in the second supported concentration region was formed on the honeycomb substrate 1L.
The concentration of each component in the exhaust gas purification catalyst is as follows: platinum: 1.3 g / L, palladium: 0.5 g / L, rhodium: 0.3 g / L, barium: 0.2 mol / L, lithium: 0.1 mol / L L, potassium (first supported concentration region): 0.13 mol / L, potassium (second supported concentration region): 0.02 mol / L.

比較例9.第1担持濃度領域のカリウム担持濃度0.13mol/L、第2担持濃度領域のカリウム担持濃度0.15mol/Lの排ガス浄化用触媒の調製
比較例8の排ガス浄化用触媒の調製において、2−2の工程のカリウムとしての量を0.6gから4.1g、2−4の工程のカリウムとしての量を0.2gから1.7gに変更したこと以外については、比較例8と同様にして排ガス浄化用触媒を調製した。
Comparative Example 9 Preparation of an exhaust gas purification catalyst having a potassium support concentration of 0.13 mol / L in the first support concentration region and a potassium support concentration of 0.15 mol / L in the second support concentration region. In the same manner as in Comparative Example 8, except that the amount of potassium in step 2 was changed from 0.6 g to 4.1 g, and the amount of potassium in step 2-4 was changed from 0.2 g to 1.7 g. An exhaust gas purification catalyst was prepared.

比較例10.第1担持濃度領域のカリウム担持濃度0.18mol/L、第2担持濃度領域のカリウム担持濃度0.08mol/Lの排ガス浄化用触媒の調製
比較例8の排ガス浄化用触媒の調製において、2−1の工程のカリウムとしての量を3.6gから5.0g、2−2の工程のカリウムとしての量を0.6gから2.2g、2−3の工程のカリウムとしての量を1.5gから2.1g、2−4の工程のカリウムとしての量を0.2gから0.9gに変更したこと以外については、比較例8と同様にして排ガス浄化用触媒を調製した。
Comparative Example 10 Preparation of an exhaust gas purification catalyst having a potassium support concentration of 0.18 mol / L in the first support concentration region and a potassium support concentration of 0.08 mol / L in the second support concentration region. The amount of potassium in step 1 is 3.6 g to 5.0 g. The amount of potassium in step 2-2 is 0.6 g to 2.2 g. The amount of potassium in step 2-3 is 1.5 g. To 2.1 g, a catalyst for exhaust gas purification was prepared in the same manner as in Comparative Example 8 except that the amount of potassium in the steps 2-4 was changed from 0.2 g to 0.9 g.

比較例11.第1担持濃度領域のカリウム担持濃度0.15mol/L、第2担持濃度領域のカリウム担持濃度0.04mol/Lの排ガス浄化用触媒の調製
比較例8の排ガス浄化用触媒の調製において、2−1の工程のカリウムとしての量を3.6gから4.1g、2−2の工程のカリウムとしての量を0.6gから1.1g、2−3の工程のカリウムとしての量を1.5gから1.7g、2−4の工程のカリウムとしての量を0.2gから0.4gに変更したこと以外については、比較例8と同様にして排ガス浄化用触媒を調製した。
Comparative Example 11 Preparation of an exhaust gas purification catalyst having a potassium support concentration of 0.15 mol / L in the first support concentration region and a potassium support concentration of 0.04 mol / L in the second support concentration region. The amount of potassium in step 1 is 3.6 g to 4.1 g. The amount of potassium in step 2-2 is 0.6 g to 1.1 g. The amount of potassium in step 2-3 is 1.5 g. To 1.7 g, a catalyst for exhaust gas purification was prepared in the same manner as Comparative Example 8 except that the amount of potassium in the steps 2-4 was changed from 0.2 g to 0.4 g.

実施例1.第1担持濃度領域のカリウム担持濃度0.13mol/L、第2担持濃度領域のカリウム担持濃度0.04mol/Lの排ガス浄化用触媒の調製
比較例8の排ガス浄化用触媒の調製において、2−2の工程のカリウムとしての量を0.6gから1.1g、2−4の工程のカリウムとしての量を0.2gから0.4gに変更したこと以外については、比較例8と同様にして排ガス浄化用触媒を調製した。
Example 1. Preparation of an exhaust gas purification catalyst having a potassium support concentration of 0.13 mol / L in the first support concentration region and a potassium support concentration of 0.04 mol / L in the second support concentration region. Except that the amount of potassium in step 2 was changed from 0.6 g to 1.1 g, and the amount of potassium in step 2-4 was changed from 0.2 g to 0.4 g, as in Comparative Example 8. An exhaust gas purification catalyst was prepared.

実施例2.第1担持濃度領域のカリウム担持濃度0.13mol/L、第2担持濃度領域のカリウム担持濃度0.08mol/Lの排ガス浄化用触媒の調製
比較例8の排ガス浄化用触媒の調製において、2−2の工程のカリウムとしての量を0.6gから2.2g、2−4の工程のカリウムとしての量を0.2gから0.9gに変更したこと以外については、比較例8と同様にして排ガス浄化用触媒を調製した。
Example 2 Preparation of exhaust gas purification catalyst having potassium support concentration of 0.13 mol / L in the first support concentration region and potassium support concentration of 0.08 mol / L in the second support concentration region Except that the amount of potassium in step 2 was changed from 0.6 g to 2.2 g, and the amount of potassium in step 2-4 was changed from 0.2 g to 0.9 g, as in Comparative Example 8. An exhaust gas purification catalyst was prepared.

実施例3.第1担持濃度領域のカリウム担持濃度0.13mol/L、第2担持濃度領域のカリウム担持濃度0.11mol/Lの排ガス浄化用触媒の調製
比較例8の排ガス浄化用触媒の調製において、2−2の工程のカリウムとしての量を0.6gから3.0g、2−4の工程のカリウムとしての量を0.2gから1.2gに変更したこと以外については、比較例8と同様にして排ガス浄化用触媒を調製した。
Example 3 Preparation of an exhaust gas purification catalyst having a potassium support concentration of 0.13 mol / L in the first support concentration region and a potassium support concentration of 0.11 mol / L in the second support concentration region. Except that the amount of potassium in step 2 was changed from 0.6 g to 3.0 g, and the amount of potassium in step 2-4 was changed from 0.2 g to 1.2 g, as in Comparative Example 8. An exhaust gas purification catalyst was prepared.

実施例4.第1担持濃度領域のカリウム担持濃度0.11mol/L、第2担持濃度領域のカリウム担持濃度0.08mol/Lの排ガス浄化用触媒の調製
比較例8の排ガス浄化用触媒の調製において、2−1の工程のカリウムとしての量を3.6gから3.1g、2−2の工程のカリウムとしての量を0.6gから2.2g、2−3の工程のカリウムとしての量を1.5gから1.2g、2−4の工程のカリウムとしての量を0.2gから0.9gに変更したこと以外については、比較例8と同様にして排ガス浄化用触媒を調製した。
Example 4 Preparation of an exhaust gas purification catalyst having a potassium support concentration of 0.11 mol / L in the first support concentration region and a potassium support concentration of 0.08 mol / L in the second support concentration region. The amount of potassium in step 1 is 3.6 g to 3.1 g, the amount of potassium in step 2-2 is 0.6 g to 2.2 g, and the amount of potassium in step 2-3 is 1.5 g. To 1.2 g, except that the amount of potassium in the step 2-4 was changed from 0.2 g to 0.9 g, an exhaust gas purification catalyst was prepared in the same manner as in Comparative Example 8.

