JP2016172911A - Casting device and casting method - Google Patents

Casting device and casting method Download PDF

Info

Publication number
JP2016172911A
JP2016172911A JP2015054296A JP2015054296A JP2016172911A JP 2016172911 A JP2016172911 A JP 2016172911A JP 2015054296 A JP2015054296 A JP 2015054296A JP 2015054296 A JP2015054296 A JP 2015054296A JP 2016172911 A JP2016172911 A JP 2016172911A
Authority
JP
Japan
Prior art keywords
raw material
chamber
melting
ladle
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015054296A
Other languages
Japanese (ja)
Other versions
JP6471553B2 (en
Inventor
享彦 上村
Kyohiko Kamimura
享彦 上村
靖久 恩田
Yasuhisa Onda
靖久 恩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2015054296A priority Critical patent/JP6471553B2/en
Publication of JP2016172911A publication Critical patent/JP2016172911A/en
Application granted granted Critical
Publication of JP6471553B2 publication Critical patent/JP6471553B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Abstract

PROBLEM TO BE SOLVED: To provide a casting device and a casting method reducing cutting loss of a raw material, capable of largely reducing preparation man-hour such as cutting or welding the raw material, alleviating limitation of VIM when using a master ingot, and having a raw material supply mechanism.SOLUTION: There is provided a casting device and a casting method having a dissolution chamber, a raw material supply chamber arranged above of the dissolution chamber and equipped with a raw material supply device for supplying raw material pieces to a dissolution furnace and a ladle casting chamber neighboring the dissolution chamber. The raw material supply device can supply the raw material pieces, where the mass of one of them is equivalent to 5 to 25 mass% of the maximum dissolution mass of the dissolution furnace at once.SELECTED DRAWING: Figure 1

Description

本発明は、例えば、超耐熱鋼等を溶解する溶解炉を具備する鋳造装置および鋳造方法に関するものである。   The present invention relates to a casting apparatus and a casting method including a melting furnace for melting super heat-resistant steel or the like, for example.

真空誘導炉(以下、VIMという。)は、低酸素、低窒素を要求される、例えば、マルエージング鋼や、超耐熱鋼等の高合金鋼の溶解に従来から使用されている。これらの高合金鋼は、NiやCr、Moといった元素を多く含むため、製品の製造においては原料費の占める割合が高い。そこで、製造工程で発生した端材やダライ粉といったスクラップの再利用が、コスト削減のために必須となる。このため、VIMにおいては一般的に、原料の多くがスクラップとなる。
一方、VIMは、使用できる原料に制約があり、その制約とは、形状に依るものと、原料の清浄度に依るものである。
BACKGROUND ART A vacuum induction furnace (hereinafter referred to as VIM) has been conventionally used for melting high alloy steels such as maraging steel and super heat resistant steel, which require low oxygen and low nitrogen. Since these high alloy steels contain a large amount of elements such as Ni, Cr, and Mo, the ratio of raw material costs is high in the production of products. Therefore, reuse of scraps such as scraps and dairy powder generated in the manufacturing process is essential for cost reduction. For this reason, in VIM, in general, most of the raw material is scrap.
On the other hand, VIM has restrictions on the raw materials that can be used, and the restrictions depend on the shape and the cleanliness of the raw materials.

VIMは、一般的に、一度溶解を開始したら、以降の作業は全て溶解チャンバー内において、真空あるいは減圧された不活性ガス中で行なわれる。この溶解チャンバーで覆われているために、原料の装入は大気中の炉のように行なうことはできない。原料の装入機構は、溶解チャンバーの側面から伸びるフィーダーによって行われるか、溶解炉の真上に位置する吊り下げ型の原料供給装置で行なうこととなる。   In general, once dissolution starts, VIM is performed in an inert gas in a vacuum or reduced pressure in the dissolution chamber. Since it is covered with this melting chamber, the charging of the raw material cannot be performed like an oven in the atmosphere. The raw material charging mechanism is performed by a feeder extending from the side surface of the melting chamber, or by a suspended raw material supply device located directly above the melting furnace.

