JP2016170088A - Mechanism and method for adjusting position of photodetector of optical encoder - Google Patents

Mechanism and method for adjusting position of photodetector of optical encoder Download PDF

Info

Publication number
JP2016170088A
JP2016170088A JP2015050613A JP2015050613A JP2016170088A JP 2016170088 A JP2016170088 A JP 2016170088A JP 2015050613 A JP2015050613 A JP 2015050613A JP 2015050613 A JP2015050613 A JP 2015050613A JP 2016170088 A JP2016170088 A JP 2016170088A
Authority
JP
Japan
Prior art keywords
hole
screw
pedestal
main body
screwed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015050613A
Other languages
Japanese (ja)
Other versions
JP6543789B2 (en
Inventor
高志 藤本
Takashi Fujimoto
高志 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tamagawa Seiki Co Ltd
Original Assignee
Tamagawa Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tamagawa Seiki Co Ltd filed Critical Tamagawa Seiki Co Ltd
Priority to JP2015050613A priority Critical patent/JP6543789B2/en
Publication of JP2016170088A publication Critical patent/JP2016170088A/en
Application granted granted Critical
Publication of JP6543789B2 publication Critical patent/JP6543789B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Transform (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an optical encoder with a photodetector that can be positionally adjusted easily, without moving a pedestal directly with a hand and using a complicated mechanism using an X-Y table.SOLUTION: A first holder 50 and a second holder 51 are provided to a main body 4 to be independent from a pedestal 1 having a photodetector 2, at both ends 1A and 1B of the pedestal 1. Further, a first screw body 55 and a second screw body 57 are formed in the holders 50 and 51, respectively, so that both edges 55a and 57a are in contact with the ends 1A and 1B of the pedestal 1. Rotating the first and second screw bodies 55 and 57 moves the pedestal 1 along a straight line A right and left to adjust the position of the photodetector 2.SELECTED DRAWING: Figure 1

Description

本発明は、光学式エンコーダの受光体の位置調整機構及び方法に関し、特に、従来のように台座を手で直接移動させること、及び、X−Yテーブルを用いた複雑な機構を用いることなく、簡単に台座の微調整を行うことができるようにするための新規な改良に関する。   The present invention relates to a position adjusting mechanism and method for a photoreceptor of an optical encoder, and in particular, without directly moving a pedestal by hand as in the prior art and using a complicated mechanism using an XY table, The present invention relates to a new improvement for easily performing fine adjustment of a pedestal.

従来、用いられていたこの種の光学式エンコーダの受光体の位置調整機構及び方法としては、例えば、文献名は示していないが、図3に示される手動による機構、及び、図4及び図5で示す特許文献1に開示されたX−Yテーブルによる受光素子基板の位置決め機構を挙げることができる。
まず、図3において符号1で示されるものは、受光素子を有する受光体2を備えた基板3が載置された台座であり、この台座1は図示しない装置の本体4上に設けられている。
Conventionally, as a position adjusting mechanism and method for a photoreceptor of this type of optical encoder that has been used, for example, although a literature name is not shown, a manual mechanism shown in FIG. 3 and FIGS. 4 and 5 are used. The positioning mechanism of the light receiving element board | substrate by the XY table disclosed by patent document 1 shown by can be mentioned.
First, what is denoted by reference numeral 1 in FIG. 3 is a pedestal on which a substrate 3 having a light receiving body 2 having a light receiving element is placed. The pedestal 1 is provided on a main body 4 of an apparatus (not shown). .

前記本体4上に配設された前記台座1と第1、第2固定用ネジ5,6との関係は、図2に示される構成の通りである。
すなわち、前記台座1は前記本体4に対して摺動自在に設けられ、前記台座1の第1端1A側及び第2端1B側に設けられた第1、第2固定用ネジ5,6及び第1、第2貫通孔7,8の取付構成は、共に、図2に示されるように構成されている。
前述の台座1に形成された第1、第2貫通孔7,8には、前記第1、第2固定用ネジ5,6が各々挿入され、各固定用ネジの先端は、前記本体4に螺入している。
The relationship between the pedestal 1 disposed on the main body 4 and the first and second fixing screws 5 and 6 is as shown in FIG.
That is, the pedestal 1 is slidably provided with respect to the main body 4, and the first and second fixing screws 5, 6 provided on the first end 1A side and the second end 1B side of the pedestal 1 and The first and second through holes 7 and 8 are both mounted as shown in FIG.
The first and second fixing screws 5 and 6 are respectively inserted into the first and second through holes 7 and 8 formed in the pedestal 1, and the tips of the fixing screws are inserted into the main body 4. Screwed.

前述の状態では、前記台座1の位置を微調整できるように、前記各固定用ネジ5,6が前記本体4に対して十分に締付けられてなく、各固定用ネジ5,6に対して前記台座1がわずかに動くことができるような状態である。
また、前記台座に設けられ前記各固定用ネジ5,6が挿入されている前記各貫通孔7,8の孔径Dは、前記各固定用ネジ5,6の外径Dに対してD>Dの関係となるように構成されているため、各固定用ネジ5,6を強く締付けなければ前述のように前記台座が本体4に対してD−Dの差分だけ動くことができるように構成されている。
すなわち、前記各貫通孔7,8は前記各固定用ネジ5,6に対して長孔等からなる当業者用語のバカ孔で構成されている。
In the state described above, the fixing screws 5 and 6 are not sufficiently tightened with respect to the main body 4 so that the position of the base 1 can be finely adjusted. This is a state in which the base 1 can move slightly.
In addition, the hole diameter D of each of the through holes 7 and 8 into which the fixing screws 5 and 6 are inserted is set so that the outer diameter D 1 of the fixing screws 5 and 6 is D>. Since it is configured to have a relationship of D 1, the pedestal can move by a difference of D−D 1 with respect to the main body 4 as described above unless the fixing screws 5 and 6 are firmly tightened. It is configured.
That is, each of the through holes 7 and 8 is constituted by a fool hole in terms of a person skilled in the art consisting of a long hole with respect to the fixing screws 5 and 6.

