JP2016170069A - Snow ice monitoring device - Google Patents

Snow ice monitoring device Download PDF

Info

Publication number
JP2016170069A
JP2016170069A JP2015050304A JP2015050304A JP2016170069A JP 2016170069 A JP2016170069 A JP 2016170069A JP 2015050304 A JP2015050304 A JP 2015050304A JP 2015050304 A JP2015050304 A JP 2015050304A JP 2016170069 A JP2016170069 A JP 2016170069A
Authority
JP
Japan
Prior art keywords
snow
unit
transmission
ice
electromagnetic wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015050304A
Other languages
Japanese (ja)
Other versions
JP6540992B2 (en
Inventor
淳 神田
Atsushi Kanda
神田  淳
一孝 舘山
Kazutaka Tateyama
一孝 舘山
康浩 原田
Yasuhiro Harada
康浩 原田
宏和 大前
Hirokazu Omae
宏和 大前
俊子 三宅
Toshiko Miyake
俊子 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SENTENCIA CORP
Japan Aerospace Exploration Agency JAXA
Kitami Institute of Technology NUC
Original Assignee
SENTENCIA CORP
Japan Aerospace Exploration Agency JAXA
Kitami Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SENTENCIA CORP, Japan Aerospace Exploration Agency JAXA, Kitami Institute of Technology NUC filed Critical SENTENCIA CORP
Priority to JP2015050304A priority Critical patent/JP6540992B2/en
Publication of JP2016170069A publication Critical patent/JP2016170069A/en
Application granted granted Critical
Publication of JP6540992B2 publication Critical patent/JP6540992B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a snow ice monitoring device capable of being embedded into a road surface and a building and capable of determining the presence or absence of the snow and the like (snow, ice, water, mud and the like) locally adhered on the road surface and the surface of the building and capable of monitoring a state relating to the detailed depth and quality of the snow accumulation.SOLUTION: A snow ice monitoring device includes: a transmission unit 120 having a transmitter 121 for transmitting an electromagnetic wave from the one side to the other side of a transmission member 110; and a reception unit 130 having a receiver 131 for detecting the electromagnetic wave incident from the other side to the one side of the transmission member 110. The transmission unit 120 is configured to be capable of transmitting a plurality of electromagnetic waves each different in wavelength. The reception unit 130 is configured to be capable of detecting the intensity of scattered waves of the electromagnetic waves different in position.SELECTED DRAWING: Figure 1

Description

本発明は、透過部材と、透過部材の一方側から他方側に向けて電磁波を発信する発信機を有する発信ユニットと、透過部材の他方側から一方側に入射する電磁波を検知する受信機を有する受信ユニットとを備えた雪氷モニタリング装置に関し、透過部材の上部の積雪や凍結の状態や程度の検出に好適な雪氷モニタリング装置に関する。   The present invention has a transmission member, a transmission unit having a transmitter that transmits electromagnetic waves from one side of the transmission member toward the other side, and a receiver that detects electromagnetic waves incident on one side from the other side of the transmission member. The present invention relates to a snow and ice monitoring apparatus including a receiving unit, and more particularly to a snow and ice monitoring apparatus suitable for detecting the state and degree of snow accumulation and freezing above a transmission member.

道路面や滑走路面(以降「路面」と言う)の着氷・着雪状態をモニタリングすることは、安全管理上、重要である。
このため、路面上の積雪の深さを外部からの超音波の反射を利用して計測する技術が公知であり、外部からマイクロ波を利用して積雪等の状態を計測する技術が公知である。
しかしながら、外部(上方等)にモニタリング装置を設置する場合、設置スペースの確保、モニタリング装置への自然環境(雪、雨、風等)による影響、外部からの異物の衝突等によるモニタリング装置自体の破損が問題となる。
It is important for safety management to monitor the icing and snowing conditions on the road surface and the runway surface (hereinafter referred to as “road surface”).
For this reason, a technique for measuring the depth of snow on the road surface by using reflection of ultrasonic waves from outside is known, and a technique for measuring the state of snow by using microwaves from outside is known. .
However, when the monitoring device is installed outside (upward, etc.), the installation space is secured, the monitoring device itself is affected by the natural environment (snow, rain, wind, etc.), the collision of foreign matter, etc. Is a problem.