これら原料供給装置は、溶解チャンバーとの間に隔壁を持ち、溶解チャンバーとは別個に真空排気され、溶解チャンバー内と同程度の真空となった後に隔壁を開くものである。これら原料供給装置のサイズが、VIMにおいて真空中で供する原料の形状制約となる。原料供給装置に入らない原料は、予め切断して用意する必要がある。多くのVIMにおいては原料の装入は溶解前に予め大気中で行われるか、るつぼ上部の装入装置で行われる。   These raw material supply devices have a partition wall between the melting chamber and are evacuated separately from the melting chamber, and the partition wall is opened after a vacuum of the same level as in the melting chamber is obtained. The size of these raw material supply apparatuses becomes a shape restriction of the raw material provided in a vacuum in the VIM. The raw material that does not enter the raw material supply apparatus needs to be prepared by cutting in advance. In many VIMs, the raw materials are charged in the air in advance before melting or in a charging device at the top of the crucible.

また、VIMは、真空中で溶鋼表面と雰囲気との間で脱ガス反応が発生することから、溶鋼の表面がスカムやスラグといった酸化物に被覆されていると、真空精錬作用が極めて弱くなる。このため、VIMに供する原料は、酸素が多く含まれていないこと、尚且つ原料表面が汚れていないことが要求される。
特に、原料表面の汚れについては、VIMでは脱硫反応が殆ど不可能であるため、油の付着を特に避ける必要がある。また、錆もスラグの生成源となるため、原料表面には存在しないことが望ましい。これらの制約により、VIMに供する原料はショットブラスト等の表面処理が行われる。
In addition, since VIM undergoes a degassing reaction between the molten steel surface and the atmosphere in a vacuum, if the surface of the molten steel is covered with an oxide such as scum or slag, the vacuum refining action becomes extremely weak. For this reason, the raw material used for VIM is required not to contain much oxygen, and the raw material surface should not be contaminated.
In particular, regarding the contamination on the surface of the raw material, since desulfurization reaction is almost impossible with VIM, it is particularly necessary to avoid oil adhesion. Moreover, since rust also becomes a generation source of slag, it is desirable that it does not exist on the raw material surface. Due to these restrictions, the raw material used for VIM is subjected to surface treatment such as shot blasting.

表面が酸化あるいは汚れているダライ粉等の表面積の小さいショットブラストできない原料は、そのままではVIMの原料としては使用できない。このため、ダライ粉等の表面を薬液洗浄し、ペレット状に押し固めて使用することもできるが、多くの場合、これらダライ粉等は、アーク炉の原料として供される。ダライ粉等はアーク炉において溶解され、インゴット形状へと鋳造される。これらのインゴットは、そのまま製品に加工される場合もあるところ、成分が既知であるマスターインゴットとして、再度VIMの原料として使用される場合もある。   Raw materials that cannot be shot blasted with a small surface area, such as dairy powder whose surface is oxidized or soiled, cannot be used as raw materials for VIM as they are. For this reason, the surface of Dalai powder or the like can be used after being cleaned with a chemical solution and pressed into a pellet to be used, but in many cases, these Dalai powder and the like are provided as a raw material for an arc furnace. Dalai powder and the like are melted in an arc furnace and cast into an ingot shape. These ingots may be processed into products as they are, but may be used again as a raw material for VIM as a master ingot with known ingredients.

しかし、これらマスターインゴットをVIMの原料として、そのまま使用することができない場合がある。これは、アーク炉で使用される鋳型形状が、必ずしもVIM用の原料の形状として適当ではないためである。このような場合は、アーク炉において製造されたマスターインゴットを、VIMの溶解炉あるいは原料供給装置に入る形に切断されて使用されることとなる。   However, there are cases where these master ingots cannot be used as they are as raw materials for VIM. This is because the shape of the mold used in the arc furnace is not necessarily suitable as the shape of the raw material for VIM. In such a case, the master ingot manufactured in the arc furnace is cut into a shape that enters a VIM melting furnace or raw material supply device.

上述したように、従来から用いられているVIMにおいては、使用する原料のサイズに制約があるため、原料の段取りに多くの工数がかかっていた。特に、上記マスターインゴットにおいては、アーク炉において溶解をした後、さらに切断工程を経るということで、滅失が大きく、かつ工数が増大する。   As described above, in the VIM used conventionally, since the size of the raw material to be used is limited, a lot of man-hours are required for the preparation of the raw material. In particular, in the above master ingot, after melting in an arc furnace, a further cutting process is performed, so that the loss is large and the man-hour is increased.