そのため、図3のように、前記各固定用ネジ5,6を緩めておいた状態で、前記台座1を手でわずかに移動させて受光体2の受光状態の調整を行い、調整終了後に、各固定用ネジ5,6を締付けて固定する。   Therefore, as shown in FIG. 3, with the respective fixing screws 5 and 6 loosened, the pedestal 1 is slightly moved by hand to adjust the light receiving state of the photoreceptor 2, and after the adjustment is completed, Tighten the fixing screws 5 and 6 and fix them.

また、図4及び図5は他の従来構成を示すものである。
すなわち、図4及び図5において符号1で示されるものは、光学式ロータリエンコーダ2の信号検出部3に設けられたX−Y駆動機構であり、このX−Y駆動機構1にはX−Y方向へ自在に可動となるX−Yテーブル4が設けられている。
4 and 5 show another conventional configuration.
That is, what is denoted by reference numeral 1 in FIGS. 4 and 5 is an XY drive mechanism provided in the signal detection unit 3 of the optical rotary encoder 2, and this XY drive mechanism 1 includes an XY drive mechanism. An XY table 4 that is freely movable in the direction is provided.

前記X−Yテーブル4の互いに直交する二辺4A,4Bには、この二辺4A,4Bに沿って配設された第1、第2磁石5,6が設けられ、このX−Yテーブル4上には少なくとも四個の受光窓7,8,9,10が互いに離間させて四角状となるように配設されてなる受光素子基板11が設けられている。   First and second magnets 5 and 6 disposed along the two sides 4A and 4B are provided on the two sides 4A and 4B orthogonal to each other of the XY table 4, and the XY table 4 A light receiving element substrate 11 in which at least four light receiving windows 7, 8, 9, 10 are spaced apart from each other and formed in a square shape is provided above.

前記受光窓7,8,9,10は、各々四角形で形成され、各受光窓7,8,9,10の受光中心7A,8A,9A,10Aを結ぶ四角形の受光中心四角枠線12には、枠中心13が形成されている。   The light receiving windows 7, 8, 9, and 10 are each formed in a quadrangle, and a rectangular light receiving center square frame line 12 that connects the light receiving centers 7A, 8A, 9A, and 10A of the light receiving windows 7, 8, 9, and 10 A frame center 13 is formed.

前記受光素子基板11の対向位置には、この受光素子基板11と同一形状(同一形状でなくても可)の発光素子基板14が図示しない支持部材を介して固定配設されている。
前記発光素子基板14の中心位置には、一個の発光素子15が設けられており、前記発光素子15の光軸16は、前記枠中心13と一致することが必要である。
A light-emitting element substrate 14 having the same shape as the light-receiving element substrate 11 (not necessarily the same shape) is fixedly disposed at a position facing the light-receiving element substrate 11 via a support member (not shown).
One light emitting element 15 is provided at the center position of the light emitting element substrate 14, and the optical axis 16 of the light emitting element 15 needs to coincide with the frame center 13.

前記X−Yテーブル4の前記各辺4A,4Bよりも他の各辺4C,4Dには、第1、第2サーボドライバ20,21によりサーボ駆動される第1、第2モータ22,23によりX方向及びY方向に前記X−Yテーブル4をステップ移動(ステップトラッキング)させるための第1、第2直動部24,25が接続されている。   The sides 4C and 4D other than the sides 4A and 4B of the XY table 4 are driven by first and second motors 22 and 23 that are servo-driven by first and second servo drivers 20 and 21, respectively. First and second linear motion units 24 and 25 for step-moving (step tracking) the XY table 4 in the X direction and the Y direction are connected.

前記第1、第2磁石5,6の外側でかつ前記各磁石5,6と対向する位置には、第1、第2ホール素子30,31が配設されており、前記各ホール素子30,31は前記各磁石5,6に近接した状態で前記各磁石5,6の位置を磁力線の強度によって検出できるように構成されている。   First and second Hall elements 30 and 31 are disposed outside the first and second magnets 5 and 6 and at positions facing the magnets 5 and 6, respectively. 31 is configured to be able to detect the position of each of the magnets 5 and 6 by the strength of the magnetic field lines in a state of being close to the magnets 5 and 6.

前記各ホール素子30,31から出力された第1、第2位置検出信号30a,31aは、前記第1、第2サーボドライバ20,21に入力され、この各サーボドライバ20,21には、CPUからなる制御装置40からの第1、第2位置指令41,42が入力されるように構成されている。   The first and second position detection signals 30a and 31a output from the hall elements 30 and 31 are input to the first and second servo drivers 20 and 21, respectively. The first and second position commands 41 and 42 from the control device 40 are configured to be input.

前記各受光窓7,8,9,10から出力された光量データ7a,8a,9,10aは、パルス変換器45によって、A相、B相の二相パルス信号46がエンコーダ信号として出力される。
また、前記各光量データ7a,8a,9a,10aはA/Dコンバータ47に入力されてA/D変換された後、デジタル信号47a〜47dとして前記制御装置40に入力されるように構成されている。尚、図1では、受光素子基板11と発光素子基板14との間に回転自在に設けられた周知の回転ディスクは図示を省略している。
The light quantity data 7a, 8a, 9, 10a output from the light receiving windows 7, 8, 9, 10 is output by the pulse converter 45 as A-phase and B-phase two-phase pulse signals 46 as encoder signals. .
The light quantity data 7a, 8a, 9a, and 10a are input to the A / D converter 47, A / D converted, and then input to the control device 40 as digital signals 47a to 47d. Yes. In FIG. 1, a well-known rotating disk that is rotatably provided between the light receiving element substrate 11 and the light emitting element substrate 14 is not shown.

