JP2016172726A - Novel tetracarboxylic dianhydride, and polyimide obtained from said acid dianhydride - Google Patents

Novel tetracarboxylic dianhydride, and polyimide obtained from said acid dianhydride Download PDF

Info

Publication number
JP2016172726A
JP2016172726A JP2016049080A JP2016049080A JP2016172726A JP 2016172726 A JP2016172726 A JP 2016172726A JP 2016049080 A JP2016049080 A JP 2016049080A JP 2016049080 A JP2016049080 A JP 2016049080A JP 2016172726 A JP2016172726 A JP 2016172726A
Authority
JP
Japan
Prior art keywords
polyimide
solution
tetracarboxylic dianhydride
solvent
dianhydride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016049080A
Other languages
Japanese (ja)
Other versions
JP6496263B2 (en
Inventor
淳一 石井
Junichi Ishii
淳一 石井
長谷川 匡俊
Masatoshi Hasegawa
匡俊 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taoka Chemical Co Ltd
Toho University
Original Assignee
Taoka Chemical Co Ltd
Toho University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taoka Chemical Co Ltd, Toho University filed Critical Taoka Chemical Co Ltd
Publication of JP2016172726A publication Critical patent/JP2016172726A/en
Application granted granted Critical
Publication of JP6496263B2 publication Critical patent/JP6496263B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Plural Heterocyclic Compounds (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a tetracarboxylic dianhydride for giving a resin having exceptional solvent solubility (solvent processability) and high heat resistance, a polyimide synthesized from the tetracarboxylic dianhydride and having exceptional solvent processability and a solvent containing the polyimide, and a film obtained from the polyimide and polyimide solvent and having high heat resistance.SOLUTION: A tetracarboxylic dianhydride represented by formula (1), and a polyimide produced from the tetracarboxylic dianhydride, are used to solve the problem.SELECTED DRAWING: None

Description

本発明は、スピロ構造を有する新規なテトラカルボン酸二無水物及び該テトラカルボン酸二無水物から得られるポリイミドに関する。   The present invention relates to a novel tetracarboxylic dianhydride having a spiro structure and a polyimide obtained from the tetracarboxylic dianhydride.

マイクロエレクトロニクス用のプラスチック材料として半田実装温度(260℃)以上の高温に耐えるポリイミドは、半導体素子やフレキシブルプリント配線基板など絶縁層として広く用いられている。しかしながら、耐熱性の高いポリイミドの多くは加工性に乏しく、ポリイミドの前駆体、即ち溶媒に可溶なポリアミド酸から加工する場合がほとんどである(非特許文献1)。 As a plastic material for microelectronics, polyimide that can withstand a high temperature of solder mounting temperature (260 ° C.) or higher is widely used as an insulating layer such as a semiconductor element and a flexible printed wiring board. However, most of the polyimides with high heat resistance are poor in workability, and are mostly processed from a polyimide precursor, that is, a polyamic acid soluble in a solvent (Non-patent Document 1).

ポリアミド酸からポリイミドを形成するためには、300℃以上の高温を必要とするため、そのイミド化温度により用途が限定される場合がある。また、ポリアミド酸フィルムからポリイミドフィルムを製造する場合、熱イミド化条件によっては、硬化収縮によるフィルム破断やフィルム中にボイドが発生する懸念もあり、イミド化反応制御が非常に難しい。更には、イミド化時に300℃以上の高温炉が必要となり製造コストも高くなるという欠点があった。   In order to form a polyimide from a polyamic acid, a high temperature of 300 ° C. or higher is required, and the use may be limited by the imidization temperature. Further, when a polyimide film is produced from a polyamic acid film, depending on the thermal imidization conditions, there is a concern that film breakage due to curing shrinkage or voids are generated in the film, and imidation reaction control is very difficult. Furthermore, there is a drawback that a high temperature furnace of 300 ° C. or higher is required at the time of imidization, and the production cost is increased.

そこで、既にイミド化が完結している状態で溶媒に可溶なポリイミド(溶媒可溶性ポリイミド)や、溶融成型可能な熱可塑性ポリイミドが近年開発され、従来のポリイミドよりも加工性が改善されている。このようなポリイミドの大部分は、ポリイミド主鎖中にシロキサン鎖やエーテル結合のような高分子主鎖を屈曲させ、分子内回転運動がし易い結合を導入したり、側鎖に嵩高い置換基を入れ高分子鎖の凝集を阻害したり、主鎖中のイミド基濃度を低下させるなどして加工性を高めている(非特許文献2,3)。しかしながら、このような分子設計は、ほぼ例外なくポリイミド本来の耐熱性を著しく低下させてしまう。従って、260℃以上、特に290℃以上の耐熱性と高い溶媒溶解性を兼ね備えたポリイミドは、ほとんど知られていない。   Thus, polyimides that are soluble in solvents (solvent-soluble polyimides) and thermoplastic polyimides that can be melt-molded have been developed in recent years, and the processability is improved over conventional polyimides. Most of such polyimides have a polymer main chain such as a siloxane chain or an ether bond bent in the polyimide main chain to introduce a bond that easily undergoes intramolecular rotation, or a bulky substituent on the side chain. To improve the workability by inhibiting the aggregation of polymer chains or reducing the concentration of imide groups in the main chain (Non-patent Documents 2 and 3). However, such molecular design almost reduces the inherent heat resistance of polyimide with almost no exception. Accordingly, few polyimides have both heat resistance of 260 ° C. or higher, particularly 290 ° C. or higher, and high solvent solubility.

Prog.Polym.Sci.,16,561(1991).Prog. Polym. Sci. 16, 561 (1991). Polym.Eng.Sci.,29,1413(1989).Polym. Eng. Sci. 29, 1413 (1989). Polym.,39,1945(1998).Polym. 39, 1945 (1998).

本発明は、優れた溶媒溶解性(溶液加工性)と高い耐熱性を併せ持つ樹脂を与えるためのテトラカルボン酸二無水物、そのテトラカルボン酸二無水物から合成される溶液加工性に優れたポリイミド並びに該ポリイミドを含む溶液、および該ポリイミド並びにポリイミド溶液から得られる高い耐熱性を有するフィルムを提供することを目的とする。 The present invention relates to a tetracarboxylic dianhydride for providing a resin having both excellent solvent solubility (solution processability) and high heat resistance, and a polyimide excellent in solution processability synthesized from the tetracarboxylic dianhydride. It is another object of the present invention to provide a solution containing the polyimide, and a film having high heat resistance obtained from the polyimide and the polyimide solution.

本発明者らは、上記課題を解決するために鋭意研究した結果、下記式(1)で表されるテトラカルボン酸二無水物から溶液加工性に優れたポリイミドが得られ、該ポリイミドを含む溶液から260℃以上の耐熱性を有するポリイミドフィルムが得られることを見出し、本発明を完成させた。 As a result of intensive studies to solve the above problems, the present inventors have obtained a polyimide having excellent solution processability from a tetracarboxylic dianhydride represented by the following formula (1), and a solution containing the polyimide From the above, it was found that a polyimide film having a heat resistance of 260 ° C. or higher was obtained, and the present invention was completed.

本発明は以下の通りである。
〔1〕
下記式(1):
The present invention is as follows.
[1]
Following formula (1):

Figure 2016172726

で表されるテトラカルボン酸二無水物。
Figure 2016172726

Tetracarboxylic dianhydride represented by

〔2〕
下記一般式(2):
[2]
The following general formula (2):

Figure 2016172726
(式(2)中、Xは2価の芳香族または脂肪族基を表す。)
で表される繰り返し単位を有するポリイミド。
Figure 2016172726
(In formula (2), X represents a divalent aromatic or aliphatic group.)
The polyimide which has a repeating unit represented by these.

〔3〕
〔2〕に記載のポリイミドを固形分濃度で5重量%以上含むポリイミド溶液。
[3]
A polyimide solution containing the polyimide according to [2] in a solid content concentration of 5% by weight or more.

〔4〕
〔2〕に記載のポリイミドを含むポリイミドフィルム。
[4]
The polyimide film containing the polyimide as described in [2].

〔5〕
ガラス転移温度が260℃以上である〔2〕に記載のポリイミドを含む耐熱性フィルム。
[5]
The heat resistant film containing the polyimide as described in [2] whose glass transition temperature is 260 degreeC or more.

本発明によれば、従来技術では極めて両立困難であった高い耐熱性(高ガラス転移温度)と溶媒可溶性を併せ持つポリイミド、該ポリイミドを含む溶液から製造されるポリイミドフィルム、及び該ポリイミドを与えるためのフルオレン骨格とスピロ骨格を有するテトラカルボン酸二無水物が提供可能となる。 According to the present invention, polyimide having both high heat resistance (high glass transition temperature) and solvent solubility, which has been extremely difficult to achieve with the prior art, a polyimide film produced from a solution containing the polyimide, and the polyimide are provided. A tetracarboxylic dianhydride having a fluorene skeleton and a spiro skeleton can be provided.

実施例2において測定したFT−IRのチャートである。4 is a chart of FT-IR measured in Example 2. 実施例3において測定したFT−IRのチャートである。6 is a chart of FT-IR measured in Example 3. 実施例4において測定したFT−IRのチャートである。6 is a chart of FT-IR measured in Example 4.

本発明のテトラカルボン酸二無水物は、以下式(1)で表される構造を有する。 The tetracarboxylic dianhydride of the present invention has a structure represented by the following formula (1).

Figure 2016172726
本発明の式(1)で表されるテトラカルボン酸二無水物の合成方法は、特に限定されないが、例えば、下記式(3)で表されるジオール、即ちスピロ[フルオレン−9,9’−(2’,7’−ジヒドロキシキサンテン)]または、そのジアセテート体と下記式(4)で表されるトリメリット酸またはその誘導体から公知のエステル化反応によって合成される。
Figure 2016172726
The method for synthesizing the tetracarboxylic dianhydride represented by the formula (1) of the present invention is not particularly limited. For example, a diol represented by the following formula (3), that is, spiro [fluorene-9,9′- (2 ′, 7′-dihydroxyxanthene)] or a diacetate thereof and trimellitic acid represented by the following formula (4) or a derivative thereof by a known esterification reaction.

Figure 2016172726
Figure 2016172726

Figure 2016172726
トリメリット酸誘導体としては、無水トリメリット酸、無水トリメリット酸ハライド等が挙げられる。
Figure 2016172726
Examples of trimellitic acid derivatives include trimellitic anhydride and trimellitic anhydride halide.

本発明にかかる式(1)で表されるテトラカルボン酸二無水物の構造的特徴は、キサンテン構造とフルオレン構造が直交したスピロ構造を有し、無水フタル酸部位がエステル結合を介しキサンテン構造に結合している点にある。 The structural characteristics of the tetracarboxylic dianhydride represented by the formula (1) according to the present invention include a spiro structure in which the xanthene structure and the fluorene structure are orthogonal to each other, and the phthalic anhydride moiety is converted to the xanthene structure via an ester bond. It is at the point where it joins.

本発明にかかる下記式(2)で表されるポリイミドは、上記式(1)で表されるテトラカルボン酸二無水物を原料とすることで、上述した特異な物性を有する有用なポリイミドを得ることができる。その製造方法については特に限定されないが、例えば、上記式(1)で表されるテトラカルボン酸二無水物と、2価の求核反応性官能基をもつ芳香族または脂肪族化合物を反応させて下記式(2)で表される繰り返し単位を有するポリイミドの前駆体を得た後、イミド化する工程を経る二段階合成法、または高沸点溶媒中、上記式(1)で表されるテトラカルボン酸二無水物と2価の求核反応性官能基をもつ芳香族または脂肪族化合物を150〜220℃で撹拌しながら反応させる一段階合成法がある。 The polyimide represented by the following formula (2) according to the present invention uses the tetracarboxylic dianhydride represented by the above formula (1) as a raw material to obtain a useful polyimide having the above-mentioned specific physical properties. be able to. The production method is not particularly limited. For example, the tetracarboxylic dianhydride represented by the above formula (1) is reacted with an aromatic or aliphatic compound having a divalent nucleophilic reactive functional group. After obtaining a polyimide precursor having a repeating unit represented by the following formula (2), a tetracarboxylic acid represented by the above formula (1) in a two-step synthesis method through a process of imidization or in a high boiling point solvent There is a one-step synthesis method in which an dianhydride and an aromatic or aliphatic compound having a divalent nucleophilic reactive functional group are reacted at 150 to 220 ° C. with stirring.

