JP2016170455A - Thermoelectricity generation system operation support method and thermoelectricity generation system - Google Patents

Thermoelectricity generation system operation support method and thermoelectricity generation system Download PDF

Info

Publication number
JP2016170455A
JP2016170455A JP2015047808A JP2015047808A JP2016170455A JP 2016170455 A JP2016170455 A JP 2016170455A JP 2015047808 A JP2015047808 A JP 2015047808A JP 2015047808 A JP2015047808 A JP 2015047808A JP 2016170455 A JP2016170455 A JP 2016170455A
Authority
JP
Japan
Prior art keywords
power
generation system
thermoelectric generation
generated
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015047808A
Other languages
Japanese (ja)
Inventor
中村 浩
Hiroshi Nakamura
浩 中村
戸田 雅之
Masayuki Toda
雅之 戸田
孝 金子
Takashi Kaneko
孝 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2015047808A priority Critical patent/JP2016170455A/en
Publication of JP2016170455A publication Critical patent/JP2016170455A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/20Sludge processing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Treatment Of Sludge (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the profit of a thermoelectricity generation system using a biomass.SOLUTION: Provided is an operation support method for a thermoelectricity generation system configured to generate electricity and heat. A plurality of supply destinations to which the electricity generated by the thermoelectricity generation system 1 is provided. A supply destination among the plurality of supply destinations which has presented a highest purchase amount is selected, and based on the purchase amount of the supply destination, supplying of all the amount of power generated by the thermoelectricity generation system 1 or supplying of power obtained by subtracting power necessary for operating the thermoelectricity generation system 1 from the power generated by the thermoelectricity generation system 1 is selected. When the amount of power generated by the thermoelectricity generation system 1 is less than the amount of power consumed by the thermoelectricity generation system 1, a supply source for supplying energy at a lowest price is selected from a plurality of supply sources for supplying energy (power or fuel) to the thermoelectricity generation system 1, and energy necessary for operating the thermoelectricity generation system 1 is purchased from the selected supply source.SELECTED DRAWING: Figure 1

Description

本発明は、バイオマスの利用技術に関する。特に、バイオマスをエネルギー源として電力または熱を生成するシステムに関する。   The present invention relates to biomass utilization technology. In particular, the present invention relates to a system that generates electric power or heat using biomass as an energy source.

太陽光、風力、地熱、及びバイオマス等の再生可能エネルギーは、エネルギー自給率の向上、地球温暖化対策及び産業育成の等のさまざまな点で注目を集めている。しかしながら、再生可能エネルギーの利用は、コストが高い等の理由により普及が進んでいないのが現状である。   Renewable energies such as solar, wind, geothermal, and biomass are attracting attention in various respects such as improvement of energy self-sufficiency, global warming countermeasures, and industrial development. However, at present, the use of renewable energy is not widespread due to high cost.

そこで、2012年7月に再生可能エネルギーの固定価格買取制度(FIT制度)が施行され、再生可能エネルギー源を用いて発電された電気を固定価格で電気事業者が買い取ることで、再生可能エネルギーの利用促進が図られている。   Therefore, in July 2012, a renewable energy feed-in tariff system (FIT system) came into effect, and electricity companies purchased renewable electricity sources at a fixed price. Promotion of use is planned.

バイオマスは、動植物に由来する有機物であって、エネルギー源として利用することができるものである。バイオマスを大まかに分類すると、サトウキビやトウモロコシ等のエネルギー転換を目的として生産される生産系バイオマスと、生ゴミ、家畜ふん尿、間伐材等の人間の活動から排出される未利用資源系バイオマスに分けられる。   Biomass is an organic substance derived from animals and plants, and can be used as an energy source. Roughly classifying biomass, it can be divided into production biomass produced for the purpose of energy conversion such as sugarcane and corn, and unused resource biomass emitted from human activities such as raw garbage, livestock manure, and thinned wood. .

バイオマスを利用した熱電生成システムとしては、例えば、下水汚泥・家畜ふん尿、食品残さ等をエネルギー源としてメタン発酵によりメタンを主成分とするバイオガスを生成し、生成したバイオガスを利用して電力や熱を生成するシステムが提案されている(例えば、特許文献1、非特許文献1)。そして、特許文献1のシステムでは、高い収益を得るために、生成したバイオガスをガスホルダに貯留し、売電価格が最も高い時間帯に集中して売電している。   As a thermoelectric generation system using biomass, for example, biogas mainly composed of methane is generated by methane fermentation using sewage sludge, livestock manure, food residue, etc. as an energy source, and electric power or power is generated using the generated biogas. A system for generating heat has been proposed (for example, Patent Document 1 and Non-Patent Document 1). And in the system of patent document 1, in order to obtain a high profit, the produced | generated biogas is stored in a gas holder, and it sells power concentrated on the time slot | zone with the highest power selling price.

特開2005−34828号公報Japanese Patent Laid-Open No. 2005-34828 特開2006−127967号公報JP 2006-127967 A 特開2003−239806号公報JP 2003-239806 A

新井善明、外3名、「畜産ふん尿からのバイオガスを利用した燃料電池コージェネレーションシステム」、明電時報、株式会社明電舎、平成17年5月25日、2005 5月・6月 No.3、P.29−34Yoshiaki Arai and three others, “Fuel Cell Cogeneration System Using Biogas from Livestock Manure”, Meiden Times, Meidensha, May 25, 2005, May / June 2005 3, P.I. 29-34

しかしながら、熱機関等により発電機を駆動する場合、熱機関は一定負荷(一定出力)で連続運転することが好ましく、頻繁かつ大幅に出力を変動させると発電装置の寿命を低下させるおそれがある(例えば、特許文献2)。   However, when the generator is driven by a heat engine or the like, the heat engine is preferably continuously operated at a constant load (constant output), and if the output is fluctuated frequently and significantly, the life of the power generator may be reduced ( For example, Patent Document 2).

また、再生可能エネルギーの利用技術は、環境面で優れていたとしても、経済的な理由により普及が妨げられるおそれがある。そこで、再生可能エネルギーを利用したシステムの運用技術において、より収益性の向上が求められている。   Moreover, even if the technology for using renewable energy is excellent in terms of environment, there is a risk that its diffusion will be hindered for economic reasons. Therefore, further improvement in profitability is demanded in the operation technology of the system using renewable energy.