次に、動作について述べる。まず、図1の構成において、電源投入後、光軸16を枠中心13に合わせてベストポジション状態とするため、本来、二相パルス信号46を得るための受光素子基板11の各受光窓7〜10を光軸位置決めセンサとして用いる。
前記受光素子基板11はX−Yテーブル4上に搭載され、制御装置40においては、前記A/Dコンバータ47からの前記光量データ7a〜10aに対応したデジタル信号47a〜47dが制御装置40に入力され、この制御装置40では、前記各デジタル信号47a〜47dに基づいてX−Yテーブル4の位置演算を行って第1、第2位置指令41,42を各サーボドライバ20,21に供給する。
Next, the operation will be described. First, in the configuration of FIG. 1, after the power is turned on, the optical axis 16 is aligned with the frame center 13 to be in the best position, so that each of the light receiving windows 7-of the light receiving element substrate 11 originally for obtaining the two-phase pulse signal 46 is used. 10 is used as an optical axis positioning sensor.
The light receiving element substrate 11 is mounted on the XY table 4. In the control device 40, digital signals 47 a to 47 d corresponding to the light quantity data 7 a to 10 a from the A / D converter 47 are input to the control device 40. In the control device 40, the position of the XY table 4 is calculated based on the digital signals 47a to 47d and the first and second position commands 41 and 42 are supplied to the servo drivers 20 and 21, respectively.

前記各サーボドライバ20,21では、各ホール素子30,31からの各位置検出信号30a,31aに基づいて各モータ22,23に対して各駆動信号20a,21aを供給し、X−Yテーブル4のX方向及びY方向に沿うミクロン単位の所定の移動を行い、枠中心13が光軸16に合うように制御することができる。   The servo drivers 20 and 21 supply the drive signals 20a and 21a to the motors 22 and 23 based on the position detection signals 30a and 31a from the hall elements 30 and 31, respectively. The frame center 13 can be controlled to be aligned with the optical axis 16 by performing a predetermined movement in units of microns along the X direction and the Y direction.

次に、前述の光学式ロータリエンコーダの実際の自動光軸補正のステップトラッキングは、次の通りである。
すなわち、前述のように、受光素子基板11をX−Yテーブル4を用いて、X方向とY方向に一定間隔毎にミクロン単位で移動させ、X,Y方向の全領域で各受光窓7〜10から検出した光量データ7a〜10aと各位置検出信号30a〜31aを制御装置40に記載させる。
Next, step tracking for actual automatic optical axis correction of the optical rotary encoder described above is as follows.
That is, as described above, the light receiving element substrate 11 is moved by the micron unit at regular intervals in the X direction and the Y direction using the XY table 4, and each light receiving window 7˜ The control unit 40 describes the light amount data 7a to 10a detected from 10 and the position detection signals 30a to 31a.

次に、前記制御装置40に記憶された前述の全てのデータを解析し、各受光窓7〜10からの光量データ7a〜10aが全て最大となるX方向及びY方向の位置を各位置検出信号30a,31aで検出する。
すなわち、前記枠中心13と光軸16とが一致すれば、各受光窓7〜10からの光量データ7a〜10aが最大、すなわち、各光量データ7a〜10aが互いに最も等しい状態(互いにほぼ等しい位置)を示している。
Next, all the above-mentioned data stored in the control device 40 are analyzed, and the positions in the X and Y directions where the light quantity data 7a to 10a from the respective light receiving windows 7 to 10 are all maximized are detected by the position detection signals. Detection is performed at 30a and 31a.
That is, if the frame center 13 and the optical axis 16 coincide with each other, the light quantity data 7a to 10a from the light receiving windows 7 to 10 are the maximum, that is, the light quantity data 7a to 10a are the most equal to each other (positions substantially equal to each other). ).

特開2010−151636号公報JP 2010-151636 A

従来の光学式エンコーダの受光体の位置調整機構は、以上のように構成されていたため、次のような課題が存在していた。
すなわち、図3に示す第1従来例の場合、本体4に対して台座1を手で動かし、固定用ネジ5,6で固定する構成であるため、精密な位置調整が困難であった。
また、図4及び図5で示される従来例の場合、受光素子基板11をX−Y方向に2軸制御するためのCPU40等の制御構成が複雑で、一般に使用するにはコスト上課題があった。
Since the conventional optical encoder position adjusting mechanism of the optical encoder is configured as described above, the following problems exist.
That is, in the case of the first conventional example shown in FIG. 3, since the pedestal 1 is moved by hand with respect to the main body 4 and fixed with the fixing screws 5 and 6, precise position adjustment is difficult.
In the case of the conventional example shown in FIGS. 4 and 5, the control configuration of the CPU 40 and the like for biaxially controlling the light receiving element substrate 11 in the XY direction is complicated, and there is a problem in cost in general use. It was.

本発明は、以上のような課題を解決するためになされたもので、特に、従来のように台座を手で直接移動させること、及び、X−Yテーブルを用いた複雑な機構を用いることなく、簡単に台座の微調整を行うことができるようにした光学式エンコーダの受光体の位置調整機構及び方法を提供することを目的とする。   The present invention has been made to solve the above problems, and in particular, without directly moving the pedestal by hand as in the prior art and without using a complicated mechanism using an XY table. It is an object of the present invention to provide a position adjustment mechanism and method for a light receiving body of an optical encoder that can easily perform fine adjustment of a pedestal.