実施例5.第1担持濃度領域のカリウム担持濃度0.15mol/L、第2担持濃度領域のカリウム担持濃度0.08mol/Lの排ガス浄化用触媒の調製
比較例8の排ガス浄化用触媒の調製において、2−1の工程のカリウムとしての量を3.6gから4.1g、2−2の工程のカリウムとしての量を0.6gから2.2g、2−3の工程のカリウムとしての量を1.5gから1.7g、2−4の工程のカリウムとしての量を0.2gから0.9gに変更したこと以外については、比較例8と同様にして排ガス浄化用触媒を調製した。
Embodiment 5 FIG. Preparation of an exhaust gas purification catalyst having a potassium support concentration of 0.15 mol / L in the first support concentration region and a potassium support concentration of 0.08 mol / L in the second support concentration region. The amount of potassium in step 1 is 3.6 g to 4.1 g. The amount of potassium in step 2-2 is 0.6 to 2.2 g. The amount of potassium in step 2-3 is 1.5 g. To 1.7 g, a catalyst for exhaust gas purification was prepared in the same manner as in Comparative Example 8, except that the amount of potassium in the steps 2-4 was changed from 0.2 g to 0.9 g.

実施例6.第1担持濃度領域のカリウム担持濃度0.15mol/L、第2担持濃度領域のカリウム担持濃度0.13mol/Lの排ガス浄化用触媒の調製
比較例8の排ガス浄化用触媒の調製において、2−1の工程のカリウムとしての量を3.6gから4.1g、2−2の工程のカリウムとしての量を0.6gから3.6g、2−3の工程のカリウムとしての量を1.5gから1.7g、2−4の工程のカリウムとしての量を0.2gから1.5gに変更したこと以外については、比較例8と同様にして排ガス浄化用触媒を調製した。
Example 6 Preparation of exhaust gas purifying catalyst of Comparative Example 8 in preparation of exhaust gas purifying catalyst having potassium supporting concentration of 0.15 mol / L in the first supporting concentration region and potassium supporting concentration of 0.13 mol / L in the second supporting concentration region. The amount of potassium in step 1 is 3.6 g to 4.1 g. The amount of potassium in step 2-2 is 0.6 g to 3.6 g. The amount of potassium in step 2-3 is 1.5 g. To 1.7 g, a catalyst for exhaust gas purification was prepared in the same manner as in Comparative Example 8 except that the amount of potassium in the steps 2-4 was changed from 0.2 g to 1.5 g.

比較例8〜11及び実施例1〜6の排ガス浄化用触媒の模式図を図3(b)に示す。   A schematic diagram of the exhaust gas purifying catalysts of Comparative Examples 8 to 11 and Examples 1 to 6 is shown in FIG.

3.試験・評価
比較例1〜11及び実施例1〜6の排ガス浄化用触媒について、NOx浄化率の測定を行った。
3. Test / Evaluation The NOx purification rate was measured for the exhaust gas purification catalysts of Comparative Examples 1 to 11 and Examples 1 to 6.

3−1.測定方法
(1)排ガス浄化用触媒を排気量3.5Lのエンジンの下流側に設置した。
(2)触媒床温度が760℃になるように回転数、アクセル開度を調整し、50時間熱処理を行った。
(3)図4に示すように、排ガス浄化用触媒を排気量3.5LのV型6気筒希薄燃焼エンジンの下流側に排気管径直径60mmの排気管を使用して設置し、吸入空気量(Ga)を52g/sとして、触媒床温度が450℃になるように回転数、アクセル開度を調整した。
(4)リッチ(A/F=12.5)3秒、リーン(A/F=24)60秒を1セットとし、リッチとリーンの間を4セット往復させた後にNOx濃度をMEXA-7500D(堀場製作所製)により測定し、NOx浄化率を算出した。
(5)排気量3.5Lの希薄燃焼エンジンにおいて、吸入空気量(Ga)を14g/sとして、触媒床温度が300℃になるように回転数、アクセル開度を調整した。
(6)リッチ(A/F=12.5)5秒、リーン(A/F=24)90秒を1セットとし、リッチとリーンの間を4セット往復させた後にNOx濃度をMEXA-7500D(堀場製作所製)により測定し、NOx浄化率を算出した。
3-1. Measurement Method (1) An exhaust gas purifying catalyst was installed on the downstream side of an engine with a displacement of 3.5 L.
(2) The rotational speed and accelerator opening were adjusted so that the catalyst bed temperature was 760 ° C., and heat treatment was performed for 50 hours.
(3) As shown in FIG. 4, an exhaust gas purification catalyst is installed on the downstream side of a 3.5-liter V-type 6-cylinder lean combustion engine using an exhaust pipe having an exhaust pipe diameter of 60 mm, and the amount of intake air (Ga) was set to 52 g / s, and the rotation speed and accelerator opening were adjusted so that the catalyst bed temperature was 450 ° C.
(4) Rich (A / F = 12.5) 3 seconds, Lean (A / F = 24) 60 seconds as one set, and 4 sets reciprocating between rich and lean, NOx concentration is MEXA-7500D ( And the NOx purification rate was calculated.
(5) In a lean combustion engine with a displacement of 3.5 L, the intake air amount (Ga) was 14 g / s, and the rotational speed and accelerator opening were adjusted so that the catalyst bed temperature was 300 ° C.
(6) Rich (A / F = 12.5) 5 seconds, Lean (A / F = 24) 90 seconds as one set, and 4 sets reciprocating between rich and lean, NOx concentration is MEXA-7500D ( And the NOx purification rate was calculated.

本評価では、吸蔵されたNOxを還元するのに十分量のリッチガスを供給した。このようにリッチとリーンを繰り返す評価を行うことで、触媒のNOx吸蔵性能と、還元性能を総合的に評価でき、実使用環境での性能を評価することができる。
NOx浄化率の測定条件について表1にまとめる。
In this evaluation, a sufficient amount of rich gas was supplied to reduce the stored NOx. Thus, by repeatedly evaluating rich and lean, the NOx occlusion performance and the reduction performance of the catalyst can be comprehensively evaluated, and the performance in an actual use environment can be evaluated.
The measurement conditions for the NOx purification rate are summarized in Table 1.