また、空港の滑走路では、航空機の離着陸の安全性に影響を与えるため、滑走路やその周囲の上方にモニタリング装置そのものを設置することには大きな制限がある。
さらに、航空機の機体表面の着氷・着雪状態のモニタリングにおいても、モニタリング装置を機体外側に設置することは、航空機の耐空性の観点から非常に困難である。
そこで、路面や構造物の内部に光を含む電磁波の発信装置を埋め込み、表面に向かって光を含む電磁波を発信できるようにし、電磁波の散乱波を検知するための受信装置を、路面や構造物の内部に埋め込んだ発信装置のそばに設置することで、外部設置することの問題点を解決したモニタリング装置が公知である(例えば、特許文献1、特許文献2、特許文献3等参照。)。
On the airport runway, since it affects the safety of aircraft takeoff and landing, there are significant restrictions on installing the monitoring device itself above the runway and its surroundings.
Further, in monitoring the icing / snow accretion state on the aircraft body surface, it is very difficult to install the monitoring device outside the aircraft body from the viewpoint of air resistance of the aircraft.
Therefore, an electromagnetic wave transmitting device including light is embedded in the road surface or the structure so that the electromagnetic wave including light can be transmitted toward the surface, and a receiving device for detecting the scattered wave of the electromagnetic wave is provided. There are known monitoring devices that solve the problems of external installation by being installed near a transmitting device embedded inside (see, for example, Patent Literature 1, Patent Literature 2, and Patent Literature 3).

特開平9−113636号公報Japanese Patent Laid-Open No. 9-116366 特開平10−267837号公報JP-A-10-267837 特開2000−258554号公報JP 2000-258554 A

特許文献1等で公知のモニタリング装置は、発信ユニット(投光器4)から発信した光の反射光を受信ユニット(受光器5)により検知するものであり、受光レベルを所定の閾値と比較して融雪装置の動作をオン・オフするものである。
この原理で融雪が必要な積雪か否かをある程度検知することは可能となるが、詳細な積雪の深さや質に関する状態をモニタリングすることはできなかった。
特許文献2等で公知のモニタリング装置は、波長の異なる複数の電磁波(赤外線)の反射率をセンサにより検出するものであり、それらの値から雪の含水率を測定するものである。
この原理で積雪の質に関しての情報をある程度得ることは可能であるが、積雪の深さをモニタリングすることはできず、また、雪以外の氷、水、泥等を区別して検出することもできず、詳細な質に関する状態をモニタリングすることはできなかった。
特許文献3等で公知のモニタリング装置は、2つの受信ユニット(光量センサー1)の一方で外部からの自然光の光量を検知し、他方で発信ユニット(発光体11)から発信した光の反射光を含む光量を検知し、それら2つの情報から積雪の有無を判断するものである。
この原理で積雪の有無を判断することは可能となるが、詳細な積雪の深さや質に関する状態をモニタリングすることはできなかった。
A monitoring device known in Patent Literature 1 and the like detects reflected light of light transmitted from a transmission unit (light projector 4) by a reception unit (light receiver 5), compares the light reception level with a predetermined threshold value, and melts snow. Turns on / off the operation of the device.
Although it is possible to detect to some extent whether or not the snow melt requires snow melting based on this principle, it has not been possible to monitor the detailed conditions regarding the depth and quality of the snow.
A monitoring device known in Patent Document 2 or the like detects the reflectance of a plurality of electromagnetic waves (infrared rays) having different wavelengths with a sensor, and measures the moisture content of snow from these values.
Although it is possible to obtain some information about the quality of snow with this principle, it is not possible to monitor the depth of snow, and it is also possible to distinguish and detect ice, water, mud, etc. other than snow. The detailed quality status could not be monitored.
A known monitoring device in Patent Document 3 or the like detects the amount of natural light from the outside of one of the two receiving units (light amount sensor 1) and the reflected light of the light transmitted from the transmitting unit (light emitter 11) on the other side. The amount of light included is detected, and the presence or absence of snow is determined from these two pieces of information.
Although it is possible to judge the presence or absence of snow on this principle, it was not possible to monitor detailed conditions regarding the depth and quality of snow.

そこで、本発明は前述した課題を解決するものであり、路面や構造物の内部に埋め込むことが可能であり、路面や構造物の表面に局所的に付着した雪等(雪・氷・水・泥など)の有無を判定できるとともに、詳細な積雪の深さや質に関する状態をモニタリングすることが可能な雪氷モニタリング装置を提供することを目的とする。   Therefore, the present invention solves the above-mentioned problems, and can be embedded in the road surface or the structure, such as snow locally attached to the road surface or the surface of the structure (snow, ice, water, An object of the present invention is to provide a snow and ice monitoring device capable of determining the presence or absence of mud and the like, and capable of monitoring detailed conditions relating to snow depth and quality.