本発明のポリイミドは、以下式(2)で表される構造を有する。 The polyimide of the present invention has a structure represented by the following formula (2).

Figure 2016172726
(式(2)中、Xは2価の芳香族または脂肪族基を表す。)
Figure 2016172726
(In formula (2), X represents a divalent aromatic or aliphatic group.)

上記式(2)中、Xで表される2価の芳香族または脂肪族基は、後述する上記式(1)で表されるテトラカルボン酸二無水物と反応させる、2価の求核反応性官能基を有する芳香族または脂肪族化合物の骨格構造を表す。なお、本発明における2価の求核反応性官能基としてはアミノ基、イソシアナート基等が例示される。 In the above formula (2), a divalent aromatic or aliphatic group represented by X is reacted with a tetracarboxylic dianhydride represented by the above formula (1) described later. Represents a skeleton structure of an aromatic or aliphatic compound having a functional group. In addition, an amino group, an isocyanate group, etc. are illustrated as a bivalent nucleophilic reactive functional group in this invention.

2価の求核反応性官能基をもつ芳香族または脂肪族化合物として具体的に例えば、ジアミン類として、p−フェニレンジアミン、m−フェニレンジアミン、4,4’−ビス(4−アミノフェノキシ)ビフェニル、ビス(4−(3−アミノフェノキシ)フェニル)スルホン、ビス(4−(4−アミノフェノキシ)フェニル)スルホン、2,2−ビス(4−(4−アミノフェノキシ)フェニル)プロパン、2,2−ビス(4−(4−アミノフェノキシ)フェニル)ヘキサフルオロプロパン、2,2−ビス(4−アミノフェニル)ヘキサフルオロプロパン、p−ターフェニレンジアミン、ベンジジン、3,3’−ジヒドロキシベンジジン、3,3’−ジメトキシベンジジン、o−トリジン、m−トリジン、4,4’‐ジアミノ−2,2’‐ビス(トリフルオロメチル)ビフェニル、1,4−ビス(4−アミノフェノキシ)ベンゼン、1,3−ビス(4−アミノフェノキシ)ベンゼン、1,3−ビス(3−アミノフェノキシ)ベンゼン、4,4’−ジアミノジフェニルエーテル、3,4’−ジアミノジフェニルエーテル、3,3’−ジアミノジフェニルエーテル、2,4’−ジアミノジフェニルエーテル、4,4’−ジアミノジフェニルスルホン、3,3’−ジアミノジフェニルスルホン、4,4’−ジアミノベンゾフェノン、3,3’−ジアミノベンゾフェノン、4,4’−ジアミノベンズアニリド、4−アミノフェニル−4’−アミノベンゾエート、2,4−ジアミノトルエン、2,5−ジアミノトルエン、2,4−ジアミノキシレン、2,4−ジアミノデュレン、4,4’−ジアミノジフェニルメタン、4,4’−メチレンビス(2−メチルアニリン)、4,4’−メチレンビス(2−エチルアニリン)、4,4’−メチレンビス(2,6−ジメチルアニリン)、4,4’−メチレンビス(2,6−ジエチルアニリン)等の芳香族ジアミン、4,4’−メチレンビス(シクロヘキシルアミン)、イソホロンジアミン、トランス−1,4−ジアミノシクロヘキサン、シス−1,4−ジアミノシクロヘキサン、1,4−シクロヘキサンビス(メチルアミン)、2,5−ビス(アミノメチル)ビシクロ〔2.2.1〕ヘプタン、2,6−ビス(アミノメチル)ビシクロ〔2.2.1〕ヘプタン、3,8−ビス(アミノメチル)トリシクロ〔5.2.1.0〕デカン、1,3−ジアミノアダマンタン、2,2−ビス(4−アミノシクロヘキシル)プロパン、2,2−ビス(4−アミノシクロヘキシル)ヘキサフルオロプロパン等の脂環式ジアミン、1,3−プロパンジアミン、1,4−テトラメチレンジアミン、1,5−ペンタメチレンジアミン、1,6−ヘキサメチレンジアミン、1,7−ヘプタメチレンジアミン、1,8−オクタメチレンジアミン、1,9−ノナメチレンジアミン、ジアミノシロキサン等の鎖状脂肪族ジアミンが挙げられる。また、ジイソシアナート類としては、1,5−フェニレンジイソシアナート、1,3−ジイソシアナトベンゼン、3,3'−ジクロロ-4,4'−ジイソシアナトビフェニル、4,4'−ジイソシアナト-3,3'−ジメチルジフェニルメタン、1,5−ジイソシアナトナフタレン、トリレン−2,6−ジイソシアナート、m−キシリレンジイソシアナート、2,2−ビス(4-イソシアナトフェニル)ヘキサフルオロプロパン等の芳香族ジイソシアナート、ジシクロヘキシルメタン4,4’−ジイソシアナート等の脂環式ジイソシアナート、ヘキサメチレンジイソシアナート等の鎖状脂肪族ジイソシアナートが挙げられる。また、これらを2種類以上併用することもできる。 Specific examples of aromatic or aliphatic compounds having a divalent nucleophilic reactive functional group include, for example, p-phenylenediamine, m-phenylenediamine, and 4,4′-bis (4-aminophenoxy) biphenyl as diamines. Bis (4- (3-aminophenoxy) phenyl) sulfone, bis (4- (4-aminophenoxy) phenyl) sulfone, 2,2-bis (4- (4-aminophenoxy) phenyl) propane, 2,2 -Bis (4- (4-aminophenoxy) phenyl) hexafluoropropane, 2,2-bis (4-aminophenyl) hexafluoropropane, p-terphenylenediamine, benzidine, 3,3'-dihydroxybenzidine, 3, 3′-dimethoxybenzidine, o-tolidine, m-tolidine, 4,4′-diamino-2,2′-bis (tri Fluoromethyl) biphenyl, 1,4-bis (4-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 1,3-bis (3-aminophenoxy) benzene, 4,4′-diaminodiphenyl ether 3,4'-diaminodiphenyl ether, 3,3'-diaminodiphenyl ether, 2,4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl sulfone, 3,3'-diaminodiphenyl sulfone, 4,4'-diaminobenzophenone 3,3′-diaminobenzophenone, 4,4′-diaminobenzanilide, 4-aminophenyl-4′-aminobenzoate, 2,4-diaminotoluene, 2,5-diaminotoluene, 2,4-diaminoxylene, 2,4-diaminodurene, 4,4'-diaminodiph Phenylmethane, 4,4′-methylenebis (2-methylaniline), 4,4′-methylenebis (2-ethylaniline), 4,4′-methylenebis (2,6-dimethylaniline), 4,4′-methylenebis ( 2,6-diethylaniline), 4,4'-methylenebis (cyclohexylamine), isophoronediamine, trans-1,4-diaminocyclohexane, cis-1,4-diaminocyclohexane, 1,4-cyclohexane Bis (methylamine), 2,5-bis (aminomethyl) bicyclo [2.2.1] heptane, 2,6-bis (aminomethyl) bicyclo [2.2.1] heptane, 3,8-bis ( Aminomethyl) tricyclo [5.2.1.0] decane, 1,3-diaminoadamantane, 2,2-bis (4-aminocyclohex Alicyclic diamines such as propane and 2,2-bis (4-aminocyclohexyl) hexafluoropropane, 1,3-propanediamine, 1,4-tetramethylenediamine, 1,5-pentamethylenediamine, Examples thereof include chain aliphatic diamines such as 6-hexamethylenediamine, 1,7-heptamethylenediamine, 1,8-octamethylenediamine, 1,9-nonamethylenediamine, and diaminosiloxane. The diisocyanates include 1,5-phenylene diisocyanate, 1,3-diisocyanatobenzene, 3,3′-dichloro-4,4′-diisocyanatobiphenyl, and 4,4′-diisocyanate. -3,3'-dimethyldiphenylmethane, 1,5-diisocyanatonaphthalene, tolylene-2,6-diisocyanate, m-xylylene diisocyanate, 2,2-bis (4-isocyanatophenyl) hexafluoropropane Aromatic diisocyanates such as alicyclic diisocyanates such as dicyclohexylmethane 4,4′-diisocyanate, and chain aliphatic diisocyanates such as hexamethylene diisocyanate. Two or more of these may be used in combination.

本発明にかかるポリイミドを重合する際の重合反応性およびポリイミドの特性を著しく損なわない範囲で、上記式(1)で表されるテトラカルボン酸二無水物以外の芳香族または脂肪族テトラカルボン酸二無水物を共重合成分として併用できる。その際に使用可能な芳香族テトラカルボン酸二無水物として例えば、ピロメリット酸二無水物、3,4,3’,4’−ビフェニルテトラカルボン酸二無水物、2,3,3’,4’−ビフェニルテトラカルボン酸二無水物、2,3,2’,3’−ビフェニルテトラカルボン酸二無水物、ハイドロキノン−ビス(トリメリテートアンハイドライド)、メチルハイドロキノン−ビス(トリメリテートアンハイドライド)、1,4,5,8−ナフタレンテトラカルボン酸二無水物、2,3,6,7−ナフタレンテトラカルボン酸二無水物、3,4,3’,4’−ベンゾフェノンテトラカルボン酸二無水物、2,3,3’,4’−ベンゾフェノンテトラカルボン酸二無水物、2,3,2’,3’−ベンゾフェノンテトラカルボン酸二無水物、3,4,3’,4’−ビフェニルエーテルテトラカルボン酸二無水物、3,4,2’,3’−ビフェニルエーテルテトラカルボン酸二無水物、2,3,2’,3’−ビフェニルエーテルテトラカルボン酸二無水物、3,4,3’,4’−ビフェニルスルホンテトラカルボン酸二無水物、3,4,2’,3’−ビフェニルスルホンテトラカルボン酸二無水物、2,3,2’,3’−ビフェニルスルホンテトラカルボン酸二無水物、2,2’−ビス(3,4−ジカルボキシフェニル)ヘキサフルオロプロパン酸二無水物、2,2’−ビス(3,4−ジカルボキシフェニル)プロパン酸二無水物等が挙げられる。脂肪族テトラカルボン酸二無水物としては、特に限定されないが、例えば、脂環式のものとしては、ビシクロ[2.2.2]オクト−7−エン−2,3,5,6−テトラカルボン酸二無水物、5−(ジオキソテトラヒドロフリル−3−メチル−3−シクロヘキセン−1,2−ジカルボン酸無水物、4−(2,5−ジオキソテトラヒドロフラン−3−イル)テトラリン−1,2−ジカルボン酸無水物、テトラヒドロフラン−2,3,4,5−テトラカルボン酸二無水物、ビシクロ−3,3’,4,4’−テトラカルボン酸二無水物、1,2,3,4−シクロブタンテトラカルボン酸二無水物、1,2,3,4−シクロペンタンテトラカルボン酸二無水物等が挙げられる。また、これらを2種類以上併用することもできる。 Aromatic or aliphatic tetracarboxylic acid other than the tetracarboxylic dianhydride represented by the above formula (1) within a range that does not significantly impair the polymerization reactivity and the characteristics of the polyimide when polymerizing the polyimide according to the present invention. An anhydride can be used together as a copolymerization component. Examples of aromatic tetracarboxylic dianhydrides that can be used in this case include pyromellitic dianhydride, 3,4,3 ′, 4′-biphenyltetracarboxylic dianhydride, 2,3,3 ′, 4. '-Biphenyltetracarboxylic dianhydride, 2,3,2', 3'-biphenyltetracarboxylic dianhydride, hydroquinone-bis (trimellitate anhydride), methylhydroquinone-bis (trimellitate anhydride) 1,4,5,8-naphthalenetetracarboxylic dianhydride, 2,3,6,7-naphthalenetetracarboxylic dianhydride, 3,4,3 ′, 4′-benzophenonetetracarboxylic dianhydride 2,3,3 ′, 4′-benzophenone tetracarboxylic dianhydride, 2,3,2 ′, 3′-benzophenone tetracarboxylic dianhydride, 3,4,3 , 4′-biphenyl ether tetracarboxylic dianhydride, 3,4,2 ′, 3′-biphenyl ether tetracarboxylic dianhydride, 2,3,2 ′, 3′-biphenyl ether tetracarboxylic dianhydride 3,4,3 ′, 4′-biphenylsulfonetetracarboxylic dianhydride, 3,4,2 ′, 3′-biphenylsulfonetetracarboxylic dianhydride, 2,3,2 ′, 3′-biphenyl Sulfonetetracarboxylic dianhydride, 2,2′-bis (3,4-dicarboxyphenyl) hexafluoropropanoic dianhydride, 2,2′-bis (3,4-dicarboxyphenyl) propanoic dianhydride Thing etc. are mentioned. Although it does not specifically limit as aliphatic tetracarboxylic dianhydride, For example, as an alicyclic thing, bicyclo [2.2.2] octo-7-ene-2,3,5,6-tetracarboxylic Acid dianhydride, 5- (dioxotetrahydrofuryl-3-methyl-3-cyclohexene-1,2-dicarboxylic acid anhydride, 4- (2,5-dioxotetrahydrofuran-3-yl) tetralin-1,2 -Dicarboxylic anhydride, tetrahydrofuran-2,3,4,5-tetracarboxylic dianhydride, bicyclo-3,3 ', 4,4'-tetracarboxylic dianhydride, 1,2,3,4 Examples thereof include cyclobutanetetracarboxylic dianhydride, 1,2,3,4-cyclopentanetetracarboxylic dianhydride, etc. Two or more of these may be used in combination.

