JP2016172680A - Method of sorting coal ash - Google Patents

Method of sorting coal ash Download PDF

Info

Publication number
JP2016172680A
JP2016172680A JP2015054662A JP2015054662A JP2016172680A JP 2016172680 A JP2016172680 A JP 2016172680A JP 2015054662 A JP2015054662 A JP 2015054662A JP 2015054662 A JP2015054662 A JP 2015054662A JP 2016172680 A JP2016172680 A JP 2016172680A
Authority
JP
Japan
Prior art keywords
coal ash
raw material
content
sorting
containing raw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015054662A
Other languages
Japanese (ja)
Inventor
智矢 馬場
Tomoya Baba
智矢 馬場
嘉史 扇
Yoshifumi Ogi
嘉史 扇
大亮 黒川
Daisuke Kurokawa
大亮 黒川
宙 平尾
Hiroshi Hirao
宙 平尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2015054662A priority Critical patent/JP2016172680A/en
Publication of JP2016172680A publication Critical patent/JP2016172680A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/10Production of cement, e.g. improving or optimising the production methods; Cement grinding

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method capable of easily sorting coal ash used for a coal ash-containing raw material for cement clinker high in easily burning property, based on physicochemical properties of coal ash.SOLUTION: The method of sorting coal ash is a method for sorting coal ash used for a coal ash-containing raw material for cement clinker high in easily burning property, based on a B value calculated from the following (1) formula. B=S/A+0.058×C (1), where S represents percentage content (mass%) of SiOin a glass phase in coal ash, A represents percentage content (mass%) of AlOin the glass phase in coal ash and C represents Blaine specific surface (cm/g) of the coal ash.SELECTED DRAWING: Figure 2

Description

本発明は、易焼成性(低温焼成性)の高い、セメントクリンカー用の石炭灰含有原料(以下、単に「石炭灰含有原料」という。)に用いる石炭灰を選別するための、石炭灰の選別方法に関する。   The present invention relates to the selection of coal ash for selecting coal ash to be used as a coal ash-containing raw material for cement clinker (hereinafter simply referred to as “coal ash-containing raw material”) having high calcination property (low-temperature calcination property). Regarding the method.

財団法人 石炭エネルギーセンターが公開している資料によれば、平成24年度の石炭灰の発生量は1266万トンで、そのうちの66%がセメントの原料として使われている。
しかし、石炭灰は、炭種や燃焼条件により化学組成や粒径等の物理化学的特性が大きく変動し、石炭灰含有原料の易焼成性に影響する。そこで、石炭灰の品質管理が必要となるが、前記石炭灰含有原料の易焼成性に影響する石炭灰の特性は知られていないため、当該品質管理項目は明確でない。
According to materials published by the Coal Energy Center, the amount of coal ash generated in 2012 was 12.66 million tons, of which 66% was used as a raw material for cement.
However, coal ash greatly varies in physicochemical characteristics such as chemical composition and particle size depending on the type of coal and combustion conditions, and affects the easy calcination of coal ash-containing raw materials. Therefore, although quality control of coal ash is required, the quality control items are not clear because the characteristics of coal ash that affect the calcination property of the coal ash-containing raw material are not known.

例えば、特許文献1に記載の低温焼成セメントクリンカー用原料では、該原料に用いる石炭灰を、32μm以上の粒群が10質量%以下で、平均粒径が2〜10μmと規定し、原料に用いる石炭灰を粒径(物理特性)により管理している。しかし、特許文献1における品質管理項目には、石炭灰の化学組成等(化学特性)が含まれていない。したがって、石炭灰の化学特性を考慮しない石炭灰の品質管理では、易焼成性が高い石炭灰含有原料を調製することは難しい。よって、石炭灰の化学特性も加えて、前記易焼成性を評価する方法が望まれる。   For example, in the raw material for low-temperature fired cement clinker described in Patent Document 1, the coal ash used for the raw material is defined as 10% by mass or less with a particle group of 32 μm or more and an average particle size of 2 to 10 μm, and is used as a raw material. Coal ash is managed by particle size (physical properties). However, the quality control items in Patent Document 1 do not include the chemical composition or the like (chemical characteristics) of coal ash. Therefore, it is difficult to prepare a coal ash-containing raw material having high calcination property in quality control of coal ash without considering the chemical characteristics of coal ash. Therefore, a method for evaluating the calcination property in addition to the chemical characteristics of coal ash is desired.

