JP2016172981A - Simple checking method for structure - Google Patents

Simple checking method for structure Download PDF

Info

Publication number
JP2016172981A
JP2016172981A JP2015053241A JP2015053241A JP2016172981A JP 2016172981 A JP2016172981 A JP 2016172981A JP 2015053241 A JP2015053241 A JP 2015053241A JP 2015053241 A JP2015053241 A JP 2015053241A JP 2016172981 A JP2016172981 A JP 2016172981A
Authority
JP
Japan
Prior art keywords
drifting object
momentum
collision
drifting
maximum allowable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015053241A
Other languages
Japanese (ja)
Other versions
JP6494347B2 (en
Inventor
博俊 小尾
Hirotoshi Obi
博俊 小尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Original Assignee
Taisei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp filed Critical Taisei Corp
Priority to JP2015053241A priority Critical patent/JP6494347B2/en
Publication of JP2016172981A publication Critical patent/JP2016172981A/en
Application granted granted Critical
Publication of JP6494347B2 publication Critical patent/JP6494347B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Bridges Or Land Bridges (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a simple checking method for a structure for readily checking durability of a structure exposed to an impact from a drifting object.SOLUTION: A simple checking method for a structure includes: a step for calculating a maximum allowable quantity of motion Pthat represents an allowable quantity of motion of a drifting object 3 for a structure 1 using Equation 1; and a step for comparing a presumed quantity of motion P with the maximum allowable quantity of motion P, the presumed quantity of motion representing a quantity of motion before crashing of the drifting object 3 that is presumed to crash into the structure 1. P=MV... Equation 1, where P: maximum allowable quantity of motion, M: mass of the structure, and V: velocity of the structure after the crash.SELECTED DRAWING: Figure 2

Description

本発明は、漂流物衝突時の構造物簡易照査方法に関する。   The present invention relates to a simple structure checking method at the time of a flotation object collision.

津波や洪水等が発生すると、水の流れによって物体(以下、単に「津波漂流物」という)が流される場合がある。そのため、沿岸部の構造物は、津波漂流物の衝撃に対して、十分な耐力を有していることが望ましい。
東日本大震災で生じた津波のように、従来では想定されなかった規模の津波や洪水が発生している。そのため、沿岸部の構造物について、津波漂流物が衝突した場合に十分な耐力を有しているか否かを確認する場合がある。
When a tsunami or flood occurs, an object (hereinafter simply referred to as a “tsunami drifting object”) may be carried by the flow of water. Therefore, it is desirable that the coastal structure has sufficient strength against the impact of tsunami drifting objects.
Like the tsunami caused by the Great East Japan Earthquake, there were tsunamis and floods of a scale that were not anticipated in the past. Therefore, it may be confirmed whether or not the structure in the coastal area has sufficient strength when a tsunami drifting object collides.

津波漂流物の衝突力を計算する方法はいくつか開示されてあるものの(例えば、非特許文献1参照)、計算手法毎に計算値にバラツキが生じていた。また、従来の津波漂流物の衝突力を計算する方法は、対象とする津波漂流物が限定されているのが一般的であった。そのため、津波の発生が予測される各地域の個別の条件に対応できるような統一的な手法は確立されていなかった。
また、従来の計算手法は、複雑で時間がかかる数値計算(有限要素法、粒子法等による流体−構造連成解析など)により行うのが一般的であった。
Although several methods for calculating the impact force of a tsunami drifting object have been disclosed (see, for example, Non-Patent Document 1), the calculation values varied among the calculation methods. Moreover, the conventional method for calculating the impact force of a tsunami drifting object is generally limited to the target tsunami drifting object. For this reason, no unified method has been established that can respond to individual conditions in each region where tsunamis are expected to occur.
Conventional calculation methods are generally performed by complicated and time-consuming numerical calculations (fluid-structure interaction analysis using a finite element method, a particle method, etc.).