本発明にかかるポリイミドまたはポリアミド酸を合成する際の溶媒としては、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドン、ジメチルスルホオキシド等の非プロトン性溶媒が好ましいが、原料と生成するポリイミド前駆体、そしてイミド化されたポリイミドが溶解し、原料や生成物と反応しないものであればどのような溶媒であっても何ら問題なく使用でき、特にその溶媒の種類に限定されない。 As the solvent for synthesizing the polyimide or polyamic acid according to the present invention, aprotic solvents such as N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, dimethylsulfoxide and the like are preferable. However, any solvent can be used without any problem as long as the raw material, the polyimide precursor to be produced, and the imidized polyimide are dissolved and do not react with the raw material or the product. It is not limited to.

具体的に例えば、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドン等のアミド溶媒、γ−ブチロラクトン、γ−バレロラクトン、δ−バレロラクトン、γ−カプロラクトン、ε−カプロラクトン、α−メチル−γ−ブチロラクトン、酢酸ブチル、酢酸エチル、酢酸イソブチル等のエステル溶媒、エチレンカーボネート、プロピレンカーボネート等のカーボネート溶媒、ジエチレングリコールジメチルエーテル、トリエチレングリコール、トリエチレングリコールジメチルエーテル等のグリコール系溶媒、フェノール、m−クレゾール、p−クレゾール、o−クレゾール、3−クロロフェノール、4−クロロフェノール等のフェノール系溶媒、シクロペンタノン、シクロヘキサノン、アセトン、メチルエチルケトン、ジイソブチルケトン、メチルイソブチルケトン等のケトン系溶媒、テトラヒドロフラン、1,4−ジオキサン、ジメトキシエタン、ジエトキシエタン、ジブチルエーテル等のエーテル系溶媒、その他汎用溶媒として、アセトフェノン、1,3−ジメチル−2−イミダゾリジノン、スルホラン、ジメチルスルホキシド、プロピレングリコールメチルアセテート、エチルセロソルブ、ブチルセロソルブ、2−メチルセロソルブアセテート、エチルセロソルブアセテート、ブチルセロソルブアセテート、ブタノール、エタノール、キシレン、トルエン、クロルベンゼン、ターペン、ミネラルスピリット、石油ナフサ系溶媒などが使用でき、これらを2種類以上混合して用いてもよい。 Specifically, for example, amide solvents such as N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, γ-butyrolactone, γ-valerolactone, δ-valerolactone, γ-caprolactone, ε -Ester solvents such as caprolactone, α-methyl-γ-butyrolactone, butyl acetate, ethyl acetate, and isobutyl acetate; carbonate solvents such as ethylene carbonate and propylene carbonate; glycol solvents such as diethylene glycol dimethyl ether, triethylene glycol, and triethylene glycol dimethyl ether Phenolic solvents such as phenol, m-cresol, p-cresol, o-cresol, 3-chlorophenol, 4-chlorophenol, cyclopentanone, cyclohexanone, acetone, methyl Ketone solvents such as tilketone, diisobutylketone, methylisobutylketone, ether solvents such as tetrahydrofuran, 1,4-dioxane, dimethoxyethane, diethoxyethane, dibutylether, and other general-purpose solvents include acetophenone, 1,3-dimethyl- 2-imidazolidinone, sulfolane, dimethyl sulfoxide, propylene glycol methyl acetate, ethyl cellosolve, butyl cellosolve, 2-methyl cellosolve acetate, ethyl cellosolve acetate, butanol, ethanol, xylene, toluene, chlorobenzene, terpene, mineral spirit, Petroleum naphtha solvents can be used, and two or more of these may be used in combination.

本発明の式(1)で表されるテトラカルボン酸二無水物を合成する方法は特に限定されず、公知のエステル化反応を適宜用いることができる。具体的には、例えば、無水トリメリット酸クロリドを脱水非プロトン性溶媒に溶解させ、式(3)のジオールと脱酸剤を同様の溶媒に溶解させた溶液を、メカニカルスターラー等を用いて、温度−78℃〜0℃の範囲、好ましくは−30℃〜−5℃で加え、0.5〜48時間、好ましくは1〜24時間撹拌する。その後、反応溶液を0〜100℃、好ましくは10〜50℃まで昇温させ0.5〜48時間、好ましくは1〜24時間撹拌し、エステル化を完結させる。続いて、生成物を含む溶液から生成物を単離し、適宜洗浄し、真空乾燥器等で20〜220℃、より好ましくは50〜200℃で乾燥させ、本発明の式(1)で表されるテトラカルボン酸二無水物を得ることができる。本発明の式(1)で表されるテトラカルボン酸二無水物の純度が低い場合は、公知の方法、例えば昇華法や再結晶法で適宜精製できる。 The method for synthesizing the tetracarboxylic dianhydride represented by the formula (1) of the present invention is not particularly limited, and a known esterification reaction can be appropriately used. Specifically, for example, a solution in which trimellitic anhydride chloride is dissolved in a dehydrated aprotic solvent and a diol of formula (3) and a deoxidizing agent are dissolved in the same solvent, using a mechanical stirrer or the like, The temperature is in the range of −78 ° C. to 0 ° C., preferably −30 ° C. to −5 ° C., and the mixture is stirred for 0.5 to 48 hours, preferably 1 to 24 hours. Thereafter, the reaction solution is heated to 0 to 100 ° C., preferably 10 to 50 ° C., and stirred for 0.5 to 48 hours, preferably 1 to 24 hours to complete esterification. Subsequently, the product is isolated from the solution containing the product, washed as appropriate, and dried at 20 to 220 ° C., more preferably at 50 to 200 ° C. with a vacuum dryer or the like, and represented by the formula (1) of the present invention. Tetracarboxylic dianhydride can be obtained. When the purity of the tetracarboxylic dianhydride represented by the formula (1) of the present invention is low, it can be appropriately purified by a known method such as a sublimation method or a recrystallization method.

本発明の上記式(2)で表されるポリイミド及び該ポリイミドを含む溶液を合成する方法は、特に限定されず、公知のイミド化反応を適宜用いることができる。 The method for synthesizing the polyimide represented by the above formula (2) of the present invention and the solution containing the polyimide is not particularly limited, and a known imidization reaction can be appropriately used.

具体的には、例えば、以下の一段階法で合成できる。2価の求核反応性官能基がイソシアナート基の場合、芳香族または脂肪族ジイソシアナートを溶媒に溶解させ、この溶液にジイソシアナート基と等モルの式(1)で表されるテトラカルボン酸二無水物の粉末を徐々に、または分割して加え、メカニカルスターラー等を用いて、温度−20〜100℃の範囲、より好ましくは、0〜50℃で0.5〜168時間、より好ましくは1〜72時間撹拌することで、上記式(2)で表されるポリイミドを含む溶液が得られる。 Specifically, for example, it can be synthesized by the following one-step method. When the divalent nucleophilic reactive functional group is an isocyanate group, an aromatic or aliphatic diisocyanate is dissolved in a solvent, and the tetraisocyanate represented by the formula (1) is equimolar with the diisocyanate group. Add the carboxylic dianhydride powder gradually or in portions, and use a mechanical stirrer or the like, at a temperature in the range of −20 to 100 ° C., more preferably at 0 to 50 ° C. for 0.5 to 168 hours, more Preferably, the solution containing the polyimide represented by the above formula (2) is obtained by stirring for 1 to 72 hours.

また、2価の求核反応性官能基がアミノ基の場合、芳香族または脂肪族ジアミンを高沸点溶媒に溶解させ、この溶液にジアミンと等モルの式(1)で表されるテトラカルボン酸二無水物の粉末を徐々に、または分割して加えた後、トルエンなどの共沸剤を加え、不活性ガスを導入しながら150〜220℃、より好ましくは、160〜190℃でメカニカルスターラー等を用いて0.5〜10時間、より好ましくは1〜5時間で撹拌し、イミド化時に生成する水を共沸剤とともに系外に除去することでイミド化でき、室温に戻すだけで上記式(2)で表されるポリイミドを含む溶液を得ることができる。尚、イミド化反応の副生成物である水や共沸剤を除去する際に、反応容器内を減圧にすることも可能であり、この工程により固形分濃度を高めることもできる。 Further, when the divalent nucleophilic reactive functional group is an amino group, an aromatic or aliphatic diamine is dissolved in a high boiling point solvent, and the tetracarboxylic acid represented by the formula (1) is equimolar with the diamine. After adding the dianhydride powder gradually or in portions, an azeotropic agent such as toluene is added, and an inert gas is introduced, and a mechanical stirrer or the like at 150 to 220 ° C., more preferably 160 to 190 ° C. The mixture is stirred for 0.5 to 10 hours, more preferably 1 to 5 hours, and the water generated during imidization can be imidized by removing it from the system together with the azeotropic agent. A solution containing the polyimide represented by (2) can be obtained. In addition, when removing the water and the azeotropic agent which are by-products of the imidation reaction, the inside of the reaction vessel can be reduced in pressure, and the solid content concentration can be increased by this step.

また、本発明の上記式(2)で表されるポリイミド及び該ポリイミドを含む溶液は以下の二段階法を用いても合成できる。2価の求核反応性官能基がアミノ基の場合、まず、第一段階目として、芳香族または脂肪族ジアミンを溶媒に溶解させ、この溶液にジアミンと等モルの式(1)で表されるテトラカルボン酸二無水物の粉末を徐々に、または分割して加え、メカニカルスターラー等を用いて、温度0〜100℃の範囲、より好ましくは、5〜50℃で0.5〜168時間、より好ましくは1〜96時間撹拌することで、ポリイミド前駆体であるポリアミド酸溶液が得られる。この際の固形分濃度は、ポリアミド酸の分子量を最大限に高めるため、溶液が均一となり撹拌できる最大濃度が望ましい。即ち、固形分濃度は1〜50重量%、より好ましくは5〜40重量%である。このような固形分濃度であれば、生成するポリアミド酸の重合度が十分高くなる。また、脂肪族ジアミンを使用した場合、重合初期にしばしば塩形成が起こり、重合が妨害されるが、塩形成を抑制しつつできるだけ重合度を上げるためには、重合時の固形分濃度を上記の好適な濃度範囲に管理することが好ましい。 Moreover, the polyimide represented by the above formula (2) of the present invention and the solution containing the polyimide can be synthesized also by using the following two-stage method. When the divalent nucleophilic reactive functional group is an amino group, first, as a first step, an aromatic or aliphatic diamine is dissolved in a solvent, and this solution is represented by the formula (1) equimolar with the diamine. The tetracarboxylic dianhydride powder is added gradually or in portions, and using a mechanical stirrer or the like, the temperature is in the range of 0 to 100 ° C., more preferably at 5 to 50 ° C. for 0.5 to 168 hours, More preferably, the polyamic acid solution which is a polyimide precursor is obtained by stirring for 1 to 96 hours. In this case, the solid concentration is preferably the maximum concentration at which the solution becomes uniform and can be stirred in order to maximize the molecular weight of the polyamic acid. That is, the solid content concentration is 1 to 50% by weight, more preferably 5 to 40% by weight. With such a solid content concentration, the degree of polymerization of the produced polyamic acid is sufficiently high. In addition, when an aliphatic diamine is used, salt formation often occurs at the initial stage of polymerization and the polymerization is hindered, but in order to increase the degree of polymerization as much as possible while suppressing salt formation, the solid content concentration during the polymerization is It is preferable to manage within a suitable concentration range.