本発明に係る雪氷モニタリング装置は、透過部材と、前記透過部材の一方側から他方側に向けて電磁波を発信する発信機を有する発信ユニットと、前記透過部材の他方側から一方側に入射する電磁波を検知する受信機を有する受信ユニットとを備えた雪氷モニタリング装置であって、前記発信ユニット及び受信ユニットが、前記発信機から発信された電磁波の他方側から一方側に入射する散乱波を前記受信機で検知するように配置され、前記発信ユニットが、波長の異なる複数の電磁波を発信するように構成され、前記受信ユニットが、異なる位置の前記電磁波の散乱波の強度を検出するように構成されていることにより、前記課題を解決するものである。
なお、本明細書中の「電磁波」は、可視光やさらに波長に短いものも含む。
The snow and ice monitoring apparatus according to the present invention includes a transmission member, a transmission unit having a transmitter that transmits electromagnetic waves from one side of the transmission member toward the other side, and an electromagnetic wave incident on one side from the other side of the transmission member. A snow ice monitoring apparatus comprising a receiver unit having a receiver for detecting the scattered wave incident on one side from the other side of the electromagnetic wave transmitted from the transmitter by the transmitter unit and the receiver unit. The transmitting unit is configured to transmit a plurality of electromagnetic waves having different wavelengths, and the receiving unit is configured to detect the intensity of the scattered waves of the electromagnetic waves at different positions. Therefore, the problem is solved.
In addition, “electromagnetic wave” in the present specification includes visible light and those having a shorter wavelength.

請求項1に係る雪氷モニタリング装置によれば、発信ユニットが、波長の異なる複数の電磁波を発信可能に構成され、受信ユニットが、異なる位置の電磁波の散乱波の強度を検出するように構成されていることにより、一次元あるいは二次元的な強度分布を検出することで、路面または構造物の表面に局所的に付着した雪等(雪・氷・水・泥など)の有無を判定でき、正確に積雪に関する情報のみを抽出することが可能となり、異なる波長毎の散乱波によって、深さや質を分離して高精度に求めることでき、詳細な積雪の深さや質に関する状態をモニタリングすることが可能となる。
また、発信ユニットと受信ユニットを一体とすることで、装置全体を小型化することが可能であり、設置場所の選択の自由度が向上するとともに、路面や構造物の内部等の必要な箇所に埋め込むことが可能となる。
また、小型化することで、表面の平均的な状態の計測ではなく、局所的な計測によって必要な箇所で高精度のモニタリングを実現できる。
さらに、路面や構造物の内部等の必要な箇所に埋め込むことで、外部の自然環境によるモニタリングの精度に対する影響を排除でき、外部からの異物の衝突等による破損等を防止することができる。
According to the snow and ice monitoring apparatus according to claim 1, the transmitting unit is configured to be able to transmit a plurality of electromagnetic waves having different wavelengths, and the receiving unit is configured to detect the intensity of the scattered waves of the electromagnetic waves at different positions. By detecting the one-dimensional or two-dimensional intensity distribution, it is possible to determine the presence or absence of snow (snow, ice, water, mud, etc.) locally attached to the road surface or the surface of the structure. It is possible to extract only the information about snow cover, and the depth and quality can be obtained with high precision by separating the scattered waves at different wavelengths, and the detailed condition of snow depth and quality can be monitored. It becomes.
In addition, by integrating the transmitting unit and the receiving unit, it is possible to reduce the size of the entire device, improving the degree of freedom in selecting the installation location, and at the required locations such as the road surface and inside the structure. It becomes possible to embed.
In addition, by miniaturization, high-precision monitoring can be realized at a necessary place by local measurement, not by measurement of the average state of the surface.
Furthermore, by embedding it in a necessary place such as the road surface or inside the structure, it is possible to eliminate the influence on the monitoring accuracy due to the external natural environment, and it is possible to prevent damage due to collision of foreign matter from the outside.