特開2014−181161号公報JP, 2014-181161, A

したがって、本発明は、石炭灰の物理化学的特性に基づき、易焼成性の高い石炭灰含有原料に用いる石炭灰を、簡易に選別できる方法を提供することを目的とする。   Therefore, an object of this invention is to provide the method which can select easily the coal ash used for the coal ash containing raw material with high calcination property based on the physicochemical characteristic of coal ash.

そこで、本発明者は前記目的を達成するため、前記易焼成性に影響する石炭灰の物理化学的特性を鋭意検討した結果、石炭灰内のガラス相中のSiOおよびAlの含有率(化学特性)と、石炭灰のブレーン比表面積(物理特性)が、前記易焼成性に大きく影響することを見い出し、本発明を完成させた。
すなわち、本発明は、以下の構成を有する石炭灰の選別方法である。
Therefore, in order to achieve the above object, the present inventor has intensively studied the physicochemical characteristics of coal ash that affects the flammability, and as a result, the inclusion of SiO 2 and Al 2 O 3 in the glass phase in coal ash. The present invention was completed by finding that the rate (chemical characteristics) and the specific surface area (physical characteristics) of the ash of coal ash greatly affect the calcination property.
That is, the present invention is a coal ash sorting method having the following configuration.

[1]下記(1)式から算出されるB値に基づき、易焼成性の高い石炭灰含有原料に用いる石炭灰を選別する、石炭灰の選別方法。
B=S/A+0.058×C ・・・(1)
ただし、(1)式中、Bは石炭灰含有原料の易焼成性を示す指標を表し、Sは石炭灰内のガラス相中のSiOの含有率(質量%)を表し、Aは石炭灰内のガラス相中のAlの含有率(質量%)を表し、Cは石炭灰のブレーン比表面積(cm/g)を表す。
[2]前記B値が270以上である石炭灰を、易焼成性の高い石炭灰含有原料に用いる石炭灰として選別する、前記[1]に記載の石炭灰の選別方法。
[1] A coal ash sorting method for sorting coal ash used for a coal ash-containing raw material having high calcination property based on a B value calculated from the following formula (1).
B = S / A + 0.058 × C (1)
However, in (1), B represents an indication that easy firing of coal ash containing material, S is expressed content of SiO 2 glass phase in the coal ash (mass%), A coal ash represents the content of Al 2 O 3 of the glass phase of the inner (mass%), C represents a Blaine specific surface area of the coal ash (cm 2 / g).
[2] The method for sorting coal ash according to [1], wherein the coal ash having the B value of 270 or more is sorted as coal ash to be used for a coal ash-containing raw material having high calcination property.

本発明の石炭灰の選別方法は、石炭灰の物理化学的特性に基づき、易焼成性の高い石炭灰含有原料に用いる石炭灰を、簡易に選別することができる。   The method for sorting coal ash according to the present invention can easily sort coal ash used for a coal ash-containing raw material with high calcination property based on the physicochemical characteristics of coal ash.

石炭灰含有原料の焼成温度のパターンを示した図である。It is the figure which showed the pattern of the calcination temperature of a coal ash containing raw material. B値と、焼成物中のフリーライムの含有率の相関を示す図である。It is a figure which shows the correlation of B value and the content rate of the free lime in a baked product. (a)石炭灰中の全SiOの含有率、(b)石炭灰中の全Alの含有率、(c)石炭灰中のガラス相の含有率、または(d)石炭灰中の全SiOおよび全Alの含有率と石炭灰のブレーン比表面積とを含む特定の式の値と、焼成物中のフリーライムの含有率との相関を示す図であり、図2と比較するために示す。(A) Content of total SiO 2 in coal ash, (b) Content of total Al 2 O 3 in coal ash, (c) Content of glass phase in coal ash, or (d) In coal ash is a diagram showing the correlation between the value of a particular formula, the content of free lime in the firing thereof, and a Blaine specific surface area of the content and coal ash of the total SiO 2 and total Al 2 O 3, and FIG. 2 Shown for comparison with.