松冨英夫、「流木衝突力の実用的な評価式と変化特性」、土木学会論文集No.621/II-47,111-127,1999.5,p.111-127Matsuo Hideo, “Practical Evaluation Formulas and Change Characteristics of Driftwood Impact Force”, Proceedings of Japan Society of Civil Engineers No.621 / II-47, 111-127, 1999.5, p.111-127

沿岸部の全ての構造物について、複雑な数値計算を実施するには、費用と時間がかかる。一方、多くの構造物について短時間で津波漂流物の衝突に対する安全性を確認することができれば、詳細な検討が必要な構造物のみに対して詳細な数値計算を行うことが可能となり、作業の手間と費用を大幅に削減することができる。   Performing complex numerical calculations on all coastal structures is expensive and time consuming. On the other hand, if it is possible to confirm the safety against tsunami drifting objects in a short time for many structures, it will be possible to perform detailed numerical calculations for only those structures that require detailed examination. The labor and cost can be greatly reduced.

このような観点から、本発明は、漂流物の衝突を受ける構造物の耐力を簡易に照査することを可能とした構造物簡易照査方法を提案することを課題とする。   From such a viewpoint, an object of the present invention is to propose a simple structure verification method that enables simple verification of the proof stress of a structure subjected to a collision with drifting objects.

前記課題を解決するために、本発明の構造物簡易照査方法は、式1を利用して構造物が許容可能な漂流物の運動量である最大許容運動量Pmaxを算出する工程と、前記構造物に衝突すると想定される漂流物の衝突前の運動量である想定運動量Pと前記最大許容運動量Pmaxとを比較する工程とを備えていることを特徴としている。 In order to solve the above-described problem, the structure simple verification method of the present invention calculates the maximum allowable momentum P max that is the momentum of the drifting object that the structure can tolerate using Equation 1, and the structure And a step of comparing the assumed momentum P, which is the momentum before the collision of the drifting object assumed to collide with the maximum allowable momentum Pmax .

max=MV ・・・ 式1
max:最大許容運動量
M:構造物の質量
:衝突後の構造物の速度(≒a×T/2π)
a:構造物の耐震設計時の応答加速度
T:構造物の固有周期
P max = MV 2 Equation 1
P max : Maximum allowable momentum M: Mass of structure V 2 : Speed of structure after collision (≈a × T / 2π)
a: Response acceleration during seismic design of structures T: Natural period of structures

かかる構造物簡易照査方法によれば、複雑な数値計算を要することなく漂流物に対する構造物の安全性を照査することができる。すなわち最大許容運動量Pmaxが、想定運動量Pよりも大きければ構造物が安全であると評価することができ、最大許容運動量Pmaxが想定運動量Pよりも小さければ構造物が危険であると評価することができる。
そのため、沿岸地に存在する構造物に対して、安全性を簡易に確認することができる。そして、この構造物簡易照査方法によって危険と評価された構造物のみに対して、詳細な計算を行うことで、作業の手間と費用の削減を図ることができる。
According to such a simple structure checking method, it is possible to check the safety of the structure against the drifting object without requiring complicated numerical calculation. That is, if the maximum allowable momentum P max is larger than the assumed momentum P, it can be evaluated that the structure is safe, and if the maximum allowable momentum P max is smaller than the assumed momentum P, the structure is evaluated as dangerous. be able to.
Therefore, safety can be easily confirmed for structures existing in coastal areas. And it is possible to reduce the labor and cost of work by performing detailed calculations only on structures that are evaluated as dangerous by this structure simple verification method.

本発明の構造物簡易照査方法によれば、漂流物の衝突を受ける構造物の耐力を簡易に照査することが可能となる。   According to the structure simple verification method of the present invention, it is possible to easily verify the proof stress of a structure that receives a collision with drifting objects.

(a)は本発明の実施形態に係る構造物を示す縦断図、(b)は同横断図である。(A) is a longitudinal cross-sectional view which shows the structure based on Embodiment of this invention, (b) is the cross section. 本発明の実施形態に係る構造物簡易照査方法の妥当性を確認するために行った検証解析に使用した解析モデル図であって、(a)は縦断図、(b)は平面図である。It is the analysis model figure used for the verification analysis performed in order to confirm the validity of the structure simple verification method which concerns on embodiment of this invention, Comprising: (a) is a longitudinal view, (b) is a top view. 検証解析における漂流物の速度履歴を示すグラフである。It is a graph which shows the speed history of the drifting object in verification analysis. 検証解析における脚柱の変位時刻歴を示すグラフである。It is a graph which shows the displacement time history of the pedestal in verification analysis. (a)は漂流物が高架橋のスラブに衝突した場合のモデル図、(b)は漂流物が脚柱に衝突した場合のモデル図である。(A) is a model figure when a drifting object collides with a slab of a viaduct, (b) is a model figure when a drifting object collides with a pedestal. 漂流物が高架橋のスラブに衝突した場合と漂流物が脚柱に衝突した場合の変位時刻歴を示すグラフである。It is a graph which shows the displacement time history when a drifting object collides with a slab of a viaduct, and when a drifting object collides with a pedestal.