本請求項2に記載の構成によれば、発信ユニットが、複数の発信機を備えることにより、さらに容易に異なる波長の電磁波を発信することが可能となる。
また、受信ユニットが、複数の受信機を備えることにより、さらに容易に一次元あるいは二次元的な強度分布を検出することが可能となる。
本請求項3に記載の構成によれば、複数の受信機が、異なる位置に配置されていることにより、さらに広範囲に一次元あるいは二次元的な強度分布を検出することが可能となる。
本請求項4に記載の構成によれば、発信ユニットが、位置及び姿勢の少なくとも一方を変更可能な発信調整機構を備えることにより、設置環境や、積雪等の状態に応じて、電磁波を最適に発信することで、より高精度な計測分解能を得ることができ、詳細な積雪の深さや質に関する状態を、さらに高精度にモニタリングすることが可能となる。
また、受信ユニットが、位置及び姿勢の少なくとも一方を変更可能な受信調整機構を備えることにより、設置環境や、積雪等の状態に応じて、電磁波の一次元あるいは二次元的な強度分布を最適に検出することで、より高精度な計測分解能を得ることができ、詳細な積雪の深さや質に関する状態を、さらに高精度にモニタリングすることが可能となる。
本請求項5に記載の構成によれば、発信ユニットが、指向性を有する電磁波を発信する発信機を備えていることにより、発信ユニットから直接検出ユニットに到達する電磁波の影響を抑制し、詳細な積雪の深さや質に関する状態を、さらに高精度にモニタリングすることが可能となる。
指向性を有する電磁波を発信する発信機としては、電磁波自体に指向性を持つレーザー光等を発信するものや、偏向板や並行光化レンズ等の指向性フィルターを装着したものがあげられる。
According to the configuration of the second aspect of the invention, the transmission unit includes a plurality of transmitters, so that it is possible to transmit electromagnetic waves with different wavelengths more easily.
Further, since the receiving unit includes a plurality of receivers, it is possible to more easily detect a one-dimensional or two-dimensional intensity distribution.
According to the configuration described in claim 3, it is possible to detect the one-dimensional or two-dimensional intensity distribution in a wider range by arranging the plurality of receivers at different positions.
According to the configuration of the fourth aspect of the present invention, the transmission unit includes the transmission adjustment mechanism that can change at least one of the position and the posture, so that the electromagnetic wave is optimized according to the installation environment, the state of snow, and the like. By transmitting, it is possible to obtain a more accurate measurement resolution, and it is possible to monitor a detailed state relating to the depth and quality of snow accumulation with higher accuracy.
In addition, the reception unit is equipped with a reception adjustment mechanism that can change at least one of the position and the posture, so that the one-dimensional or two-dimensional intensity distribution of the electromagnetic wave is optimized according to the installation environment and the state of snow cover. By detecting it, it is possible to obtain a more accurate measurement resolution, and it is possible to monitor the state related to the depth and quality of the detailed snow cover with higher accuracy.
According to the configuration of the fifth aspect of the present invention, the transmitter unit includes the transmitter that transmits the directional electromagnetic wave, thereby suppressing the influence of the electromagnetic wave that directly reaches the detection unit from the transmitter unit. It is possible to monitor the condition related to the depth and quality of snowfall more accurately.
Examples of transmitters that transmit electromagnetic waves having directivity include those that transmit laser light having directivity to the electromagnetic waves themselves, and those that are equipped with a directional filter such as a deflector plate or a parallel light lens.

本発明に係る雪氷モニタリング装置の概略説明図。BRIEF DESCRIPTION OF THE DRAWINGS The schematic explanatory drawing of the snow ice monitoring apparatus which concerns on this invention. 積雪の放射伝達モデルのグラフ。Graph of radiative transfer model of snow. 実験例の参考写真。Reference photos of experimental examples. 実験例の計測結果グラフ。The measurement result graph of an experimental example. 本発明の一実施形態に係る雪氷モニタリング装置の説明図。Explanatory drawing of the snow ice monitoring apparatus which concerns on one Embodiment of this invention.

本発明は、透過部材と、透過部材の一方側から他方側に向けて電磁波を発信する発信機を有する発信ユニットと、透過部材の他方側から一方側に入射する電磁波を検知する受信機を有する受信ユニットとを備えた雪氷モニタリング装置であって、発信ユニット及び受信ユニットが、発信機から発信された電磁波の他方側から一方側に入射する散乱波を受信機で検知するように配置され、発信ユニットが、波長の異なる複数の電磁波を発信可能に構成され、受信ユニットが、異なる位置の電磁波の散乱波の強度を検出するように構成され、路面や構造物の内部に埋め込むことが可能であり、路面や構造物の表面に局所的に付着した雪等(雪・氷・水・泥など)の有無を判定できるとともに、詳細な積雪の深さや質に関する状態をモニタリングすることが可能なものであれば、その具体的な実施態様はいかなるものであってもよい。   The present invention has a transmission member, a transmission unit having a transmitter that transmits electromagnetic waves from one side of the transmission member toward the other side, and a receiver that detects electromagnetic waves incident on one side from the other side of the transmission member. A snow and ice monitoring device comprising a receiving unit, wherein the transmitting unit and the receiving unit are arranged so that the receiver detects a scattered wave incident on one side from the other side of the electromagnetic wave transmitted from the transmitter, The unit is configured to transmit a plurality of electromagnetic waves with different wavelengths, and the receiving unit is configured to detect the intensity of scattered waves of electromagnetic waves at different positions, and can be embedded in the road surface or the structure. In addition, it is possible to determine the presence or absence of snow, etc. (snow, ice, water, mud, etc.) locally attached to the road surface or the surface of the structure, as well as to monitor detailed conditions related to snow depth and quality As long as it can, specific embodiments thereof may be any one.