本発明は、このようなマスターインゴットを使用する際の問題点の解消を図るために成されたものである。すなわち、本発明は、原料の切断滅失を低減させ、かつ原料の切断や溶接といった段取り工数を低減でき、マスターインゴットを使用する際のVIMの制約を大きく緩和できる、原料供給機構を持つ鋳造装置および鋳造方法を提供することを目的とする。   The present invention has been made in order to solve the problems in using such a master ingot. That is, the present invention provides a casting apparatus having a raw material supply mechanism that can reduce the cutting loss of raw materials, reduce the number of setup steps such as cutting and welding of raw materials, and can greatly relieve VIM restrictions when using a master ingot. An object is to provide a casting method.

本発明は、溶鋼を作製するための溶解炉を備え、前記溶鋼を受鋼する取鍋を収容できる溶解チャンバーと、前記溶解チャンバーの上方に配置され、前記溶解炉に原料を供給する原料供給装置を備える原料供給チャンバーと、前記溶解チャンバーに隣接し、前記取鍋と、該取鍋内の溶鋼を受鋼する鋳型とを収容できる取鍋鋳造チャンバーと、を有し、前記溶解チャンバーと前記原料供給チャンバーとの間、前記溶解チャンバーと前記取鍋鋳造チャンバーとの間、および前記取鍋鋳造チャンバーと外部との間には、連通と遮断とを可能にする仕切扉を備え、前記取鍋は、前記溶解チャンバーと前記取鍋鋳造チャンバーとの間、および前記取鍋鋳造チャンバーと外部との間で移動可能であり、前記鋳型は、前記取鍋鋳造チャンバーと外部との間で移動可能であり、前記溶解チャンバー、前記原料供給チャンバー、および前記取鍋鋳造チャンバーは、それぞれ真空排気および不活性ガス導入系を有し、前記原料供給装置は、一つの原料片の質量が前記溶解炉の最大溶解質量の5〜25質量%に相当する原料片を一度に供給可能である鋳造装置の発明である。
前記溶解炉の最大溶解質量は、10t以上であることが好ましい。
The present invention includes a melting furnace for producing molten steel, a melting chamber that can accommodate a ladle for receiving the molten steel, and a raw material supply device that is disposed above the melting chamber and supplies the raw material to the melting furnace And a ladle casting chamber adjacent to the melting chamber and capable of accommodating a ladle and a mold for receiving the molten steel in the ladle, the melting chamber and the raw material Between the supply chamber, between the melting chamber and the ladle casting chamber, and between the ladle casting chamber and the outside, a partition door that enables communication and blocking is provided, and the ladle is The ladle is movable between the melting chamber and the ladle casting chamber and between the ladle casting chamber and the outside, and the mold is transferred between the ladle casting chamber and the outside. The melting chamber, the raw material supply chamber, and the ladle casting chamber each have a vacuum exhaust and an inert gas introduction system, and the raw material supply device has a mass of one raw material piece as the melting furnace. It is invention of the casting apparatus which can supply the raw material piece equivalent to 5-25 mass% of the maximum melt | dissolution mass of 1 at a time.
The maximum melting mass of the melting furnace is preferably 10 t or more.

また、本発明は、真空または不活性ガス雰囲気に維持された原料供給チャンバー内の原料片を準備し、真空または不活性ガス雰囲気に維持された溶解チャンバー内の溶解炉に前記原料片を供給して溶解し、前記溶解炉内の溶鋼を取鍋に受鋼させ、真空または不活性ガス雰囲気に維持された取鍋鋳造チャンバー内に前記取鍋を移動させ、前記取鍋鋳造チャンバー内で、前記取鍋内の溶鋼を鋳型に受鋼させる鋳造方法であって、前記溶解炉に原料片を供給する際、一つの原料片の質量が前記溶解炉の最大溶解質量の5〜25質量%に相当する原料片を一度に供給する鋳造方法の発明である。
前記溶解炉の最大溶解質量は、10t以上であることが好ましい。
The present invention also provides a raw material piece in a raw material supply chamber maintained in a vacuum or an inert gas atmosphere, and supplies the raw material piece to a melting furnace in a melting chamber maintained in a vacuum or an inert gas atmosphere. The molten steel in the melting furnace is received by the ladle, the ladle is moved into a ladle casting chamber maintained in a vacuum or an inert gas atmosphere, and in the ladle casting chamber, A casting method in which molten steel in a ladle is received by a mold, and when a raw material piece is supplied to the melting furnace, the mass of one raw material piece corresponds to 5 to 25% by mass of the maximum melting mass of the melting furnace It is invention of the casting method which supplies the raw material piece to perform at once.
The maximum melting mass of the melting furnace is preferably 10 t or more.