本実施形態では、津波により流された漂流物の衝突を受けた構造物の耐力を簡易的に照査する場合について説明する。
本実施形態の構造物簡易照査方法は、式2に示すように、漂流物が構造物に衝突する前後で運動量保存則が成立することに着目した方法である。
mv+MV=mv+MV ・・・ 式2
m:漂流物の質量
:衝突前の漂流物の速度
:衝突後の漂流物の速度
M:構造物の質量
:衝突前の構造物の速度
:衝突後の構造物の速度
This embodiment demonstrates the case where the proof stress of the structure which received the collision of the drifting object shed by the tsunami is simply checked.
The structure simple verification method of the present embodiment is a method that pays attention to the fact that the law of conservation of momentum is established before and after the drifting object collides with the structure, as shown in Equation 2.
mv 1 + MV 1 = mv 2 + MV 2 ... Formula 2
m: Mass of the debris v 1 : Speed of the debris before the collision v 2 : Speed of the debris after the collision M: Mass of the structure V 1 : Speed of the structure before the collision V 2 : Structure after the collision Speed

ここで、漂流物が衝突する前の構造物の速度Vおよび漂流物が衝突した後の漂流物の速度vを0(ゼロ)と仮定すると、式2は、式3に示すようになる。
mv=MV ・・・ 式3
Here, assuming that the velocity V 1 of the structure before the drifting object collides and the velocity v 2 of the drifting object after the collision of the drifting object are 0 (zero), Expression 2 becomes as shown in Expression 3. .
mv 1 = MV 2 ... Equation 3

衝突後の構造物の速度Vは、耐震設計時の応答加速度aと、構造物の固有周期Tにより、簡略的な疑似応答速度として、式4のように表わすことができる。
≒a×T/2π ・・・ 式4
Velocity V 2 of the structure after the collision is the response acceleration a during seismic design, the natural period T of the structure, as a simplified pseudo response speed, can be expressed as Equation 4.
V 2 ≈a × T / 2π Equation 4

したがって、式1(Pmax=MV)によれば、構造物が許容可能な漂流物(以下、「基準漂流物」という)の運動量である最大許容運動量Pmax(=mv)を算定することができ、ひいては、基準漂流物の質量mと衝突速度vとを推定することができる。
最大許容運動量Pmax(質量mおよび衝突速度v)を算定したら、構造物1に衝突すると想定される漂流物(以下、「想定漂流物」という)が構造物に衝突する前の運動量である想定運動量P(=m)と比較して、構造物の安全性を照査する。すなわち、最大許容運動量Pmaxが想定される漂流物の想定運動量Pよりも大きければ構造物が安全であると評価し、最大許容運動量Pmaxが推定運動量Pよりも小さければ構造物が危険であると評価すればよい。
Therefore, according to Equation 1 (P max = MV 2 ), the maximum allowable momentum P max (= mv 1 ), which is the momentum of the drifting object that the structure can accept (hereinafter referred to as “reference drifting object”), is calculated. Thus, the mass m of the reference drifting object and the collision velocity v 1 can be estimated.
When the maximum allowable momentum P max (mass m and collision velocity v 1 ) is calculated, it is the momentum before the drifting object that is assumed to collide with the structure 1 (hereinafter referred to as “expected drifting object”) collides with the structure. Compared with the assumed momentum P (= m T v T ), the safety of the structure is checked. That is, if the maximum allowable momentum P max is larger than the assumed drift moment P of the drifting object, the structure is evaluated as safe. If the maximum allowable momentum P max is smaller than the estimated momentum P, the structure is dangerous. Can be evaluated.