Figure 2016175043
Figure 2016175043

3−2.評価結果
NOx浄化率を下記式により算出した。
NOx浄化率(%)={(排ガス中のNOxの濃度)−(排ガス浄化用触媒から流出したガス中のNOxの濃度)}/(排ガス中のNOxの濃度)×100
NOx浄化率を表2にまとめる。
3-2. Evaluation result The NOx purification rate was calculated by the following formula.
NOx purification rate (%) = {(NOx concentration in exhaust gas) − (NOx concentration in gas flowing out from exhaust gas purification catalyst)} / (NOx concentration in exhaust gas) × 100
The NOx purification rate is summarized in Table 2.

Figure 2016175043
Figure 2016175043

なお、比較例1〜7の排ガス浄化用触媒における、触媒床温度の違いでのカリウム担持濃度とNOx浄化率の関係を図5に示す。図5に示すように、触媒床温度が300℃と450℃では、NOx浄化率における最適なカリウム担持濃度が異なるように思える。   In addition, in the exhaust gas purification catalyst of Comparative Examples 1-7, the relationship between the potassium carrying | concentration density | concentration in the difference in catalyst bed temperature and a NOx purification rate is shown in FIG. As shown in FIG. 5, when the catalyst bed temperature is 300 ° C. and 450 ° C., the optimum potassium loading concentration in the NOx purification rate seems to be different.

比較例1〜7と実施例1〜6の排ガス浄化用触媒を比較すると、低速走行時(触媒床温度:300℃)におけるNOx浄化性能について、比較例1〜7は約60%〜約70%であるが実施例1〜6は約70%であり、実施例1〜6のNOx浄化率は比較例の中でも高いNOx浄化率とほぼ同じとなっている。また、高速走行時(触媒床温度:450℃)におけるNOx浄化性能について、比較例1〜7のNOx浄化率は高くとも80%を超えることはないが実施例のNOx浄化率はいずれも80%以上であり、実施例のNOx浄化率は、比較例のNOx浄化率よりも良い結果である。   When the exhaust gas purifying catalysts of Comparative Examples 1-7 and Examples 1-6 are compared, the NOx purification performance during low speed running (catalyst bed temperature: 300 ° C.) is about 60% to about 70% in Comparative Examples 1-7. However, Examples 1-6 are about 70%, and the NOx purification rate of Examples 1-6 is substantially the same as the high NOx purification rate in the comparative examples. Further, regarding the NOx purification performance during high speed running (catalyst bed temperature: 450 ° C.), the NOx purification rates of Comparative Examples 1 to 7 do not exceed 80% at the highest, but the NOx purification rates of the examples are all 80%. As described above, the NOx purification rate of the example is a better result than the NOx purification rate of the comparative example.

また、比較例8〜11と実施例1〜6の排ガス浄化用触媒を比較することによって、排ガス浄化用触媒は、特に、排ガス浄化用触媒中のカリウム担持濃度が第1担持濃度領域において0.11〜0.15mol/Lであり、第2担持濃度領域において0.04〜0.13mol/Lであり、さらに、第1担持濃度領域の担持濃度の前記第2担持濃度領域の担持濃度に対する比(第1担持濃度領域の担持濃度/第2担持濃度領域の担持濃度)が1.1〜3.3であるときに、優れたNOx浄化性能を有することが分かった。   Further, by comparing the exhaust gas purifying catalysts of Comparative Examples 8 to 11 and Examples 1 to 6, the exhaust gas purifying catalyst has a potassium support concentration in the exhaust gas purifying catalyst of 0. 0 in the first support concentration region. 11 to 0.15 mol / L, 0.04 to 0.13 mol / L in the second supported concentration region, and the ratio of the supported concentration in the first supported concentration region to the supported concentration in the second supported concentration region It was found that when the (supported concentration in the first supported concentration region / supported concentration in the second supported concentration region) was 1.1 to 3.3, it had excellent NOx purification performance.

<第1担持濃度領域の円の直径の第2担持濃度領域の最外円の直径に対する比の好適範囲>
4.第1担持濃度領域の円の直径の第2担持濃度領域の最外円の直径に対する比(第1担持濃度領域の円の直径/第2担持濃度領域の最外円の直径)が異なる排ガス浄化用触媒の調製
<Preferable range of the ratio of the diameter of the circle of the first supported concentration region to the diameter of the outermost circle of the second supported concentration region>
4). Exhaust gas purification in which the ratio of the diameter of the circle of the first supported concentration region to the diameter of the outermost circle of the second supported concentration region (the diameter of the circle of the first supported concentration region / the diameter of the outermost circle of the second supported concentration region) differs Catalyst preparation

比較例12.第1担持濃度領域(カリウム担持濃度:0.13mol/L)の円の直径の第2担持濃度領域(カリウム担持濃度:0.08mol/L)の最外円の直径に対する比が0.12である排ガス浄化用触媒の調製
実施例2の排ガス浄化用触媒の調製において、実施例2の排ガス浄化用触媒の調製で引用している比較例8の2−5.(1)及び(3)の工程中の第1担持濃度領域(中心をハニカム基材の中心と同じとした直径66mmの円形領域)及び第2担持濃度領域(中心をハニカム基材の中心と同じとして、内径66mmから外径129mmまでの第1担持濃度領域の外周の円環領域)を、それぞれ第1担持濃度領域(中心をハニカム基材の中心と同じとした直径15mmの円形領域)及び第2担持濃度領域(中心をハニカム基材の中心と同じとして、内径15mmから外径129mmまでの第1担持濃度領域の外周の円環領域)に変更したこと以外については、実施例2と同様にして排ガス浄化用触媒を調製した。
Comparative Example 12 The ratio of the diameter of the circle in the first supported concentration region (potassium supported concentration: 0.13 mol / L) to the diameter of the outermost circle in the second supported concentration region (potassium supported concentration: 0.08 mol / L) is 0.12. Preparation of certain exhaust gas purifying catalyst In the preparation of the exhaust gas purifying catalyst of Example 2, 2-5 in Comparative Example 8 cited in the preparation of the exhaust gas purifying catalyst of Example 2. The first supported concentration region (circular region with a diameter of 66 mm with the center being the same as the center of the honeycomb substrate) and the second supported concentration region (the center being the same as the center of the honeycomb substrate) in the steps of (1) and (3) As an annular region on the outer periphery of the first support concentration region having an inner diameter of 66 mm to an outer diameter of 129 mm, respectively, and a first support concentration region (a circular region having a diameter of 15 mm with the center being the same as the center of the honeycomb substrate) and the first support concentration region. 2 The same as in Example 2 except that it was changed to the support concentration region (the center was the same as the center of the honeycomb substrate, and the outer periphery was an annular region around the first support concentration region having an inner diameter of 15 mm to an outer diameter of 129 mm). Thus, an exhaust gas purification catalyst was prepared.