本発明によれば、原料の切断滅失を低減させ、かつ原料の切断や溶接といった段取り工数を大きく低減でき、マスターインゴットを使用する際のVIMの制約を緩和できる。   According to the present invention, it is possible to reduce the cutting loss of the raw material, to greatly reduce the number of setup man-hours such as cutting and welding of the raw material, and to ease the VIM restriction when using the master ingot.

本発明の鋳造装置の一例を示す模式図である。It is a schematic diagram which shows an example of the casting apparatus of this invention.

以下、本発明の鋳造装置および鋳造方法について、その実施形態を詳細に説明する。尚、本発明は、以下に説明する実施形態によって限定されるものではない。
図1は、本発明の鋳造装置の一態様を示す模式図である。本発明の鋳造装置は、溶解チャンバー1、原料供給チャンバー2、取鍋鋳造チャンバー3を具備する。溶解チャンバー1には、原料を溶解する溶解炉4を具備し、真空排気および不活性ガス導入系9aによって真空あるいは不活性ガス雰囲気に維持される。
Hereinafter, embodiments of the casting apparatus and the casting method of the present invention will be described in detail. In addition, this invention is not limited by embodiment described below.
FIG. 1 is a schematic view showing an aspect of the casting apparatus of the present invention. The casting apparatus of the present invention includes a melting chamber 1, a raw material supply chamber 2, and a ladle casting chamber 3. The melting chamber 1 is provided with a melting furnace 4 for melting raw materials, and is maintained in a vacuum or an inert gas atmosphere by a vacuum exhaust and an inert gas introduction system 9a.

原料片5は、原料供給チャンバー2内に吊り下げられた状態で、原料供給チャンバー2が真空排気および不活性ガス導入系9bによって真空排気され、溶解チャンバー1および原料供給チャンバー2の両方が真空排気されて、同圧化された状態で、仕切扉8bを開き、溶解炉4内に供給される。図1においては、原料片5の形状をインゴットとしているところ、この部分を添加用のバケットとして、ブリケット状態等の一般的な原料片を用いることも可能である。原料片は、上記の手順を繰り返し行ない、溶解炉4の最大溶解質量に対する全ての原料片を真空中で添加することが可能となる。   The raw material piece 5 is suspended in the raw material supply chamber 2, the raw material supply chamber 2 is evacuated by the evacuation and inert gas introduction system 9 b, and both the dissolution chamber 1 and the raw material supply chamber 2 are evacuated. In this state, the partition door 8b is opened in a state where the pressure is equalized, and the melt is supplied into the melting furnace 4. In FIG. 1, the shape of the raw material piece 5 is an ingot. However, it is also possible to use a general raw material piece in a briquette state or the like using this portion as a bucket for addition. For the raw material pieces, the above procedure is repeated, and all the raw material pieces for the maximum melting mass of the melting furnace 4 can be added in a vacuum.

ここで、原料片5は、例えば、インゴット上端に吊手を溶接し、原料供給チャンバー2の上部の原料供給装置10のフックに吊られた状態で、溶解炉4の内部に装入される。このとき、一つの原料片5の質量は、溶解炉4の最大溶解質量に対し、5〜25質量%の質量を有するものとする。つまり、一度に供給する原料片5の質量を、溶解炉4の最大溶解質量に対し、5〜25質量%とする。
一つの原料片5の質量が溶解炉の最大溶解質量の5質量%より小さいと、多くのインゴットに吊手を溶接する必要があり、原料片5の段取りに時間と費用を要することとなる。また、一つの原料片5の質量が溶解炉の最大溶解質量の5質量%より小さいと、VIMの溶解において、原料片5の装入回数が増えるため、操業効率の低下を招く上、原料片5の切断工数とそれに伴う切断滅失を増加させる。また、上記と同様の理由から、本発明で適用する溶解炉4の最大溶解質量は、10t(トン)以上であることが好ましい。
Here, the raw material piece 5 is inserted into the melting furnace 4 in a state where, for example, a hand is welded to the upper end of the ingot and is hung on the hook of the raw material supply device 10 at the upper part of the raw material supply chamber 2. At this time, the mass of one raw material piece 5 shall have a mass of 5-25 mass% with respect to the maximum melting mass of the melting furnace 4. That is, the mass of the raw material pieces 5 supplied at a time is set to 5 to 25 mass% with respect to the maximum melting mass of the melting furnace 4.
If the mass of one raw material piece 5 is smaller than 5% by mass of the maximum melting mass of the melting furnace, it is necessary to weld a suspension to many ingots, and it takes time and money to set up the raw material piece 5. In addition, if the mass of one raw material piece 5 is smaller than 5% by mass of the maximum melting mass of the melting furnace, the number of times the raw material pieces 5 are charged in the melting of the VIM increases. Increases the cutting man-hour of 5 and the accompanying loss of cutting. For the same reason as described above, the maximum melting mass of the melting furnace 4 applied in the present invention is preferably 10 t (tons) or more.