ここで、構造物1に衝突すると想定される漂流物3の質量をmとし、当該漂流物3の衝突直前の速度をvとすると、想定運動量Pはmで表現できる。
漂流物3になり得る物体の質量mが既知である場合には、津波が発生した際の物体(漂流物3)の速度がPmax/mを下回っていれば構造物1が安全であると評価できる。また、物体(漂流物3)の衝突直前の速度vが既知である場合には、漂流物3の質量がPmax/vを下回っていれば構造物1が安全であると評価できる。
なお、漂流物3になり得る物体の質量mは、構造物1の周囲を調査すれば比較的容易に想定することができる。
Here, assuming that the mass of the drifting object 3 assumed to collide with the structure 1 is m T and the velocity immediately before the collision of the drifting object 3 is v T , the assumed momentum P can be expressed by m T v T.
If the mass m T of an object that can be a drifting object 3 is known, the structure 1 is safe if the speed of the object (the drifting object 3) when the tsunami occurs is less than P max / m T It can be evaluated that there is. Further, when the velocity v T immediately before the collision of the object (the drift object 3) is known, it can be evaluated that the structure 1 is safe if the mass of the drift object 3 is less than P max / v T.
Note that the mass m T of the object that can be the drifting object 3 can be assumed relatively easily if the surroundings of the structure 1 are investigated.

以下、検証事例として、漂流したコンテナ(漂流物3)が鉄筋コンクリートラーメン高架橋(構造物1)の脚柱2に衝突した場合を検証する。
構造物1は、鉄道構造物で用いられる一般的な構造形式であり、「鉄道構造物等設計標準・同解説 コンクリート構造物 照査例 RCラーメン高架橋」(鉄道総合技術研究所、2005)に準拠している。図1に示すように、構造物1は、全長約50m(5径間)、幅員約10mで、脚柱2の高さが5.4mであり、基礎は地中梁の下を径1m、深さ21mの場所打ちコンクリート杭4により構成されている。
なお、陸上に遡上する津波を対象とした場合、漂流物は脚柱に衝突する可能性が高いため、漂流物3は、橋軸直角方向から脚柱2の中間の高さ位置に衝突するものと仮定し、1径間10mあたりの耐力を照査する。
Hereinafter, as a verification example, a case where a drifted container (floating material 3) collides with a pedestal 2 of a reinforced concrete ramen viaduct (structure 1) is verified.
Structure 1 is a general structural form used in railway structures, and conforms to “Design Standards for Railway Structures, etc., Concrete Structures Reference Example RC Ramen Viaduct” (Railway Technical Research Institute, 2005). ing. As shown in FIG. 1, the structure 1 has a total length of about 50 m (between 5 diameters), a width of about 10 m, a height of the pedestal 2 is 5.4 m, and the foundation has a diameter of 1 m below the underground beam. It is composed of cast-in-place concrete piles 4 with a depth of 21 m.
In addition, when the tsunami going up to land is targeted, the drifting object is highly likely to collide with the pedestal, so the drifting object 3 collides with the intermediate height position of the pedestal 2 from the direction perpendicular to the bridge axis. It is assumed that the proof stress per 10m between 1 diameter is checked.

構造物1の質量Mは、上載荷重と合わせて284.6ton、固有周期Tは0.30secとする。また、構造物1の耐震設計時に想定している応答加速度aの最大値は1800galとする。
したがって、構造物1の衝突後の速度Vは、式5に示すように、0.86m/sとなる。よって、構造物1の1径間あたりが許容できる最大許容運動量Pmaxは、244.8ton・m/sとなる(式6参照)。
≒a×T/2π=18m/s×0.30s/2π=0.86m/s ・・・式5
MV=284.6t×0.86m/s=244.8ton・m/s ・・・ 式6
The mass M of the structure 1 is 284.6 tons and the natural period T is 0.30 sec. Moreover, the maximum value of the response acceleration a assumed at the time of the earthquake-proof design of the structure 1 shall be 1800 gal.
Therefore, the velocity V 2 after the collision of the structure 1 is 0.86 m / s as shown in Equation 5. Therefore, the maximum allowable momentum P max allowable per span of the structure 1 is 244.8 ton · m / s (see Formula 6).
V 2 ≈a × T / 2π = 18 m / s 2 × 0.30 s / 2π = 0.86 m / s Equation 5
MV 2 = 284.6 t × 0.86 m / s = 244.8 ton · m / s Equation 6