次いで、第二段階目として前記で得られたポリイミド前駆体、即ちポリアミド酸をイミド化する方法について説明する。本発明のポリイミドを得るためには、熱的に脱水閉環する高温溶液イミド化法、脱水剤を用いる化学イミド化法などの公知の方法が適宜使用できる。 Next, a method for imidizing the polyimide precursor obtained above, that is, polyamic acid, will be described as the second stage. In order to obtain the polyimide of this invention, well-known methods, such as the high temperature solution imidation method thermally dehydrated and closed and the chemical imidation method using a dehydrating agent, can be used suitably.

具体的には、例えば、高温溶液イミド化法を適用する場合は、高沸点溶媒中で合成した前記方法で得られたポリアミド酸溶液に、上述したポリアミド酸を製造する際に使用可能な溶媒、特に前記ポリアミド酸製造時に用いた溶媒と同一の溶媒を加えて撹拌し易い適度な溶液粘度とし、更にトルエンなどの共沸剤を加え、不活性ガスを導入しながら150〜220℃、より好ましくは、160〜190℃でメカニカルスターラー等を用いて0.5〜10時間、より好ましくは1〜5時間、撹拌し、イミド化時に生成する水を共沸剤とともに系外に除去することで容易にイミド化でき、これを室温に戻すだけで上記式(2)で表されるポリイミド含む溶液を得ることができる。尚、イミド化時に副生成物である水や共沸剤を除去する際に、反応容器内を減圧にすることも可能であり、これにより固形分濃度を高めることもできる。 Specifically, for example, when applying a high temperature solution imidization method, a solvent that can be used in producing the above-described polyamic acid to the polyamic acid solution obtained by the above method synthesized in a high boiling point solvent, In particular, the same solvent as that used in the production of the polyamic acid is added to obtain an appropriate solution viscosity that is easy to stir. Further, an azeotropic agent such as toluene is added, and 150 to 220 ° C., more preferably while introducing an inert gas. , By stirring for 0.5 to 10 hours, more preferably 1 to 5 hours using a mechanical stirrer at 160 to 190 ° C., and easily removing water generated during imidization together with the azeotropic agent from the system. A solution containing polyimide represented by the above formula (2) can be obtained by imidization and simply returning the temperature to room temperature. In addition, when removing water and an azeotropic agent which are by-products at the time of imidation, it is possible to reduce the pressure in the reaction vessel, thereby increasing the solid content concentration.

また、化学イミド化法を適用する場合は、前記方法で得られたポリアミド酸溶液に上述したポリアミド酸を製造する際に使用可能な溶媒、特に前記ポリアミド酸製造時に用いた溶媒と同一の溶媒を加えて撹拌し易い適度な溶液粘度とし、メカニカルスターラーなどで撹拌しながら、有機酸の無水物と、塩基性触媒として3級アミンからなる脱水閉環剤(化学イミド化剤)を滴下し、温度0〜100℃、好ましくは10〜50℃で1〜72時間撹拌することで化学的にイミド化を完結させることができる。その際に使用可能な有機酸無水物としては、特に限定されないが、無水酢酸、無水プロピオン酸等が挙げられる。試薬の取り扱いや分離のし易さから無水酢酸が好適に使用される。また塩基性触媒としては、ピリジン、トリエチルアミン、キノリン等が使用できるが試薬の取り扱いや分離のし易さからピリジンが好適に用いられるが、これらに限定されない。化学イミド化剤中の有機酸無水物量は、ポリアミド酸の理論脱水量の1〜20倍モルの範囲であり、より好ましくは1〜10倍モルである。また塩基性触媒の量は、有機酸無水物量に対して0.1〜2倍モルの範囲であり、より好ましくは0.1〜1倍モルの範囲である。 In addition, when applying the chemical imidization method, a solvent that can be used for producing the above-described polyamic acid to the polyamic acid solution obtained by the above-described method, in particular, the same solvent as that used for producing the polyamic acid is used. In addition, the solution viscosity is set to an appropriate level that is easy to stir, and while stirring with a mechanical stirrer or the like, an organic acid anhydride and a dehydrating cyclization agent (chemical imidization agent) composed of a tertiary amine as a basic catalyst are dropped. The imidization can be completed chemically by stirring at -100 ° C, preferably 10-50 ° C for 1-72 hours. Although it does not specifically limit as an organic acid anhydride which can be used in that case, An acetic anhydride, propionic anhydride, etc. are mentioned. Acetic anhydride is preferably used because of easy handling and separation of the reagent. As the basic catalyst, pyridine, triethylamine, quinoline and the like can be used, but pyridine is preferably used because of easy handling and separation of the reagent, but is not limited thereto. The amount of the organic acid anhydride in the chemical imidizing agent is in the range of 1 to 20 times mol, more preferably 1 to 10 times mol of the theoretical dehydration amount of the polyamic acid. Moreover, the quantity of a basic catalyst is the range of 0.1-2 times mole with respect to the amount of organic acid anhydrides, More preferably, it is the range of 0.1-1 times mole.

前記化学イミド化法で得られた反応溶液中には、塩基や未反応の化学イミド化剤、有機酸などの副生成物(以下、不純物という)が混入しているため、これらを除去してポリイミドを単離・精製してもよい。精製は公知の方法が利用できる。例えば、最も簡便な方法としては、イミド化した反応溶液を撹拌しながら大量の貧溶媒中に滴下してポリイミドを析出させた後、ポリイミド粉末を回収して不純物が除去されるまで繰返し洗浄し、減圧乾燥して、ポリイミド粉末を得る方法が適用できる。この時、使用できる溶媒としては、ポリイミドを析出させ、不純物を効率よく除去でき、乾燥し易い溶媒であれば特に限定されないが、例えば、水をはじめ、メタノール、エタノール、イソプロパノールなどのアルコール類が好適であり、これらを混合して用いてもよい。貧溶媒中に滴下して析出させる時のポリイミド溶液の固形分濃度は、高すぎると析出するポリイミドが粒塊となり、その粗大な粒子中に不純物が残留する場合や、得られたポリイミド粉末を溶媒に再溶解する際に長時間要する場合がある。一方、ポリイミド溶液の濃度を薄くし過ぎると、多量の貧溶媒が必要となり、廃溶剤処理による環境負荷増大や製造コスト高になる場合がある。したがって、貧溶媒中に滴下する時のポリイミド溶液の濃度(固形分濃度)は、20重量%以下、より好ましくは10重量%以下である。この時使用する貧溶媒の量はポリイミド溶液中の溶媒やポリイミドの種類に応じて当業者であれば適宜調整可能である。前述のように析出させたポリイミド粉末は回収し、残留溶媒を真空乾燥や熱風乾燥などで除去する。乾燥温度と時間は、ポリイミドが変質しない温度であれば制限はなく、温度30〜150℃で3〜24時間乾燥させることが好ましい。 In the reaction solution obtained by the chemical imidization method, by-products (hereinafter referred to as impurities) such as bases, unreacted chemical imidization agents, and organic acids are mixed. Polyimide may be isolated and purified. A known method can be used for purification. For example, as the simplest method, after dripping in a large amount of poor solvent while stirring the imidized reaction solution to precipitate polyimide, the polyimide powder is recovered and repeatedly washed until impurities are removed, A method of obtaining polyimide powder by drying under reduced pressure can be applied. At this time, the solvent that can be used is not particularly limited as long as it can precipitate polyimide, efficiently remove impurities, and can be easily dried. For example, water, alcohols such as methanol, ethanol, and isopropanol are preferable. These may be used in combination. When the solid content concentration of the polyimide solution when dropped in a poor solvent is too high, the precipitated polyimide becomes agglomerates and impurities remain in the coarse particles, or the obtained polyimide powder is used as a solvent. It may take a long time to redissolve. On the other hand, if the concentration of the polyimide solution is too thin, a large amount of poor solvent is required, which may increase the environmental load and increase the manufacturing cost due to waste solvent treatment. Therefore, the concentration (solid content concentration) of the polyimide solution when dripped in the poor solvent is 20% by weight or less, more preferably 10% by weight or less. The amount of the poor solvent used at this time can be appropriately adjusted by those skilled in the art depending on the type of solvent and polyimide in the polyimide solution. The polyimide powder deposited as described above is collected, and the residual solvent is removed by vacuum drying or hot air drying. The drying temperature and time are not limited as long as the polyimide does not change in quality, and it is preferable to dry at a temperature of 30 to 150 ° C. for 3 to 24 hours.

このようにして得られた上記式(2)で表されるポリイミド粉末は、ポリイミド溶液とするために溶媒に溶解させる必要がある。使用可能な溶媒は、ポリイミド溶液の使用用途や加工条件に合わせて適宜選択可能である。具体的には例えば、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドン等のアミド溶媒、γ−ブチロラクトン、γ−バレロラクトン、δ−バレロラクトン、γ−カプロラクトン、ε−カプロラクトン、α−メチル−γ−ブチロラクトン、酢酸ブチル、酢酸エチル、酢酸イソブチル等のエステル溶媒、エチレンカーボネート、プロピレンカーボネート等のカーボネート溶媒、ジエチレングリコールジメチルエーテル、トリエチレングリコール、トリエチレングリコールジメチルエーテル等のグリコール系溶媒、フェノール、m−クレゾール、p−クレゾール、o−クレゾール、3−クロロフェノール、4−クロロフェノール等のフェノール系溶媒、シクロペンタノン、シクロヘキサノン、アセトン、メチルエチルケトン、ジイソブチルケトン、メチルイソブチルケトン等のケトン系溶媒、テトラヒドロフラン、1,4−ジオキサン、ジメトキシエタン、ジエトキシエタン、ジブチルエーテル等のエーテル系溶媒、その他汎用溶媒として、アセトフェノン、1,3−ジメチル−2−イミダゾリジノン、スルホラン、ジメチルスルホキシド、プロピレングリコールメチルアセテート、エチルセロソルブ、ブチルセロソルブ、2−メチルセロソルブアセテート、エチルセロソルブアセテート、ブチルセロソルブアセテート、ブタノール、エタノール、キシレン、トルエン、クロルベンゼン、ターペン、ミネラルスピリット、石油ナフサ系溶媒なども使用でき、これらを2種類以上混合して用いてもよい。 The polyimide powder represented by the above formula (2) thus obtained needs to be dissolved in a solvent in order to obtain a polyimide solution. The usable solvent can be appropriately selected in accordance with the use application and processing conditions of the polyimide solution. Specifically, for example, amide solvents such as N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, γ-butyrolactone, γ-valerolactone, δ-valerolactone, γ-caprolactone, ε-caprolactone, α-methyl-γ-butyrolactone, ester solvents such as butyl acetate, ethyl acetate, and isobutyl acetate, carbonate solvents such as ethylene carbonate and propylene carbonate, glycols such as diethylene glycol dimethyl ether, triethylene glycol, and triethylene glycol dimethyl ether Solvents, phenol solvents such as phenol, m-cresol, p-cresol, o-cresol, 3-chlorophenol, 4-chlorophenol, cyclopentanone, cyclohexanone, acetone, methyl Ketone solvents such as ethyl ketone, diisobutyl ketone, methyl isobutyl ketone, ether solvents such as tetrahydrofuran, 1,4-dioxane, dimethoxyethane, diethoxyethane, dibutyl ether, and other general-purpose solvents include acetophenone, 1,3-dimethyl- 2-imidazolidinone, sulfolane, dimethyl sulfoxide, propylene glycol methyl acetate, ethyl cellosolve, butyl cellosolve, 2-methyl cellosolve acetate, ethyl cellosolve acetate, butanol, ethanol, xylene, toluene, chlorobenzene, terpene, mineral spirit, Petroleum naphtha solvents can also be used, and two or more of these may be used in combination.