本発明は、前記(1)式から算出されるB値に基づき、易焼成性の高い石炭灰含有原料に用いる石炭灰を選別する石炭灰の選別方法である。以下、本発明について詳細に説明する。
1.(1)式
本発明において、前記石炭灰を選別するための指標であるB値は、前記(1)式を用いて算出する。(1)式の導出方法は、後記の実施例において示すように、目的変数として、焼成物(セメントクリンカー)中のフリーライムの含有率(B)を用い、また説明変数として、石炭灰内のガラス相中のSiOの含有率、石炭灰内のガラス相中のAlの含有率、および石炭灰のブレーン比表面積を用いて重回帰分析を行い、重回帰式を導出する。したがって、算出されるB値は、焼成物中のフリーライムの含有率と相関する値である。
本発明の特徴は、説明変数として、石炭灰内のガラス相中のSiOの含有率、石炭灰内のガラス相中のAlの含有率、および石炭灰のブレーン比表面積を選択したことにある。そして、前記説明変数は、石炭灰の種々の物理化学的特性を用いて回帰分析を繰り返し試行した末に見い出された。
なお、比較のため、石炭灰の他の種々の物理化学的特性を用いて回帰分析を行った結果も、後掲の図3に例示する。図3から分かるように、B値と比べ、相関性はいずれも低い。
The present invention is a coal ash sorting method for sorting coal ash to be used for a coal ash-containing raw material having high calcination properties based on the B value calculated from the formula (1). Hereinafter, the present invention will be described in detail.
1. (1) Formula In this invention, B value which is the parameter | index for selecting the said coal ash is calculated using said (1) Formula. In the derivation method of the equation (1), as shown in the examples described later, the content (B) of free lime in the fired product (cement clinker) is used as the objective variable, and as an explanatory variable, Multiple regression analysis is performed by using the content ratio of SiO 2 in the glass phase, the content ratio of Al 2 O 3 in the glass phase in the coal ash, and the Blaine specific surface area of the coal ash to derive a multiple regression equation. Therefore, the calculated B value is a value that correlates with the content of free lime in the fired product.
The characteristics of the present invention were selected as explanatory variables: SiO 2 content in the glass phase in coal ash, Al 2 O 3 content in the glass phase in coal ash, and Blaine specific surface area of coal ash. There is. The explanatory variable was found after repeatedly trying regression analysis using various physicochemical characteristics of coal ash.
For comparison, the results of regression analysis using other various physicochemical characteristics of coal ash are also illustrated in FIG. As can be seen from FIG. 3, the correlation is low compared to the B value.

2.B値
易焼成性の高い石炭灰含有原料に用いる石炭灰を選別するための基準値は相対的である。まず、要求される焼成物中のフリーライムの含有率(易焼成性)を定め、さらに該値から基準値となるB値を定める。そして、該基準値を満たす石炭灰を、易焼成性の高い石炭灰含有原料に用いる石炭灰として選別する。例えば、後掲の図2の例では、要求される焼成物中のフリーライムの含有率を2.25質量%と定めると、B値は270が基準値になり、B値が270以上の石炭灰を、易焼成性の高い石炭灰含有原料に用いる石炭灰として選別する。
2. B value The reference value for selecting the coal ash used for the coal ash-containing raw material with high calcination property is relative. First, the required free lime content (easily baked) in the fired product is determined, and further, the B value that is the reference value is determined from the value. And the coal ash which satisfy | fills this reference | standard value is sorted out as coal ash used for a coal ash containing raw material with high calcination property. For example, in the example of FIG. 2 described later, when the required free lime content in the calcined product is set to 2.25% by mass, the B value becomes 270 as the reference value, and the B value is 270 or more coal. The ash is selected as coal ash to be used as a coal ash-containing raw material with high calcination properties.

以下、本発明を実施例により説明するが、本発明はこれらの実施例に限定されない。
1.使用材料
(1)試薬
使用した試薬は、シリカ(SiO)、アルミナ(Al)、酸化鉄(Fe)、炭酸カルシウム(CaCO)、酸化マグネシウム(MgO)、二水石膏(CaSO・2HO)、炭酸ナトリウム(NaCO)、炭酸カリウム(KCO)、酸化チタン(TiO)、およびリン酸水素カルシウム2水和物(CaHPO・2HO)であり、すべて特級試薬(関東化学社製)を使用した。
EXAMPLES Hereinafter, although an Example demonstrates this invention, this invention is not limited to these Examples.
1. Materials Used (1) Reagents Reagents used were silica (SiO 2 ), alumina (Al 2 O 3 ), iron oxide (Fe 2 O 3 ), calcium carbonate (CaCO 3 ), magnesium oxide (MgO), dihydrate gypsum. (CaSO 4 .2H 2 O), sodium carbonate (Na 2 CO 3 ), potassium carbonate (K 2 CO 3 ), titanium oxide (TiO 2 ), and calcium hydrogen phosphate dihydrate (CaHPO 4 .2H 2 O) And all the special grade reagents (manufactured by Kanto Chemical Co., Inc.) were used.