したがって、漂流物3の総質量mを24tonとすると、構造物1の1径間あたりが許容できる漂流物3の衝突速度vは、10.2m/sとなる(式7参照)。
=Pmax/m=244.8ton・m/s÷24ton=10.2m/s・・式7
Therefore, when the total mass m of the drifting object 3 is 24 tons, the collision speed v 1 of the drifting object 3 that can be allowed per span of the structure 1 is 10.2 m / s (see Equation 7).
v 1 = P max /m=244.8 ton · m / s ÷ 24 ton = 10.2 m / s ·· Equation 7

次に、FEM解析による検証結果について説明する。
津波のSPH(粒子)法による粒子間隔は、200mm間隔、総数27.9万粒子とした。津波は陸上に遡上した津波を想定し、初期条件として、水深3.0m、波先勾配30°と仮定した。
また、漂流物3の衝突速度が許容衝突速度v(=10.2m/s)以上となるように、津波の初速を12m/sとし,さらに,津波粒子の最後部には造波板5(剛板)を設け,速度12m/sで強制的に水平移動させた。解析領域を図2に示す。
Next, the verification result by FEM analysis will be described.
The particle interval by the tsunami SPH (particle) method was 200 mm, and the total number was 279,000 particles. The tsunami was assumed to be a tsunami that went up to land, and the initial conditions were assumed to be a water depth of 3.0 m and a wavefront slope of 30 °.
Further, the initial velocity of the tsunami is set to 12 m / s so that the collision speed of the drifting object 3 is equal to or higher than the allowable collision velocity v 1 (= 10.2 m / s). (Rigid plate) was provided, and the plate was forced to move horizontally at a speed of 12 m / s. The analysis area is shown in FIG.

検証は、表1に示すように、漂流物3の総質量を24tonとし、実強度相当の非線形材料とした場合について行った(ケース1)。
また、比較例として、漂流物3を線形材料とした場合(ケース2)、津波をモデル化せずに漂流物3を構造物1に直接衝突させた場合(ケース3)、漂流物3の総質量を36tonと仮定し、衝突速度が許容衝突速度v(=Pmax/m=244.8/36=6.8m/s)以上となるように津波および漂流物3の初速を7.5m/sとした場合(ケース4)についても行った。
なお、ケース3では、衝突速度にケース1の計算結果から得られた速度10.8m/sを用いた。また、ケース4では、漂流物の喫水が大きくなるため,初期条件の水深を4.2mとした。
As shown in Table 1, the verification was performed for a case where the total mass of the drifting object 3 was 24 tons and a nonlinear material corresponding to the actual strength was used (Case 1).
Further, as a comparative example, when the drifting object 3 is made of a linear material (case 2), when the drifting object 3 is directly collided with the structure 1 without modeling a tsunami (case 3), Assuming that the mass is 36 ton, the initial velocity of the tsunami and the drifting object 3 is 7.5 m so that the collision speed is equal to or higher than the allowable collision speed v 1 (= P max /m=244.8/36=6.8 m / s). / S (case 4) was also performed.
In case 3, the velocity of 10.8 m / s obtained from the calculation result of case 1 was used as the collision velocity. Moreover, in case 4, since the draft of a drifting object became large, the water depth of the initial condition was 4.2 m.

Figure 2016172981
Figure 2016172981

図3に漂流物の速度と時間との関係を示す。
図3に示すように、漂流物3の速度は、ケース1,2において10.8(>10.2)m/s、ケース4では7.6(>6.8)m/sとなった。したがって、いずれも事前に予定した運動量(=最大許容運動量Pmax)を上回る運動量が得られている。また、ケース1,2,4では、衝突後、多少の振動を伴いながら、速度が概略0m/sに収束している。
したがって、衝突後の漂流物の速度vは、0m/sとして計算を行うことに問題がないことがわかる。
なお、ケース3では、衝突後にほぼ4.5m/sの速度で漂流物が跳ねかえる結果となった。
FIG. 3 shows the relationship between the speed of drifting objects and time.
As shown in FIG. 3, the speed of the drifting object 3 is 10.8 (> 10.2) m / s in cases 1 and 2, and 7.6 (> 6.8) m / s in case 4. . Therefore, in any case, an amount of exercise exceeding the amount of exercise scheduled in advance (= maximum allowable amount of exercise P max ) is obtained. In cases 1, 2, and 4, the speed converges to approximately 0 m / s after the collision with some vibration.
Therefore, it can be seen that there is no problem in calculating the velocity v 2 of the drifting object after the collision as 0 m / s.
In case 3, the drifting object rebounded at a speed of approximately 4.5 m / s after the collision.