上記事情に鑑み、本発明は、バイオマスを利用した熱電生成システムの収益向上に貢献する技術を提供することを目的としている。   In view of the above circumstances, an object of the present invention is to provide a technology that contributes to improving profitability of a thermoelectric generation system using biomass.

上記目的を達成する本発明の熱電生成システムの運転支援方法の一態様は、バイオマスを利用して電力を生成する熱電生成システムの運転支援方法であって、前記熱電生成システムが電力を供給する複数の電力供給先のうち、最高値で購入を希望する電力供給先を選択し、当該電力供給先の購入金額に基づいて、前記熱電生成システムで生成された電力の全量を該電力供給先に供給するか、前記熱電生成システムで生成された電力から前記熱電生成システムの稼働に必要な電力を除いた電力を該電力供給先に供給するかを選択することを特徴としている。   One aspect of the operation support method for a thermoelectric generation system of the present invention that achieves the above object is an operation support method for a thermoelectric generation system that generates power using biomass, and the thermoelectric generation system supplies a plurality of electric power. The power supply destination that is desired to be purchased at the highest price is selected from among the power supply destinations, and the entire amount of power generated by the thermoelectric generation system is supplied to the power supply destination based on the purchase price of the power supply destination. Alternatively, it is characterized in that it is selected whether to supply the power supply destination with power obtained by removing power necessary for operation of the thermoelectric generation system from the power generated by the thermoelectric generation system.

また、上記目的を達成する本発明の熱電生成システムの運転支援方法の他の態様は、上記熱電生成システムの運転支援方法において、前記熱電生成システムが生成する生成電力量と、前記熱電生成システムで消費する消費電力量とを求め、生成電力量が消費電力量以上の場合、前記最高値で購入を希望する電力供給先に生成電力の全量を供給するか、生成電力から消費電力を除いた電力を該電力供給先に供給するかの選択を行い、生成電力量が消費電力量未満の場合、前記熱電生成システムに電力を供給する複数の電力供給元から最安値で電力を供給する電力供給元を選択し、該電力供給元より前記熱電生成システムを稼働するために必要な電力を購入することを特徴としている。   Another aspect of the operation support method for the thermoelectric generation system of the present invention that achieves the above object is the operation support method for the thermoelectric generation system, wherein the amount of generated power generated by the thermoelectric generation system and the thermoelectric generation system are If the generated power amount is equal to or greater than the consumed power amount, supply the entire amount of generated power to the power supply destination that you want to purchase at the maximum value or remove the consumed power from the generated power Power supply source that supplies power at the lowest price from a plurality of power supply sources that supply power to the thermoelectric generation system when the generated power amount is less than the power consumption amount. And the power required to operate the thermoelectric generation system is purchased from the power supply source.

また、上記目的を達成する本発明の熱電生成システムの運転支援方法の他の態様は、バイオマスを利用して電力及び熱を生成する熱電生成システムの運転支援方法であって、前記熱電生成システムが電力を供給する複数の電力供給先のうち、最高値で購入を希望する電力供給先を選択し、該電力供給先に生成した電力を供給し、前記熱電生成システムが生成する生成熱量及び前記熱電生成システムを稼働するために必要な必要熱量を求め、前記生成熱量が前記必要熱量より少ない場合、不足した熱量を補う燃料を、前記熱電生成システムに燃料を供給する燃料供給元から最安値で燃料を供給する燃料供給元を選択し、該燃料供給元より不足した熱量を補う燃料を購入することを特徴としている。   Another aspect of the operation support method of the thermoelectric generation system of the present invention that achieves the above object is an operation support method of a thermoelectric generation system that generates power and heat using biomass, wherein the thermoelectric generation system is Of the plurality of power supply destinations that supply power, the power supply destination desired to be purchased at the highest value is selected, the generated power is supplied to the power supply destination, and the generated heat amount and the thermoelectric power generated by the thermoelectric generation system are selected. When the required amount of heat required to operate the generation system is obtained, and the generated heat amount is less than the required heat amount, the fuel supplementing the insufficient heat amount is reduced to the lowest price from the fuel supply source that supplies the thermoelectric generation system. The fuel supply source that supplies the fuel is selected, and the fuel that supplements the heat quantity deficient from the fuel supply source is purchased.

また、上記目的を達成する本発明の熱電生成システムの一態様は、発電装置と、熱生成装置と、該発電装置及び該熱生成装置を制御する制御部と、を有し、バイオマスを利用して電気及び熱を生成する熱電生成システムであって、前記熱電生成システムが生成した電力を供給する電力供給先を複数設け、前記制御部は、複数の電力供給先のうち、最も高い購入金額を提示した電力供給先を選択し、該選択された電力供給先の購入金額に基づいて、前記熱電生成システムで生成した電力の全量を供給するか、前記熱電生成システムで生成した電力から前記熱電生成システムの稼働に必要な電力を除いた電力を供給するかの選択を行うことを特徴としている。   An embodiment of the thermoelectric generation system of the present invention that achieves the above object includes a power generation device, a heat generation device, a control unit that controls the power generation device and the heat generation device, and uses biomass. A plurality of electric power supply destinations for supplying electric power generated by the thermoelectric generation system, and the control unit selects the highest purchase price among the plural electric power supply destinations. Select the presented power supply destination and supply the entire amount of power generated by the thermoelectric generation system based on the purchase price of the selected power supply destination, or generate the thermoelectric from the power generated by the thermoelectric generation system It is characterized by selecting whether to supply power excluding power necessary for system operation.

また、上記目的を達成する本発明の熱電生成システムの他の態様は、上記熱電生成システムにおいて、前記制御部は、前記熱電生成システムが生成する生成電力量と、前記熱電生成システムで消費する消費電力量とを求め、生成電力量が消費電力量以上の場合、前記最高値で購入を希望する電力供給先に生成電力の全量を供給するか、生成電力から消費電力を除いた電力を該電力供給先に供給するかの選択を行い、生成電力量が消費電力量未満の場合、前記熱電生成システムに電力を供給する複数の電力供給元から最安値で電力を供給する電力供給元を選択し、該電力供給元より前記熱電生成システムを稼働するために必要な電力を購入することを特徴としている。   In another aspect of the thermoelectric generation system of the present invention that achieves the above object, in the thermoelectric generation system, the control unit generates power generated by the thermoelectric generation system and consumption consumed by the thermoelectric generation system. If the generated power amount is equal to or greater than the consumed power amount, supply the entire amount of generated power to the power supply destination that is desired to purchase at the maximum value, or the power obtained by subtracting the consumed power from the generated power Select whether to supply to the supply destination, and if the generated power amount is less than the consumed power amount, select a power supply source that supplies power at the lowest price from a plurality of power supply sources that supply power to the thermoelectric generation system. The electric power required to operate the thermoelectric generation system is purchased from the power supply source.