実施例7.第1担持濃度領域(カリウム担持濃度:0.13mol/L)の円の直径の第2担持濃度領域(カリウム担持濃度:0.08mol/L)の最外円の直径に対する比が0.23である排ガス浄化用触媒の調製
実施例2の排ガス浄化用触媒の調製において、実施例2の排ガス浄化用触媒の調製で引用している比較例8の2−5.(1)及び(3)の工程中の第1担持濃度領域(中心をハニカム基材の中心と同じとした直径66mmの円形領域)及び第2担持濃度領域(中心をハニカム基材の中心と同じとして、内径66mmから外径129mmまでの第1担持濃度領域の外周の円環領域)を、それぞれ第1担持濃度領域(中心をハニカム基材の中心と同じとした直径30mmの円形領域)及び第2担持濃度領域(中心をハニカム基材の中心と同じとして、内径30mmから外径129mmまでの第1担持濃度領域の外周の円環領域)に変更したこと以外については、実施例2と同様にして排ガス浄化用触媒を調製した。
Example 7 The ratio of the diameter of the circle in the first supported concentration region (potassium supported concentration: 0.13 mol / L) to the diameter of the outermost circle in the second supported concentration region (potassium supported concentration: 0.08 mol / L) is 0.23. Preparation of certain exhaust gas purifying catalyst In the preparation of the exhaust gas purifying catalyst of Example 2, 2-5 in Comparative Example 8 cited in the preparation of the exhaust gas purifying catalyst of Example 2. The first supported concentration region (circular region with a diameter of 66 mm with the center being the same as the center of the honeycomb substrate) and the second supported concentration region (the center being the same as the center of the honeycomb substrate) in the steps of (1) and (3) As an annular region on the outer periphery of the first supported concentration region having an inner diameter of 66 mm to an outer diameter of 129 mm, and a first supported concentration region (a circular region having a diameter of 30 mm with the center being the same as the center of the honeycomb substrate) and 2 The same as in Example 2 except that it was changed to the support concentration region (the center was the same as the center of the honeycomb substrate, and the outer periphery was an annular region on the outer periphery of the first support concentration region having an inner diameter of 30 mm to an outer diameter of 129 mm). Thus, an exhaust gas purification catalyst was prepared.

実施例8.第1担持濃度領域(カリウム担持濃度:0.13mol/L)の円の直径の第2担持濃度領域(カリウム担持濃度:0.08mol/L)の最外円の直径に対する比が0.67である排ガス浄化用触媒の調製
実施例2の排ガス浄化用触媒の調製において、実施例2の排ガス浄化用触媒の調製で引用している比較例8の2−5.(1)及び(3)の工程中の第1担持濃度領域(中心をハニカム基材の中心と同じとした直径66mmの円形領域)及び第2担持濃度領域(中心をハニカム基材の中心と同じとして、内径66mmから外径129mmまでの第1担持濃度領域の外周の円環領域)を、それぞれ第1担持濃度領域(中心をハニカム基材の中心と同じとした直径86mmの円形領域)及び第2担持濃度領域(中心をハニカム基材の中心と同じとして、内径86mmから外径129mmまでの第1担持濃度領域の外周の円環領域)に変更したこと以外については、実施例2と同様にして排ガス浄化用触媒を調製した。
Example 8 FIG. The ratio of the diameter of the circle in the first supported concentration region (potassium supported concentration: 0.13 mol / L) to the diameter of the outermost circle in the second supported concentration region (potassium supported concentration: 0.08 mol / L) is 0.67. Preparation of certain exhaust gas purifying catalyst In the preparation of the exhaust gas purifying catalyst of Example 2, 2-5 in Comparative Example 8 cited in the preparation of the exhaust gas purifying catalyst of Example 2. The first supported concentration region (circular region with a diameter of 66 mm with the center being the same as the center of the honeycomb substrate) and the second supported concentration region (the center being the same as the center of the honeycomb substrate) in the steps of (1) and (3) As an annular region on the outer periphery of the first support concentration region having an inner diameter of 66 mm to an outer diameter of 129 mm, respectively, and a first support concentration region (a circular region having a diameter of 86 mm with the center being the same as the center of the honeycomb substrate) and the first support concentration region. 2 The same as in Example 2 except that it was changed to the support concentration region (the center was the same as the center of the honeycomb substrate, and the outer periphery was an annular region on the outer periphery of the first support concentration region having an inner diameter of 86 mm to an outer diameter of 129 mm). Thus, an exhaust gas purification catalyst was prepared.

実施例9.第1担持濃度領域(カリウム担持濃度:0.13mol/L)の円の直径の第2担持濃度領域(カリウム担持濃度:0.08mol/L)の最外円の直径に対する比が0.76である排ガス浄化用触媒の調製
実施例2の排ガス浄化用触媒の調製において、実施例2の排ガス浄化用触媒の調製で引用している比較例8の2−5.(1)及び(3)の工程中の第1担持濃度領域(中心をハニカム基材の中心と同じとした直径66mmの円形領域)及び第2担持濃度領域(中心をハニカム基材の中心と同じとして、内径66mmから外径129mmまでの第1担持濃度領域の外周の円環領域)を、それぞれ第1担持濃度領域(中心をハニカム基材の中心と同じとした直径98mmの円形領域)及び第2担持濃度領域(中心をハニカム基材の中心と同じとして、内径98mmから外径129mmまでの第1担持濃度領域の外周の円環領域)に変更したこと以外については、実施例2と同様にして排ガス浄化用触媒を調製した。
Example 9 The ratio of the diameter of the circle in the first supported concentration region (potassium supported concentration: 0.13 mol / L) to the diameter of the outermost circle in the second supported concentration region (potassium supported concentration: 0.08 mol / L) is 0.76. Preparation of certain exhaust gas purifying catalyst In the preparation of the exhaust gas purifying catalyst of Example 2, 2-5 in Comparative Example 8 cited in the preparation of the exhaust gas purifying catalyst of Example 2. The first supported concentration region (circular region with a diameter of 66 mm with the center being the same as the center of the honeycomb substrate) and the second supported concentration region (the center being the same as the center of the honeycomb substrate) in the steps of (1) and (3) As an annular region on the outer periphery of the first support concentration region having an inner diameter of 66 mm to an outer diameter of 129 mm, respectively, and a first support concentration region (a circular region with a diameter of 98 mm with the center being the same as the center of the honeycomb substrate) and the first support concentration region. 2 The same as in Example 2 except that it was changed to the support concentration region (the center was the same as the center of the honeycomb substrate, and the outer peripheral annular region of the first support concentration region having an inner diameter of 98 mm to an outer diameter of 129 mm). Thus, an exhaust gas purification catalyst was prepared.

比較例12及び実施例7〜9の排ガス浄化用触媒の模式図を図6に示す。   A schematic diagram of the exhaust gas purifying catalyst of Comparative Example 12 and Examples 7 to 9 is shown in FIG.

5.試験・評価
比較例1、4及び12並びに実施例2及び7〜9の排ガス浄化用触媒について、NOx浄化率の測定を行った。
5. Test / Evaluation Comparative Examples 1, 4 and 12 and Examples 2 and 7 to 9 were measured for NOx purification rates for the exhaust gas purification catalysts.