一方、一つの原料片5の質量が溶解炉の最大溶解質量の25質量%よりも大きいと、誘導加熱が表皮効果の影響を受けるため、溶解効率が下がり、原料片5の溶解に時間がかかる。その上、上記表皮効果の影響によって、原料片5と溶解炉4の間の溶鋼の温度が上がりやすく、溶解炉4側の耐火物が溶損しやすくなる。また、一つの原料片5の質量が溶解炉の最大溶解質量の25質量%よりも大きな原料片5を使用する場合は、VIMの溶解炉4の上に位置する原料供給装置10を大きくする必要がある。これは、溶解チャンバー1全体の耐荷重を大きくする必要があり、VIM設備全体の大型化に伴い、コストが跳ね上がるものとなる。このため、本発明で適用する溶解炉4の最大溶解質量は、40t(トン)以下であることが好ましい。   On the other hand, if the mass of one raw material piece 5 is larger than 25% by mass of the maximum melting mass of the melting furnace, induction heating is affected by the skin effect, so that the melting efficiency is lowered and it takes time to melt the raw material piece 5. . In addition, due to the effect of the skin effect, the temperature of the molten steel between the raw material piece 5 and the melting furnace 4 tends to rise, and the refractory on the melting furnace 4 side tends to melt. Moreover, when using the raw material piece 5 with the mass of one raw material piece 5 larger than 25 mass% of the maximum melting mass of a melting furnace, it is necessary to enlarge the raw material supply apparatus 10 located on the melting furnace 4 of VIM. There is. This requires an increase in the load bearing capacity of the entire dissolution chamber 1 and increases the cost of the entire VIM facility. Therefore, the maximum melting mass of the melting furnace 4 applied in the present invention is preferably 40 t (tons) or less.

本発明の鋳造装置は、取鍋6および鋳型7を具備する。この取鍋6および鋳型7は、外部から、取鍋鋳造チャンバー3の仕切扉8cおよび8dをそれぞれ経由して取鍋鋳造チャンバー3に入れられ、取鍋鋳造チャンバー3は真空排気および不活性ガス導入系9cによって真空排気される。真空排気された取鍋鋳造チャンバー3と溶解チャンバー1が同圧化された状態で仕切扉8aが開き、取鍋6は溶解チャンバー1内に移動する。そして、この状態において、溶解炉4によって得られた溶鋼は、溶解炉4の傾動等によって取鍋6に受鋼される。
次いで、取鍋6は、再度取鍋鋳造チャンバー3内に移動される。そして、取鍋6内の溶鋼は、取鍋6内でスカム等の浮上分離を経た後、鋳型7へと鋳込まれる。鋳造を終えた鋳型7は、取鍋鋳造チャンバー3の仕切扉8dを経由して、鋳造装置の外部へ取り出され、抜塊される。
The casting apparatus of the present invention includes a ladle 6 and a mold 7. The ladle 6 and the mold 7 are externally inserted into the ladle casting chamber 3 through the partition doors 8c and 8d of the ladle casting chamber 3, and the ladle casting chamber 3 is evacuated and introduced with inert gas. The system 9c is evacuated. The partition door 8a is opened in a state where the evacuated ladle casting chamber 3 and the melting chamber 1 are at the same pressure, and the ladle 6 moves into the melting chamber 1. In this state, the molten steel obtained by the melting furnace 4 is received by the ladle 6 by tilting of the melting furnace 4 or the like.
Next, the ladle 6 is moved again into the ladle casting chamber 3. The molten steel in the ladle 6 is cast into the mold 7 after floating and separating such as scum in the ladle 6. After the casting, the mold 7 is taken out of the casting apparatus via the partition door 8d of the ladle casting chamber 3 and drawn.