また、上記目的を達成する本発明の熱電生成システムの他の態様は、上記熱電生成システムにおいて、前記制御部は、前記熱電生成システムが生成する生成熱量及び前記熱電生成システムを稼働するために必要な必要熱量を求め、前記生成熱量が前記必要熱量より少ない場合、不足した熱量を補う燃料を、前記熱電生成システムに燃料を供給する燃料供給元から最安値で燃料を供給する燃料供給元を選択し、該燃料供給元より不足した熱量を補う燃料を購入することを特徴としている。   Another aspect of the thermoelectric generation system of the present invention that achieves the above object is that, in the thermoelectric generation system, the control unit is necessary for operating the amount of generated heat generated by the thermoelectric generation system and the thermoelectric generation system. When the required heat quantity is obtained and the generated heat quantity is less than the required heat quantity, the fuel supply source that supplies the fuel at the lowest price is selected from the fuel supply source that supplies fuel to the thermoelectric generation system as the fuel that supplements the shortage of heat quantity. In addition, the present invention is characterized in that a fuel that compensates for the shortage of heat is purchased from the fuel supplier.

以上の発明によれば、バイオマスを利用した熱電生成システムの収益向上に貢献する。   According to the above invention, it contributes to the profit improvement of the thermoelectric generation system using biomass.

本発明の第1実施形態に係る熱電生成システムの概略図である。1 is a schematic diagram of a thermoelectric generation system according to a first embodiment of the present invention. 本発明の第2実施形態に係る熱電生成システムの概略図である。It is the schematic of the thermoelectric generation system which concerns on 2nd Embodiment of this invention.

本発明の実施形態に係る熱電生成システムの運転支援方法及び熱電生成システムについて、図面を参照して詳細に説明する。   A thermoelectric generation system operation support method and a thermoelectric generation system according to an embodiment of the present invention will be described in detail with reference to the drawings.

[第1実施形態]
本発明の第1実施形態に係る熱電生成システムは、畜産業者から排出される家畜排せつ物を有効利用し、畜産業者の負担及び環境負荷を低減するとともに、バイオマスをエネルギー源とした電気及び熱を生成するものである。
[First Embodiment]
The thermoelectric generation system according to the first embodiment of the present invention effectively uses livestock excreta discharged from livestock farmers, reduces the burden and environmental burden on livestock farmers, and generates electricity and heat using biomass as an energy source. To do.

畜産業界では環境規制の強化が図られており、2004年11月に施行された「家畜排せつ物の管理の適正化及び利用の促進に関する法律」では、家畜排せつ物の野積み、素掘り貯留等が禁止されたことから、畜産排せつ物の利活用は、畜産業における緊急の課題となっている。   Environmental regulations are being strengthened in the livestock industry, and the “Law Concerning the Optimization of the Management and Use of Livestock Excretion” enforced in November 2004 prohibits the accumulation and storage of livestock excrement. Therefore, utilization of livestock excrement has become an urgent issue in the livestock industry.

図1に示すように、本発明の第1実施形態に係る熱電生成システム1は、貯留部2と、メタン発酵処理部3と、エネルギー生成部4と、制御部5と、を有する。   As shown in FIG. 1, the thermoelectric generation system 1 according to the first embodiment of the present invention includes a storage unit 2, a methane fermentation treatment unit 3, an energy generation unit 4, and a control unit 5.

貯留部2は、家畜のふん、オガコ、尿・汚水等のバイオマスを貯留する。貯留部2に貯留されたバイオマスは、図示省略の前処理部において、メタン発酵に寄与しない固形物が取り除かれ、液分がメタン発酵処理部3に移送される。   The storage unit 2 stores biomass such as livestock excrement, sawdust, urine and sewage. From the biomass stored in the storage unit 2, solids that do not contribute to methane fermentation are removed in a preprocessing unit (not shown), and the liquid is transferred to the methane fermentation processing unit 3.

メタン発酵処理部3は、メタン発酵槽6を有し、バイオマスの有機物を原料としてメタン発酵を行う。メタン発酵槽6で生成されたバイオガスは、脱硫装置7にて硫化水素が除去され、ガス貯留部8に貯留される。ガス貯留部8に貯留されたバイオガスは、エネルギー生成部4に移送される。また、メタン発酵処理後の残さである消化液は、消化液槽9を介して廃液等処理設備10に移送される。   The methane fermentation processing unit 3 includes a methane fermentation tank 6 and performs methane fermentation using biomass organic matter as a raw material. From the biogas produced in the methane fermentation tank 6, hydrogen sulfide is removed by the desulfurization device 7 and stored in the gas storage unit 8. The biogas stored in the gas storage unit 8 is transferred to the energy generation unit 4. Moreover, the digestive liquid which is the residue after a methane fermentation process is transferred to the waste liquid processing equipment 10 through the digestive liquid tank 9. FIG.

廃液等処理設備10は、消化液及び貯留部2で分離されたバイオマスの固形物の堆肥化を行う。例えば、廃液等処理設備10では、ロータリー式攪拌機により消化液等を攪拌通気することで、消化液等の好気発酵を行う。   The waste liquid treatment facility 10 composts the digested liquid and the solid matter of the biomass separated in the storage unit 2. For example, in the waste liquid treatment facility 10, aerobic fermentation of the digested liquid or the like is performed by stirring and agitating the digested liquid or the like with a rotary stirrer.

エネルギー生成部4は、発電装置11及び熱生成装置12を有し、メタン発酵処理部3で生成されたバイオガスを原料として電気及び熱を生成する。発電装置11は、例えば、ガスエンジン発電機や燃料電池等である。また、熱生成装置12は、例えば、ガスエンジン発電機やボイラ等である。なお、エネルギー生成部4は、発電装置11または熱生成装置12のどちらか一方を設け、電気または熱を生成する形態とすることもできる。   The energy generation unit 4 includes a power generation device 11 and a heat generation device 12, and generates electricity and heat using the biogas generated in the methane fermentation treatment unit 3 as a raw material. The power generation device 11 is, for example, a gas engine generator or a fuel cell. The heat generation device 12 is, for example, a gas engine generator or a boiler. In addition, the energy generation part 4 can also be set as the form which provides either one of the electric power generating apparatus 11 or the heat generation apparatus 12, and produces | generates electricity or heat.