5−1.測定方法
(1)排ガス浄化用触媒を排気量3Lのエンジンの下流側に設置した。
(2)触媒床温度が760℃になるように回転数、アクセル開度を調整し、50時間熱処理を行った。
(3)図4に示すように、排ガス浄化用触媒を排気量3.5LのV型6気筒希薄燃焼エンジンの下流側に排気管径直径60mmの排気管を使用して設置し、吸入空気量(Ga)を52g/sとして、触媒床温度が450℃になるように回転数、アクセル開度を調整した。
(4)リッチ(A/F=12.5)3秒、リーン(A/F=24)60秒を1セットとし、リッチとリーンの間を4セット往復させた後にNOx濃度をMEXA-7500D(堀場製作所製)により測定し、NOx浄化率を算出した。
排気量3.5Lの希薄燃焼エンジンにおけるNOx浄化率測定条件について表3にまとめる。
5-1. Measuring method (1) An exhaust gas purifying catalyst was installed on the downstream side of a 3 L engine.
(2) The rotational speed and accelerator opening were adjusted so that the catalyst bed temperature was 760 ° C., and heat treatment was performed for 50 hours.
(3) As shown in FIG. 4, an exhaust gas purification catalyst is installed on the downstream side of a 3.5-liter V-type 6-cylinder lean combustion engine using an exhaust pipe having an exhaust pipe diameter of 60 mm, and the amount of intake air (Ga) was set to 52 g / s, and the rotation speed and accelerator opening were adjusted so that the catalyst bed temperature was 450 ° C.
(4) Rich (A / F = 12.5) 3 seconds, Lean (A / F = 24) 60 seconds as one set, and 4 sets reciprocating between rich and lean, NOx concentration is MEXA-7500D ( And the NOx purification rate was calculated.
Table 3 summarizes the conditions for measuring the NOx purification rate in a lean combustion engine with a displacement of 3.5 L.

Figure 2016175043
Figure 2016175043

(5)図7に示すように、排ガス浄化用触媒を排気量2.0Lの直列4気筒希薄燃焼エンジンの下流側に排気管径直径60mmの排気管を使用して設置し、吸入空気量(Ga)を29g/sとして、触媒床温度が450℃になるように回転数、アクセル開度を調整した。
(6)リッチ(A/F=12.5)3秒、リーン(A/F=24)120秒を1セットとし、リッチとリーンの間を4セット往復させた後にNOx濃度をMEXA-7500D(堀場製作所)により測定し、NOx浄化率を算出した。
排気量2.0Lの希薄燃焼エンジンにおけるNOx浄化率測定条件について表4にまとめる。
(5) As shown in FIG. 7, an exhaust gas purifying catalyst is installed on the downstream side of an inline 4-cylinder lean combustion engine with a displacement of 2.0 L using an exhaust pipe having an exhaust pipe diameter of 60 mm, and an intake air amount ( Ga) was 29 g / s, and the rotation speed and accelerator opening were adjusted so that the catalyst bed temperature was 450 ° C.
(6) Rich (A / F = 12.5) 3 seconds, Lean (A / F = 24) 120 seconds as one set, and after 4 round trips between rich and lean, NOx concentration is MEXA-7500D ( HORIBA, Ltd.), and the NOx purification rate was calculated.
Table 4 summarizes the conditions for measuring the NOx purification rate in a lean combustion engine with a displacement of 2.0 L.

Figure 2016175043
Figure 2016175043

5−2.評価結果
NOx浄化率を3−2に記載の式により算出した。
NOx浄化率を表5にまとめる。
5-2. Evaluation Result The NOx purification rate was calculated by the formula described in 3-2.
The NOx purification rate is summarized in Table 5.

Figure 2016175043
Figure 2016175043

また、排気量3.5L又は2.0Lの希薄燃焼エンジンを用いてNOx浄化率を測定した場合の、第1担持濃度領域の円の直径の第2担持濃度領域の最外円の直径に対する比(第1担持濃度領域の円の直径/第2担持濃度領域の最外円の直径)に対するNOx浄化率を、それぞれ図8及び9に示す。   Further, when the NOx purification rate is measured using a lean combustion engine having a displacement of 3.5 L or 2.0 L, the ratio of the diameter of the circle in the first supported concentration region to the diameter of the outermost circle in the second supported concentration region FIGS. 8 and 9 show the NOx purification rates with respect to (the diameter of the circle in the first supported concentration region / the diameter of the outermost circle in the second supported concentration region), respectively.

表5並びに図8及び9に示すように、(第1担持濃度領域の円の直径/第2担持濃度領域の最外円の直径)にはNOx浄化性能に関して好適範囲が存在することが分かり、(第1担持濃度領域の円の直径/第2担持濃度領域の最外円の直径)が0.20〜0.80の時がより好ましいことがわかった。   As shown in Table 5 and FIGS. 8 and 9, it can be seen that there is a suitable range for NOx purification performance in (the diameter of the circle of the first supported concentration region / the diameter of the outermost circle of the second supported concentration region) It was found that it was more preferable that (the diameter of the circle in the first supported concentration region / the diameter of the outermost circle in the second supported concentration region) was 0.20 to 0.80.

また、希薄燃焼エンジンの排気量2.0L〜3.5Lにおいては、排気量が異なったとしても、その好適範囲は変化しないことが分かった。   It was also found that the preferred range of the lean combustion engine displacement 2.0L to 3.5L does not change even if the displacement is different.

<円柱型コージェライト製ハニカム基材のサイズの影響>
6.円柱型コージェライト製ハニカム基材のサイズを変形した排ガス浄化用触媒の調製
<Influence of size of cylindrical cordierite honeycomb substrate>
6). Preparation of exhaust gas purification catalyst with deformed cylindrical cordierite honeycomb substrate

比較例13.円柱型コージェライト製ハニカム基材(直径103mm×基材長155mm、1.3L)を使用した、カリウム担持濃度0.13mol/Lの排ガス浄化用触媒の調製
比較例1の排ガス浄化用触媒の調製において、1−3.(1)の工程の円柱型コージェライト製ハニカム基材(デンソー製、直径129mm×基材長100mm、1.3L)を、円柱型コージェライト製ハニカム基材(デンソー製、直径103mm×基材長155mm、1.3L)に変更したこと以外については、比較例1と同様にして排ガス浄化用触媒を調製した。
Comparative Example 13 Preparation of Exhaust Gas Purification Catalyst Using a Cylindrical Cordierite Honeycomb Base Material (Diameter 103 mm × Base Material Length 155 mm, 1.3 L) Preparation of Exhaust Gas Purification Catalyst of Comparative Example 1 Preparation of Exhaust Gas Purification Catalyst of Comparative Example 1 1-3. The columnar cordierite honeycomb substrate (Denso, diameter 129 mm x substrate length 100 mm, 1.3 L) in the step (1) was used as the columnar cordierite honeycomb substrate (Denso, diameter 103 mm x substrate length). Except for changing to 155 mm, 1.3 L), an exhaust gas purifying catalyst was prepared in the same manner as in Comparative Example 1.