(2)石炭灰
使用した石炭灰の化学組成を表1に示し、該石炭灰の鉱物組成を表2に示し、該石炭灰内のガラス相中の化学組成を表3に示す。また、前記(1)式を用いて、表3中のSiOおよびAlの含有率の値と、表1中のブレーン比表面積の値に基づき算出したB値を表3に示す。
なお、石炭灰の化学組成はXRF(粘土類検量線法)を用いて測定した。石炭灰の鉱物組成は該石炭灰の化学組成に基づき、下記の文献aに記載のリートベルト法に準拠して求めた。また、石炭灰内のガラス相中の化学組成は、下記文献bに記載の方法に準拠して求めた。
文献a:星野清一ほか「非晶質混和材を含むセメントの鉱物の定量におけるX線回折/リートベルト法の適用」、セメント・コンクリート論文集、第59号、pp.14−21(2005)
文献b:高橋晴香ほか「SEM−EDS/EBSDおよび粒子解析を用いたFAのキャラクタリゼーション」、太平洋セメント研究報告、第162号、pp.3−14(2012)
(2) Coal ash The chemical composition of the used coal ash is shown in Table 1, the mineral composition of the coal ash is shown in Table 2, and the chemical composition in the glass phase in the coal ash is shown in Table 3. In addition, Table 3 shows B values calculated based on the content values of SiO 2 and Al 2 O 3 in Table 3 and the Blaine specific surface area values in Table 1 using the formula (1).
The chemical composition of coal ash was measured using XRF (clay calibration curve method). The mineral composition of coal ash was determined based on the Rietveld method described in the following document a based on the chemical composition of the coal ash. Moreover, the chemical composition in the glass phase in coal ash was calculated | required based on the method as described in the following literature b.
Reference a: Kiyoichi Hoshino et al. “Application of X-ray diffraction / Rietveld method in the determination of cement minerals containing amorphous admixtures”, Cement and Concrete Papers, No. 59, pp. 14-21 (2005)
Literature b: Haruka Takahashi et al. “FA Characterization Using SEM-EDS / EBSD and Particle Analysis”, Taiheiyo Cement Research Report, 162, pp. 3-14 (2012)

Figure 2016172680
Figure 2016172680

Figure 2016172680
Figure 2016172680

Figure 2016172680
Figure 2016172680

2.石炭灰含有原料の焼成
表4に示す化学組成のセメントクリンカーになるように調整した表5に示す配合に従い、前記材料を調合して石炭灰含有原料(ペレット)を作製した。次に、該石炭灰含有原料を図1に示す焼成条件で電気炉を用いて焼成した。さらに、得られた焼成物中のフリーライムの含有率を、JIS R 5202「セメントの化学分析方法」に準拠して測定した。その結果を表6に示す。
2. Calcination of coal ash-containing raw material According to the formulation shown in Table 5 adjusted to be a cement clinker having the chemical composition shown in Table 4, the above materials were prepared to prepare a coal ash-containing raw material (pellet). Next, the coal ash-containing raw material was fired using an electric furnace under the firing conditions shown in FIG. Further, the content of free lime in the obtained fired product was measured in accordance with JIS R 5202 “Cement chemical analysis method”. The results are shown in Table 6.