図4に脚柱の変位と時間の関係を示す。
図4に示すように、ケース1では、最大変位は、損傷レベル3の限界値(表2参照)に概略等しい変位量となった。すなわち、構造物1に衝突すると、想定される漂流物の想定運動量Pが最大許容運動量Pmaxよりも小さければ構造物1が安全であると評価し、想定運動量Pが最大許容運動量Pmaxよりも大きければ構造物1が危険であると評価することの妥当性が確認できた。
なお、ケース2では、損傷レベル3の限界値を大きく上回る結果となった。また、ケース4では、損傷レベル2の限界値程度となった。さらに、ケース3は変位量が他の3ケースに比べて極めて小さかった。
FIG. 4 shows the relationship between the displacement of the pedestal and time.
As shown in FIG. 4, in case 1, the maximum displacement was a displacement amount approximately equal to the limit value of damage level 3 (see Table 2). That is, if the assumed momentum P of the assumed drifting object is smaller than the maximum allowable momentum Pmax when it collides with the structure 1, the structure 1 is evaluated as safe, and the assumed momentum P is larger than the maximum allowable momentum Pmax. If it is larger, the validity of evaluating that the structure 1 is dangerous could be confirmed.
In case 2, the limit value of damage level 3 was greatly exceeded. In case 4, the damage level was about the limit value. Furthermore, the displacement amount of case 3 was extremely small compared to the other three cases.

Figure 2016172981
Figure 2016172981

なお、漂流物3が高架橋のスラブ6位置に衝突した場合(図5(a)参照)と、脚柱の中央に衝突した場合(図5(b)参照)の変位量を比較すると、図6に示すように、エネルギー吸収性能(≒荷重−変位曲線の面積)がスラブ位置に衝突した場合の方が大きい結果となった。そのため、脚柱に漂流物が衝突した場合で検証した方が安全側である。   In addition, when the drifting object 3 collides with the slab 6 position of the viaduct (see FIG. 5A) and the displacement amount when colliding with the center of the pedestal (see FIG. 5B), the displacement amount is shown in FIG. As shown in FIG. 5, the energy absorption performance (≈the area of the load-displacement curve) was larger when the slab position collided. Therefore, it is safer to verify when the drifting object collides with the pedestal.

本実施形態の構造物簡易照査方法によれば、沿岸地に存在する多くの構造物に対して、安全性を短時間で確認することができる。そして、この構造物簡易照査方法によって危険と評価された構造物のみに対して、詳細な計算を行うことで、作業の手間と費用の削減を図ることができる。
そのため、沿岸部の全ての構造物に対して複雑な数値計算を実施する必要がある従来の照査方法に比べて、作業の手間と費用を大幅に削減することができる。
According to the structure simple verification method of the present embodiment, safety can be confirmed in a short time for many structures existing in the coastal area. And it is possible to reduce the labor and cost of work by performing detailed calculations only on structures that are evaluated as dangerous by this structure simple verification method.
Therefore, compared with the conventional verification method which needs to perform complicated numerical calculation with respect to all the structures of a coastal part, the effort and cost can be reduced significantly.

以上、本発明の実施形態について説明したが、本発明は、前述の実施形態に限られず、前記の各構成要素については、本発明の趣旨を逸脱しない範囲で、適宜変更が可能である。
前記実施形態では、構造物が高架橋の場合について説明したが、本発明の構造物簡易照査方法が適用可能な構造物は高架橋に限定されるものではない。同様に、本発明の構造物簡易照査方法が適用可能な漂流物はコンテナに限定されるものではない。
Although the embodiment of the present invention has been described above, the present invention is not limited to the above-described embodiment, and the above-described components can be appropriately changed without departing from the spirit of the present invention.
In the above embodiment, the case where the structure is a high bridge has been described. However, the structure to which the structure simple check method of the present invention is applicable is not limited to the high bridge. Similarly, the drifting object to which the structure simple inspection method of the present invention can be applied is not limited to the container.