実施例10.円柱型コージェライト製ハニカム基材(直径103mm×基材長155mm、1.3L)を使用した、第1担持濃度領域(カリウム担持濃度:0.13mol/L)の円の直径の第2担持濃度領域(カリウム担持濃度:0.08mol/L)の最外円の直径に対する比(第1担持濃度領域の円の直径/第2担持濃度領域の最外円の直径)が0.29である排ガス浄化用触媒の調製
実施例2の排ガス浄化用触媒の調製において、実施例2の排ガス浄化用触媒の調製で引用している比較例8の2−5.(1)の工程の円柱型コージェライト製ハニカム基材(デンソー製、直径129mm×基材長100mm、1.3L)を、円柱型コージェライト製ハニカム基材(デンソー製、直径103mm×基材長155mm、1.3L)に変更し、実施例2の排ガス浄化用触媒の調製で引用している比較例8の2−5.(1)及び(3)の工程中の第1担持濃度領域(中心をハニカム基材の中心と同じとした直径66mmの円形領域)及び第2担持濃度領域(中心をハニカム基材の中心と同じとして、内径66mmから外径129mmまでの第1担持濃度領域の外周の円環領域)を、それぞれ第1担持濃度領域(中心をハニカム基材の中心と同じとした直径30mmの円形領域)及び第2担持濃度領域(中心をハニカム基材の中心と同じとして、内径30mmから外径103mmまでの第1担持濃度領域の外周の円環領域)に変更したこと以外については、実施例2と同様にして排ガス浄化用触媒を調製した。
Example 10 Using a cylindrical cordierite honeycomb substrate (diameter 103 mm × substrate length 155 mm, 1.3 L), the second support concentration of the diameter of the circle in the first support concentration region (potassium support concentration: 0.13 mol / L) Exhaust gas in which the ratio of the region (potassium loading concentration: 0.08 mol / L) to the diameter of the outermost circle (diameter of the first loading concentration region / diameter of the outermost circle of the second loading concentration region) is 0.29. Preparation of purification catalyst In preparation of the exhaust gas purification catalyst of Example 2, 2-5 of Comparative Example 8 cited in the preparation of the exhaust gas purification catalyst of Example 2. The columnar cordierite honeycomb substrate (Denso, diameter 129 mm x substrate length 100 mm, 1.3 L) in the step (1) was used as the columnar cordierite honeycomb substrate (Denso, diameter 103 mm x substrate length). 155 mm, 1.3 L) and 2-5. Of Comparative Example 8 cited in the preparation of the exhaust gas purifying catalyst of Example 2. The first supported concentration region (circular region with a diameter of 66 mm with the center being the same as the center of the honeycomb substrate) and the second supported concentration region (the center being the same as the center of the honeycomb substrate) in the steps of (1) and (3) As an annular region on the outer periphery of the first supported concentration region having an inner diameter of 66 mm to an outer diameter of 129 mm, and a first supported concentration region (a circular region having a diameter of 30 mm with the center being the same as the center of the honeycomb substrate) and 2 The same as in Example 2, except that it was changed to the support concentration region (the center is the same as the center of the honeycomb substrate, and the outer peripheral annular region of the first support concentration region having an inner diameter of 30 mm to an outer diameter of 103 mm). Thus, an exhaust gas purification catalyst was prepared.

実施例11.円柱型コージェライト製ハニカム基材(直径103mm×基材長155mm、1.3L)を使用した、第1担持濃度領域(カリウム担持濃度:0.13mol/L)の円の直径の第2担持濃度領域(カリウム担持濃度:0.08mol/L)の最外円の直径に対する比(第1担持濃度領域の円の直径/第2担持濃度領域の最外円の直径)が0.58である排ガス浄化用触媒の調製
実施例2の排ガス浄化用触媒の調製において、実施例2の排ガス浄化用触媒の調製で引用している比較例8の2−5.(1)の工程の円柱型コージェライト製ハニカム基材(デンソー製、直径129mm×基材長100mm、1.3L)を、円柱型コージェライト製ハニカム基材(デンソー製、直径103mm×基材長155mm、1.3L)に変更し、実施例2の排ガス浄化用触媒の調製で引用している比較例8の2−5.(1)及び(3)の工程中の第1担持濃度領域(中心をハニカム基材の中心と同じとした直径66mmの円形領域)及び第2担持濃度領域(中心をハニカム基材の中心と同じとして、内径66mmから外径129mmまでの第1担持濃度領域の外周の円環領域)を、それぞれ第1担持濃度領域(中心をハニカム基材の中心と同じとした直径60mmの円形領域)及び第2担持濃度領域(中心をハニカム基材の中心と同じとして、内径60mmから外径103mmまでの第1担持濃度領域の外周の円環領域)に変更したこと以外については、実施例2と同様にして排ガス浄化用触媒を調製した。
Example 11 Using a cylindrical cordierite honeycomb substrate (diameter 103 mm × substrate length 155 mm, 1.3 L), the second support concentration of the diameter of the circle in the first support concentration region (potassium support concentration: 0.13 mol / L) Exhaust gas in which the ratio of the region (potassium loading concentration: 0.08 mol / L) to the diameter of the outermost circle (diameter of the first loading concentration region / diameter of the outermost circle of the second loading concentration region) is 0.58 Preparation of purification catalyst In preparation of the exhaust gas purification catalyst of Example 2, 2-5 of Comparative Example 8 cited in the preparation of the exhaust gas purification catalyst of Example 2. The columnar cordierite honeycomb substrate (Denso, diameter 129 mm x substrate length 100 mm, 1.3 L) in the step (1) was used as the columnar cordierite honeycomb substrate (Denso, diameter 103 mm x substrate length). 155 mm, 1.3 L) and 2-5. Of Comparative Example 8 cited in the preparation of the exhaust gas purifying catalyst of Example 2. The first supported concentration region (circular region with a diameter of 66 mm with the center being the same as the center of the honeycomb substrate) and the second supported concentration region (the center being the same as the center of the honeycomb substrate) in the steps of (1) and (3) As an annular region on the outer periphery of the first supported concentration region having an inner diameter of 66 mm to an outer diameter of 129 mm, the first supported concentration region (a circular region having a diameter of 60 mm with the center being the same as the center of the honeycomb substrate) and the first 2 The same as in Example 2 except that the concentration was changed to the support concentration region (the center is the same as the center of the honeycomb substrate, and the outer periphery of the first support concentration region having an inner diameter of 60 mm to an outer diameter of 103 mm). Thus, an exhaust gas purification catalyst was prepared.