Figure 2016172680
Figure 2016172680

Figure 2016172680
Figure 2016172680

Figure 2016172680
Figure 2016172680

焼成物中のフリーライムの含有率は、焼成の程度(良否)を示す指標であり、表6から、易焼成性は原料1が最も高く、原料3が最も低い。次に、原料の易焼成性を確認するため、原料1は焼成温度が1420℃、焼成時間が40分、また原料3は焼成温度がより高い1470℃、焼成時間が同じ40分の条件で焼成した。その結果、フリーライムの含有率は、原料1の焼成物中で0.58質量%、原料3の焼成物中で0.59質量%と同じ含有率であった。この結果は、同じ焼成の程度の焼成物(セメントクリンカー)を得るには、原料1は原料3よりも、より低い焼成温度で足り、易焼成性は原料1が原料3に比べ高いことを示している。   The content of free lime in the fired product is an index indicating the degree of firing (good or bad). From Table 6, the raw material 1 has the highest calcination property, and the raw material 3 has the lowest. Next, in order to confirm the ease of firing of the raw material, the raw material 1 was fired under the conditions of a firing temperature of 1420 ° C. and a firing time of 40 minutes, and the raw material 3 was fired under the same firing time of 1470 ° C. and a firing time of 40 minutes. did. As a result, the content of free lime was 0.58% by mass in the fired product of raw material 1 and the same content as 0.59% by mass in the fired product of raw material 3. This result shows that the raw material 1 needs a lower firing temperature than the raw material 3 to obtain a fired product (cement clinker) having the same degree of firing, and the easy firing property is higher than that of the raw material 3. ing.

3.石炭灰含有原料の焼成に影響する石炭灰の物理化学的特性について
焼成の程度を示す指標であるフリーライムと、石炭灰の各種物理化学的特性との相関を調べた。具体的には、目的変数として焼成物中のフリーライムの含有率を用い、説明変数として石炭灰の各種物理化学的特性を用いて、回帰分析を行った。その結果、図2に示すように、石炭灰内のガラス相中のSiOおよびAlの含有率(表3中の数値を使用した。)と、石炭灰のブレーン比表面積(表1中の数値を使用した。)とを含む特定の式の値(B値)と、フリーライムの含有率との相関が高かった。そして、フリーライムの含有率は、B値が270以上で低いことから、例えば、B値が270以上の石炭灰を、易焼成性の高い石炭灰含有原料に用いる石炭灰として選別することができる。
なお、比較のため、石炭灰の他の物理化学的特性として、石炭灰中の全SiOの含有率、全Alの含有率、ガラス相の含有率、石炭灰中の全SiOおよび全Alの含有率と石炭灰のブレーン比表面積とを含む別の特定の式との相関を図3に示す。図3から分かるように、これらの物理化学的特性とフリーライムの含有率の相関は、B値とフリーライムの含有率の相関に比べて低い。
3. Physicochemical characteristics of coal ash affecting the calcination of coal ash-containing raw materials The correlation between free lime, which is an indicator of the degree of calcination, and various physicochemical characteristics of coal ash was investigated. Specifically, regression analysis was performed using the content of free lime in the calcined product as an objective variable and various physicochemical characteristics of coal ash as explanatory variables. As a result, as shown in FIG. 2, the content of SiO 2 and Al 2 O 3 in the glass phase in the coal ash (the values in Table 3 were used), and the specific surface area of the ash in the coal ash (Table 1). The value of the specific formula (B value) including the free lime content was high. And since the B value is 270 or more and the content rate of a free lime is low, for example, B value 270 or more can be selected as coal ash used for a coal ash containing raw material with high calcination property. .
For comparison, as other physicochemical characteristics of coal ash, the content of total SiO 2 in coal ash, the content of total Al 2 O 3 , the content of glass phase, the total SiO 2 in coal ash And the correlation with another specific formula including the content of total Al 2 O 3 and the Blaine specific surface area of coal ash is shown in FIG. As can be seen from FIG. 3, the correlation between these physicochemical properties and the content of free lime is lower than the correlation between the B value and the content of free lime.

Claims (2)

下記(1)式から算出されるB値に基づき、易焼成性の高いセメントクリンカー用石炭灰含有原料に用いる石炭灰を選別する、石炭灰の選別方法。
B=S/A+0.058×C ・・・(1)
ただし、(1)式中、Bはセメントクリンカー用石炭灰含有原料の易焼成性を示す指標を表し、Sは石炭灰内のガラス相中のSiOの含有率(質量%)を表し、Aは石炭灰内のガラス相中のAlの含有率(質量%)を表し、Cは石炭灰のブレーン比表面積(cm/g)を表す。
A coal ash sorting method for sorting coal ash to be used for a coal ash-containing raw material for cement clinker having a high calcination property based on the B value calculated from the following formula (1).
B = S / A + 0.058 × C (1)
However, (1) where, B denotes the index indicating ease firing of coal ash containing feedstock cement clinker, S is expressed content of SiO 2 glass phase in the coal ash (mass%), A Represents the content (mass%) of Al 2 O 3 in the glass phase in coal ash, and C represents the Blaine specific surface area (cm 2 / g) of coal ash.
前記B値が270以上である石炭灰を、易焼成性の高いセメントクリンカー用石炭灰含有原料に用いる石炭灰として選別する、請求項1に記載の石炭灰の選別方法。   The method for sorting coal ash according to claim 1, wherein the coal ash having a B value of 270 or more is sorted as coal ash to be used as a coal ash-containing raw material for cement clinker having a high calcination property.
JP2015054662A 2015-03-18 2015-03-18 Method of sorting coal ash Pending JP2016172680A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015054662A JP2016172680A (en) 2015-03-18 2015-03-18 Method of sorting coal ash