また、漂流物は、津波によって流される場合に限定されるものではなく、例えば、増水した河川によって流されたものであってもよい。   Moreover, a drifting object is not limited to the case where it is washed away by a tsunami, For example, it may be washed away by the river which increased in water.

1 構造物(高架橋)
2 脚柱
3 漂流物(コンテナ)
4 場所打ちコンクリート杭
5 造波板
6 スラブ
1 Structure (bypass)
2 Pillar 3 Drifting object (container)
4 Cast-in-place concrete pile 5 Wave plate 6 Slab

Claims (1)

式1を利用して構造物が許容可能な漂流物の運動量である最大許容運動量Pmaxを算出する工程と、
前記構造物に衝突すると想定される漂流物の衝突前の運動量である想定運動量Pと前記最大許容運動量Pmaxとを比較する工程とを備えていることを特徴とする、構造物簡易照査方法。
max=MV ・・・ 式1
max:最大許容運動量
M:構造物の質量
:衝突後の構造物の速度(≒a×T/2π)
a:構造物の耐震設計時の応答加速度
T:構造物の固有周期
Calculating the maximum allowable momentum P max which is the momentum of the drifting object that the structure can tolerate using Equation 1,
A structure simple verification method, comprising: a step of comparing an assumed momentum P, which is a momentum before a collision of a drifting object assumed to collide with the structure, and the maximum allowable momentum Pmax .
P max = MV 2 Equation 1
P max : Maximum allowable momentum M: Mass of structure V 2 : Speed of structure after collision (≈a × T / 2π)
a: Response acceleration during seismic design of structures T: Natural period of structures
JP2015053241A 2015-03-17 2015-03-17 Simple structure verification method Active JP6494347B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015053241A JP6494347B2 (en) 2015-03-17 2015-03-17 Simple structure verification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015053241A JP6494347B2 (en) 2015-03-17 2015-03-17 Simple structure verification method

Publications (2)

Publication Number Publication Date
JP2016172981A true JP2016172981A (en) 2016-09-29
JP6494347B2 JP6494347B2 (en) 2019-04-03

Family

ID=57008123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015053241A Active JP6494347B2 (en) 2015-03-17 2015-03-17 Simple structure verification method

Country Status (1)

Country Link
JP (1) JP6494347B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021085708A (en) * 2019-11-26 2021-06-03 株式会社東芝 Plant evaluation system, method, and program

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06211133A (en) * 1993-01-14 1994-08-02 East Japan Railway Co Shock absorber of vehicle
JPH07290618A (en) * 1994-04-25 1995-11-07 Toyobo Co Ltd Composite impact-resistant structure and lifeguard for railway vehicle
US6192758B1 (en) * 1998-12-14 2001-02-27 Kang Huang Structure safety inspection
EP1596009A1 (en) * 2004-05-12 2005-11-16 Yincheng Hou A novel protective work for vessel impact on bridge piers
KR100642873B1 (en) * 2006-08-08 2006-11-10 (주)진영이엔씨 Safety materials for protection of bridge pier
JP2007333635A (en) * 2006-06-16 2007-12-27 East Japan Railway Co Bridge soundness evaluation system, bridge soundness evaluation method and bridge soundness evaluation program
JP2008184760A (en) * 2007-01-29 2008-08-14 Shimizu Corp Wave protection structure
JP2009013743A (en) * 2007-07-09 2009-01-22 Kajima Corp Concrete protective column structure and protective column structure
JP2009229070A (en) * 2008-03-19 2009-10-08 Railway Technical Res Inst System for monitoring structure
JP2010229807A (en) * 2009-03-26 2010-10-14 Accuracy Technology Corp Method of evaluating safety of bridge by vibration measurement
JP2013199765A (en) * 2012-03-23 2013-10-03 Taisei Corp Flood disaster measure building