表1は、一度に溶解炉に装入する、一つの原料片として、直径440mmのインゴットを用い、切断砥石に厚さ1.6mmのものを使用して、切断前後の質量から算出した切断滅失量、および切断完了に要する時間の評価結果である。これにより、大凡、切断される体積が滅失と見做してよい結果となってり、切断による滅失は、原料片の直径に依存するところ、直径が440mmの原料において、切断滅失は1カットあたり0.06質量%であった。
本発明の鋳造装置を用いた操業例として、溶解炉の最大溶解質量が12tのVIMを用い、原料片に、溶解炉の容量の5〜25質量%のものを用意して溶解を行なうものとして、切断滅失および切断時間を表1の結果より計算した。また、比較例として、本発明の鋳造装置を用いて、一つの原料片に、溶解炉の最大溶解質量の5質量%未満のものを用意して溶解を行なうものとして、切断滅失および切断時間も表1の結果より計算した。その結果を表2に示す。
本発明によれば、VIMにおいて使用可能な原料片の質量によって、原料片の切断滅失および切断時間が大きく改善できることが確認できた。
また、本発明の鋳造装置は、一度に供給可能な原料片の質量を大きくできることにより、真空溶解中における原料片の添加回数を減らすことが可能となる。これにより、真空溶解の作業効率化を図ることが可能となる。
Table 1 shows the cutting loss calculated from the mass before and after cutting using an ingot with a diameter of 440 mm as a raw material piece charged into the melting furnace at a time and using a cutting grindstone with a thickness of 1.6 mm. It is an evaluation result of the quantity and the time required for completion of cutting. As a result, the volume to be cut can be regarded as lost, and the loss due to cutting depends on the diameter of the raw material piece. In the raw material having a diameter of 440 mm, the cutting loss is per cut. It was 0.06 mass%.
As an operation example using the casting apparatus of the present invention, a melting furnace having a maximum melting mass of 12 t is used, and a raw material piece having a melting capacity of 5 to 25% by mass of the melting furnace is prepared for melting. The loss of cutting and the cutting time were calculated from the results in Table 1. In addition, as a comparative example, using the casting apparatus of the present invention, one raw material piece is prepared by melting less than 5% by mass of the maximum melting mass of the melting furnace, and cutting loss and cutting time are also set. Calculated from the results in Table 1. The results are shown in Table 2.
According to the present invention, it was confirmed that the cutting loss and cutting time of the raw material pieces can be greatly improved by the mass of the raw material pieces usable in the VIM.
Moreover, the casting apparatus of this invention can reduce the frequency | count of addition of the raw material piece during a vacuum melting by being able to enlarge the mass of the raw material piece which can be supplied at once. This makes it possible to increase the work efficiency of vacuum melting.

1. 溶解チャンバー
2. 原料添加チャンバー
3. 取鍋鋳造チャンバー
4. 溶解炉
5. 原料片
6. 取鍋
7. 鋳型
8a、8b、8c、8d. チャンバー間仕切扉
9a、9b、9c. 真空排気および不活性ガス導入系
10. 原料供給装置

1. 1. dissolution chamber 2. Raw material addition chamber Ladle casting chamber 4. Melting furnace 5. Raw material piece 6. Ladle 7 Templates 8a, 8b, 8c, 8d. Chamber partition doors 9a, 9b, 9c. Evacuation and inert gas introduction system 10. Raw material supply equipment

Claims (4)