特に、長時間にわたり連続塗工する場合、ポリイミド溶液中の溶媒が大気中の水分を吸湿し、ポリイミドが析出する恐れがある場合は、トリエチレングリコールジメチルエーテル、γ−ブチロラクトンあるいはシクロペンタノンなどの低吸湿性溶媒を使用することが好ましい。また、吸湿性溶媒であるN,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドン等のアミド溶媒でも、上記低吸湿性溶媒と組み合わせることで、ポリイミドの析出を抑制することもできる。ポリイミド粉末の溶解方法は、空気中、または不活性ガス中で室温〜溶媒の沸点以下の温度範囲で1〜48時間かけて溶解させ、ポリイミド溶液にすることができる。 In particular, when applying continuously over a long period of time, if the solvent in the polyimide solution absorbs moisture in the air and the polyimide may be deposited, the low concentration of triethylene glycol dimethyl ether, γ-butyrolactone, cyclopentanone, etc. It is preferable to use a hygroscopic solvent. In addition, amide solvents such as N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone and the like, which are hygroscopic solvents, suppress the precipitation of polyimide by combining with the low hygroscopic solvent. You can also. The polyimide powder can be dissolved in air or in an inert gas in a temperature range from room temperature to the boiling point of the solvent over 1 to 48 hours to form a polyimide solution.

本発明の式(2)で表されるポリイミドの固有粘度は、ポリイミドフィルムの膜靭性を考慮すると、0.1dL/g以上、より好ましくは0.2dL/g以上であることが好ましい。固有粘度が0.1dL/g未満だとポリイミドフィルムの膜靭性が確保できず、脆弱なフィルムになる場合がある。 In consideration of the film toughness of the polyimide film, the intrinsic viscosity of the polyimide represented by the formula (2) of the present invention is preferably 0.1 dL / g or more, more preferably 0.2 dL / g or more. If the intrinsic viscosity is less than 0.1 dL / g, the toughness of the polyimide film cannot be ensured, and the film may be brittle.

本発明のポリイミドの分子量はその成形性や取扱性の点から重量平均分子量で5000以上であることが好ましく、10000以上であることがより好ましい。なお、ポリイミドの分子量はポリイミド溶液の粘度を目安にすることができる。 The molecular weight of the polyimide of the present invention is preferably 5000 or more and more preferably 10,000 or more in terms of weight average molecular weight from the viewpoint of moldability and handleability. The molecular weight of the polyimide can be based on the viscosity of the polyimide solution.

次に、本発明の上記式(2)で表されるポリイミドを含むポリイミド溶液及びそれを成形して得られるポリイミドフィルムの製造方法について説明する。ポリイミド溶液中のポリイミドの固形分濃度としては、該溶液の用途に応じて適宜選択することができるが、例えばフィルムとする場合、ポリイミドの分子量、製造方法や所望するフィルムの厚さにもよるが、固形分濃度を5重量%以上、好ましくは5重量%〜40重量%とすることが好ましい。固形分濃度が低すぎると、十分な膜厚のフィルムを形成することが困難となる場合があり、逆に固形分濃度が高いと溶液粘度が高すぎて塗工が困難となる場合がある。なお、本発明におけるポリイミドの固形分濃度とはポリイミド溶液から定法により溶媒を除去した後に残った固形分(主に上記式(2)で表されるポリイミド)の含量のことを表す。 Next, a polyimide solution containing a polyimide represented by the above formula (2) of the present invention and a method for producing a polyimide film obtained by molding the polyimide solution will be described. The polyimide solid content concentration in the polyimide solution can be appropriately selected according to the use of the solution. For example, in the case of a film, it depends on the molecular weight of the polyimide, the production method, and the desired film thickness. The solid content concentration is 5% by weight or more, preferably 5% to 40% by weight. If the solid content concentration is too low, it may be difficult to form a film having a sufficient film thickness. Conversely, if the solid content concentration is high, the solution viscosity may be too high and coating may be difficult. In addition, the solid content concentration of the polyimide in this invention represents the content of the solid content (mainly polyimide represented by the said Formula (2)) remaining after removing a solvent from a polyimide solution by a usual method.

また、本発明の上記式(2)で表されるポリイミドを含むポリイミド溶液には、必要に応じて離型剤、フィラー、シランカップリング剤、架橋剤、末端封止剤、酸化防止剤、消泡剤、レベリング剤などの添加物を加えることができる。 In addition, the polyimide solution containing the polyimide represented by the above formula (2) of the present invention may include a release agent, a filler, a silane coupling agent, a crosslinking agent, a terminal sealing agent, an antioxidant, Additives such as foaming agents and leveling agents can be added.

前記ポリイミド溶液を用いてフィルムを製造する最も好ましい形態について説明するが、膜靭性のある自立膜が作製できれば特に製造方法は限定されない。 Although the most preferable form which manufactures a film using the said polyimide solution is demonstrated, a manufacturing method will not be specifically limited if a self-supporting film | membrane with film | membrane toughness can be produced.

具体的には、例えば、ガラス基板などの支持体上にポリイミド溶液を公知の方法、例えば、ドクターブレードなどを用いて塗布後、乾燥し、ポリイミドフィルムを作製する方法がある。または、銅箔等の金属箔上に公知の方法、例えば、ドクターブレードなどを用いて塗布後、乾燥し、ポリイミド/金属箔の積層フィルムを得ることができ、半田実装時の高温工程にも耐えられるフレキシブルプリント配線基板用の銅張積層板にも使用できる。更に前記ポリイミド溶液を半導体やフレキシブル配線基板用の絶縁材料に適用する場合であれば、直接デバイス上にコーティングし、溶媒を乾燥させることで絶縁層が容易に形成できる。 Specifically, for example, there is a known method of applying a polyimide solution on a support such as a glass substrate, for example, using a doctor blade, and then drying to prepare a polyimide film. Alternatively, it can be applied onto a metal foil such as copper foil using a known method, for example, a doctor blade, and then dried to obtain a polyimide / metal foil laminated film, which can withstand high temperature processes during solder mounting. It can also be used for copper-clad laminates for flexible printed wiring boards. Furthermore, if the polyimide solution is applied to an insulating material for a semiconductor or a flexible wiring board, the insulating layer can be easily formed by coating directly on the device and drying the solvent.

上述のように製造されたポリイミドフィルムは通常、そのガラス転移温度が260℃以上、特に290℃以上となるため特に耐熱性フィルムとして好適に用いられる、例えば、半導体やフレキシブル配線基板用の絶縁材料として用いる場合、その絶縁層のガラス転移温度が260℃以上となるため、無鉛半田実装温度である260℃にも十分に耐え得るので、絶縁材料として好適に使用される。 The polyimide film produced as described above usually has a glass transition temperature of 260 ° C. or higher, particularly 290 ° C. or higher, so that it is particularly suitably used as a heat resistant film. For example, as an insulating material for semiconductors and flexible wiring boards When used, since the glass transition temperature of the insulating layer is 260 ° C. or higher, it can sufficiently withstand 260 ° C., which is a lead-free solder mounting temperature, and is therefore preferably used as an insulating material.

以下、本発明を実施例により具体的に説明するが、これら実施例に限定されるものではない。なお、以下の例における物性値は、次の方法により測定した。 EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, it is not limited to these Examples. The physical property values in the following examples were measured by the following methods.

(評価方法)
<赤外吸収スペクトル>
フーリエ変換赤外分光光度計FT/IR−4100(日本分光社製)を用い、KBr法にてテトラカルボン酸二無水物の赤外線吸収スペクトルを測定した。また、ポリイミドの赤外線吸収スペクトルについては、ポリイミド溶液を調製後、ガラス基板上に流延し、100℃で30分乾燥してガラス基板上から剥離したポリイミド薄膜試料(約5μm厚)を測定した。
(Evaluation method)
<Infrared absorption spectrum>
Using a Fourier transform infrared spectrophotometer FT / IR-4100 (manufactured by JASCO Corporation), the infrared absorption spectrum of tetracarboxylic dianhydride was measured by the KBr method. Moreover, about the infrared absorption spectrum of polyimide, after preparing the polyimide solution, it casted on the glass substrate, dried for 30 minutes at 100 degreeC, and measured the polyimide thin film sample (about 5 micrometers thickness) peeled from the glass substrate.

H−NMRスペクトル>
フーリエ変換核磁気共鳴JNM―ECP400(JEOL製)を用い、重水素化ジメチルスルホキシド中でテトラカルボン酸二無水物および化学イミド化したポリイミド粉末のH−NMRスペクトルを測定した。標準物質はテトラメチルシランを使用した。
<1 H-NMR spectrum>
Using Fourier transform nuclear magnetic resonance JNM-ECP400 (manufactured by JEOL), 1 H-NMR spectra of tetracarboxylic dianhydride and chemically imidized polyimide powder in deuterated dimethyl sulfoxide were measured. Tetramethylsilane was used as the standard substance.

<示差走査熱量分析(融点)>
テトラカルボン酸二無水物の融点は、示差走査熱量分析装置DSC3100(ネッチ・ジャパン社)を用いて、窒素雰囲気中、昇温速度5℃/分で測定した。融点が高く融解ピークがシャープであるほど、高純度であることを示す。
<Differential scanning calorimetry (melting point)>
The melting point of tetracarboxylic dianhydride was measured at a heating rate of 5 ° C./min in a nitrogen atmosphere using a differential scanning calorimeter DSC3100 (Netch Japan). The higher the melting point and the sharper the melting peak, the higher the purity.

<固有粘度>
0.5重量%のポリイミド前駆体溶液、または、ポリイミド溶液をオストワルド粘度計を用いて30℃で還元粘度を測定した。この値をもって固有粘度とみなした。
<Intrinsic viscosity>
The reduced viscosity of a 0.5 wt% polyimide precursor solution or polyimide solution was measured at 30 ° C. using an Ostwald viscometer. This value was regarded as the intrinsic viscosity.

<ポリイミド粉末の有機溶媒への溶解性試験>
ポリイミド粉末0.1gに対し、有機溶媒9.9g(固形分濃度1重量%)をサンプル管に入れ、試験管ミキサーを用いて5分間撹拌して溶解状態を目視で確認した。溶媒として、クロロホルム(CF)、アセトン、テトラヒドロフラン(THF)、1,4−ジオキサン(DOX)、酢酸エチル、シクロペンタノン(CPN)、シクロヘキサノン(CHN)、N,N−ジメチルホルムアミド(DMF)、N−メチル−2−ピロリドン(NMP)、m−クレゾール、ジメチルスルホキシド(DMSO)、γ−ブチロラクトン(GBL)、トリエチレングリコールジメチルエーテル(Tri-GL)を使用した。評価結果は、室温で溶解した場合を++、加熱により溶解し、且つ室温まで放冷後も均一性を保持していた場合を+、膨潤/一部溶解した場合を±、不溶の場合を−と表示した。
<Solubility test of polyimide powder in organic solvent>
To 0.1 g of polyimide powder, 9.9 g of organic solvent (solid content concentration: 1% by weight) was put in a sample tube, stirred for 5 minutes using a test tube mixer, and the dissolved state was visually confirmed. As a solvent, chloroform (CF), acetone, tetrahydrofuran (THF), 1,4-dioxane (DOX), ethyl acetate, cyclopentanone (CPN), cyclohexanone (CHN), N, N-dimethylformamide (DMF), N -Methyl-2-pyrrolidone (NMP), m-cresol, dimethyl sulfoxide (DMSO), γ-butyrolactone (GBL), triethylene glycol dimethyl ether (Tri-GL) were used. The evaluation results are ++ when dissolved at room temperature, + when dissolved by heating and maintaining uniformity even after being allowed to cool to room temperature, ± when swollen / partially dissolved, and − when insoluble. Is displayed.