発電装置11で発電された電力は、熱電生成システム1または図示省略の外部需要家(例えば、電気事業者や畜産設備等)に供給される。また、熱生成装置12により生成した熱(すなわち、温水等)は、貯湯槽13に貯留され、メタン発酵槽6の熱源や図示省略の外部システムの熱源等として利用される。   The electric power generated by the power generation apparatus 11 is supplied to the thermoelectric generation system 1 or an external consumer (not shown) (for example, an electric power company or livestock equipment). Moreover, the heat (namely, hot water etc.) produced | generated by the heat production | generation apparatus 12 is stored by the hot water storage tank 13, and is utilized as a heat source of the methane fermentation tank 6, the heat source of an external system not shown, etc.

メタン発酵処理部3及びエネルギー生成部4には、メタン発酵処理部3及びエネルギー生成部4を稼働させるエネルギー源を供給する供給元(エネルギー生成部4を含む)が複数設定されている(図示省略)。また、エネルギー生成部4には、エネルギー生成部4が生成した電力(または熱)を供給する供給先(外部需要家や熱電生成システム1)が複数設定されている(図示省略)。   In the methane fermentation processing unit 3 and the energy generation unit 4, a plurality of supply sources (including the energy generation unit 4) that supply energy sources that operate the methane fermentation processing unit 3 and the energy generation unit 4 are set (not shown). ). In addition, a plurality of supply destinations (external consumers and thermoelectric generation systems 1) that supply power (or heat) generated by the energy generation unit 4 are set in the energy generation unit 4 (not shown).

制御部5は、メタン発酵処理部3及びエネルギー生成部4の消費電力[E1]及び消費熱量[H1]並びにエネルギー生成部4で生成される電力[E2]及び熱量[H2]に基づいて、エネルギー生成部4で生成された電力及び熱の供給先の選択を行う。また、メタン発酵処理部3及びエネルギー生成部4の消費電力[E1]及び消費熱量[H1]並びにエネルギー生成部4で生成される電力[E2]及び熱量[H2]に基づいて、メタン発酵処理部3及びエネルギー生成部4を稼働するために必要なエネルギー源の供給元の選択を行う。例えば、制御部5には、外部のネットワーク14を介して電力(または、熱や燃料)等のエネルギー源を供給する供給元の燃料単価が入力され、入力された燃料単価から最安値の燃料(電力または燃料)を熱電生成システム1の動力として選択する。また、制御部5は、外部のネットワーク14を介して電力(または、熱)等の生成エネルギーを買い取る外部需要家からの買取金額が入力され、買取金額が最も高い外部需要家に電力(及び、熱)を供給する。制御部5に入力される燃料単価(及び買取金額)は、入札等により適宜ネットワーク14から入力される。また、固定価格買取制度(FIT制度)等により、予め買取金額が定められている場合は、定められている金額が制御部5に設定される。   Based on the power consumption [E1] and heat consumption [H1] of the methane fermentation treatment unit 3 and the energy generation unit 4, and the power [E2] and heat amount [H2] generated by the energy generation unit 4, the control unit 5 The supply destination of the electric power and heat generated by the generation unit 4 is selected. Further, based on the power consumption [E1] and the heat consumption [H1] of the methane fermentation treatment unit 3 and the energy generation unit 4, and the power [E2] and the heat quantity [H2] generated by the energy generation unit 4, the methane fermentation treatment unit 3 and an energy source supplier necessary for operating the energy generator 4 are selected. For example, the control unit 5 receives a fuel unit price of a supply source that supplies an energy source such as electric power (or heat or fuel) via the external network 14, and the lowest fuel price (from the input fuel unit price) Electric power or fuel) is selected as the power of the thermoelectric generation system 1. In addition, the control unit 5 receives a purchase amount from an external customer who purchases generated energy such as electric power (or heat) via the external network 14, and supplies power (and Heat). The fuel unit price (and purchase price) input to the control unit 5 is appropriately input from the network 14 by bidding or the like. In addition, when the purchase price is determined in advance by a fixed price purchase system (FIT system) or the like, the determined price is set in the control unit 5.

すなわち、制御部5は、メタン発酵処理部3及びエネルギー生成部4の消費電力[E1]及び消費熱量[H1]と、エネルギー生成部4で生成される生成電力[E2]及び生成熱量[H2]と、に基づいて、外部需要家(及び供給元)を決定する。   That is, the control unit 5 includes the power consumption [E1] and the heat consumption [H1] of the methane fermentation treatment unit 3 and the energy generation unit 4, and the generated power [E2] and the generation heat [H2] generated by the energy generation unit 4. Based on the above, external customers (and suppliers) are determined.

例えば、E2≧E1の場合、制御部5は、供給元の提示した値段と外部需要家が提示した値段に基づいて、次の条件1の利益と条件2の利益とを比較し、事業利益が最適となる条件を選択する。
(条件1)E1でメタン発酵処理部3及びエネルギー生成部4を稼働させるとともに、供給先として設定されている外部需要家から、最高値で買い取る外部需要家を選択し、選択した外部需要家にE2−E1に相当する電力を売電する。
(条件2)E1に相当する電力を最安値を提示する供給元から購入しメタン発酵処理部3及びエネルギー生成部4を稼働させ、E2の電力すべてを最高値で買い取る外部需要家に供給する。
For example, in the case of E2 ≧ E1, the control unit 5 compares the profit of the next condition 1 and the profit of the condition 2 based on the price presented by the supplier and the price presented by the external consumer, and the business profit is Select the optimal conditions.
(Condition 1) The methane fermentation treatment unit 3 and the energy generation unit 4 are operated at E1, and the external customer to be purchased at the highest price is selected from the external customers set as the supply destination. Sell power corresponding to E2-E1.
(Condition 2) Electric power corresponding to E1 is purchased from a supplier that presents the lowest price, the methane fermentation treatment unit 3 and the energy generation unit 4 are operated, and supplied to an external consumer who purchases all the electric power of E2 at the highest value.