溶鋼を作製するための溶解炉を備え、前記溶鋼を受鋼する取鍋を収容できる溶解チャンバーと、
前記溶解チャンバーの上方に配置され、前記溶解炉に原料片を供給する原料供給装置を備える原料供給チャンバーと、
前記溶解チャンバーに隣接し、前記取鍋と、該取鍋内の溶鋼を受鋼する鋳型とを収容できる取鍋鋳造チャンバーと、を有し、
前記溶解チャンバーと前記原料供給チャンバーとの間、前記溶解チャンバーと前記取鍋鋳造チャンバーとの間、および前記取鍋鋳造チャンバーと外部との間には、連通と遮断とを可能にする仕切扉を備え、
前記取鍋は、前記溶解チャンバーと前記取鍋鋳造チャンバーとの間、および前記取鍋鋳造チャンバーと外部との間で移動可能であり、
前記鋳型は、前記取鍋鋳造チャンバーと外部との間で移動可能であり、
前記溶解チャンバー、前記原料供給チャンバー、および前記取鍋鋳造チャンバーは、それぞれ真空排気および不活性ガス導入系を有し、
前記原料供給装置は、一つの原料片の質量が前記溶解炉の最大溶解質量の5〜25質量%に相当する原料片を一度に供給可能であることを特徴とする鋳造装置。
A melting chamber for producing molten steel, and a melting chamber capable of accommodating a ladle for receiving the molten steel;
A raw material supply chamber that is disposed above the melting chamber and includes a raw material supply device that supplies a raw material piece to the melting furnace;
Adjacent to the melting chamber, the ladle, and a ladle casting chamber capable of accommodating a mold for receiving the molten steel in the ladle,
Partition doors that enable communication and blocking between the melting chamber and the raw material supply chamber, between the melting chamber and the ladle casting chamber, and between the ladle casting chamber and the outside. Prepared,
The ladle is movable between the melting chamber and the ladle casting chamber, and between the ladle casting chamber and the outside;
The mold is movable between the ladle casting chamber and the outside;
The melting chamber, the raw material supply chamber, and the ladle casting chamber each have a vacuum exhaust and an inert gas introduction system,
The said raw material supply apparatus can supply the raw material piece in which the mass of one raw material piece corresponds to 5-25 mass% of the maximum melting mass of the said melting furnace at once.
前記溶解炉の最大溶解質量が、10t以上であることを特徴とする請求項1に記載の鋳造装置。   2. The casting apparatus according to claim 1, wherein the maximum melting mass of the melting furnace is 10 t or more. 真空または不活性ガス雰囲気に維持された原料供給チャンバー内の原料片を準備し、
真空または不活性ガス雰囲気に維持された溶解チャンバー内の溶解炉に前記原料片を供給して溶解し、前記溶解炉内の溶鋼を取鍋に受鋼させ、
真空または不活性ガス雰囲気に維持された取鍋鋳造チャンバー内に前記取鍋を移動させ、前記取鍋鋳造チャンバー内で、前記取鍋内の溶鋼を鋳型に受鋼させる鋳造方法であって、
前記溶解炉に原料片を供給する際、一つの原料片の質量が前記溶解炉の最大溶解質量の5〜25質量%に相当する原料片を一度に供給することを特徴とする鋳造方法。
Prepare raw material pieces in the raw material supply chamber maintained in a vacuum or inert gas atmosphere,
Supplying and melting the raw material pieces to a melting furnace in a melting chamber maintained in a vacuum or an inert gas atmosphere, receiving the molten steel in the melting furnace in a ladle,
A casting method in which the ladle is moved into a ladle casting chamber maintained in a vacuum or an inert gas atmosphere, and the molten steel in the ladle is received by a mold in the ladle casting chamber,
A casting method, characterized in that when a raw material piece is supplied to the melting furnace, a raw material piece corresponding to 5 to 25% by mass of the maximum melting mass of the raw material piece is supplied at a time.
前記溶解炉の最大溶解質量が、10t以上であることを特徴とする請求項3に記載の鋳造方法。

The casting method according to claim 3, wherein a maximum melting mass of the melting furnace is 10 t or more.

JP2015054296A 2015-03-18 2015-03-18 Casting apparatus and casting method Active JP6471553B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015054296A JP6471553B2 (en) 2015-03-18 2015-03-18 Casting apparatus and casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015054296A JP6471553B2 (en) 2015-03-18 2015-03-18 Casting apparatus and casting method

Publications (2)

Publication Number Publication Date
JP2016172911A true JP2016172911A (en) 2016-09-29
JP6471553B2 JP6471553B2 (en) 2019-02-20

Family

ID=57008800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015054296A Active JP6471553B2 (en) 2015-03-18 2015-03-18 Casting apparatus and casting method

Country Status (1)

Country Link
JP (1) JP6471553B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020060376A (en) * 2018-10-05 2020-04-16 Jfeエンジニアリング株式会社 Method for manufacturing clearance metal

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62134143A (en) * 1985-12-06 1987-06-17 Ishikawajima Harima Heavy Ind Co Ltd Vacuum induction furnace
JPS62286648A (en) * 1986-05-23 1987-12-12 アー エル デー ヴァキューム テクノロジーズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Method of melting and regassing massive material
JPH02185953A (en) * 1989-01-11 1990-07-20 Hitachi Ltd Austenitic stainless steel having corrosion resistance to nitric acid
JPH0741875A (en) * 1993-05-26 1995-02-10 Hitachi Metals Ltd Method and apparatus for refining molten metal
JPH081306A (en) * 1994-05-05 1996-01-09 Leybold Durferrit Gmbh Precision casting equipment with lock gate
JPH08120357A (en) * 1994-10-25 1996-05-14 Nikko Kinzoku Kk Production of copper alloy containing active metal
JP2002161308A (en) * 2000-11-24 2002-06-04 Daido Steel Co Ltd Production method for high strength, high fatigue resistant steel for use in structural application