本発明に係る雪氷モニタリング装置100は、図1に概略的に示すように、透過部材110と、透過部材110の一方側から他方側に向けて電磁波を発信する発信機121を有する発信ユニット120と、透過部材110の他方側から一方側に入射する電磁波を検知する受信機131を有する受信ユニット130とを備えている。
発信機121は、例えばレーザー発振器であり、それ自体で異なる複数の波長のレーザー光を発信できるものであってもよく、発信ユニット120に、複数の発信機121が取付けられていてもよい。
また、発信調整機構によって発信ユニット120の位置及び姿勢の少なくとも一方を変更可能としてもよく、発信ユニット120は固定とし発信ユニット120内で発信調整機構によって発信機121の位置及び姿勢の少なくとも一方を変更可能としてもよい。
As shown schematically in FIG. 1, the snow and ice monitoring apparatus 100 according to the present invention includes a transmission member 110 and a transmission unit 120 including a transmitter 121 that transmits electromagnetic waves from one side of the transmission member 110 toward the other side. And a receiving unit 130 having a receiver 131 that detects electromagnetic waves incident on one side from the other side of the transmission member 110.
The transmitter 121 is, for example, a laser oscillator, and may transmit laser light having a plurality of different wavelengths. The transmitter 121 may be provided with a plurality of transmitters 121.
Further, at least one of the position and orientation of the transmission unit 120 may be changed by the transmission adjustment mechanism, and the transmission unit 120 is fixed, and at least one of the position and orientation of the transmitter 121 is changed by the transmission adjustment mechanism within the transmission unit 120. It may be possible.

受信機131は、例えばCCD等の二次元光学センサであり、それ自体で波長の異なる複数の電磁波の散乱波の二次元的な強度分布を検出できるものであってもよく、受信ユニット130に複数の受信機131が取付けられ、全体として波長の異なる複数の電磁波の散乱波の一次元あるいは二次元的な強度分布を検出してもよい。
また、受信調整機構によって受信ユニット130の位置及び姿勢の少なくとも一方を変更可能としてもよく、受信ユニット130は固定とし受信ユニット130内で受信調整機構によって受信機131の位置及び姿勢の少なくとも一方を変更可能としてもよい。
The receiver 131 is, for example, a two-dimensional optical sensor such as a CCD, and may be capable of detecting a two-dimensional intensity distribution of scattered waves of a plurality of electromagnetic waves having different wavelengths. Receiver 131 may be attached to detect one-dimensional or two-dimensional intensity distribution of scattered waves of a plurality of electromagnetic waves having different wavelengths as a whole.
In addition, at least one of the position and orientation of the reception unit 130 may be changed by the reception adjustment mechanism. The reception unit 130 is fixed, and at least one of the position and orientation of the receiver 131 is changed by the reception adjustment mechanism in the reception unit 130. It may be possible.

このような雪氷モニタリング装置100において、透過部材110の上方の積雪Sに対し、発信機121から入射する電磁波と受信機131で検出する電磁波の関係は波長によって異なっている。
図2に示すように、積雪の放射伝達モデルに基づけば、アルベド(入射電磁波に対する反射電磁波の比)は波長によって変化する(図中のre=50μmは新雪に相当、1000μmはざらめ雪に相当)。
このことにより、反射・散乱する電磁波の量は、雪質と波長に対して大きく変化し、雪厚と雪質は、電磁波の波長に対する反射・散乱強度の関係から算出が可能である。
そして、受信機131によって異なる複数の電磁波の散乱波の二次元的な強度分布を検出することで、透過部材110の上方に局所的に付着した雪等(雪・氷・水・泥など)の有無を判定できる。
In such a snow and ice monitoring apparatus 100, the relationship between the electromagnetic wave incident from the transmitter 121 and the electromagnetic wave detected by the receiver 131 with respect to the snow accumulation S above the transmission member 110 differs depending on the wavelength.
As shown in FIG. 2, the albedo (ratio of reflected electromagnetic wave to incident electromagnetic wave) varies depending on the wavelength based on the radiative transfer model of snow (re = 50 μm in the figure corresponds to fresh snow and 1000 μm corresponds to rough snow) ).
As a result, the amount of electromagnetic waves reflected / scattered varies greatly with the snow quality and wavelength, and the snow thickness and snow quality can be calculated from the relationship between the reflection / scattering intensity with respect to the wavelength of the electromagnetic waves.
Then, by detecting the two-dimensional intensity distribution of the scattered waves of a plurality of different electromagnetic waves by the receiver 131, snow or the like (snow, ice, water, mud, etc.) locally attached above the transmission member 110 is detected. Presence / absence can be determined.