実施例12.円柱型コージェライト製ハニカム基材(直径103mm×基材長155mm、1.3L)を使用した、第1担持濃度領域(カリウム担持濃度:0.13mol/L)の円の直径の第2担持濃度領域(カリウム担持濃度:0.08mol/L)の最外円の直径に対する比(第1担持濃度領域の円の直径/第2担持濃度領域の最外円の直径)が0.87である排ガス浄化用触媒の調製
実施例2の排ガス浄化用触媒の調製において、実施例2の排ガス浄化用触媒の調製で引用している比較例8の2−5.(1)の工程の円柱型コージェライト製ハニカム基材(デンソー製、直径129mm×基材長100mm、1.3L)を、円柱型コージェライト製ハニカム基材(デンソー製、直径103mm×基材長155mm、1.3L)に変更し、実施例2の排ガス浄化用触媒の調製で引用している比較例8の2−5.(1)及び(3)の工程中の第1担持濃度領域(中心をハニカム基材の中心と同じとした直径66mmの円形領域)及び第2担持濃度領域(中心をハニカム基材の中心と同じとして、内径66mmから外径129mmまでの第1担持濃度領域の外周の円環領域)を、それぞれ第1担持濃度領域(中心をハニカム基材の中心と同じとした直径90mmの円形領域)及び第2担持濃度領域(中心をハニカム基材の中心と同じとして、内径90mmから外径103mmまでの第1担持濃度領域の外周の円環領域)に変更したこと以外については、実施例2と同様にして排ガス浄化用触媒を調製した。
Example 12 FIG. Using a cylindrical cordierite honeycomb substrate (diameter 103 mm × substrate length 155 mm, 1.3 L), the second support concentration of the diameter of the circle in the first support concentration region (potassium support concentration: 0.13 mol / L) Exhaust gas in which the ratio of the region (potassium loading concentration: 0.08 mol / L) to the diameter of the outermost circle (diameter of the first loading concentration region / diameter of the outermost circle of the second loading concentration region) is 0.87 Preparation of purification catalyst In preparation of the exhaust gas purification catalyst of Example 2, 2-5 of Comparative Example 8 cited in the preparation of the exhaust gas purification catalyst of Example 2. The columnar cordierite honeycomb substrate (Denso, diameter 129 mm x substrate length 100 mm, 1.3 L) in the step (1) was used as the columnar cordierite honeycomb substrate (Denso, diameter 103 mm x substrate length). 155 mm, 1.3 L) and 2-5. Of Comparative Example 8 cited in the preparation of the exhaust gas purifying catalyst of Example 2. The first supported concentration region (circular region with a diameter of 66 mm with the center being the same as the center of the honeycomb substrate) and the second supported concentration region (the center being the same as the center of the honeycomb substrate) in the steps of (1) and (3) As an annular region on the outer periphery of the first support concentration region having an inner diameter of 66 mm to an outer diameter of 129 mm, respectively, and a first support concentration region (a circular region having a diameter of 90 mm with the center being the same as the center of the honeycomb substrate) and 2 The same as in Example 2 except that it was changed to the supported concentration region (the annular region on the outer periphery of the first supported concentration region having the same center as that of the honeycomb substrate and the inner diameter of 90 mm to the outer diameter of 103 mm). Thus, an exhaust gas purification catalyst was prepared.

図10に、比較例1並びに実施例2、7及び8に用いた円柱型コージェライト製ハニカム基材と比較例13及び実施例10〜12に用いた円柱型コージェライト製ハニカム基材との相対的な大きさの関係を示す。   FIG. 10 shows the relative relationship between the cylindrical cordierite honeycomb substrate used in Comparative Example 1 and Examples 2, 7 and 8, and the cylindrical cordierite honeycomb substrate used in Comparative Example 13 and Examples 10-12. The relationship of the size is shown.

7.試験・評価
比較例13及び実施例10〜12の排ガス浄化用触媒について、NOx浄化率の測定を行った。
7−1.測定方法
5−1.(1)〜(4)に記載の方法により行った。
7−2.評価結果
NOx浄化率を3−2に記載の式により算出した。
7). The NOx purification rate was measured for the exhaust gas purification catalysts of Test / Evaluation Comparative Example 13 and Examples 10-12.
7-1. Measurement method 5-1. (1) It performed by the method as described in (4).
7-2. Evaluation Result The NOx purification rate was calculated by the formula described in 3-2.

比較例1並びに実施例2、7及び8のNOx浄化率について、5−2の排気量3.5Lの希薄燃焼エンジンにおける触媒床温度450℃の評価結果から、比較例1のNOx浄化率を1とした場合における実施例2、7又は8の排ガス浄化用触媒のNOx浄化性能(実施例2、7又は8の排ガス浄化用触媒のNOx浄化率/比較例13のNOx浄化率)を算出した。結果を図11に示す。   Regarding the NOx purification rate of Comparative Example 1 and Examples 2, 7 and 8, the NOx purification rate of Comparative Example 1 is 1 from the evaluation result of the catalyst bed temperature of 450 ° C. in the lean combustion engine of 5-2 with a displacement of 3.5 L. In this case, the NOx purification performance of the exhaust gas purification catalyst of Example 2, 7 or 8 (NOx purification rate of the exhaust gas purification catalyst of Example 2, 7 or 8 / NOx purification rate of Comparative Example 13) was calculated. The results are shown in FIG.

同様に、比較例13及び実施例10〜12のNOx浄化率について、比較例13のNOx浄化率を1とした場合における実施例10、11又は12の排ガス浄化用触媒のNOx浄化性能(実施例10、11又は12の排ガス浄化用触媒のNOx浄化率/比較例13のNOx浄化率)を算出した。結果を図12に示す。   Similarly, for the NOx purification rates of Comparative Example 13 and Examples 10 to 12, the NOx purification performance of the exhaust gas purification catalyst of Example 10, 11 or 12 when the NOx purification rate of Comparative Example 13 is 1 (Example) The NOx purification rate of the exhaust gas purification catalyst of 10, 11 or 12 / the NOx purification rate of Comparative Example 13) was calculated. The results are shown in FIG.

図12の実施例12からわかるように、(第1担持濃度領域の円の直径/第2担持濃度領域の最外円の直径)が0.87の時も本発明の効果を示すことがわかった。   As can be seen from Example 12 in FIG. 12, it can be seen that the effect of the present invention is also exhibited when (the diameter of the circle of the first carrier concentration region / the diameter of the outermost circle of the second carrier concentration region) is 0.87. It was.

図11及び12に示すように、排ガス浄化用触媒の基材のサイズを変更した場合であっても、排ガス浄化用触媒中のカリウム担持濃度が本発明の範囲内にあれば、本発明の効果を示すことがわかった。   As shown in FIGS. 11 and 12, even if the size of the base material of the exhaust gas purifying catalyst is changed, the effect of the present invention can be achieved if the potassium loading concentration in the exhaust gas purifying catalyst is within the range of the present invention. It was found that

Claims (1)