本発明による光学式エンコーダの受光体の位置調整機構は、光学式エンコーダの発光体からの光を、本体上で直線方向に沿って往復移動自在な台座上に設けられた受光体で受光するようにした光学式エンコーダの受光体の位置調整機構において、前記台座の両端側に配置された第1貫通孔及び第2貫通孔と、前記第1貫通孔に設けられ前記本体に螺設された第1固定用ネジと、前記第2貫通孔に設けられ前記本体に螺設された第2固定用ネジと、前記本体上に設けられ前記台座の前記両端側に前記台座とは独立して位置する第1、第2保持体と、前記第1保持体の第1ネジ孔に螺入されその先端が前記台座の前記第1端に当接する第1ネジ体と、前記第2保持体の第2ネジ孔に螺入されその先端が前記台座の前記第2端に当接する第2ネジ体と、を備え、前記第1ネジ体又は及び前記第2ネジ体の回転により、前記台座を介して前記受光体を前記直線方向に沿って移動させる構成であり、また、前記第1貫通孔の孔径は前記第1固定用ネジの外径より大で、前記第2貫通孔の孔径は前記第2固定用ネジの外径より大である構成であり、また、光学式エンコーダの発光体からの光を、本体上で直線方向に沿って往復移動自在な台座上に設けられた受光体で受光するようにした光学式エンコーダの受光体の位置調整方法において、前記台座の両端側に配置された第1貫通孔及び第2貫通孔と、前記第1貫通孔に設けられ前記本体に螺設された第1固定用ネジと、前記第2貫通孔に設けられ前記本体に螺設された第2固定用ネジと、前記本体上に設けられ前記台座の前記両端側に前記台座とは独立して位置する第1、第2保持体と、前記第1保持体の第1ネジ孔に螺入されその先端が前記台座の前記第1端に当接する第1ネジ体と、前記第2保持体の第2ネジ孔に螺入されその先端が前記台座の前記第2端に当接する第2ネジ体と、を用い、前記第1ネジ体又は及び前記第2ネジ体の回転により、前記台座を介して前記受光体を前記直線方向に沿って移動させる 方法であり、また、前記第1貫通孔の孔径は前記第1固定用ネジの外径より大で、前記第2貫通孔の孔径は前記第2固定用ネジの外径より大である方法である。   The position adjusting mechanism of the light receiving body of the optical encoder according to the present invention receives light from the light emitting body of the optical encoder by a light receiving body provided on a pedestal that can reciprocate along the linear direction on the main body. In the optical encoder photoconductor position adjusting mechanism, the first through hole and the second through hole arranged on both ends of the pedestal, and the first through hole provided in the first through hole and screwed into the main body. 1 fixing screw, a second fixing screw provided in the second through-hole and screwed to the main body, and provided on the main body and positioned on both ends of the pedestal independently of the pedestal A first screw body, a first screw body screwed into the first screw hole of the first holding body, the tip of which contacts the first end of the pedestal, and a second of the second holding body. A second screw body screwed into the screw hole and having its tip abutting against the second end of the pedestal The light receiving body is moved along the linear direction via the pedestal by the rotation of the first screw body or the second screw body, and the hole diameter of the first through hole Is larger than the outer diameter of the first fixing screw, the hole diameter of the second through hole is larger than the outer diameter of the second fixing screw, and light from the light emitter of the optical encoder In the method of adjusting the position of the light receiver of the optical encoder that is received by the light receiver provided on the pedestal that is reciprocally movable along the linear direction on the main body, the second is disposed on both ends of the pedestal. A first through hole and a second through hole; a first fixing screw provided in the first through hole and screwed into the main body; and a second fixing provided in the second through hole and screwed into the main body. Screw and the pedestal on the both ends of the pedestal provided on the main body Are independently positioned first and second holding bodies, a first screw body screwed into a first screw hole of the first holding body and having a tip abutting against the first end of the pedestal, and the first 2 using a second screw body that is screwed into the second screw hole of the holding body and whose tip abuts against the second end of the pedestal, and by rotating the first screw body or the second screw body, In this method, the photoreceptor is moved along the linear direction via the pedestal, and the diameter of the first through hole is larger than the outer diameter of the first fixing screw. In this method, the hole diameter is larger than the outer diameter of the second fixing screw.