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62134143A (en) * 1985-12-06 1987-06-17 Ishikawajima Harima Heavy Ind Co Ltd Vacuum induction furnace
JPS62286648A (en) * 1986-05-23 1987-12-12 アー エル デー ヴァキューム テクノロジーズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Method of melting and regassing massive material
US4773079A (en) * 1986-05-23 1988-09-20 Leybold-Heraeus Gmbh Process for melting down and degassing lumpy material
JPH02185953A (en) * 1989-01-11 1990-07-20 Hitachi Ltd Austenitic stainless steel having corrosion resistance to nitric acid
JPH0741875A (en) * 1993-05-26 1995-02-10 Hitachi Metals Ltd Method and apparatus for refining molten metal
JPH081306A (en) * 1994-05-05 1996-01-09 Leybold Durferrit Gmbh Precision casting equipment with lock gate
US5503215A (en) * 1994-05-05 1996-04-02 Leybold Durferrit Gmbh Precision casting system with lock
JPH08120357A (en) * 1994-10-25 1996-05-14 Nikko Kinzoku Kk Production of copper alloy containing active metal
EP0717119A2 (en) * 1994-10-25 1996-06-19 NIPPON MINING & METALS COMPANY, LIMITED Method of manufacturing copper alloy containing active metal
JP2002161308A (en) * 2000-11-24 2002-06-04 Daido Steel Co Ltd Production method for high strength, high fatigue resistant steel for use in structural application

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020060376A (en) * 2018-10-05 2020-04-16 Jfeエンジニアリング株式会社 Method for manufacturing clearance metal
JP7143030B2 (en) 2018-10-05 2022-09-28 Jfeエンジニアリング株式会社 Manufacturing method of clearance metal

Also Published As

Publication number Publication date
JP6471553B2 (en) 2019-02-20

Similar Documents

Publication Publication Date Title
RU2530578C2 (en) Flexible electric arc furnace with minimum electric power consumption and method of steel products fabrication
KR102616983B1 (en) Processes for producing low nitrogen, essentially nitride-free chromium and chromium plus niobium-containing nickel-based alloys and the resulting chromium and nickel-based alloys
CN105154623B (en) A kind of efficient alloyage process of melting 38CrMoAl steel
CN106086710B (en) A kind of Rare earth heat-resistant steel and its casting technique
CN107164639B (en) A kind of electron beam covers the method that formula solidification technology prepares high temperature alloy
CN109112408A (en) The manufacturing method of the heat-resisting steel forgings of big specification P92
CN105238934B (en) A kind of vacuum induction melting method of nitrogen content in reduction high temperature alloy
CN106319255B (en) The sublimate smelting process of nickel base superalloy
CN108715971A (en) A kind of Aludirome vacuum metling technique
CN106755724B (en) A kind of smelting technology being suitable for 3 tons of intermediate frequency furnace production nodulizers
CN106282593B (en) A kind of technique of electron-beam cold bed furnace recycling remelting TC4 waste materials
JP6471553B2 (en) Casting apparatus and casting method
JP3571212B2 (en) Metal and alloy melting method and melting casting method
JP5395545B2 (en) Manufacturing method of ultra high purity alloy ingot
CN102477474A (en) Sulfur feeding method for smelting molten steel in vacuum induction furnace
RU2699887C1 (en) Method of producing high-precision alloy 42hnm (ep630y) on nickel basis
CN104178596B (en) The technique of electric arc furnace Returning blowing keto technique smelting stainless steel
CN104195356B (en) Smelting and purification method of beryllium beads used for casting pure beryllium ingots
CN106062217A (en) Method for melting minerals containing iron, titanium and vanadium
CN110484742B (en) Method for preparing Fe-W intermediate alloy by electron beam melting and high purification
JP4884802B2 (en) Manufacturing method of high clean steel
JP2019526708A (en) Alloy steel manufacturing method
JP6150972B2 (en) Method for melting cold iron source using hot metal in storage furnace equipped with heating device
CN104087760A (en) Metal smelting method of large high-temperature alloy casting
JP5814500B2 (en) Method for producing stainless steel ingot having carbon [C] of 10 ppm or less in ingot

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190107

R150 Certificate of patent or registration of utility model

Ref document number: 6471553

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350