排ガスの流れ方向に対して垂直な断面が円である前記排ガスが通過する円柱型の基材と、
前記基材の表面に形成される触媒コート層とを備え、
前記触媒コート層が、前記基材の表面上に形成される下層と前記下層の上面に形成される上層とを有する2層構造であり、
前記下層が、ロジウム(Rh)、白金(Pt)及びパラジウム(Pd)を含む触媒金属と、カリウム(K)、バリウム(Ba)及びリチウム(Li)を含むNOx吸蔵材と、前記触媒金属及びNOx吸蔵材を担持するアルミナ(Al)、チタニア(TiO)、ジルコニア(ZrO)及びセリア(CeO)から選ばれる少なくとも1種を含む複合酸化物及び/又は酸化物とを含有し、
前記上層が、Pt及びPdを含む触媒金属と、K、Ba及びLiを含むNOx吸蔵材と、前記触媒金属及びNOx吸蔵材を担持するAl、TiO、ZrO及びCeOから選ばれる少なくとも1種を含む複合酸化物及び/又は酸化物とを含有する、
排ガス浄化用触媒であって、
前記Kを担持した領域には、Kが前記円柱型の基材の中心軸と同じ中心軸を有する円柱型の第1担持濃度である領域(第1担持濃度領域)と、Kが前記第1担持濃度領域の外周に存在する円環柱型の第2担持濃度である領域(第2担持濃度領域)とが存在し、
前記第1担持濃度領域が、0.11〜0.15mol/Lの担持濃度であり、かつ、
前記第2担持濃度領域が、0.04〜0.13mol/Lの担持濃度であり、かつ、
前記第1担持濃度領域の担持濃度の前記第2担持濃度領域の担持濃度に対する比(第1担持濃度領域の担持濃度/第2担持濃度領域の担持濃度)が、1.1〜3.3であり、かつ、
前記円柱型の第1担持濃度領域の円の直径の前記円環柱型の第2担持濃度領域の最外円の直径に対する比(第1担持濃度領域の円の直径/第2担持濃度領域の最外円の直径)が、0.20〜0.90である
ことを特徴とする、排ガス浄化用触媒。
A cylindrical base material through which the exhaust gas passes, the cross section being perpendicular to the flow direction of the exhaust gas is a circle;
A catalyst coat layer formed on the surface of the substrate;
The catalyst coat layer has a two-layer structure having a lower layer formed on the surface of the substrate and an upper layer formed on the upper surface of the lower layer,
The lower layer comprises a catalyst metal containing rhodium (Rh), platinum (Pt) and palladium (Pd), a NOx storage material containing potassium (K), barium (Ba) and lithium (Li), the catalyst metal and NOx. Containing a composite oxide and / or oxide containing at least one selected from alumina (Al 2 O 3 ), titania (TiO 2 ), zirconia (ZrO 2 ) and ceria (CeO 2 ) supporting the storage material. ,
The upper layer is selected from a catalyst metal containing Pt and Pd, a NOx storage material containing K, Ba and Li, and Al 2 O 3 , TiO 2 , ZrO 2 and CeO 2 supporting the catalyst metal and the NOx storage material. A composite oxide and / or an oxide containing at least one selected from
A catalyst for exhaust gas purification,
The K-supported region includes a column type first support concentration (first support concentration region) in which K has the same central axis as the center axis of the cylindrical base material, and K is the first support concentration region. There is a region (second supported concentration region) that is an annular column type second supported concentration that exists on the outer periphery of the supported concentration region,
The first supported concentration region is a supported concentration of 0.11 to 0.15 mol / L, and
The second supported concentration region is a supported concentration of 0.04 to 0.13 mol / L, and
The ratio of the carrier concentration in the first carrier concentration region to the carrier concentration in the second carrier concentration region (the carrier concentration in the first carrier concentration region / the carrier concentration in the second carrier concentration region) is 1.1 to 3.3. Yes, and
The ratio of the diameter of the circle of the first support concentration region of the cylindrical type to the diameter of the outermost circle of the second support concentration region of the annular column type (the diameter of the circle of the first support concentration region / the second support concentration region) A catalyst for exhaust gas purification, wherein the diameter of the outermost circle is 0.20 to 0.90.
JP2015058468A 2015-03-20 2015-03-20 Catalyst for exhaust gas purification Pending JP2016175043A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015058468A JP2016175043A (en) 2015-03-20 2015-03-20 Catalyst for exhaust gas purification

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015058468A JP2016175043A (en) 2015-03-20 2015-03-20 Catalyst for exhaust gas purification

Publications (1)

Publication Number Publication Date
JP2016175043A true JP2016175043A (en) 2016-10-06

Family

ID=57069490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015058468A Pending JP2016175043A (en) 2015-03-20 2015-03-20 Catalyst for exhaust gas purification

Country Status (1)

Country Link
JP (1) JP2016175043A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109550496A (en) * 2017-09-25 2019-04-02 株式会社科特拉 Exhaust gas purification oxidation catalyst device
JP6778845B1 (en) * 2019-01-22 2020-11-04 三井金属鉱業株式会社 Exhaust gas purification catalyst
EP3997315A4 (en) * 2019-07-12 2023-07-19 BASF Corporation Catalyst substrate comprising radially-zoned coating

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109550496A (en) * 2017-09-25 2019-04-02 株式会社科特拉 Exhaust gas purification oxidation catalyst device
CN109550496B (en) * 2017-09-25 2021-11-02 株式会社科特拉 Oxidation catalyst device for exhaust gas purification
JP6778845B1 (en) * 2019-01-22 2020-11-04 三井金属鉱業株式会社 Exhaust gas purification catalyst
EP3997315A4 (en) * 2019-07-12 2023-07-19 BASF Corporation Catalyst substrate comprising radially-zoned coating

Similar Documents

Publication Publication Date Title
JP6527935B2 (en) Exhaust gas purification catalyst
JP5996538B2 (en) Catalyst for lean-burn gasoline engines with improved NO oxidation activity
JP6999555B2 (en) Catalytic system for dilute gasoline direct injection engine
WO2016133085A1 (en) Exhaust gas purification catalyst
JP6246192B2 (en) Three-way catalyst system
KR101438953B1 (en) LNT Catalysts with Enhanced Storage Capacities of Nitrogen Oxide at Low Temperature
JP5326251B2 (en) Exhaust gas purification catalyst device
JP2006326495A (en) Exhaust-gas cleaning catalyst
JP6371557B2 (en) Phosphor trapping material and automobile exhaust gas purification catalyst using the same
JP2009273988A (en) Catalyst for cleaning exhaust gas
JP6440771B2 (en) Exhaust gas purification catalyst device
CN112808279B (en) Exhaust gas purifying catalyst
JP2010167381A (en) Exhaust gas cleaning catalyst
JP5157068B2 (en) Hydrogen sulfide production inhibitor and exhaust gas purification catalyst
JP2001079402A (en) Exhaust gas cleaning catalyst and its production
JP2016175043A (en) Catalyst for exhaust gas purification
JP5094049B2 (en) Exhaust gas purification catalyst
JP5604497B2 (en) Exhaust gas purification catalyst
JP2004275814A (en) Exhaust gas purifying catalyst, its manufacturing method and exhaust gas purifying apparatus
JP5078638B2 (en) Exhaust gas purification device
JP5328133B2 (en) Exhaust gas purification catalyst
JP6569637B2 (en) Exhaust gas purification device for internal combustion engine
JP2014213272A (en) Exhaust gas purification catalyst and exhaust gas purification device
JP7245613B2 (en) Exhaust gas purification catalyst device
JP2007152303A (en) Hydrogen-producing catalyst