<ガラス転移温度:Tg>
ポリイミドフィルムのガラス転移温度は、ネッチ・ジャパン社製TMA4000を用いて(サンプルサイズ 幅5mm、長さ15mm)、荷重(静荷重)を膜厚(μm)×0.5gとして、5℃/minで150℃まで一旦昇温(1回目の昇温)させた後、20℃まで冷却し、さらに5℃/minで昇温(2回目の昇温)させて2回目の昇温時のTMA曲線から接線法より求めた。
<Glass transition temperature: Tg>
The glass transition temperature of the polyimide film is 5 ° C / min with TMA4000 manufactured by Netch Japan Co., Ltd. (sample size width 5 mm, length 15 mm) and the load (static load) is film thickness (μm) × 0.5 g. Temporarily raised to 150 ° C (first temperature rise), then cooled to 20 ° C, further raised at 5 ° C / min (second temperature rise), and from the TMA curve at the second temperature rise Obtained from tangent method.

<合成例1>(テトラカルボン酸二無水物の合成)
比較例としてスピロ構造を含まないテトラカルボン酸二無水物の合成。
ナスフラスコに無水トリメリット酸クロリド8.4228g(40.0mmol)を入れ、脱水N,N−ジメチルホルムアミド(DMF)36mLに室温で溶解させ、セプタムシールして溶液Aを調製した(溶質濃度20wt%)。更に別のフラスコ中で4,4’−ビフェノール3.7242g(20.0mmol)を脱水DMF16mLに室温で溶解し(溶質濃度20wt%)、これにピリジン120mmolを加えてセプタムシールし溶液Bを調製した。氷浴中で冷却、撹拌しながら、溶液Aに溶液Bをシリンジにて徐々に滴下し、その後室温で12時間撹拌した。反応終了後、黄色沈澱物を濾別し、DMFおよびイオン交換水で洗浄した。ピリジン塩酸塩の除去は、硝酸銀水溶液を用いて確認した。洗浄した生成物を回収し、180℃で12時間真空乾燥した。得られた生成物は黄色粉末であり、収量は4.8465g、収率は38.5%であった。得られた生成物は、フーリエ変換赤外分光光度計FT/IR−4100(日本分光社製)より、1861cm−1および1782cm−1に酸無水物基C=O伸縮振動、1730cm−1にエステル基C=O伸縮振動を確認した。また、フーリエ変換核磁気共鳴JNM―ECP400(JEOL製)を用いてプロトンNMR測定を行った結果、DMSO−d,δ,ppm:7.52(d,4H), 7.58(d,4H), 8.51(d,2H),8.6(m,4H), 8.71−8.76(m,4H)と帰属でき、目的物のテトラカルボン酸二無水物であることが確認された。また、示差走査熱量分析装置DSC3100(ネッチ・ジャパン社)によって融点を測定したところ、326℃に鋭い融解ピークを示したことからこの生成物は高純度であることが示唆された。
<Synthesis Example 1> (Synthesis of tetracarboxylic dianhydride)
Synthesis of tetracarboxylic dianhydride containing no spiro structure as a comparative example.
8.4228 g (40.0 mmol) of trimellitic anhydride chloride was placed in an eggplant flask, dissolved in 36 mL of dehydrated N, N-dimethylformamide (DMF) at room temperature, and sealed with a septum to prepare solution A (solute concentration 20 wt%). ). Further, 3.7242 g (20.0 mmol) of 4,4′-biphenol was dissolved in 16 mL of dehydrated DMF at room temperature in a separate flask (solute concentration 20 wt%), and 120 mmol of pyridine was added thereto, followed by septum sealing to prepare solution B. . While cooling and stirring in an ice bath, solution B was gradually added dropwise to solution A with a syringe, and then stirred at room temperature for 12 hours. After completion of the reaction, the yellow precipitate was filtered off and washed with DMF and ion exchange water. Removal of pyridine hydrochloride was confirmed using an aqueous silver nitrate solution. The washed product was collected and vacuum dried at 180 ° C. for 12 hours. The obtained product was a yellow powder, the yield was 4.8465 g, and the yield was 38.5%. The resulting product, a Fourier transform infrared than spectrophotometer FT / IR-4100 (manufactured by JASCO Corporation), 1861cm -1 and 1782cm -1 to acid anhydride group C = O stretching vibration, ester 1730 cm -1 The group C = O stretching vibration was confirmed. Further, as a result of proton NMR measurement using Fourier transform nuclear magnetic resonance JNM-ECP400 (manufactured by JEOL), DMSO-d 6 , δ, ppm: 7.52 (d, 4H), 7.58 (d, 4H) ), 8.51 (d, 2H), 8.6 (m, 4H), 8.71-8.76 (m, 4H), confirming that it is the target tetracarboxylic dianhydride It was done. Further, when the melting point was measured with a differential scanning calorimeter DSC3100 (Netch Japan Co., Ltd.), a sharp melting peak was observed at 326 ° C., suggesting that this product is of high purity.

<実施例1>(テトラカルボン酸二無水物の合成)
本発明の式(1)で表されるテトラカルボン酸二無水物の合成。
ナスフラスコに無水トリメリット酸クロリド6.4617g(30.687mmol)を入れ、脱水テトラヒドロフラン(THF)16.6mLに室温で溶解させ、セプタムシールして溶液Aを調製した(溶質濃度30.0重量%)。別のナスフラスコにスピロ[フルオレン−9,9’−(2’,7’−ジヒドロキシキサンテン)]3.6439g(10.057mmol)を脱水THF47.1mLに室温で溶解し(溶質濃度8.0重量%)、これにピリジン4.85mL(60.0mmol)を加えてセプタムシールし溶液Bを調製した。氷浴中で冷却、撹拌しながら、溶液Aに溶液Bをシリンジにて徐々に滴下して1時間撹拌し、その後室温で12時間撹拌した。反応終了後、白色沈澱物を濾別し、THFと水で洗浄した。ピリジン塩酸塩の除去は、洗液に硝酸銀水溶液を添加し白色沈殿が見られなくなったことをもって確認した。洗浄した生成物を回収し、100℃で12時間真空乾燥した。得られた生成物は白色粉末であり、収量は2.8336g、収率は39.8%であった。
<Example 1> (Synthesis of tetracarboxylic dianhydride)
Synthesis of tetracarboxylic dianhydride represented by the formula (1) of the present invention.
6.4617 g (30.687 mmol) of trimellitic anhydride chloride was placed in an eggplant flask, dissolved in 16.6 mL of dehydrated tetrahydrofuran (THF) at room temperature, and sealed with a septum to prepare solution A (solute concentration: 30.0% by weight) ). Spiro [fluorene-9,9 ′-(2 ′, 7′-dihydroxyxanthene)] 3.6439 g (10.507 mmol) was dissolved in 47.1 mL of dehydrated THF at room temperature (solute concentration 8.0 wt.) In another eggplant flask. %), And 4.85 mL (60.0 mmol) of pyridine was added thereto, followed by septum sealing to prepare Solution B. While cooling and stirring in an ice bath, solution B was gradually added dropwise to solution A with a syringe and stirred for 1 hour, and then stirred at room temperature for 12 hours. After completion of the reaction, the white precipitate was filtered off and washed with THF and water. Removal of pyridine hydrochloride was confirmed by adding a silver nitrate aqueous solution to the washing solution and no white precipitate was observed. The washed product was collected and dried in vacuum at 100 ° C. for 12 hours. The obtained product was a white powder, the yield was 2.8336 g, and the yield was 39.8%.

得られた生成物は、フーリエ変換赤外分光光度計FT/IR−4100(日本分光社製)より、1856cm−1および1781cm−1に酸無水物基C=O伸縮振動吸収帯、1738cm−1にエステル基C=O伸縮振動吸収帯を確認した。また、フーリエ変換核磁気共鳴JNM―ECP400(JEOL製)を用いてプロトンNMR測定を行った結果、DMSO−d,δ,ppm;8.62−8.51(m,4H),8.27(dd,2H,J=8.0,0.6Hz),8.15(dd,2H,J=8.3,1.8Hz),8.04(d,2H,J=7.7Hz),7.49−7.46(m,4H),7.32(t,2H,J=7.5Hz),6.94(dd,2H,J=8.7,2.4Hz,),6.41(d,2H,J=8.8Hz)と帰属でき、元素分析値は、計算値C:72.47%,H:2.83%,実測値C:72.61%,H:2.97%
と式(1)で表されるテトラカルボン酸二無水物と0.3%以内で一致した。また、示差走査熱量分析装置DSC3100(ネッチ・ジャパン社)によって融点を測定したところ、332℃に鋭い融解ピークを示したことからこの生成物は高純度であることが示唆された。
The resulting product, a Fourier transform infrared spectrophotometer FT / IR-4100 from (manufactured by JASCO Corporation), 1856cm -1 and 1781cm -1 to acid anhydride group C = O stretching vibration absorption band, 1738 cm -1 The ester group C = O stretching vibration absorption band was confirmed. Further, as a result of proton NMR measurement using Fourier transform nuclear magnetic resonance JNM-ECP400 (manufactured by JEOL), DMSO-d 6 , δ, ppm; 8.62-8.51 (m, 4H), 8.27 (Dd, 2H, J = 8.0, 0.6 Hz), 8.15 (dd, 2H, J = 8.3, 1.8 Hz), 8.04 (d, 2H, J = 7.7 Hz), 7.49-7.46 (m, 4H), 7.32 (t, 2H, J = 7.5 Hz), 6.94 (dd, 2H, J = 8.7, 2.4 Hz), 6. 41 (d, 2H, J = 8.8 Hz), and the elemental analysis values are calculated C: 72.47%, H: 2.83%, measured C: 72.61%, H: 2. 97%
With the tetracarboxylic dianhydride represented by the formula (1) within 0.3%. Further, when the melting point was measured with a differential scanning calorimeter DSC3100 (Netch Japan Co., Ltd.), a sharp melting peak was observed at 332 ° C., suggesting that this product was of high purity.

<実施例2>(ポリアミド酸の重合;DABA系)
4,4’−ジアミノベンズアニリド(DABA)0.6818g(3mmol)を脱水N,N−ジメチルアセトアミド(DMAc)6.57gに溶解した。ここに実施例1で合成した式(1)で表されるテトラカルボン酸二無水物粉末2.1378g(3mmol)をゆっくり加えて固形分濃度30.0重量%で撹拌した。適宜DMAcで希釈しながら室温で72時間撹拌しポリイミド前駆体であるポリアミド酸を得た(固形分濃度15.0重量%)。得られたポリアミド酸の固有粘度は、1.41dL/gであった。
<Example 2> (Polyamide acid polymerization; DABA system)
0.6818 g (3 mmol) of 4,4′-diaminobenzanilide (DABA) was dissolved in 6.57 g of dehydrated N, N-dimethylacetamide (DMAc). To this, 2.1378 g (3 mmol) of tetracarboxylic dianhydride powder represented by the formula (1) synthesized in Example 1 was slowly added and stirred at a solid content concentration of 30.0% by weight. While appropriately diluted with DMAc, the mixture was stirred at room temperature for 72 hours to obtain a polyamic acid as a polyimide precursor (solid content concentration: 15.0% by weight). The intrinsic viscosity of the obtained polyamic acid was 1.41 dL / g.

(化学イミド化によるポリイミドの合成)
得られたポリアミド酸溶液を脱水DMAcで固形分濃度8重量%に希釈後、3.0627g(30mmmol)の無水酢酸と1.1865g(15mmol)のピリジンの混合溶液を室温でゆっくり滴下し、その後24時間撹拌した。得られたポリイミド溶液を大量の脱イオン水に加え、目的生成物を沈澱させた。得られた析出物をメタノールで十分洗浄し、100℃で12時間真空乾燥しポリイミド粉末を得た。得られたポリイミドの固有粘度は、0.69dL/gであった。イミド化の完結は、H−NMRよりポリアミド酸中のカルボキシ基のプロトン消失、及びFT−IRによって確認した(図1)。得られたポリイミド粉末の各溶媒に対する溶解性評価を表1に示す。
(Polyimide synthesis by chemical imidization)
The obtained polyamic acid solution was diluted with dehydrated DMAc to a solid concentration of 8% by weight, and then a mixed solution of 3.0627 g (30 mmol) of acetic anhydride and 1.1865 g (15 mmol) of pyridine was slowly added dropwise at room temperature. Stir for hours. The resulting polyimide solution was added to a large amount of deionized water to precipitate the desired product. The obtained precipitate was sufficiently washed with methanol and vacuum dried at 100 ° C. for 12 hours to obtain a polyimide powder. The intrinsic viscosity of the obtained polyimide was 0.69 dL / g. Completion of imidization was confirmed by 1 H-NMR by proton disappearance of the carboxy group in the polyamic acid and FT-IR (FIG. 1). Table 1 shows the evaluation of the solubility of the obtained polyimide powder in each solvent.