また、E2<E1の場合、供給元の提示した値段と外部需要家が提示した値段に基づいて、次の条件3の利益と条件4の利益とを比較し、事業利益が最適となる条件を選択する。
(条件3)E1−E2に相当する電力を最安値を提示する供給元から購入し、購入した電力とエネルギー生成部4で生成した電力とで、メタン発酵処理部3及びエネルギー生成部4を稼働させる。
(条件4)E2の電力をすべて最高値で買い取る外部需要家に供給し、E1に相当する電力を最安値を提示する供給元から購入し、購入した電力でメタン発酵処理部3及びエネルギー生成部4を稼働させる。
Also, if E2 <E1, based on the price presented by the supplier and the price presented by the external customer, the profit of the following condition 3 is compared with the profit of the condition 4, and the condition that the business profit is optimal select.
(Condition 3) Electric power corresponding to E1-E2 is purchased from a supplier that presents the lowest price, and the methane fermentation treatment unit 3 and the energy generation unit 4 are operated with the purchased power and the power generated by the energy generation unit 4. Let
(Condition 4) Supplying all E2 power to external customers who purchase the highest price, purchasing power corresponding to E1 from a supplier that presents the lowest price, and using the purchased power, the methane fermentation treatment unit 3 and the energy generation unit 4 is activated.

なお、制御部5の説明では、メタン発酵処理部3及びエネルギー生成部4の消費電力をE1としているが、廃液等処理設備10や貯留部2の消費電力をE1に含めることもできる。また、制御部5に入力される電力量は、メタン発酵処理部3の各設備及びエネルギー生成部4の各設備に計測メータを設置し、その計測値が入力される。また、制御部5に入力される熱量は、配管内を流通する温水の量及び温度に基づき、配管等からの損失熱量を考慮して算出される。なお、エネルギー生成部4で生成される電力及び熱量を、メタン発酵処理部3で生成されるバイオガス量とそのメタン含有率並びにバイオガス利用施設の稼働率に基づいて算出することもできる。   In the description of the control unit 5, the power consumption of the methane fermentation treatment unit 3 and the energy generation unit 4 is E1, but the power consumption of the waste liquid treatment facility 10 and the storage unit 2 can be included in E1. Moreover, the electric power input into the control part 5 installs a measurement meter in each installation of the methane fermentation process part 3, and each installation of the energy production | generation part 4, and the measured value is input. The amount of heat input to the control unit 5 is calculated in consideration of the amount of heat lost from the piping and the like based on the amount and temperature of the hot water flowing through the piping. In addition, the electric power and calorie | heat amount produced | generated by the energy production | generation part 4 can also be calculated based on the biogas amount produced | generated by the methane fermentation process part 3, its methane content rate, and the operation rate of a biogas utilization facility.

また、制御部5では、熱生成装置12における燃料の需要先の選択や熱生成装置12で生成された熱エネルギーの供給先の選択を行うこともできる。例えば、熱生成装置12へ供給されるバイオガスで発電した場合の電力の売電価格と、熱生成装置12を稼働させる燃料(供給元から購入する燃料)の価格とを比較することで、熱生成装置12に供給する燃料をメタン発酵処理部3で生成したバイオガスか供給元から購入する燃料かを選択することができる。また、貯湯槽13から外部供給先に供給する温水を、供給先からの入札に応じて最高値で買い取る供給先に供給することもできる。   The control unit 5 can also select a fuel demand destination in the heat generation device 12 and a supply destination of heat energy generated in the heat generation device 12. For example, by comparing the selling price of electric power when power is generated with biogas supplied to the heat generating device 12 and the price of fuel (fuel purchased from the supplier) for operating the heat generating device 12, The fuel supplied to the production | generation apparatus 12 can be selected from the biogas produced | generated by the methane fermentation process part 3, or the fuel purchased from a supply source. Moreover, the hot water supplied to the external supply destination from the hot water storage tank 13 can also be supplied to the supply destination purchased at the highest price according to a bid from the supply destination.

以上のような本発明の第1実施形態に係る熱電生成システム1の運転支援方法及び熱電生成システム1によれば、再生可能エネルギーを利用したシステムの収益性が向上する。その結果、畜産設備等における環境問題が解決されるだけでなく、再生可能エネルギーの利用が促進される。   According to the operation support method and the thermoelectric generation system 1 of the thermoelectric generation system 1 according to the first embodiment of the present invention as described above, the profitability of the system using renewable energy is improved. As a result, not only environmental problems in livestock facilities and the like are solved, but also the use of renewable energy is promoted.

[第2実施形態]
本発明の第2実施形態に係る熱電生成システムについて、図2を参照して詳細に説明する。なお、第2実施形態の説明において、第1実施形態に係る熱電生成システム1と同様の構成については、同じ符号を付し、詳細な説明を省略する。
[Second Embodiment]
A thermoelectric generation system according to a second embodiment of the present invention will be described in detail with reference to FIG. In the description of the second embodiment, the same components as those of the thermoelectric generation system 1 according to the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.

図2に示すように、第2実施形態に係る熱電生成システム15は、メタン発酵槽6と、発電装置11と、熱生成装置12と、制御部5と、を有する。   As shown in FIG. 2, the thermoelectric generation system 15 according to the second embodiment includes a methane fermentation tank 6, a power generation device 11, a heat generation device 12, and a control unit 5.

メタン発酵槽6で生成したバイオガスは、脱硫装置7(及びガス貯留部8)を介して発電装置11に供給される。   The biogas generated in the methane fermentation tank 6 is supplied to the power generation device 11 via the desulfurization device 7 (and the gas storage unit 8).

発電装置11は、例えば、ガス発電装置(ガスエンジン)等である。発電装置11で生じる電力は、すべて外部に供給(売電)される。また、発電装置11の排熱(すなわち、発電装置11の冷却水)は、外部に供給または、貯水槽16に貯留された後に熱生成装置12に供給される。なお、第1実施形態の熱電生成システム1と同様に、制御部5が、収益性を勘案して、電力供給先として熱電生成システム15または外部需要家(図示せず)を選択し、選択された供給先に発電装置11が発電した電力を供給してもよい。   The power generation device 11 is, for example, a gas power generation device (gas engine). All the electric power generated in the power generation device 11 is supplied to the outside (power sale). In addition, the exhaust heat of the power generation device 11 (that is, the cooling water of the power generation device 11) is supplied to the outside or stored in the water storage tank 16 and then supplied to the heat generation device 12. As with the thermoelectric generation system 1 of the first embodiment, the control unit 5 selects and selects the thermoelectric generation system 15 or an external consumer (not shown) as the power supply destination in consideration of profitability. Alternatively, the power generated by the power generation device 11 may be supplied to the supply destination.