また、積雪量の違いを散乱光の強さで検知する実験を行なった。
図3に示すように、−20℃に調温された実験室の中に、透過部材110としてガラス製の水槽を準備し、その下部に発信ユニット及び受信ユニットを設置した。
発信ユニット及び受信ユニットは専用のステージに設置され、お互いの距離を手動で変更できる機構を備えている。
水槽に厚さの異なる2種類の雪(30mm、90mm)を入れて、水槽下部の発信ユニットから鉛直に対し15°の角度でレーザーを照射し、受信ユニットでその散乱光を鉛直に対し15°の角度で受光して強度を計測した。
この機構を用いて、発信ユニットと受信ユニットの距離を0mmから60mmまで変化させて、散乱光強度の分布を併せて計測した。
その計測結果は、図4に示すとおりであり、雪の厚さにより光強度の分布が異なり、この装置で、雪の状態を検知できることがわかる。
これらにより、本発明に係る雪氷モニタリング装置100によれば、詳細な積雪の深さや質に関する状態をモニタリングすることが可能となる。
In addition, an experiment was conducted to detect the difference in snow cover by the intensity of scattered light.
As shown in FIG. 3, a glass water tank was prepared as a transmissive member 110 in a laboratory adjusted to −20 ° C., and a transmission unit and a reception unit were installed below the glass water tank.
The transmitting unit and the receiving unit are installed on a dedicated stage and have a mechanism that can manually change the distance between them.
Put two kinds of snow (30mm, 90mm) of different thickness in the aquarium, irradiate the laser from the transmitting unit at the bottom of the aquarium at an angle of 15 ° with respect to the vertical, and the receiving unit emits the scattered light to the vertical with 15 °. The intensity was measured by receiving light at an angle of.
Using this mechanism, the distance between the transmitting unit and the receiving unit was changed from 0 mm to 60 mm, and the distribution of scattered light intensity was measured together.
The measurement result is as shown in FIG. 4, and the light intensity distribution varies depending on the thickness of snow, and it can be seen that the snow state can be detected with this apparatus.
Thus, according to the snow and ice monitoring apparatus 100 according to the present invention, it is possible to monitor a detailed state relating to the depth and quality of snow.

本発明を滑走路に適用した一例を、図5に示す。
雪氷モニタリング装置100aは、滑走路Lに設けられた収容空間に設置されている。
透過部材110は滑走路Lと同一平面をなすように設置され、発信機121を有する発信ユニット120は透過部材110に対する発信角度を変更可能に設けられており、受信機131(図示せず)を有する受信ユニット130は発信ユニット120側から5列透過部材110に向けて設けられている。
収容空間には、受信ユニット130及び発信ユニット120の電源・制御部140が設けられており、外部からの電源供給、姿勢制御、検出信号の出力等を行なうように構成されている。
このような雪氷モニタリング装置100aを、滑走路Lの適宜の箇所に1つあるいは複数配置することで、航空機の障害とならず、外部の自然環境によるモニタリングの精度に対する影響を排除し、外部からの異物の衝突等による破損等を防止しつつ、滑走路全体の詳細な積雪の深さや質に関する状態をモニタリングすることが可能となる。
An example in which the present invention is applied to a runway is shown in FIG.
The snow and ice monitoring device 100a is installed in a storage space provided on the runway L.
The transmission member 110 is installed so as to be flush with the runway L, and the transmission unit 120 having the transmitter 121 is provided so that the transmission angle with respect to the transmission member 110 can be changed, and a receiver 131 (not shown) is provided. The receiving unit 130 is provided from the transmitting unit 120 side toward the five-row transmission member 110.
In the accommodation space, the power supply / control unit 140 of the reception unit 130 and the transmission unit 120 is provided, and is configured to perform external power supply, attitude control, detection signal output, and the like.
By arranging one or a plurality of such snow and ice monitoring devices 100a at appropriate locations on the runway L, there is no obstacle to the aircraft, and the influence on the monitoring accuracy by the external natural environment is eliminated. It is possible to monitor the detailed condition of the snow depth and quality of the entire runway while preventing damage due to foreign object collisions.

本発明の雪氷モニタリング装置は、前述の例に限定されず、また、設置箇所も道路、橋梁等の他の構造物や、航空機や車両等の移動体であってもよく、様々な分野に応用可能である。
さらに、本発明では波長の異なる複数の電磁波の散乱波の二次元的な強度分布を検出するため、積雪以外の雪・氷・水・泥等の検出や付着パターンの解析等も行なうことが可能であり、それらのモニタリング装置としても応用可能である。
The snow and ice monitoring device of the present invention is not limited to the above-described example, and the installation location may be other structures such as roads and bridges, and moving bodies such as aircraft and vehicles, and can be applied to various fields. Is possible.
Furthermore, since the present invention detects a two-dimensional intensity distribution of scattered waves of a plurality of electromagnetic waves having different wavelengths, it is possible to detect snow, ice, water, mud, etc. other than snow, and to analyze adhesion patterns. Therefore, it can be applied as a monitoring device for them.