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015054662A JP2016172680A (en) 2015-03-18 2015-03-18 Method of sorting coal ash

Publications (1)

Publication Number Publication Date
JP2016172680A true JP2016172680A (en) 2016-09-29

Family

ID=57008719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015054662A Pending JP2016172680A (en) 2015-03-18 2015-03-18 Method of sorting coal ash

Country Status (1)

Country Link
JP (1) JP2016172680A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014076919A (en) * 2012-10-11 2014-05-01 Tokuyama Corp Method of manufacturing portland cement clinker
WO2014077251A1 (en) * 2012-11-14 2014-05-22 太平洋セメント株式会社 Cement composition and method for producing same
JP2014181161A (en) * 2013-03-21 2014-09-29 Ube Ind Ltd Raw material for low temperature fired cement clinker, and low temperature fired cement clinker
JP2014189439A (en) * 2013-03-27 2014-10-06 Tokuyama Corp Method for manufacturing cement clinker
JP2014201479A (en) * 2013-04-04 2014-10-27 宇部興産株式会社 Method for producing cement clinker to be fired at low temperature

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014076919A (en) * 2012-10-11 2014-05-01 Tokuyama Corp Method of manufacturing portland cement clinker
WO2014077251A1 (en) * 2012-11-14 2014-05-22 太平洋セメント株式会社 Cement composition and method for producing same
JP2014181161A (en) * 2013-03-21 2014-09-29 Ube Ind Ltd Raw material for low temperature fired cement clinker, and low temperature fired cement clinker
JP2014189439A (en) * 2013-03-27 2014-10-06 Tokuyama Corp Method for manufacturing cement clinker
JP2014201479A (en) * 2013-04-04 2014-10-27 宇部興産株式会社 Method for producing cement clinker to be fired at low temperature

Similar Documents

Publication Publication Date Title
Maheswaran et al. β-Belite cements (β-dicalcium silicate) obtained from calcined lime sludge and silica fume
JP6311485B2 (en) Method for producing fine blast furnace slag powder and method for producing blast furnace cement
KR101828120B1 (en) Cement compositions and process for producing same
JP2013103865A (en) Method of manufacturing cement paste
JP2008247715A (en) Sorting method of granulated blast furnace slag for cement, and forming process of cement composition
Galluccio et al. Maximization of the reuse of industrial residues for the production of eco-friendly CSA-belite clinker
KR20140007910A (en) Cement composition and process for producing same
JP6354373B2 (en) Blast furnace slag sorting method and blast furnace cement production method
JP2017014350A (en) Soil improver and soil improvement method
Li et al. Investigations on phase constitution, mechanical properties and hydration kinetics of aluminous cements containing magnesium aluminate spinel
JP6036167B2 (en) Low carbon type cement paste composition
JP2012025635A (en) Cement clinker and cement composition
JP6206670B2 (en) Manufacturing method and manufacturing equipment for clinker with free lime content controlled based on quartz crystallite diameter
JP2016172680A (en) Method of sorting coal ash
JP2014189439A (en) Method for manufacturing cement clinker
JP6364918B2 (en) Blast furnace slag sorting method and blast furnace cement production method
Sultana et al. Influence of calcination on different properties of sugarcane bagasse and waste ash
JP6981481B2 (en) Cement composition and its manufacturing method
JP5702872B1 (en) Cement composition
JP6926582B2 (en) Cement composition and its manufacturing method
JP7086158B2 (en) Cement composition and its manufacturing method
JP6249160B2 (en) Method for producing clinker with controlled free lime content based on quartz crystallite diameter
JP6690273B2 (en) Cement composition and method for producing the same
JP6672862B2 (en) Cement composition and method for producing the same
JP5903944B2 (en) Method for controlling b value of cement clinker and method for producing cement clinker

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181030

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190507