本発明による光学式エンコーダの受光体の位置調整機構及び方法は、以上のように構成されているため、次のような効果を得ることができる。
すなわち、光学式エンコーダの発光体からの光を、本体上で直線方向に沿って往復移動自在な台座上に設けられた受光体で受光するようにした光学式エンコーダの受光体の位置調整機構及び方法において、前記台座の両端側に配置された第1貫通孔及び第2貫通孔と、前記第1貫通孔に設けられ前記本体に螺設された第1固定用ネジと、前記第2貫通孔に設けられ前記本体に螺設された第2固定用ネジと、前記本体上に設けられ前記台座の前記両端側に前記台座とは独立して位置する第1、第2保持体と、前記第1保持体の第1ネジ孔に螺入されその先端が前記台座の前記第1端に当接する第1ネジ体と、前記第2保持体の第2ネジ孔に螺入されその先端が前記台座の前記第2端に当接する第2ネジ体と、を備え、前記第1ネジ体又は及び前記第2ネジ体の回転により、前記台座を介して前記受光体を前記直線方向に沿って移動させることにより、精密な受光体の位置調整がネジ体の回転のみで簡単にできることにより、従来よりも位置調整に要する時間を大幅に短縮化でき、かつ、装置に取付けるエンコーダの受光体の位置調整を容易化できる。
また、前記第1貫通孔の孔径は前記第1固定用ネジの外径より大で、前記第2貫通孔の孔径は前記第2固定用ネジの外径より大であることにより、本体に対する台座の移動範囲を自在に設定することができ、受光体の位置決めを自在に調整することができる。
Since the optical encoder position adjusting mechanism and method according to the present invention are configured as described above, the following effects can be obtained.
That is, the light receiving member position adjusting mechanism of the optical encoder configured to receive light from the light emitting member of the optical encoder by a light receiving member provided on a base that is reciprocally movable along a linear direction on the main body, and In the method, a first through hole and a second through hole disposed on both ends of the pedestal, a first fixing screw provided in the first through hole and screwed into the main body, and the second through hole A second fixing screw provided on the main body and screwed on the main body; first and second holding bodies provided on the main body and positioned independently of the pedestal on the both end sides of the pedestal; A first screw body screwed into a first screw hole of one holding body and a tip of the first screw body coming into contact with the first end of the pedestal; and a tip screwed into a second screw hole of the second holding body; A second screw body abutting against the second end of the first screw body or the front By moving the light receiver along the linear direction through the pedestal by the rotation of the second screw body, precise position adjustment of the light receiver can be easily performed only by the rotation of the screw body. The time required for position adjustment can be greatly shortened, and the position adjustment of the photoreceptor of the encoder attached to the apparatus can be facilitated.
Further, the hole diameter of the first through hole is larger than the outer diameter of the first fixing screw, and the hole diameter of the second through hole is larger than the outer diameter of the second fixing screw. Can be freely set, and the positioning of the photoreceptor can be freely adjusted.

本発明による光学式エンコーダの受光体の位置調整機構を示す平面図である。It is a top view which shows the position adjustment mechanism of the photoreceptor of the optical encoder by this invention. 図1の要部の断面図である。It is sectional drawing of the principal part of FIG. 従来の光学式エンコーダの受光体の位置調整機構を示す平面図である。It is a top view which shows the position adjustment mechanism of the light receiver of the conventional optical encoder. 従来の光学式エンコーダの受光素子の受光調整機構を示す構成図である。It is a block diagram which shows the light reception adjustment mechanism of the light receiving element of the conventional optical encoder. 図4の要部を示す構成図である。It is a block diagram which shows the principal part of FIG.

本発明による光学式エンコーダの受光体の位置調整機構及び方法は、従来のように台座を手で直接移動させること、及び、X−Yテーブルを用いた複雑な機構を用いることなく、一対のネジ体を用いて簡単に台座の微調整を行うことである。   The position adjustment mechanism and method of the optical encoder of the optical encoder according to the present invention includes a pair of screws without directly moving the pedestal by hand as in the prior art and without using a complicated mechanism using an XY table. It is a simple fine adjustment of the pedestal using the body.

以下、図面と共に本発明による光学式エンコーダの受光体の位置調整機構及び方法の好適な実施の形態について説明する。
尚、従来例の図2と図3と同一又は同等部分には、同一符号を用いて説明すると共に、前述の従来例で用いた図2の構成は、図1及び図3の構成の同一構成による各固定用ネジ5,6及び各貫通孔7,8の構成であるため、図2の構成は、図1の構成に援用する。
DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments of a light receiving body position adjusting mechanism and method of an optical encoder according to the present invention will be described with reference to the drawings.
2 and FIG. 3 of the conventional example will be described using the same reference numerals, and the configuration of FIG. 2 used in the conventional example is the same as the configuration of FIG. 1 and FIG. 2 has the configuration of the fixing screws 5 and 6 and the through holes 7 and 8, and the configuration of FIG. 2 is used for the configuration of FIG.

図1において、符号1で示されるものは、装置等の本体4上において摺動自在に載置された台座であり、この台座1上には受光体2を有する基板3が所定位置に固定されている。
前記台座1の第1端1A側には第1貫通孔7と第1固定用ネジ5が設けられ、前記台座1の第2端1B側には第2貫通孔8と第2固定用ネジ6が設けられている。
In FIG. 1, what is indicated by reference numeral 1 is a pedestal that is slidably mounted on a main body 4 of the apparatus or the like. On this pedestal 1, a substrate 3 having a photoreceptor 2 is fixed at a predetermined position. ing.
A first through hole 7 and a first fixing screw 5 are provided on the first end 1A side of the pedestal 1, and a second through hole 8 and a second fixing screw 6 are provided on the second end 1B side of the pedestal 1. Is provided.

前記第1、第2固定用ネジ5,6と前記第1、第2貫通孔7,8の構成は、前述の図2の構成と同一であるため、ここでは図2の構成を援用し、その説明は省略する。
前記台座1の第1端1A側及び第2端1B側には、前記本体4上に配設された第1、第2保持体50,51が一対の取付ネジ52,53によって固定され、前記各保持体50,51は、前記第1端1A及び第2端1Bに対して隙間Gだけ離間して配設されている。
The configurations of the first and second fixing screws 5 and 6 and the first and second through holes 7 and 8 are the same as the configuration of FIG. 2 described above. The description is omitted.
On the first end 1A side and the second end 1B side of the pedestal 1, first and second holding bodies 50, 51 disposed on the main body 4 are fixed by a pair of mounting screws 52, 53, and Each holding body 50, 51 is disposed with a gap G away from the first end 1A and the second end 1B.

前記第1保持体50には第1ネジ孔54が形成されており、前記第1ネジ孔54内には第1ネジ体55が螺入され、この第1ネジ体55の先端55aは前記第1端1Aに当接している。
また、前記第2保持体51には第2ネジ孔56が形成されており、前記第2ネジ孔56内には第2ネジ体57が螺入され、この第2ネジ体57の先端57aは前記第2端1Bに当接している。
A first screw hole 54 is formed in the first holding body 50, and a first screw body 55 is screwed into the first screw hole 54, and a tip 55 a of the first screw body 55 is formed in the first screw body 55. It is in contact with one end 1A.
A second screw hole 56 is formed in the second holding body 51, and a second screw body 57 is screwed into the second screw hole 56, and a tip 57a of the second screw body 57 is It abuts on the second end 1B.