100 ・・・ 雪氷モニタリング装置
110 ・・・ 透過部材
120 ・・・ 発信ユニット
121 ・・・ 発信機
130 ・・・ 受信ユニット
131 ・・・ 受信機
140 ・・・ 電源・制御部
S ・・・ 積雪
L ・・・ 滑走路
DESCRIPTION OF SYMBOLS 100 ... Snow and ice monitoring apparatus 110 ... Transmission member 120 ... Transmission unit 121 ... Transmitter 130 ... Reception unit 131 ... Receiver 140 ... Power supply / control part S ... Snow cover L ... Runway

Claims (5)

透過部材と、前記透過部材の一方側から他方側に向けて電磁波を発信する発信機を有する発信ユニットと、前記透過部材の他方側から一方側に入射する電磁波を検知する受信機を有する受信ユニットとを備えた雪氷モニタリング装置であって、
前記発信ユニット及び受信ユニットが、前記発信機から発信された電磁波の他方側から一方側に入射する散乱波を前記受信機で検知するように配置され、
前記発信ユニットが、波長の異なる複数の電磁波を発信可能に構成され、
前記受信ユニットが、異なる位置の前記電磁波の散乱波の強度を検出するように構成されていることを特徴とする雪氷モニタリング装置。
A transmission unit having a transmission member, a transmission unit that transmits an electromagnetic wave from one side of the transmission member toward the other side, and a receiver that detects an electromagnetic wave incident on the one side from the other side of the transmission member A snow and ice monitoring device equipped with
The transmitting unit and the receiving unit are arranged so that the receiver detects a scattered wave incident on one side from the other side of the electromagnetic wave transmitted from the transmitter,
The transmission unit is configured to be capable of transmitting a plurality of electromagnetic waves having different wavelengths,
The snow / ice monitoring apparatus, wherein the receiving unit is configured to detect the intensity of the scattered wave of the electromagnetic wave at a different position.
前記発信ユニットあるいは前記受信ユニットの少なくとも一方が、複数の発信機あるいは複数の受信機を備えていることを特徴とする請求項1に記載の雪氷モニタリング装置。   The snow / ice monitoring apparatus according to claim 1, wherein at least one of the transmission unit or the reception unit includes a plurality of transmitters or a plurality of receivers. 前記複数の受信機が、異なる位置に配置されていることを特徴とする請求項2に記載の雪氷モニタリング装置。   The snow and ice monitoring apparatus according to claim 2, wherein the plurality of receivers are arranged at different positions. 前記発信ユニットあるいは前記受信ユニットの少なくとも一方が、位置及び姿勢の少なくとも一方を変更可能な発信調整機構あるいは位置及び姿勢の少なくとも一方を変更可能な受信調整機構を備えていることを特徴とする請求項1乃至請求項3のいずれかに記載の雪氷モニタリング装置。   The at least one of the transmission unit or the reception unit includes a transmission adjustment mechanism capable of changing at least one of a position and a posture or a reception adjustment mechanism capable of changing at least one of the position and the posture. The snow and ice monitoring device according to any one of claims 1 to 3. 前記発信ユニットが、指向性を有する電磁波を発信する発信機を備えていることを特徴とする請求項1乃至請求項4のいずれかに記載の雪氷モニタリング装置。   The snow ice monitoring apparatus according to claim 1, wherein the transmission unit includes a transmitter that transmits electromagnetic waves having directivity.
JP2015050304A 2015-03-13 2015-03-13 Snow and ice monitoring device Active JP6540992B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015050304A JP6540992B2 (en) 2015-03-13 2015-03-13 Snow and ice monitoring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015050304A JP6540992B2 (en) 2015-03-13 2015-03-13 Snow and ice monitoring device

Publications (2)

Publication Number Publication Date
JP2016170069A true JP2016170069A (en) 2016-09-23
JP6540992B2 JP6540992B2 (en) 2019-07-10

Family

ID=56982426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015050304A Active JP6540992B2 (en) 2015-03-13 2015-03-13 Snow and ice monitoring device

Country Status (1)

Country Link
JP (1) JP6540992B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101822817B1 (en) * 2016-11-18 2018-01-29 전북대학교산학협력단 An apparatus and method for measuring amount of snowfall for vinyl house
KR20180052364A (en) * 2016-11-10 2018-05-18 주식회사 크래카 Measurement system using ultra wide band radar
WO2019082504A1 (en) * 2017-10-27 2019-05-02 国立研究開発法人宇宙航空研究開発機構 Information processing device, information processing method, program, and monitoring system
JP2019082359A (en) * 2017-10-30 2019-05-30 国立研究開発法人宇宙航空研究開発機構 Monitoring device and monitoring system
JP2020012716A (en) * 2018-07-18 2020-01-23 株式会社デンソーウェーブ Laser radar system
WO2020170815A1 (en) * 2019-02-21 2020-08-27 国立研究開発法人宇宙航空研究開発機構 Monitoring device and monitoring method
CN113390796A (en) * 2021-06-03 2021-09-14 武汉致腾科技有限公司 Multispectral-based road surface water ice snow identification and classification method
JP2021152451A (en) * 2020-03-24 2021-09-30 国立研究開発法人防災科学技術研究所 Snow accretion measuring device
CN114200978A (en) * 2021-08-04 2022-03-18 南开大学 Greenhouse monitoring system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000258557A (en) * 1999-03-12 2000-09-22 Matsushita Electric Ind Co Ltd Snowfall sensor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000258557A (en) * 1999-03-12 2000-09-22 Matsushita Electric Ind Co Ltd Snowfall sensor