熱生成装置12は、例えば、ボイラであり、メタン発酵槽6を加温するための温水を供給する。また、熱生成装置12は、図示省略の外部供給先に温水を供給することもできる。熱生成装置12の燃料は、重油、都市ガスまたはバイオマス(例えば、間伐材や廃食用油等)若しくはこれら燃料の混合物が用いられる。熱生成装置12には、発電装置11の排熱により熱せられた温水が供給される。   The heat generating device 12 is, for example, a boiler and supplies hot water for heating the methane fermentation tank 6. Further, the heat generation device 12 can also supply hot water to an external supply destination (not shown). As the fuel of the heat generating device 12, heavy oil, city gas, biomass (for example, thinned wood, waste cooking oil, etc.) or a mixture of these fuels is used. The heat generator 12 is supplied with hot water heated by the exhaust heat of the power generator 11.

制御部5は、熱生成装置12で不足する熱量の供給元を選択する。例えば、(メタン発酵槽6を加温するために必要な熱量[H1])>(発電装置11で生じる熱量[H2])である場合には、H1−H2に相当する熱エネルギー量を、単位発熱量あたりの調達コストが最も安い燃料供給元を選択し、選択した供給元からの燃料で熱生成装置12を稼働する。熱量の計算は、基本的には、温水の流通量と温水の温度に基づき、配管等からの損失熱量を考慮して算出される。   The control unit 5 selects a supply source of the amount of heat that is insufficient in the heat generation device 12. For example, when (the amount of heat necessary for heating the methane fermentation tank [H1])> (the amount of heat generated in the power generator 11 [H2]), the amount of heat energy corresponding to H1-H2 is expressed in units. A fuel supply source having the lowest procurement cost per calorific value is selected, and the heat generating device 12 is operated with fuel from the selected supply source. The calculation of the amount of heat is basically calculated based on the flow rate of hot water and the temperature of the hot water, taking into account the amount of heat lost from the piping.

なお、H2≧H1の場合は、制御部5は、発電装置11で生成する余剰の熱(温水)を最高値を提示する需要家(図示せず)に供給してもよい。同様に、熱生成装置12の余剰の熱(温水)を、最高値を提示する需要家(図示せず)に供給してもよい。   In addition, when H2 ≧ H1, the control unit 5 may supply surplus heat (hot water) generated by the power generation apparatus 11 to a consumer (not shown) that presents the maximum value. Similarly, you may supply the surplus heat (hot water) of the heat generation apparatus 12 to the consumer (not shown) which shows the highest value.

以上のような本発明の第2実施形態に係る熱電生成システム15によれば、再生可能エネルギーを利用した熱電生成システム15の収益性が向上する。その結果、バイオマスを利用したメタン発酵システム等の再生可能エネルギーを利用した設備の普及を促進することができる。   According to the thermoelectric generation system 15 according to the second embodiment of the present invention as described above, the profitability of the thermoelectric generation system 15 using renewable energy is improved. As a result, the spread of facilities using renewable energy such as a methane fermentation system using biomass can be promoted.

また、熱生成装置12の燃料に、バイオマス(または、化石燃料とバイオマスとの混合燃料)を用いることで、バイオマスの有効利用を促進し、熱電生成システム15の収益向上をさらに図ることができる。   In addition, by using biomass (or a mixed fuel of fossil fuel and biomass) as the fuel of the heat generating device 12, it is possible to promote effective utilization of biomass and further improve the profit of the thermoelectric generation system 15.

以上、本発明の熱電生成システムの運転支援方法及び熱電生成システムについて、具体的な実施形態を示して詳細に説明したが、本発明の熱電生成システムの運転支援方法及び熱電生成システムは、実施形態に限定されるものではなく、発明の特徴を損なわない範囲で適宜設計変更が可能であり、設計変更された形態も本発明の技術範囲に属する。   As described above, the operation support method and the thermoelectric generation system of the thermoelectric generation system of the present invention have been described in detail by showing specific embodiments, but the operation support method and the thermoelectric generation system of the thermoelectric generation system of the present invention are described in the embodiments. However, the present invention is not limited to the above, and the design can be appropriately changed within a range not impairing the features of the invention, and the design changed is also within the technical scope of the invention.

例えば、バイオマスの利用は、メタン発酵に限定されるものではなく、例えば、間伐材、もみ殻、稲わら、建築資材廃棄物、剪定枝、木くず、食品残さ、汚泥、黒液または廃食用油をエネルギー源として電力を生成する技術に適用することができる。よって、バイオマスの利用態様は、メタン発酵に限定されるものではなく、バイオマスを焼却炉で燃焼し、その排熱を利用して発電する設備に適用することもできる。   For example, the use of biomass is not limited to methane fermentation, such as thinned wood, rice husk, rice straw, building material waste, pruned branches, wood scrap, food residues, sludge, black liquor or waste cooking oil. It can be applied to a technology for generating electric power as an energy source. Therefore, the utilization mode of biomass is not limited to methane fermentation, but can be applied to facilities that burn biomass in an incinerator and generate power using the exhaust heat.

また、実施形態の説明では、電力(熱)の需要先及び電力(燃料)の供給元が複数接続され、複数の需要先(及び供給元)から最適な需要先(及び供給元)を設定しているが、需要先または供給元のどちらか一方が固定された相手であった場合でも、本発明が有する効果の一部を得ることができる。   In the description of the embodiment, a plurality of power (heat) demand destinations and power (fuel) supply sources are connected, and an optimum demand destination (and supply source) is set from the plurality of demand destinations (and supply sources). However, even when either the demand destination or the supply source is a fixed partner, a part of the effect of the present invention can be obtained.

また、第1実施形態に係る熱電生成システムの特徴と第2実施形態に係る熱電生成システムの特徴とを組み合わせることで、第1実施形態に係る熱電生成システムの効果と第2実施形態に係る熱電生成システムの効果を得ることができる。   Further, by combining the characteristics of the thermoelectric generation system according to the first embodiment and the characteristics of the thermoelectric generation system according to the second embodiment, the effect of the thermoelectric generation system according to the first embodiment and the thermoelectric according to the second embodiment are combined. The effect of the generation system can be obtained.