(ポリイミド溶液の調製およびポリイミドフィルムの作製)
得られたポリイミド粉末を室温でDMAcに再溶解し、15重量%の溶液を調製した。このポリイミド溶液をガラス基板上に流延し、60℃で2時間熱風乾燥器によって乾燥した。その後、ガラス基板ごと減圧下200℃で1時間乾燥した後、室温まで放冷後、ガラス基板からポリイミドフィルムを剥した。このポリイミドフィルムをもう一度減圧下で300℃1時間乾燥した。得られたフィルムの膜物性を表2に示す。
(Preparation of polyimide solution and preparation of polyimide film)
The obtained polyimide powder was redissolved in DMAc at room temperature to prepare a 15 wt% solution. This polyimide solution was cast on a glass substrate and dried by a hot air dryer at 60 ° C. for 2 hours. Then, after drying at 200 degreeC under pressure reduction for 1 hour with the glass substrate, the polyimide film was peeled from the glass substrate after standing to cool to room temperature. This polyimide film was again dried under reduced pressure at 300 ° C. for 1 hour. Table 2 shows the film physical properties of the obtained film.

<実施例3>(ポリアミド酸の重合;4,4’‐ODA系)
4,4’−オキシジアニリン(4,4’−ODA)0.6007g(3mmol)を脱水N,N−ジメチルアセトアミド(DMAc)6.39gに溶解した。ここに実施例1で合成した式(1)で表されるテトラカルボン酸二無水物粉末2.1378g(3mmol)をゆっくり加えて固形分濃度30.0重量%で撹拌した。適宜DMAcで希釈しながら室温で72時間撹拌しポリイミド前駆体であるポリアミド酸を得た(固形分濃度22.9重量%)。得られたポリアミド酸の固有粘度は、0.96dL/gであった。
<Example 3> (Polyamide acid polymerization; 4,4'-ODA system)
0.6007 g (3 mmol) of 4,4′-oxydianiline (4,4′-ODA) was dissolved in 6.39 g of dehydrated N, N-dimethylacetamide (DMAc). To this, 2.1378 g (3 mmol) of tetracarboxylic dianhydride powder represented by the formula (1) synthesized in Example 1 was slowly added and stirred at a solid content concentration of 30.0% by weight. While appropriately diluting with DMAc, the mixture was stirred at room temperature for 72 hours to obtain a polyamic acid as a polyimide precursor (solid content concentration 22.9% by weight). The intrinsic viscosity of the obtained polyamic acid was 0.96 dL / g.

(化学イミド化によるポリイミドの合成)
得られたポリアミド酸溶液を脱水DMAcで固形分濃度8重量%に希釈後、3.0627g(30mmmol)の無水酢酸と1.1865g(15mmol)のピリジンの混合溶液を室温でゆっくり滴下し、その後24時間撹拌した。得られたポリイミド溶液を大量の脱イオン水に加え、目的生成物を沈澱させた。得られた析出物をメタノールで十分洗浄し、100℃で12時間真空乾燥しポリイミド粉末を得た。得られたポリイミドの固有粘度は、1.17dL/gであった。イミド化の完結は、H−NMRよりポリアミド酸中のアミドプロトン消失、及びFT−IRによって確認した(図2)。得られたポリイミド粉末の各溶媒に対する溶解性評価を表1に示す。
(Polyimide synthesis by chemical imidization)
The obtained polyamic acid solution was diluted with dehydrated DMAc to a solid concentration of 8% by weight, and then a mixed solution of 3.0627 g (30 mmol) of acetic anhydride and 1.1865 g (15 mmol) of pyridine was slowly added dropwise at room temperature. Stir for hours. The resulting polyimide solution was added to a large amount of deionized water to precipitate the desired product. The obtained precipitate was sufficiently washed with methanol and vacuum dried at 100 ° C. for 12 hours to obtain a polyimide powder. The intrinsic viscosity of the obtained polyimide was 1.17 dL / g. Completion of imidation was confirmed by disappearance of amide protons in the polyamic acid and FT-IR by 1 H-NMR (FIG. 2). Table 1 shows the evaluation of the solubility of the obtained polyimide powder in each solvent.

(ポリイミド溶液の調製およびポリイミドフィルムの作製)
得られたポリイミド粉末を室温でN−メチル−2−ピロリドン(NMP)に再溶解し、15重量%の溶液を調製した。このポリイミド溶液をガラス基板上に流延し、80℃で2時間熱風乾燥器によって乾燥した。その後、ガラス基板ごと減圧下200℃で1時間乾燥した後、室温まで放冷後、ガラス基板からポリイミドフィルムを剥した。このポリイミドフィルムをもう一度減圧下で300℃1時間乾燥した。得られたフィルムの膜物性を表2に示す。
(Preparation of polyimide solution and preparation of polyimide film)
The obtained polyimide powder was redissolved in N-methyl-2-pyrrolidone (NMP) at room temperature to prepare a 15% by weight solution. This polyimide solution was cast on a glass substrate and dried by a hot air dryer at 80 ° C. for 2 hours. Then, after drying at 200 degreeC under pressure reduction for 1 hour with the glass substrate, the polyimide film was peeled from the glass substrate after standing to cool to room temperature. This polyimide film was again dried under reduced pressure at 300 ° C. for 1 hour. Table 2 shows the film physical properties of the obtained film.

<実施例4>(ポリアミド酸の重合;TFMB系)
4,4’‐ジアミノ−2,2’‐ビス(トリフルオロメチル)ビフェニル(TFMB)0.9607g(3mmol)を脱水N,N−ジメチルアセトアミド(DMAc)7.2gに溶解した。ここに実施例1で合成した式(1)で表されるテトラカルボン酸二無水物粉末2.1378g(3mmol)をゆっくり加えて固形分濃度30.0重量%で撹拌した。適宜DMAcで希釈しながら室温で72時間撹拌しポリイミド前駆体であるポリアミド酸を得た(固形分濃度23.6重量%)。得られたポリアミド酸の固有粘度は、0.94dL/gであった。
<Example 4> (Polyamide acid polymerization; TFMB system)
0.9607 g (3 mmol) of 4,4′-diamino-2,2′-bis (trifluoromethyl) biphenyl (TFMB) was dissolved in 7.2 g of dehydrated N, N-dimethylacetamide (DMAc). To this, 2.1378 g (3 mmol) of tetracarboxylic dianhydride powder represented by the formula (1) synthesized in Example 1 was slowly added and stirred at a solid content concentration of 30.0% by weight. While appropriately diluted with DMAc, the mixture was stirred at room temperature for 72 hours to obtain a polyamic acid as a polyimide precursor (solid content concentration 23.6% by weight). The obtained polyamic acid had an intrinsic viscosity of 0.94 dL / g.

(化学イミド化によるポリイミドの合成)
得られたポリアミド酸溶液を脱水DMAcで固形分濃度8重量%に希釈後、3.0627g(30mmmol)の無水酢酸と1.1865g(15mmol)のピリジンの混合溶液を室温でゆっくり滴下し、その後24時間撹拌した。得られたポリイミド溶液を大量の脱イオン水に加え、目的生成物を沈澱させた。得られた析出物をメタノールで十分洗浄し、100℃で12時間真空乾燥しポリイミド粉末を得た。得られたポリイミドの固有粘度は、0.81dL/gであった。イミド化の完結は、H−NMRよりポリアミド酸中のアミドプロトン消失、及びFT−IRによって確認した(図3)。得られたポリイミド粉末の各溶媒に対する溶解性評価を表1に示す。
(Polyimide synthesis by chemical imidization)
The obtained polyamic acid solution was diluted with dehydrated DMAc to a solid concentration of 8% by weight, and then a mixed solution of 3.0627 g (30 mmol) of acetic anhydride and 1.1865 g (15 mmol) of pyridine was slowly added dropwise at room temperature. Stir for hours. The resulting polyimide solution was added to a large amount of deionized water to precipitate the desired product. The obtained precipitate was sufficiently washed with methanol and vacuum dried at 100 ° C. for 12 hours to obtain a polyimide powder. The intrinsic viscosity of the obtained polyimide was 0.81 dL / g. Completion of imidation was confirmed by disappearance of amide protons in the polyamic acid and FT-IR by 1 H-NMR (FIG. 3). Table 1 shows the evaluation of the solubility of the obtained polyimide powder in each solvent.

(ポリイミド溶液の調製およびポリイミドフィルムの作製)
得られたポリイミド粉末を室温でシクロペンタノン(CPN)に再溶解し、23重量%の溶液を調製した。このポリイミド溶液をガラス基板上に流延し、60℃で2時間熱風乾燥器によって乾燥した。その後、ガラス基板ごと減圧下200℃で1時間乾燥した後、室温まで放冷後、ガラス基板からポリイミドフィルムを剥した。このポリイミドフィルムをもう一度減圧下で280℃1時間乾燥した。得られたフィルムの膜物性を表2に示す。
(Preparation of polyimide solution and preparation of polyimide film)
The obtained polyimide powder was redissolved in cyclopentanone (CPN) at room temperature to prepare a 23 wt% solution. This polyimide solution was cast on a glass substrate and dried by a hot air dryer at 60 ° C. for 2 hours. Then, after drying at 200 degreeC under pressure reduction for 1 hour with the glass substrate, the polyimide film was peeled from the glass substrate after standing to cool to room temperature. This polyimide film was dried again under reduced pressure at 280 ° C. for 1 hour. Table 2 shows the film physical properties of the obtained film.

<比較例1>(ポリアミド酸の重合;DABA系)
4,4’−ジアミノベンズアニリド(DABA)0.6818g(3mmol)を脱水NMP20.6gに溶解した。ここに合成例1で合成したスピロ構造を含まないテトラカルボン酸二無水物粉末1.6033g(3mmol)をゆっくり加えて固形分濃度10.0重量%で撹拌した。室温で72時間撹拌し粘稠なポリアミド酸を得た。
<Comparative Example 1> (Polyamide acid polymerization; DABA system)
0.6818 g (3 mmol) of 4,4′-diaminobenzanilide (DABA) was dissolved in 20.6 g of dehydrated NMP. To this, 1.6033 g (3 mmol) of tetracarboxylic dianhydride powder containing no spiro structure synthesized in Synthesis Example 1 was slowly added and stirred at a solid content concentration of 10.0% by weight. The mixture was stirred at room temperature for 72 hours to obtain a viscous polyamic acid.

(化学イミド化によるポリイミドの合成)
得られたポリアミド酸溶液を脱水NMPで固形分濃度8重量%に希釈後、3.0627g(30mmmol)の無水酢酸と1.1865g(15mmol)のピリジンの混合溶液を室温でゆっくり滴下したところ、ゲル化が生じ反応を中断した。これは、高分子中にスピロ構造を含まないために、溶媒に対する溶解性が不十分となりゲル化したと考えられる。
(Polyimide synthesis by chemical imidization)
After the obtained polyamic acid solution was diluted with dehydrated NMP to a solid content concentration of 8% by weight, a mixed solution of 3.0627 g (30 mmol) of acetic anhydride and 1.1865 g (15 mmol) of pyridine was slowly added dropwise at room temperature. The reaction was interrupted. This is presumably because the polymer does not contain a spiro structure, so that its solubility in a solvent is insufficient and gelation occurs.