前述の図1の構成において、図示しないエンコーダの発光部から出射された光は、図示しないスリットを介して前記受光体2に照射され、この状態で第1ネジ体55と第2ネジ体56を回転させると、前記台座1を直線方向Aに沿って微動させることができる。
前述の台座1の微動(各貫通孔7,8の範囲内)中に、前記受光体2から出力されるエンコーダ信号が最も高出力の場所で各ネジ体55,57をポッティン剤等で固定することができる。
In the configuration of FIG. 1 described above, light emitted from a light emitting portion of an encoder (not shown) is irradiated to the light receiving body 2 through a slit (not shown), and in this state, the first screw body 55 and the second screw body 56 are passed through. When rotated, the pedestal 1 can be finely moved along the linear direction A.
During the fine movement of the pedestal 1 (within the range of the through holes 7 and 8), the screw bodies 55 and 57 are fixed with a potting agent or the like at a place where the encoder signal output from the light receiving body 2 is the highest output. be able to.

また、図1の構成において、図示していないが、図1の構成を十字状に積層させると、X−Y方向である2軸方向の位置調整を行う機構とすることができる。   Although not shown in the configuration of FIG. 1, when the configuration of FIG. 1 is stacked in a cross shape, a mechanism for adjusting the position in the biaxial direction, which is the XY direction, can be obtained.

尚、前述の本発明による光学式エンコーダの受光体の位置調整機構及び方法の要旨とするところは、以下の通りである。
すなわち、光学式エンコーダの発光体からの光を、本体4上で直線方向Aに沿って往復移動自在な台座1上に設けられた受光体2で受光するようにした光学式エンコーダの受光体の位置調整機構において、前記台座1の両端1A,1B側に配置された第1貫通孔7及び第2貫通孔8と、前記第1貫通孔7に設けられ前記本体4に螺設された第1固定用ネジ5と、前記第2貫通孔8に設けられ前記本体4に螺設された第2固定用ネジ6と、前記本体4上に設けられ前記台座1の前記両端1A,1B側に前記台座1とは独立して位置する第1、第2保持体50,51と、前記第1保持体50の第1ネジ孔54に螺入されその先端55aが前記台座1の前記第1端1Aに当接する第1ネジ体55と、前記第2保持体51の第2ネジ孔56に螺入されその先端57aが前記台座1の前記第2端1Bに当接する第2ネジ体57と、を備え、前記第1ネジ体55又は及び前記第2ネジ体57の回転により、前記台座1を介して前記受光体2を前記直線方向Aに沿って移動させる構成としたことを特徴とする光学式エンコーダの受光体の位置調整機構と方法であり、また、前記第1貫通孔7の孔径Dは前記第1固定用ネジ5の外径Dより大で、前記第2貫通孔8の孔径Dは前記第2固定用ネジ6の外径Dより大であることを特徴とする請求項1記載の光学式エンコーダの受光体の位置調整機構及び方法である。
The gist of the position adjusting mechanism and method of the light receiving body of the optical encoder according to the present invention is as follows.
In other words, the light from the light emitter of the optical encoder is received by the light receiver 2 provided on the pedestal 1 that can reciprocate along the linear direction A on the main body 4. In the position adjustment mechanism, a first through hole 7 and a second through hole 8 disposed on both ends 1A and 1B side of the pedestal 1 and a first screw provided in the main body 4 provided in the first through hole 7. The fixing screw 5, the second fixing screw 6 provided in the second through hole 8 and screwed to the main body 4, and the both ends 1 </ b> A and 1 </ b> B of the pedestal 1 provided on the main body 4 on the side of the both ends First and second holding bodies 50 and 51 that are positioned independently of the pedestal 1 and a first screw hole 54 of the first holding body 50 that is screwed into the first end 1 </ b> A of the pedestal 1. Are screwed into the first screw body 55 abutting on the second screw hole 56 and the second screw hole 56 of the second holding body 51. A second screw body 57 that abuts against the second end 1B of the pedestal 1, and the rotation of the first screw body 55 or the second screw body 57 causes the above-mentioned via the pedestal 1. A light receiving body position adjusting mechanism and method for an optical encoder, wherein the light receiving body 2 is moved along the linear direction A, and the hole diameter D of the first through hole 7 is the first diameter of the first through hole 7. 2. The optical device according to claim 1, wherein the outer diameter D 1 of the first fixing screw 5 is larger than the outer diameter D of the second fixing screw 6. It is the position adjustment mechanism and method of the photoreceptor of an encoder.

本発明による光学式エンコーダの受光体の位置調整機構及び方法は、受光体を有する台座を、一対の保持体に設けたネジ体の先端の突出位置を変えることにより簡単かつ高精度に受光体を最適位置に位置決めすることができる。   According to the optical encoder light receiving member position adjusting mechanism and method of the present invention, the light receiving member can be easily and highly accurately adjusted by changing the protruding position of the tip of the screw body provided on the pair of holding members. It can be positioned at the optimum position.