1,15…熱電生成システム
2…貯留部
3…メタン発酵処理部
4…エネルギー生成部
5…制御部
6…メタン発酵槽
7…脱硫装置
8…ガス貯留部
9…消化液槽
10…廃液等処理設備
11…発電装置
12…熱生成装置
13…貯湯槽
14…ネットワーク
16…貯水槽
DESCRIPTION OF SYMBOLS 1,15 ... Thermoelectric generation system 2 ... Storage part 3 ... Methane fermentation process part 4 ... Energy generation part 5 ... Control part 6 ... Methane fermentation tank 7 ... Desulfurization apparatus 8 ... Gas storage part 9 ... Digestion liquid tank 10 ... Treatment of waste liquid etc. Equipment 11 ... Power generation device 12 ... Heat generation device 13 ... Hot water tank 14 ... Network 16 ... Water tank

Claims (6)

バイオマスを利用して電力を生成する熱電生成システムの運転支援方法であって、
前記熱電生成システムで生成した電力を供給する複数の電力供給先のうち、最高値で購入を希望する電力供給先を選択し、当該電力供給先の購入金額に基づいて、前記熱電生成システムで生成された電力の全量を該電力供給先に供給するか、前記熱電生成システムで生成された電力から前記熱電生成システムの稼働に必要な電力を除いた電力を該電力供給先に供給するかを選択する
ことを特徴とする熱電生成システムの運転支援方法。
An operation support method for a thermoelectric generation system that generates power using biomass,
From among a plurality of power supply destinations that supply the power generated by the thermoelectric generation system, select the power supply destination desired to be purchased at the highest price, and generate the thermoelectric generation system based on the purchase price of the power supply destination Select whether to supply the power supply destination with the entire amount of the generated power or supply the power supply destination with the power generated by the thermoelectric generation system excluding the power necessary for the operation of the thermoelectric generation system An operation support method for a thermoelectric generation system.
前記熱電生成システムが生成する生成電力量と、前記熱電生成システムで消費する消費電力量とを求め、
生成電力量が消費電力量以上の場合、前記最高値で購入を希望する電力供給先に生成電力の全量を供給するか、生成電力から消費電力を除いた電力を該電力供給先に供給するかの選択を行い、
生成電力量が消費電力量未満の場合、前記熱電生成システムに電力を供給する複数の電力供給元から最安値で電力を供給する電力供給元を選択し、該電力供給元より前記熱電生成システムを稼働するために必要な電力を購入する
ことを特徴とする請求項1に記載の熱電生成システムの運転支援方法。
Determining the amount of power generated by the thermoelectric generation system and the amount of power consumed by the thermoelectric generation system;
If the generated power amount is greater than or equal to the consumed power amount, whether the entire amount of generated power is supplied to the power supply destination that is desired to purchase at the maximum value, or the power obtained by subtracting the consumed power from the generated power is supplied to the power supply destination Make a selection
When the generated power amount is less than the consumed power amount, a power supply source that supplies power at the lowest price is selected from a plurality of power supply sources that supply power to the thermoelectric generation system, and the thermoelectric generation system is selected from the power supply source. 2. The operation support method for a thermoelectric generation system according to claim 1, wherein electric power necessary for operation is purchased.
バイオマスを利用して電力及び熱を生成する熱電生成システムの運転支援方法であって、
前記熱電生成システムで生成した電力を供給する複数の電力供給先のうち、最高値で購入を希望する電力供給先を選択し、該電力供給先に生成した電力を供給し、
前記熱電生成システムが生成する生成熱量及び前記熱電生成システムを稼働するために必要な必要熱量を求め、
前記生成熱量が前記必要熱量より少ない場合、不足した熱量を補う燃料を、前記熱電生成システムに燃料を供給する燃料供給元から最安値で燃料を供給する燃料供給元を選択し、該燃料供給元より不足した熱量を補う燃料を購入する
ことを特徴とする熱電生成システムの運転支援方法。
An operation support method for a thermoelectric generation system that generates power and heat using biomass,
From among a plurality of power supply destinations that supply the power generated by the thermoelectric generation system, select a power supply destination desired to be purchased at the highest value, and supply the generated power to the power supply destination,
Obtaining the amount of heat generated by the thermoelectric generation system and the amount of heat necessary to operate the thermoelectric generation system,
When the generated heat quantity is less than the required heat quantity, a fuel supply source that supplies fuel at the lowest price from a fuel supply source that supplies fuel to the thermoelectric generation system is selected as the fuel that supplements the shortage of heat, and the fuel supply source An operation support method for a thermoelectric generation system, characterized in that a fuel that compensates for a deficient amount of heat is purchased.
発電装置と、熱生成装置と、該発電装置及び該熱生成装置を制御する制御部と、を有し、バイオマスを利用して電気及び熱を生成する熱電生成システムであって、
前記熱電生成システムが生成した電力を供給する電力供給先を複数設け、
前記制御部は、複数の電力供給先のうち、最も高い購入金額を提示した電力供給先を選択し、該選択された電力供給先の購入金額に基づいて、前記熱電生成システムで生成した電力の全量を供給するか、前記熱電生成システムで生成した電力から前記熱電生成システムの稼働に必要な電力を除いた電力を供給するかの選択を行う
ことを特徴とする熱電生成システム。
A thermoelectric generation system that includes a power generation device, a heat generation device, a control unit that controls the power generation device and the heat generation device, and generates electricity and heat using biomass,
Providing a plurality of power supply destinations for supplying the power generated by the thermoelectric generation system;
The control unit selects a power supply destination that presents the highest purchase price among a plurality of power supply destinations, and based on the purchase price of the selected power supply destination, the power generated by the thermoelectric generation system The thermoelectric generation system is characterized by selecting whether to supply the whole amount or to supply electric power generated by the thermoelectric generation system by removing electric power necessary for operation of the thermoelectric generation system.
前記制御部は、
前記熱電生成システムが生成する生成電力量と、前記熱電生成システムで消費する消費電力量とを求め、
生成電力量が消費電力量以上の場合、前記最高値で購入を希望する電力供給先に生成電力の全量を供給するか、生成電力から消費電力を除いた電力を該電力供給先に供給するかの選択を行い、
生成電力量が消費電力量未満の場合、前記熱電生成システムに電力を供給する複数の電力供給元から最安値で電力を供給する電力供給元を選択し、該電力供給元より前記熱電生成システムを稼働するために必要な電力を購入する
ことを特徴とする請求項4に記載の熱電生成システム。
The controller is
Determining the amount of power generated by the thermoelectric generation system and the amount of power consumed by the thermoelectric generation system;
If the generated power amount is greater than or equal to the consumed power amount, whether the entire amount of generated power is supplied to the power supply destination that is desired to purchase at the maximum value, or the power obtained by subtracting the consumed power from the generated power is supplied to the power supply destination Make a selection
When the generated power amount is less than the consumed power amount, a power supply source that supplies power at the lowest price is selected from a plurality of power supply sources that supply power to the thermoelectric generation system, and the thermoelectric generation system is selected from the power supply source. The thermoelectric generation system according to claim 4, wherein power necessary for operation is purchased.
前記制御部は、
前記熱電生成システムが生成する生成熱量及び前記熱電生成システムを稼働するために必要な必要熱量を求め、
前記生成熱量が前記必要熱量より少ない場合、不足した熱量を補う燃料を、前記熱電生成システムに燃料を供給する燃料供給元から最安値で燃料を供給する燃料供給元を選択し、該燃料供給元より不足した熱量を補う燃料を購入する
ことを特徴とする請求項4または請求項5に記載の熱電生成システム。
The controller is
Obtaining the amount of heat generated by the thermoelectric generation system and the amount of heat necessary to operate the thermoelectric generation system,
When the generated heat quantity is less than the required heat quantity, a fuel supply source that supplies fuel at the lowest price from a fuel supply source that supplies fuel to the thermoelectric generation system is selected as the fuel that supplements the shortage of heat, and the fuel supply source The thermoelectric generation system according to claim 4 or 5, wherein a fuel that compensates for a more insufficient amount of heat is purchased.
JP2015047808A 2015-03-11 2015-03-11 Thermoelectricity generation system operation support method and thermoelectricity generation system Pending JP2016170455A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015047808A JP2016170455A (en) 2015-03-11 2015-03-11 Thermoelectricity generation system operation support method and thermoelectricity generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015047808A JP2016170455A (en) 2015-03-11 2015-03-11 Thermoelectricity generation system operation support method and thermoelectricity generation system