<比較例2>(ポリアミド酸の重合;4,4’‐ODA系)
4,4’−オキシジアニリン(4,4’−ODA)0.6007g(3mmol)を脱水NMP19.8gに溶解した。ここに合成例1で合成したスピロ構造を含まないテトラカルボン酸二無水物粉末1.6033g(3mmol)をゆっくり加えて固形分濃度10.0重量%で撹拌した。室温で72時間撹拌し粘稠なポリアミド酸を得た。
<Comparative Example 2> (Polyamide acid polymerization; 4,4′-ODA system)
0.6007 g (3 mmol) of 4,4′-oxydianiline (4,4′-ODA) was dissolved in 19.8 g of dehydrated NMP. To this, 1.6033 g (3 mmol) of tetracarboxylic dianhydride powder containing no spiro structure synthesized in Synthesis Example 1 was slowly added and stirred at a solid content concentration of 10.0% by weight. The mixture was stirred at room temperature for 72 hours to obtain a viscous polyamic acid.

(化学イミド化によるポリイミドの合成)
得られたポリアミド酸溶液を脱水NMPで固形分濃度3重量%に希釈後、3.0627g(30mmmol)の無水酢酸と1.1865g(15mmol)のピリジンの混合溶液を室温でゆっくり滴下したところ、ゲル化が生じ反応を中断した。これは、高分子中にスピロ構造を含まないために、溶媒に対する溶解性が不十分となりゲル化したと考えられる。
(Polyimide synthesis by chemical imidization)
After the obtained polyamic acid solution was diluted with dehydrated NMP to a solid content concentration of 3% by weight, a mixed solution of 3.0627 g (30 mmol) of acetic anhydride and 1.1865 g (15 mmol) of pyridine was slowly added dropwise at room temperature. The reaction was interrupted. This is presumably because the polymer does not contain a spiro structure, so that its solubility in a solvent is insufficient and gelation occurs.

<比較例3>(ポリアミド酸の重合;TFMB系)
4,4’‐ジアミノ−2,2’‐ビス(トリフルオロメチル)ビフェニル(TFMB)0.9607g(3mmol)を脱水N,N−ジメチルアセトアミド(DMAc)6.0gに溶解した。ここに合成例1で合成したスピロ構造を含まないテトラカルボン酸二無水物粉末1.6033g(3mmol)とをゆっくり加えて固形分濃度30重量%で撹拌した。適宜DMAcで希釈しながら室温で72時間撹拌しポリイミド前駆体であるポリアミド酸を得た(固形分濃度18.1重量%)。得られたポリアミド酸の固有粘度は、2.26dL/gであった。
<Comparative Example 3> (Polyamide acid polymerization; TFMB system)
0.9607 g (3 mmol) of 4,4′-diamino-2,2′-bis (trifluoromethyl) biphenyl (TFMB) was dissolved in 6.0 g of dehydrated N, N-dimethylacetamide (DMAc). To this, 1.6033 g (3 mmol) of tetracarboxylic dianhydride powder containing no spiro structure synthesized in Synthesis Example 1 was slowly added and stirred at a solid content concentration of 30% by weight. While appropriately diluted with DMAc, the mixture was stirred at room temperature for 72 hours to obtain a polyamic acid as a polyimide precursor (solid content concentration: 18.1% by weight). The obtained polyamic acid had an intrinsic viscosity of 2.26 dL / g.

(化学イミド化によるポリイミドの合成)
得られたポリアミド酸溶液の半分を脱水DMAcで固形分濃度8重量%に希釈後、1.5314g(15mmmol)の無水酢酸と0.5932g(7.5mmol)のピリジンの混合溶液を室温でゆっくり滴下したところ、溶液の流動性がなくなり、ゲル化したため、反応を中断した。これは、高分子中にスピロ構造を含まないために、溶媒に対する溶解性が不十分となりゲル化したと考えられる。
(Polyimide synthesis by chemical imidization)
Half of the obtained polyamic acid solution was diluted with dehydrated DMAc to a solid concentration of 8% by weight, and then a mixed solution of 1.5314 g (15 mmol) acetic anhydride and 0.5932 g (7.5 mmol) pyridine was slowly added dropwise at room temperature. As a result, the fluidity of the solution disappeared and gelation occurred, so the reaction was interrupted. This is presumably because the polymer does not contain a spiro structure, so that its solubility in a solvent is insufficient and gelation occurs.

Figure 2016172726
Figure 2016172726

Figure 2016172726
Figure 2016172726

Claims (5)

下記式(1):
Figure 2016172726

で表されるテトラカルボン酸二無水物。
Following formula (1):
Figure 2016172726

Tetracarboxylic dianhydride represented by
下記一般式(2):
Figure 2016172726
(式(2)中、Xは2価の芳香族または脂肪族基を表す。)
で表される繰り返し単位を有するポリイミド。
The following general formula (2):
Figure 2016172726
(In formula (2), X represents a divalent aromatic or aliphatic group.)
The polyimide which has a repeating unit represented by these.
請求項2に記載のポリイミドを固形分濃度で5重量%以上含むポリイミド溶液。 A polyimide solution comprising the polyimide according to claim 2 in a solid content concentration of 5% by weight or more. 請求項2記載のポリイミドを含むポリイミドフィルム。 A polyimide film comprising the polyimide according to claim 2. ガラス転移温度が260℃以上である請求項2に記載のポリイミドを含む耐熱性フィルム。 The heat resistance film containing the polyimide according to claim 2, which has a glass transition temperature of 260 ° C. or higher.
JP2016049080A 2015-03-17 2016-03-14 Novel tetracarboxylic dianhydride and polyimide obtained from the acid dianhydride Active JP6496263B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015053301 2015-03-17
JP2015053301 2015-03-17

Publications (2)

Publication Number Publication Date
JP2016172726A true JP2016172726A (en) 2016-09-29
JP6496263B2 JP6496263B2 (en) 2019-04-03

Family

ID=57007989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016049080A Active JP6496263B2 (en) 2015-03-17 2016-03-14 Novel tetracarboxylic dianhydride and polyimide obtained from the acid dianhydride

Country Status (1)

Country Link
JP (1) JP6496263B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017137443A (en) * 2016-02-04 2017-08-10 株式会社カネカ Polyimide, polyimide solution, polyimide film and plastic substrate material comprising polyimide film
JP2019052099A (en) * 2017-09-13 2019-04-04 田岡化学工業株式会社 Diamine, polyamide acid, polyimide and polyimide solution
JP2020203981A (en) * 2019-06-17 2020-12-24 荒川化学工業株式会社 Polyimide, adhesive, film-like adhesive, adhesive layer, adhesive sheet, copper foil with resin, copper-clad laminate and printed wiring board, and multilayer wiring board and method for manufacturing the same
JP2021185165A (en) * 2017-03-31 2021-12-09 田岡化学工業株式会社 Polyimide having fluorene skeleton

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4002645A (en) * 1971-03-10 1977-01-11 Raychem Corporation Bis aromatic anhydrides
JP2004182757A (en) * 2002-11-29 2004-07-02 Kanegafuchi Chem Ind Co Ltd Polyimide resin and its production method
JP2006336009A (en) * 2005-05-06 2006-12-14 New Japan Chem Co Ltd New polyimide copolymer and molded article of polyimide obtained by molding the same
JP2010260996A (en) * 2009-05-11 2010-11-18 Fujifilm Corp Tetracarboxylic acid dianhydride and polymer
JP2012224579A (en) * 2011-04-19 2012-11-15 Nissan Chem Ind Ltd Coumarin type acid dianhydride, production method of the same, and polyimide

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4002645A (en) * 1971-03-10 1977-01-11 Raychem Corporation Bis aromatic anhydrides
JP2004182757A (en) * 2002-11-29 2004-07-02 Kanegafuchi Chem Ind Co Ltd Polyimide resin and its production method
JP2006336009A (en) * 2005-05-06 2006-12-14 New Japan Chem Co Ltd New polyimide copolymer and molded article of polyimide obtained by molding the same
JP2010260996A (en) * 2009-05-11 2010-11-18 Fujifilm Corp Tetracarboxylic acid dianhydride and polymer
JP2012224579A (en) * 2011-04-19 2012-11-15 Nissan Chem Ind Ltd Coumarin type acid dianhydride, production method of the same, and polyimide

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
今井淑夫: "ポリイミドの構造と物性", エレクトロニクス実装学会誌, vol. 4(7), JPN6018050675, 2001, pages 640 - 646, ISSN: 0003945051 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017137443A (en) * 2016-02-04 2017-08-10 株式会社カネカ Polyimide, polyimide solution, polyimide film and plastic substrate material comprising polyimide film
JP2021185165A (en) * 2017-03-31 2021-12-09 田岡化学工業株式会社 Polyimide having fluorene skeleton
JP7134584B2 (en) 2017-03-31 2022-09-12 田岡化学工業株式会社 Polyimide with fluorene skeleton
JP2019052099A (en) * 2017-09-13 2019-04-04 田岡化学工業株式会社 Diamine, polyamide acid, polyimide and polyimide solution
JP2020203981A (en) * 2019-06-17 2020-12-24 荒川化学工業株式会社 Polyimide, adhesive, film-like adhesive, adhesive layer, adhesive sheet, copper foil with resin, copper-clad laminate and printed wiring board, and multilayer wiring board and method for manufacturing the same
JP7259575B2 (en) 2019-06-17 2023-04-18 荒川化学工業株式会社 Polyimide, adhesive, film-like adhesive, adhesive layer, adhesive sheet, resin-coated copper foil, copper-clad laminate, printed wiring board, multilayer wiring board, and manufacturing method thereof

Also Published As

Publication number Publication date
JP6496263B2 (en) 2019-04-03

Similar Documents

Publication Publication Date Title
JP5491735B2 (en) Novel ester group-containing tetracarboxylic dianhydrides, novel polyesterimide precursors and polyesterimides derived therefrom
JP6165153B2 (en) Polyimide and molded body thereof
WO2016148150A1 (en) Novel tetracarboxylic dianhydride, and polyimide and polyimide copolymer obtained from said acid dianhydride
JP2012072121A (en) Amide group-bearing alicyclic tetracarboxylic dianhydride, and resin obtained by using the same
JP5727795B2 (en) Ester group-containing tetracarboxylic dianhydride, polyester polyimide precursor, polyesterimide, and methods for producing them
JP6496263B2 (en) Novel tetracarboxylic dianhydride and polyimide obtained from the acid dianhydride
JP5985977B2 (en) Polyimide resin solution
JP2015218179A (en) Tetracarboxylic acid dianhydride, and polyimide obtained by using the same
WO2005066242A1 (en) Aromatic polyamic acid and polyimide
JP2019127503A (en) Thermally crosslinkable polyimide, thermally cured product of the same, and interlayer insulation film
JP5287692B2 (en) Polyimide material, composition and film, and method for producing the same
JP2012236788A (en) Amide group-containing alicyclic tetracarboxylic dianhydride, and resin obtained by using the same
TWI708769B (en) Novel tetracarboxylic dianhydride, polyimide derived from the same and compact constructed by the polyimide
JP4918025B2 (en) Ester group-containing tetracarboxylic dianhydride, polyester polyimide precursor, polyesterimide, and methods for producing them
JP2016196630A (en) Novel polyimide copolymer
JP2011148901A (en) Phosphorus-containing diamine and phosphorus-containing polyimide obtained therefrom
JP6103992B2 (en) Polyimide
JP2008163090A (en) Tetracarboxylic acid dianhydride, method for producing the same and polymer
TW202115157A (en) Composition for resin raw material
JP6765093B2 (en) Polyimide
WO2020158523A1 (en) Novel diamine, novel polyimide derived therefrom, and molded body thereof
JP2012012559A (en) Ester group-containing tetracarboxylic acid dianhydride having asymmetrical structure, polyesterimide precursor, polyesterimide and laminate with metal obtained from the same, and method for producing these
JP2008163089A (en) Copolymer containing at least alicyclic polyester imide unit and aromatic polyimide unit and polyimide film
WO2023048063A1 (en) Polyimide, polyamide, resin composition, polyimide film, display device, substrate for electronic material, method for producing polyamide and method for producing polyimide
JP2024082217A (en) Tetracarboxylic dianhydrides, polyesterimides, and polyesterimide films

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190308

R150 Certificate of patent or registration of utility model

Ref document number: 6496263

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250