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180052364A (en) * 2016-11-10 2018-05-18 주식회사 크래카 Measurement system using ultra wide band radar
KR101927451B1 (en) * 2016-11-10 2018-12-10 주식회사 크래카 Measurement system using ultra wide band radar
KR101822817B1 (en) * 2016-11-18 2018-01-29 전북대학교산학협력단 An apparatus and method for measuring amount of snowfall for vinyl house
WO2019082504A1 (en) * 2017-10-27 2019-05-02 国立研究開発法人宇宙航空研究開発機構 Information processing device, information processing method, program, and monitoring system
JP2019078720A (en) * 2017-10-27 2019-05-23 国立研究開発法人宇宙航空研究開発機構 Information processing device, information processing method, program, and monitoring system
US11635373B2 (en) 2017-10-27 2023-04-25 Japan Aerospace Exploration Agency Information processing apparatus, information processing method, program, and monitoring system
JP7056905B2 (en) 2017-10-27 2022-04-19 国立研究開発法人宇宙航空研究開発機構 Monitoring system, information processing method, and program
JP7024996B2 (en) 2017-10-30 2022-02-24 国立研究開発法人宇宙航空研究開発機構 Monitoring system
JP2019082359A (en) * 2017-10-30 2019-05-30 国立研究開発法人宇宙航空研究開発機構 Monitoring device and monitoring system
JP2020012716A (en) * 2018-07-18 2020-01-23 株式会社デンソーウェーブ Laser radar system
JP7067332B2 (en) 2018-07-18 2022-05-16 株式会社デンソーウェーブ Laser radar system
JP2020134347A (en) * 2019-02-21 2020-08-31 国立研究開発法人宇宙航空研究開発機構 Monitoring device and method for monitoring
WO2020170815A1 (en) * 2019-02-21 2020-08-27 国立研究開発法人宇宙航空研究開発機構 Monitoring device and monitoring method
JP7320214B2 (en) 2019-02-21 2023-08-03 国立研究開発法人宇宙航空研究開発機構 Monitoring device and monitoring method
JP2021152451A (en) * 2020-03-24 2021-09-30 国立研究開発法人防災科学技術研究所 Snow accretion measuring device
JP7302877B2 (en) 2020-03-24 2023-07-04 国立研究開発法人防災科学技術研究所 Snow accretion measuring device
CN113390796A (en) * 2021-06-03 2021-09-14 武汉致腾科技有限公司 Multispectral-based road surface water ice snow identification and classification method
CN114200978A (en) * 2021-08-04 2022-03-18 南开大学 Greenhouse monitoring system
CN114200978B (en) * 2021-08-04 2023-08-18 南开大学 Greenhouse monitoring system

Also Published As

Publication number Publication date
JP6540992B2 (en) 2019-07-10

Similar Documents

Publication Publication Date Title
JP6540992B2 (en) Snow and ice monitoring device
US11635373B2 (en) Information processing apparatus, information processing method, program, and monitoring system
US20110187580A1 (en) Device for detecting a vehicle on an airport runway
CN104335265A (en) Collision-avoidance system for ground crew using sensors
JP2022003344A (en) Three-dimensional lidar sensor
KR101862831B1 (en) Vehicle headlight with a device for determining road conditions and a system for monitoring road conditions
RU2693509C2 (en) Control system of headlight or lamp translucent cap, especially aircraft external head lamp
JP2016217777A (en) Information transmission and reception system
CN105992941B (en) Ice and subcooled water detection system
JP6326729B2 (en) Snow thickness and snow quality monitoring sensor on road surface and structure surface
KR20170081137A (en) an observation vehicle for total information of road
BR112020019954A2 (en) ROAD CONDITION MONITORING SYSTEM
US10365206B2 (en) Surface condition monitoring apparatus
KR20160127356A (en) Road Safety System Using UWB RADAR
CN110520914A (en) Equipment for detecting the water on road
KR101873837B1 (en) Smart vehicle sensing apparatus and method by the same
US20200160736A1 (en) Determination of a pavement state from on-board measurements of pavement contamination, associated system and aircraft
CN101401138B (en) Improved aircraft docking system
CN105366522A (en) Safety detection device of passenger conveying device
JPWO2019026464A1 (en) Snow depth meter and snow depth measurement method with multiple optical sensors
KR20180074960A (en) Gps signal receiver and reflectometry method for detecting road surface freezing
CN210364428U (en) Aircraft berthing guide device
JP7024996B2 (en) Monitoring system
KR101101254B1 (en) speed measuring apparatus with detecting means for obstacles
CN104111064A (en) Image and laser combined type remote sensing pavement monitoring device

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20180125

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180126

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180126

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190529

R150 Certificate of patent or registration of utility model

Ref document number: 6540992

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350