Publications (1)

Publication Number Publication Date
JP2016170455A true JP2016170455A (en) 2016-09-23

Family

ID=56982450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015047808A Pending JP2016170455A (en) 2015-03-11 2015-03-11 Thermoelectricity generation system operation support method and thermoelectricity generation system

Country Status (1)

Country Link
JP (1) JP2016170455A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019168792A (en) * 2018-03-22 2019-10-03 東京電力ホールディングス株式会社 Device and method for optimizing rechargeable battery value chain
CN110669650A (en) * 2019-09-20 2020-01-10 浙江恒鑫电力有限公司 Biomass fuel power generation system without environmental pollution
CN113454543A (en) * 2019-02-22 2021-09-28 西门子股份公司 Method for determining heat consumption of energy system, energy management system and energy system
KR20220130563A (en) * 2021-03-17 2022-09-27 주식회사올수 System, method and program for providing waste oil transaction matching service

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019168792A (en) * 2018-03-22 2019-10-03 東京電力ホールディングス株式会社 Device and method for optimizing rechargeable battery value chain
JP7090840B2 (en) 2018-03-22 2022-06-27 東京電力ホールディングス株式会社 Battery value chain optimizer and method
CN113454543A (en) * 2019-02-22 2021-09-28 西门子股份公司 Method for determining heat consumption of energy system, energy management system and energy system
CN110669650A (en) * 2019-09-20 2020-01-10 浙江恒鑫电力有限公司 Biomass fuel power generation system without environmental pollution
KR20220130563A (en) * 2021-03-17 2022-09-27 주식회사올수 System, method and program for providing waste oil transaction matching service
KR102599669B1 (en) * 2021-03-17 2023-11-07 주식회사올수 System, method and program for providing waste oil transaction matching service

Similar Documents

Publication Publication Date Title
Walker et al. Greenhouse gas emissions reductions from applications of Power-to-Gas in power generation
Hennig et al. Bioenergy production and use: comparative analysis of the economic and environmental effects
Naqvi et al. Off-grid electricity generation using mixed biomass compost: A scenario-based study with sensitivity analysis
Amiri et al. Simulation and introduction of a CHP plant in a Swedish biogas system
Schäfer et al. Energetic flexibility on wastewater treatment plants
JP2016170455A (en) Thermoelectricity generation system operation support method and thermoelectricity generation system
Akbulut et al. Important aspects for the planning of biogas energy plants: Malatya case study
Bedoić et al. Synergy between feedstock gate fee and power-to-gas: An energy and economic analysis of renewable methane production in a biogas plant
Rosa et al. Energy potential and alternative usages of biogas and sludge from UASB reactors: case study of the Laboreaux wastewater treatment plant
Zhang et al. Economic assessment and regional adaptability analysis of CCHP system coupled with biomass-gas based on year-round performance
Kiraly et al. Achieving energy self-sufficiency by integrating renewables into companies' supply networks
Sun et al. Multi-objective robust optimization of multi-energy microgrid with waste treatment
Makamure et al. An analysis of bio-digester substrate heating methods: A review
Peerapong et al. Waste to electricity generation in Thailand: Technology, policy, generation cost, and incentives of investment
Czekała et al. Profitability of the agricultural biogas plants operation in Poland, depending on the substrate use model
Younessi et al. Modeling the optimal sizing problem of the biogas-based electrical generator in a livestock farm considering a gas storage tank and the anaerobic digester process under the uncertainty of cow dung
Gogela et al. The business case for biogas from solid waste in the Western Cape
Sadecka et al. Green energy from biogas in a Polish-German sewage treatment plant
Cave Anaerobic Digestion across the UK and Europe
Pattanapongchai et al. The co-benefits of biogas from the palm oil industry in long-term energy planning: A least-cost biogas upgrade in Thailand
Nguyen et al. A new architecture of energy hubs for animal farms with distributed energy resources
Campos et al. Techno-economic analysis and eco-efficiency indicators of a biomass-solar hybrid renewable energy system for João Pinheiro City
JP7410692B2 (en) Electricity supply method, electricity supply system
Majerus Fueling a SOFC with agricultural waste derived biogas-Analysing the Swiss case
Zhang et al. Optimal configuration of a two-level integrated rural energy system for counting and biogas digester warming