1 台座
1A 第1端
1B 第2端
2 受光体
3 基板
4 本体
5,6 第1、第2固定ネジ
7,8 第1、第2貫通孔
50 第1保持体
51 第2保持体
52,53 取付ネジ
54,56 第1、第2ネジ孔
55,57 第1、第2ネジ体
55a,57a 先端
A 直線方向
D 孔径
外径
G 隙間
DESCRIPTION OF SYMBOLS 1 Base 1A 1st end 1B 2nd end 2 Photoreceptor 3 Board | substrate 4 Main body 5,6 1st, 2nd fixing screw 7,8 1st, 2nd through-hole 50 1st holding body 51 2nd holding body 52,53 Mounting screws 54 and 56 First and second screw holes 55 and 57 First and second screw bodies 55a and 57a Tip A Linear direction D Hole diameter D 1 Outer diameter G Gap

Claims (4)

光学式エンコーダの発光体からの光を、本体(4)上で直線方向(A)に沿って往復移動自在な台座(1)上に設けられた受光体(2)で受光するようにした光学式エンコーダの受光体の位置調整機構において、
前記台座(1)の両端(1A,1B)側に配置された第1貫通孔(7)及び第2貫通孔(8)と、前記第1貫通孔(7)に設けられ前記本体(4)に螺設された第1固定用ネジ(5)と、前記第2貫通孔(8)に設けられ前記本体(4)に螺設された第2固定用ネジ(6)と、
前記本体(4)上に設けられ前記台座(1)の前記両端(1A,1B)側に前記台座(1)とは独立して位置する第1、第2保持体(50,51)と、前記第1保持体(50)の第1ネジ孔(54)に螺入されその先端(55a)が前記台座(1)の前記第1端(1A)に当接する第1ネジ体(55)と、前記第2保持体(51)の第2ネジ孔(56)に螺入されその先端(57a)が前記台座(1)の前記第2端(1B)に当接する第2ネジ体(57)と、を備え、
前記第1ネジ体(55)又は及び前記第2ネジ体(57)の回転により、前記台座(1)を介して前記受光体(2)を前記直線方向(A)に沿って移動させる構成としたことを特徴とする光学式エンコーダの受光体の位置調整機構。
An optical system that receives light from the light emitter of the optical encoder by the light receiver (2) provided on the base (1) that can reciprocate along the linear direction (A) on the main body (4). In the position adjustment mechanism of the photoreceptor of the encoder,
A first through hole (7) and a second through hole (8) disposed on both ends (1A, 1B) side of the pedestal (1), and the main body (4) provided in the first through hole (7). A first fixing screw (5) screwed in the second through hole (8) and a second fixing screw (6) screwed in the main body (4);
First and second holding bodies (50, 51) provided on the main body (4) and positioned independently of the pedestal (1) on the both ends (1A, 1B) side of the pedestal (1); A first screw body (55) screwed into a first screw hole (54) of the first holding body (50) and having a tip (55a) abutting against the first end (1A) of the pedestal (1); The second screw body (57) which is screwed into the second screw hole (56) of the second holding body (51) and whose tip (57a) abuts on the second end (1B) of the base (1). And comprising
A structure in which the light receiving body (2) is moved along the linear direction (A) via the base (1) by the rotation of the first screw body (55) or the second screw body (57); An optical encoder photoconductor position adjusting mechanism characterized by the above.
前記第1貫通孔(7)の孔径(D)は前記第1固定用ネジ(5)の外径(D1)より大で、前記第2貫通孔(8)の孔径(D)は前記第2固定用ネジ(6)の外径(D)より大であることを特徴とする請求項1記載の光学式エンコーダの受光体の位置調整機構。 The hole diameter (D) of the first through hole (7) is larger than the outer diameter (D 1 ) of the first fixing screw (5), and the hole diameter (D) of the second through hole (8) is the first diameter. 2. The light receiving body position adjusting mechanism of an optical encoder according to claim 1, wherein the position is larger than an outer diameter (D) of the fixing screw (6). 光学式エンコーダの発光体からの光を、本体(4)上で直線方向(A)に沿って往復移動自在な台座(1)上に設けられた受光体(2)で受光するようにした光学式エンコーダの受光体の位置調整方法において、
前記台座(1)の両端(1A,1B)側に配置された第1貫通孔(7)及び第2貫通孔(8)と、前記第1貫通孔(7)に設けられ前記本体(4)に螺設された第1固定用ネジ(5)と、前記第2貫通孔(8)に設けられ前記本体(4)に螺設された第2固定用ネジ(6)と、
前記本体(4)上に設けられ前記台座(1)の前記両端(1A,1B)側に前記台座(1)とは独立して位置する第1、第2保持体(50,51)と、前記第1保持体(50)の第1ネジ孔(54)に螺入されその先端(55a)が前記台座(1)の前記第1端(1A)に当接する第1ネジ体(55)と、前記第2保持体(51)の第2ネジ孔(56)に螺入されその先端(57a)が前記台座(1)の前記第2端(1B)に当接する第2ネジ体(57)と、を用い、
前記第1ネジ体(55)又は及び前記第2ネジ体(57)の回転により、前記台座(1)を介して前記受光体(2)を前記直線方向(A)に沿って移動させるようにしたことを特徴とする光学式エンコーダの受光体の位置調整方法。
An optical system that receives light from the light emitter of the optical encoder by the light receiver (2) provided on the base (1) that can reciprocate along the linear direction (A) on the main body (4). In the method of adjusting the position of the photoreceptor of the encoder,
A first through hole (7) and a second through hole (8) disposed on both ends (1A, 1B) side of the pedestal (1), and the main body (4) provided in the first through hole (7). A first fixing screw (5) screwed in the second through hole (8) and a second fixing screw (6) screwed in the main body (4);
First and second holding bodies (50, 51) provided on the main body (4) and positioned independently of the pedestal (1) on the both ends (1A, 1B) side of the pedestal (1); A first screw body (55) screwed into a first screw hole (54) of the first holding body (50) and having a tip (55a) abutting against the first end (1A) of the pedestal (1); The second screw body (57) which is screwed into the second screw hole (56) of the second holding body (51) and whose tip (57a) abuts on the second end (1B) of the base (1). And
By rotating the first screw body (55) or the second screw body (57), the light receiver (2) is moved along the linear direction (A) via the base (1). A method of adjusting the position of a photoreceptor of an optical encoder, characterized in that:
前記第1貫通孔(7)の孔径(D)は前記第1固定用ネジ(5)の外径(D1)より大で、前記第2貫通孔(8)の孔径(D)は前記第2固定用ネジ(6)の外径(D)より大であることを特徴とする請求項3記載の光学式エンコーダの受光体の位置調整方法。 The hole diameter (D) of the first through hole (7) is larger than the outer diameter (D 1 ) of the first fixing screw (5), and the hole diameter (D) of the second through hole (8) is the first diameter. 4. The method of adjusting the position of a light receiving body of an optical encoder according to claim 3, wherein the outer diameter (D) of the fixing screw (6) is larger.
JP2015050613A 2015-03-13 2015-03-13 Optical encoder photoreceptor position adjustment mechanism and method Active JP6543789B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015050613A JP6543789B2 (en) 2015-03-13 2015-03-13 Optical encoder photoreceptor position adjustment mechanism and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015050613A JP6543789B2 (en) 2015-03-13 2015-03-13 Optical encoder photoreceptor position adjustment mechanism and method