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06211133A (en) * 1993-01-14 1994-08-02 East Japan Railway Co Shock absorber of vehicle
JPH07290618A (en) * 1994-04-25 1995-11-07 Toyobo Co Ltd Composite impact-resistant structure and lifeguard for railway vehicle
US6192758B1 (en) * 1998-12-14 2001-02-27 Kang Huang Structure safety inspection
EP1596009A1 (en) * 2004-05-12 2005-11-16 Yincheng Hou A novel protective work for vessel impact on bridge piers
JP2007333635A (en) * 2006-06-16 2007-12-27 East Japan Railway Co Bridge soundness evaluation system, bridge soundness evaluation method and bridge soundness evaluation program
KR100642873B1 (en) * 2006-08-08 2006-11-10 (주)진영이엔씨 Safety materials for protection of bridge pier
JP2008184760A (en) * 2007-01-29 2008-08-14 Shimizu Corp Wave protection structure
JP2009013743A (en) * 2007-07-09 2009-01-22 Kajima Corp Concrete protective column structure and protective column structure
JP2009229070A (en) * 2008-03-19 2009-10-08 Railway Technical Res Inst System for monitoring structure
JP2010229807A (en) * 2009-03-26 2010-10-14 Accuracy Technology Corp Method of evaluating safety of bridge by vibration measurement
JP2013199765A (en) * 2012-03-23 2013-10-03 Taisei Corp Flood disaster measure building

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
山田真澄,宮路周吾郎,森井雄史,林康裕: "即時被害予測のための建物内地震動増幅度の簡易推定手法", 日本地震工学会論文集, vol. 第9巻第1号, JPN6018030742, 2009, JP, pages 83 - 93, ISSN: 0003855185 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021085708A (en) * 2019-11-26 2021-06-03 株式会社東芝 Plant evaluation system, method, and program
JP7234102B2 (en) 2019-11-26 2023-03-07 株式会社東芝 Plant evaluation system, method and program

Also Published As

Publication number Publication date
JP6494347B2 (en) 2019-04-03

Similar Documents

Publication Publication Date Title
De Vos et al. Empirical design of scour protections around monopile foundations. Part 2: Dynamic approach
Istrati et al. Effect of fluid-structure interaction on connection forces in bridges due to tsunami loads
Chen et al. Numerical modeling of wave forces on movable bridge decks
Paczkowski et al. A one-dimensional model for impact forces resulting from high mass, low velocity debris
Nakao et al. Numerical assessment of tsunami-induced effect on bridge behavior
JP6494347B2 (en) Simple structure verification method
Robertson et al. Case study of tsunami bore impact on RC wall
Hacıefendioğlu Stochastic dynamic response of short-span highway bridges to spatial variation of blasting ground vibration
Majumder et al. Comparison between wind and seismic load on different types of structures
Mohseni et al. Seismic damage assessment of curved bridges using fragility analysis
Yang et al. Modeling tsunami induced debris impacts on bridge structures using the material point method
Keihani et al. The significance of removing shear walls in existing low-rise RC frame buildings–sustainable approach
Mortezaei Seismic behavior of flanged shear wall buildings subjected to near-fault earthquakes having forward directivity
Motley et al. Three-dimensional loading effects of tsunamis on bridge superstructures
Shutova et al. Analyzing efficiency of two-layer foundations for a power transmission line portal based on a numerical experiment
Lee et al. Impact analysis of submerged floating tunnel for external collision
Aghajani Delavar et al. Prediction of local seismic damage in jacket-type offshore platforms
Aurtherson et al. Analytical Investigation of Blast Loading Impact on High Rise Structures
Namdar et al. The Timber Floor Seismic Design by Means Finite Element Method
JP6228869B2 (en) Calculation method of tsunami drifting object impact load
Khatami et al. A new theory of pounding between two bodies considering link element by having nonlinear stiffness of spring
Zhang et al. A study on countermeasure for reducing the effect of tsunami on highway bridges
Jiffry et al. Structural assessment of low-rise reinforced concrete frames under tsunami loads
Magoshi et al. An evaluation method for large drifting object-bridge collision during tsunami
Dadawala et al. Response spectrum analysis of multi storied buildings: A review

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180814

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190305

R150 Certificate of patent or registration of utility model

Ref document number: 6494347

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150