Publications (2)

Publication Number Publication Date
JP2016170088A true JP2016170088A (en) 2016-09-23
JP6543789B2 JP6543789B2 (en) 2019-07-17

Family

ID=56982419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015050613A Active JP6543789B2 (en) 2015-03-13 2015-03-13 Optical encoder photoreceptor position adjustment mechanism and method

Country Status (1)

Country Link
JP (1) JP6543789B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4810415B1 (en) * 1968-03-30 1973-04-03
JPS5433657U (en) * 1977-08-10 1979-03-05
JPS6130715A (en) * 1984-07-24 1986-02-13 Yaskawa Electric Mfg Co Ltd Transmission type optical encoder
JPH1062831A (en) * 1996-08-22 1998-03-06 Sony Corp Position sensor for image blur correcting optical system
JP2000055697A (en) * 1998-08-07 2000-02-25 Yaskawa Electric Corp Gap adjusting mechanism of optical encoder
US20030052261A1 (en) * 2001-09-19 2003-03-20 Chapman Alexander Lloyd Optical encoder assembly
JP2003315087A (en) * 2002-04-26 2003-11-06 Mitsutoyo Corp Detector position adjustment mechanism
JP2005274479A (en) * 2004-03-26 2005-10-06 Koyo Electronics Ind Co Ltd Optical rotary encoder
JP2008298683A (en) * 2007-06-01 2008-12-11 Canon Inc Element positioning mechanism and encoder using the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4810415B1 (en) * 1968-03-30 1973-04-03
JPS5433657U (en) * 1977-08-10 1979-03-05
JPS6130715A (en) * 1984-07-24 1986-02-13 Yaskawa Electric Mfg Co Ltd Transmission type optical encoder
JPH1062831A (en) * 1996-08-22 1998-03-06 Sony Corp Position sensor for image blur correcting optical system
JP2000055697A (en) * 1998-08-07 2000-02-25 Yaskawa Electric Corp Gap adjusting mechanism of optical encoder
US20030052261A1 (en) * 2001-09-19 2003-03-20 Chapman Alexander Lloyd Optical encoder assembly
JP2003315087A (en) * 2002-04-26 2003-11-06 Mitsutoyo Corp Detector position adjustment mechanism
JP2005274479A (en) * 2004-03-26 2005-10-06 Koyo Electronics Ind Co Ltd Optical rotary encoder
JP2008298683A (en) * 2007-06-01 2008-12-11 Canon Inc Element positioning mechanism and encoder using the same

Also Published As

Publication number Publication date
JP6543789B2 (en) 2019-07-17

Similar Documents

Publication Publication Date Title
EP2682716A2 (en) Encoder and motor device
US11404938B2 (en) Angle detection apparatus, rotation amount specification unit, and rotary driving unit
US6215605B1 (en) Driving device
DE112013006119B4 (en) Optical scanner and projector
JP2003316440A (en) Stage apparatus
JP2011113063A (en) Lens apparatus
JP2016170088A (en) Mechanism and method for adjusting position of photodetector of optical encoder
EP3770494B1 (en) Disturbance sensing system for an automated moving-mirror luminaire
JP2014025713A (en) Encoder, movement information detection method, driving device, robotic device and power steering device
JP2020165851A (en) Absolute encoder
JP4374060B1 (en) Magnetic position detection method and position detection sensor
JP4828159B2 (en) Infrared tracking device
CN111774721A (en) Optical axis angle adjusting device and method for wave plate
JP2009175594A (en) Camera shake correction device
JP2010151636A (en) Optical rotary encoder
JP4279243B2 (en) Laser diode adjustment fixing mechanism
JP2010096701A (en) Inclination detector, and laser marker
KR100402179B1 (en) Tilt Correcting System of Dual Gantries
CN218728015U (en) Focusing system for improving stability of optical axis and beam divergence angle of focusing laser range finder
JP4795403B2 (en) Linear gauge
JP2010145333A (en) Rotary encoder
JP3938546B2 (en) Mounting method and processing apparatus
KR101505808B1 (en) Camera module having improved optical axis alignment
JP2010107234A (en) Linear scale
JP5965592B2 (en) Alignment stage device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181009

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190416

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190416

R150 Certificate of patent or registration of utility model

Ref document number: 6543789

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250